Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
This commit is contained in:
208
Documentation/IO-mapping.txt
Normal file
208
Documentation/IO-mapping.txt
Normal file
@@ -0,0 +1,208 @@
|
||||
[ NOTE: The virt_to_bus() and bus_to_virt() functions have been
|
||||
superseded by the functionality provided by the PCI DMA
|
||||
interface (see Documentation/DMA-mapping.txt). They continue
|
||||
to be documented below for historical purposes, but new code
|
||||
must not use them. --davidm 00/12/12 ]
|
||||
|
||||
[ This is a mail message in response to a query on IO mapping, thus the
|
||||
strange format for a "document" ]
|
||||
|
||||
The AHA-1542 is a bus-master device, and your patch makes the driver give the
|
||||
controller the physical address of the buffers, which is correct on x86
|
||||
(because all bus master devices see the physical memory mappings directly).
|
||||
|
||||
However, on many setups, there are actually _three_ different ways of looking
|
||||
at memory addresses, and in this case we actually want the third, the
|
||||
so-called "bus address".
|
||||
|
||||
Essentially, the three ways of addressing memory are (this is "real memory",
|
||||
that is, normal RAM--see later about other details):
|
||||
|
||||
- CPU untranslated. This is the "physical" address. Physical address
|
||||
0 is what the CPU sees when it drives zeroes on the memory bus.
|
||||
|
||||
- CPU translated address. This is the "virtual" address, and is
|
||||
completely internal to the CPU itself with the CPU doing the appropriate
|
||||
translations into "CPU untranslated".
|
||||
|
||||
- bus address. This is the address of memory as seen by OTHER devices,
|
||||
not the CPU. Now, in theory there could be many different bus
|
||||
addresses, with each device seeing memory in some device-specific way, but
|
||||
happily most hardware designers aren't actually actively trying to make
|
||||
things any more complex than necessary, so you can assume that all
|
||||
external hardware sees the memory the same way.
|
||||
|
||||
Now, on normal PCs the bus address is exactly the same as the physical
|
||||
address, and things are very simple indeed. However, they are that simple
|
||||
because the memory and the devices share the same address space, and that is
|
||||
not generally necessarily true on other PCI/ISA setups.
|
||||
|
||||
Now, just as an example, on the PReP (PowerPC Reference Platform), the
|
||||
CPU sees a memory map something like this (this is from memory):
|
||||
|
||||
0-2 GB "real memory"
|
||||
2 GB-3 GB "system IO" (inb/out and similar accesses on x86)
|
||||
3 GB-4 GB "IO memory" (shared memory over the IO bus)
|
||||
|
||||
Now, that looks simple enough. However, when you look at the same thing from
|
||||
the viewpoint of the devices, you have the reverse, and the physical memory
|
||||
address 0 actually shows up as address 2 GB for any IO master.
|
||||
|
||||
So when the CPU wants any bus master to write to physical memory 0, it
|
||||
has to give the master address 0x80000000 as the memory address.
|
||||
|
||||
So, for example, depending on how the kernel is actually mapped on the
|
||||
PPC, you can end up with a setup like this:
|
||||
|
||||
physical address: 0
|
||||
virtual address: 0xC0000000
|
||||
bus address: 0x80000000
|
||||
|
||||
where all the addresses actually point to the same thing. It's just seen
|
||||
through different translations..
|
||||
|
||||
Similarly, on the Alpha, the normal translation is
|
||||
|
||||
physical address: 0
|
||||
virtual address: 0xfffffc0000000000
|
||||
bus address: 0x40000000
|
||||
|
||||
(but there are also Alphas where the physical address and the bus address
|
||||
are the same).
|
||||
|
||||
Anyway, the way to look up all these translations, you do
|
||||
|
||||
#include <asm/io.h>
|
||||
|
||||
phys_addr = virt_to_phys(virt_addr);
|
||||
virt_addr = phys_to_virt(phys_addr);
|
||||
bus_addr = virt_to_bus(virt_addr);
|
||||
virt_addr = bus_to_virt(bus_addr);
|
||||
|
||||
Now, when do you need these?
|
||||
|
||||
You want the _virtual_ address when you are actually going to access that
|
||||
pointer from the kernel. So you can have something like this:
|
||||
|
||||
/*
|
||||
* this is the hardware "mailbox" we use to communicate with
|
||||
* the controller. The controller sees this directly.
|
||||
*/
|
||||
struct mailbox {
|
||||
__u32 status;
|
||||
__u32 bufstart;
|
||||
__u32 buflen;
|
||||
..
|
||||
} mbox;
|
||||
|
||||
unsigned char * retbuffer;
|
||||
|
||||
/* get the address from the controller */
|
||||
retbuffer = bus_to_virt(mbox.bufstart);
|
||||
switch (retbuffer[0]) {
|
||||
case STATUS_OK:
|
||||
...
|
||||
|
||||
on the other hand, you want the bus address when you have a buffer that
|
||||
you want to give to the controller:
|
||||
|
||||
/* ask the controller to read the sense status into "sense_buffer" */
|
||||
mbox.bufstart = virt_to_bus(&sense_buffer);
|
||||
mbox.buflen = sizeof(sense_buffer);
|
||||
mbox.status = 0;
|
||||
notify_controller(&mbox);
|
||||
|
||||
And you generally _never_ want to use the physical address, because you can't
|
||||
use that from the CPU (the CPU only uses translated virtual addresses), and
|
||||
you can't use it from the bus master.
|
||||
|
||||
So why do we care about the physical address at all? We do need the physical
|
||||
address in some cases, it's just not very often in normal code. The physical
|
||||
address is needed if you use memory mappings, for example, because the
|
||||
"remap_pfn_range()" mm function wants the physical address of the memory to
|
||||
be remapped as measured in units of pages, a.k.a. the pfn (the memory
|
||||
management layer doesn't know about devices outside the CPU, so it
|
||||
shouldn't need to know about "bus addresses" etc).
|
||||
|
||||
NOTE NOTE NOTE! The above is only one part of the whole equation. The above
|
||||
only talks about "real memory", that is, CPU memory (RAM).
|
||||
|
||||
There is a completely different type of memory too, and that's the "shared
|
||||
memory" on the PCI or ISA bus. That's generally not RAM (although in the case
|
||||
of a video graphics card it can be normal DRAM that is just used for a frame
|
||||
buffer), but can be things like a packet buffer in a network card etc.
|
||||
|
||||
This memory is called "PCI memory" or "shared memory" or "IO memory" or
|
||||
whatever, and there is only one way to access it: the readb/writeb and
|
||||
related functions. You should never take the address of such memory, because
|
||||
there is really nothing you can do with such an address: it's not
|
||||
conceptually in the same memory space as "real memory" at all, so you cannot
|
||||
just dereference a pointer. (Sadly, on x86 it _is_ in the same memory space,
|
||||
so on x86 it actually works to just deference a pointer, but it's not
|
||||
portable).
|
||||
|
||||
For such memory, you can do things like
|
||||
|
||||
- reading:
|
||||
/*
|
||||
* read first 32 bits from ISA memory at 0xC0000, aka
|
||||
* C000:0000 in DOS terms
|
||||
*/
|
||||
unsigned int signature = isa_readl(0xC0000);
|
||||
|
||||
- remapping and writing:
|
||||
/*
|
||||
* remap framebuffer PCI memory area at 0xFC000000,
|
||||
* size 1MB, so that we can access it: We can directly
|
||||
* access only the 640k-1MB area, so anything else
|
||||
* has to be remapped.
|
||||
*/
|
||||
char * baseptr = ioremap(0xFC000000, 1024*1024);
|
||||
|
||||
/* write a 'A' to the offset 10 of the area */
|
||||
writeb('A',baseptr+10);
|
||||
|
||||
/* unmap when we unload the driver */
|
||||
iounmap(baseptr);
|
||||
|
||||
- copying and clearing:
|
||||
/* get the 6-byte Ethernet address at ISA address E000:0040 */
|
||||
memcpy_fromio(kernel_buffer, 0xE0040, 6);
|
||||
/* write a packet to the driver */
|
||||
memcpy_toio(0xE1000, skb->data, skb->len);
|
||||
/* clear the frame buffer */
|
||||
memset_io(0xA0000, 0, 0x10000);
|
||||
|
||||
OK, that just about covers the basics of accessing IO portably. Questions?
|
||||
Comments? You may think that all the above is overly complex, but one day you
|
||||
might find yourself with a 500 MHz Alpha in front of you, and then you'll be
|
||||
happy that your driver works ;)
|
||||
|
||||
Note that kernel versions 2.0.x (and earlier) mistakenly called the
|
||||
ioremap() function "vremap()". ioremap() is the proper name, but I
|
||||
didn't think straight when I wrote it originally. People who have to
|
||||
support both can do something like:
|
||||
|
||||
/* support old naming silliness */
|
||||
#if LINUX_VERSION_CODE < 0x020100
|
||||
#define ioremap vremap
|
||||
#define iounmap vfree
|
||||
#endif
|
||||
|
||||
at the top of their source files, and then they can use the right names
|
||||
even on 2.0.x systems.
|
||||
|
||||
And the above sounds worse than it really is. Most real drivers really
|
||||
don't do all that complex things (or rather: the complexity is not so
|
||||
much in the actual IO accesses as in error handling and timeouts etc).
|
||||
It's generally not hard to fix drivers, and in many cases the code
|
||||
actually looks better afterwards:
|
||||
|
||||
unsigned long signature = *(unsigned int *) 0xC0000;
|
||||
vs
|
||||
unsigned long signature = readl(0xC0000);
|
||||
|
||||
I think the second version actually is more readable, no?
|
||||
|
||||
Linus
|
||||
|
Reference in New Issue
Block a user