mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some context. There's one example: CPU0 CPU1 isolate_migratepages_block() page_count() compound_head() !!PageTail() == true put_page() tail->first_page = NULL head = tail->first_page alloc_pages(__GFP_COMP) prep_compound_page() tail->first_page = head __SetPageTail(p); !!PageTail() == true <head == NULL dereferencing> The race is pure theoretical. I don't it's possible to trigger it in practice. But who knows. We can fix the race by changing how encode PageTail() and compound_head() within struct page to be able to update them in one shot. The patch introduces page->compound_head into third double word block in front of compound_dtor and compound_order. Bit 0 encodes PageTail() and the rest bits are pointer to head page if bit zero is set. The patch moves page->pmd_huge_pte out of word, just in case if an architecture defines pgtable_t into something what can have the bit 0 set. hugetlb_cgroup uses page->lru.next in the second tail page to store pointer struct hugetlb_cgroup. The patch switch it to use page->private in the second tail page instead. The space is free since ->first_page is removed from the union. The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER limitation, since there's now space in first tail page to store struct hugetlb_cgroup pointer. But that's out of scope of the patch. That means page->compound_head shares storage space with: - page->lru.next; - page->next; - page->rcu_head.next; That's too long list to be absolutely sure, but looks like nobody uses bit 0 of the word. page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future call_rcu_lazy() is not allowed as it makes use of the bit and we can get false positive PageTail(). [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:

committed by
Linus Torvalds

parent
f1e61557f0
commit
1d798ca3f1
@@ -445,15 +445,15 @@ out:
|
||||
/*
|
||||
* Higher-order pages are called "compound pages". They are structured thusly:
|
||||
*
|
||||
* The first PAGE_SIZE page is called the "head page".
|
||||
* The first PAGE_SIZE page is called the "head page" and have PG_head set.
|
||||
*
|
||||
* The remaining PAGE_SIZE pages are called "tail pages".
|
||||
* The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
|
||||
* in bit 0 of page->compound_head. The rest of bits is pointer to head page.
|
||||
*
|
||||
* All pages have PG_compound set. All tail pages have their ->first_page
|
||||
* pointing at the head page.
|
||||
* The first tail page's ->compound_dtor holds the offset in array of compound
|
||||
* page destructors. See compound_page_dtors.
|
||||
*
|
||||
* The first tail page's ->lru.next holds the address of the compound page's
|
||||
* put_page() function. Its ->lru.prev holds the order of allocation.
|
||||
* The first tail page's ->compound_order holds the order of allocation.
|
||||
* This usage means that zero-order pages may not be compound.
|
||||
*/
|
||||
|
||||
@@ -473,10 +473,7 @@ void prep_compound_page(struct page *page, unsigned long order)
|
||||
for (i = 1; i < nr_pages; i++) {
|
||||
struct page *p = page + i;
|
||||
set_page_count(p, 0);
|
||||
p->first_page = page;
|
||||
/* Make sure p->first_page is always valid for PageTail() */
|
||||
smp_wmb();
|
||||
__SetPageTail(p);
|
||||
set_compound_head(p, page);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -854,17 +851,30 @@ static void free_one_page(struct zone *zone,
|
||||
|
||||
static int free_tail_pages_check(struct page *head_page, struct page *page)
|
||||
{
|
||||
if (!IS_ENABLED(CONFIG_DEBUG_VM))
|
||||
return 0;
|
||||
int ret = 1;
|
||||
|
||||
/*
|
||||
* We rely page->lru.next never has bit 0 set, unless the page
|
||||
* is PageTail(). Let's make sure that's true even for poisoned ->lru.
|
||||
*/
|
||||
BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
|
||||
|
||||
if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
if (unlikely(!PageTail(page))) {
|
||||
bad_page(page, "PageTail not set", 0);
|
||||
return 1;
|
||||
goto out;
|
||||
}
|
||||
if (unlikely(page->first_page != head_page)) {
|
||||
bad_page(page, "first_page not consistent", 0);
|
||||
return 1;
|
||||
if (unlikely(compound_head(page) != head_page)) {
|
||||
bad_page(page, "compound_head not consistent", 0);
|
||||
goto out;
|
||||
}
|
||||
return 0;
|
||||
ret = 0;
|
||||
out:
|
||||
clear_compound_head(page);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
|
||||
@@ -931,6 +941,10 @@ void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
|
||||
struct page *page = pfn_to_page(start_pfn);
|
||||
|
||||
init_reserved_page(start_pfn);
|
||||
|
||||
/* Avoid false-positive PageTail() */
|
||||
INIT_LIST_HEAD(&page->lru);
|
||||
|
||||
SetPageReserved(page);
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user