RDMA/cxgb4: Fix QP flush logic

This patch makes following fixes in QP flush logic:

- correctly flushes unsignaled WRs followed by a signaled WR
- supports for flushing a CQ bound to multiple QPs
- resets cidx_flush if a active queue starts getting HW CQEs again
- marks WQ in error when we leave RTS. This was only being done for
  user queues, but we need it for kernel queues too so that
  post_send/post_recv will start returning the appropriate error
  synchronously
- eats unsignaled read resp CQEs. HW always inserts CQEs so we must
  silently discard them if the read work request was unsignaled.
- handles QP flushes with pending SW CQEs. The flush and out of order
  completion logic has a bug where if out of order completions are
  flushed but not yet polled by the consumer and the qp is then
  flushed then we end up inserting duplicate completions.
- c4iw_flush_sq() should only flush wrs that have not already been
  flushed.  Since we already track where in the SQ we've flushed via
  sq.cidx_flush, just start at that point and flush any remaining.
  This bug only caused a problem in the presence of unsignaled work
  requests.

Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Vipul Pandya <vipul@chelsio.com>

[ Fixed sparse warning due to htonl/ntohl confusion.  - Roland ]

Signed-off-by: Roland Dreier <roland@purestorage.com>
这个提交包含在:
Steve Wise
2013-08-06 21:04:35 +05:30
提交者 Roland Dreier
父节点 97d7ec0c41
当前提交 1cf24dcef4
修改 4 个文件,包含 253 行新增135 行删除

查看文件

@@ -917,12 +917,11 @@ void c4iw_pblpool_free(struct c4iw_rdev *rdev, u32 addr, int size);
u32 c4iw_ocqp_pool_alloc(struct c4iw_rdev *rdev, int size);
void c4iw_ocqp_pool_free(struct c4iw_rdev *rdev, u32 addr, int size);
int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb);
void c4iw_flush_hw_cq(struct t4_cq *cq);
void c4iw_flush_hw_cq(struct c4iw_cq *chp);
void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count);
void c4iw_count_scqes(struct t4_cq *cq, struct t4_wq *wq, int *count);
int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp);
int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count);
int c4iw_flush_sq(struct t4_wq *wq, struct t4_cq *cq, int count);
int c4iw_flush_sq(struct c4iw_qp *qhp);
int c4iw_ev_handler(struct c4iw_dev *rnicp, u32 qid);
u16 c4iw_rqes_posted(struct c4iw_qp *qhp);
int c4iw_post_terminate(struct c4iw_qp *qhp, struct t4_cqe *err_cqe);