mm, sl[aou]b: Use a common mutex definition
Use the mutex definition from SLAB and make it the common way to take a sleeping lock. This has the effect of using a mutex instead of a rw semaphore for SLUB. SLOB gains the use of a mutex for kmem_cache_create serialization. Not needed now but SLOB may acquire some more features later (like slabinfo / sysfs support) through the expansion of the common code that will need this. Reviewed-by: Glauber Costa <glommer@parallels.com> Reviewed-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:

committed by
Pekka Enberg

parent
97d0660915
commit
18004c5d40
108
mm/slab.c
108
mm/slab.c
@@ -68,7 +68,7 @@
|
||||
* Further notes from the original documentation:
|
||||
*
|
||||
* 11 April '97. Started multi-threading - markhe
|
||||
* The global cache-chain is protected by the mutex 'cache_chain_mutex'.
|
||||
* The global cache-chain is protected by the mutex 'slab_mutex'.
|
||||
* The sem is only needed when accessing/extending the cache-chain, which
|
||||
* can never happen inside an interrupt (kmem_cache_create(),
|
||||
* kmem_cache_shrink() and kmem_cache_reap()).
|
||||
@@ -671,12 +671,6 @@ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Guard access to the cache-chain.
|
||||
*/
|
||||
static DEFINE_MUTEX(cache_chain_mutex);
|
||||
static struct list_head cache_chain;
|
||||
|
||||
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
|
||||
|
||||
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
|
||||
@@ -1100,7 +1094,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
|
||||
* When hotplugging memory or a cpu, existing nodelists are not replaced if
|
||||
* already in use.
|
||||
*
|
||||
* Must hold cache_chain_mutex.
|
||||
* Must hold slab_mutex.
|
||||
*/
|
||||
static int init_cache_nodelists_node(int node)
|
||||
{
|
||||
@@ -1108,7 +1102,7 @@ static int init_cache_nodelists_node(int node)
|
||||
struct kmem_list3 *l3;
|
||||
const int memsize = sizeof(struct kmem_list3);
|
||||
|
||||
list_for_each_entry(cachep, &cache_chain, list) {
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
/*
|
||||
* Set up the size64 kmemlist for cpu before we can
|
||||
* begin anything. Make sure some other cpu on this
|
||||
@@ -1124,7 +1118,7 @@ static int init_cache_nodelists_node(int node)
|
||||
|
||||
/*
|
||||
* The l3s don't come and go as CPUs come and
|
||||
* go. cache_chain_mutex is sufficient
|
||||
* go. slab_mutex is sufficient
|
||||
* protection here.
|
||||
*/
|
||||
cachep->nodelists[node] = l3;
|
||||
@@ -1146,7 +1140,7 @@ static void __cpuinit cpuup_canceled(long cpu)
|
||||
int node = cpu_to_mem(cpu);
|
||||
const struct cpumask *mask = cpumask_of_node(node);
|
||||
|
||||
list_for_each_entry(cachep, &cache_chain, list) {
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
struct array_cache *nc;
|
||||
struct array_cache *shared;
|
||||
struct array_cache **alien;
|
||||
@@ -1196,7 +1190,7 @@ free_array_cache:
|
||||
* the respective cache's slabs, now we can go ahead and
|
||||
* shrink each nodelist to its limit.
|
||||
*/
|
||||
list_for_each_entry(cachep, &cache_chain, list) {
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
l3 = cachep->nodelists[node];
|
||||
if (!l3)
|
||||
continue;
|
||||
@@ -1225,7 +1219,7 @@ static int __cpuinit cpuup_prepare(long cpu)
|
||||
* Now we can go ahead with allocating the shared arrays and
|
||||
* array caches
|
||||
*/
|
||||
list_for_each_entry(cachep, &cache_chain, list) {
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
struct array_cache *nc;
|
||||
struct array_cache *shared = NULL;
|
||||
struct array_cache **alien = NULL;
|
||||
@@ -1293,9 +1287,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
|
||||
switch (action) {
|
||||
case CPU_UP_PREPARE:
|
||||
case CPU_UP_PREPARE_FROZEN:
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
err = cpuup_prepare(cpu);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
break;
|
||||
case CPU_ONLINE:
|
||||
case CPU_ONLINE_FROZEN:
|
||||
@@ -1305,7 +1299,7 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
|
||||
case CPU_DOWN_PREPARE:
|
||||
case CPU_DOWN_PREPARE_FROZEN:
|
||||
/*
|
||||
* Shutdown cache reaper. Note that the cache_chain_mutex is
|
||||
* Shutdown cache reaper. Note that the slab_mutex is
|
||||
* held so that if cache_reap() is invoked it cannot do
|
||||
* anything expensive but will only modify reap_work
|
||||
* and reschedule the timer.
|
||||
@@ -1332,9 +1326,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
|
||||
#endif
|
||||
case CPU_UP_CANCELED:
|
||||
case CPU_UP_CANCELED_FROZEN:
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
cpuup_canceled(cpu);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
break;
|
||||
}
|
||||
return notifier_from_errno(err);
|
||||
@@ -1350,14 +1344,14 @@ static struct notifier_block __cpuinitdata cpucache_notifier = {
|
||||
* Returns -EBUSY if all objects cannot be drained so that the node is not
|
||||
* removed.
|
||||
*
|
||||
* Must hold cache_chain_mutex.
|
||||
* Must hold slab_mutex.
|
||||
*/
|
||||
static int __meminit drain_cache_nodelists_node(int node)
|
||||
{
|
||||
struct kmem_cache *cachep;
|
||||
int ret = 0;
|
||||
|
||||
list_for_each_entry(cachep, &cache_chain, list) {
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
struct kmem_list3 *l3;
|
||||
|
||||
l3 = cachep->nodelists[node];
|
||||
@@ -1388,14 +1382,14 @@ static int __meminit slab_memory_callback(struct notifier_block *self,
|
||||
|
||||
switch (action) {
|
||||
case MEM_GOING_ONLINE:
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
ret = init_cache_nodelists_node(nid);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
break;
|
||||
case MEM_GOING_OFFLINE:
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
ret = drain_cache_nodelists_node(nid);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
break;
|
||||
case MEM_ONLINE:
|
||||
case MEM_OFFLINE:
|
||||
@@ -1499,8 +1493,8 @@ void __init kmem_cache_init(void)
|
||||
node = numa_mem_id();
|
||||
|
||||
/* 1) create the cache_cache */
|
||||
INIT_LIST_HEAD(&cache_chain);
|
||||
list_add(&cache_cache.list, &cache_chain);
|
||||
INIT_LIST_HEAD(&slab_caches);
|
||||
list_add(&cache_cache.list, &slab_caches);
|
||||
cache_cache.colour_off = cache_line_size();
|
||||
cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
|
||||
cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
|
||||
@@ -1642,11 +1636,11 @@ void __init kmem_cache_init_late(void)
|
||||
init_lock_keys();
|
||||
|
||||
/* 6) resize the head arrays to their final sizes */
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
list_for_each_entry(cachep, &cache_chain, list)
|
||||
mutex_lock(&slab_mutex);
|
||||
list_for_each_entry(cachep, &slab_caches, list)
|
||||
if (enable_cpucache(cachep, GFP_NOWAIT))
|
||||
BUG();
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
|
||||
/* Done! */
|
||||
slab_state = FULL;
|
||||
@@ -2253,10 +2247,10 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
|
||||
*/
|
||||
if (slab_is_available()) {
|
||||
get_online_cpus();
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
}
|
||||
|
||||
list_for_each_entry(pc, &cache_chain, list) {
|
||||
list_for_each_entry(pc, &slab_caches, list) {
|
||||
char tmp;
|
||||
int res;
|
||||
|
||||
@@ -2500,10 +2494,10 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
|
||||
}
|
||||
|
||||
/* cache setup completed, link it into the list */
|
||||
list_add(&cachep->list, &cache_chain);
|
||||
list_add(&cachep->list, &slab_caches);
|
||||
oops:
|
||||
if (slab_is_available()) {
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
put_online_cpus();
|
||||
}
|
||||
return cachep;
|
||||
@@ -2622,7 +2616,7 @@ out:
|
||||
return nr_freed;
|
||||
}
|
||||
|
||||
/* Called with cache_chain_mutex held to protect against cpu hotplug */
|
||||
/* Called with slab_mutex held to protect against cpu hotplug */
|
||||
static int __cache_shrink(struct kmem_cache *cachep)
|
||||
{
|
||||
int ret = 0, i = 0;
|
||||
@@ -2657,9 +2651,9 @@ int kmem_cache_shrink(struct kmem_cache *cachep)
|
||||
BUG_ON(!cachep || in_interrupt());
|
||||
|
||||
get_online_cpus();
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
ret = __cache_shrink(cachep);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
put_online_cpus();
|
||||
return ret;
|
||||
}
|
||||
@@ -2687,15 +2681,15 @@ void kmem_cache_destroy(struct kmem_cache *cachep)
|
||||
|
||||
/* Find the cache in the chain of caches. */
|
||||
get_online_cpus();
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
/*
|
||||
* the chain is never empty, cache_cache is never destroyed
|
||||
*/
|
||||
list_del(&cachep->list);
|
||||
if (__cache_shrink(cachep)) {
|
||||
slab_error(cachep, "Can't free all objects");
|
||||
list_add(&cachep->list, &cache_chain);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
list_add(&cachep->list, &slab_caches);
|
||||
mutex_unlock(&slab_mutex);
|
||||
put_online_cpus();
|
||||
return;
|
||||
}
|
||||
@@ -2704,7 +2698,7 @@ void kmem_cache_destroy(struct kmem_cache *cachep)
|
||||
rcu_barrier();
|
||||
|
||||
__kmem_cache_destroy(cachep);
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
put_online_cpus();
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_destroy);
|
||||
@@ -4017,7 +4011,7 @@ static void do_ccupdate_local(void *info)
|
||||
new->new[smp_processor_id()] = old;
|
||||
}
|
||||
|
||||
/* Always called with the cache_chain_mutex held */
|
||||
/* Always called with the slab_mutex held */
|
||||
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
|
||||
int batchcount, int shared, gfp_t gfp)
|
||||
{
|
||||
@@ -4061,7 +4055,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
|
||||
return alloc_kmemlist(cachep, gfp);
|
||||
}
|
||||
|
||||
/* Called with cache_chain_mutex held always */
|
||||
/* Called with slab_mutex held always */
|
||||
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
|
||||
{
|
||||
int err;
|
||||
@@ -4163,11 +4157,11 @@ static void cache_reap(struct work_struct *w)
|
||||
int node = numa_mem_id();
|
||||
struct delayed_work *work = to_delayed_work(w);
|
||||
|
||||
if (!mutex_trylock(&cache_chain_mutex))
|
||||
if (!mutex_trylock(&slab_mutex))
|
||||
/* Give up. Setup the next iteration. */
|
||||
goto out;
|
||||
|
||||
list_for_each_entry(searchp, &cache_chain, list) {
|
||||
list_for_each_entry(searchp, &slab_caches, list) {
|
||||
check_irq_on();
|
||||
|
||||
/*
|
||||
@@ -4205,7 +4199,7 @@ next:
|
||||
cond_resched();
|
||||
}
|
||||
check_irq_on();
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
next_reap_node();
|
||||
out:
|
||||
/* Set up the next iteration */
|
||||
@@ -4241,21 +4235,21 @@ static void *s_start(struct seq_file *m, loff_t *pos)
|
||||
{
|
||||
loff_t n = *pos;
|
||||
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
if (!n)
|
||||
print_slabinfo_header(m);
|
||||
|
||||
return seq_list_start(&cache_chain, *pos);
|
||||
return seq_list_start(&slab_caches, *pos);
|
||||
}
|
||||
|
||||
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
||||
{
|
||||
return seq_list_next(p, &cache_chain, pos);
|
||||
return seq_list_next(p, &slab_caches, pos);
|
||||
}
|
||||
|
||||
static void s_stop(struct seq_file *m, void *p)
|
||||
{
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
}
|
||||
|
||||
static int s_show(struct seq_file *m, void *p)
|
||||
@@ -4406,9 +4400,9 @@ static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
|
||||
return -EINVAL;
|
||||
|
||||
/* Find the cache in the chain of caches. */
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
res = -EINVAL;
|
||||
list_for_each_entry(cachep, &cache_chain, list) {
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
if (!strcmp(cachep->name, kbuf)) {
|
||||
if (limit < 1 || batchcount < 1 ||
|
||||
batchcount > limit || shared < 0) {
|
||||
@@ -4421,7 +4415,7 @@ static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
|
||||
break;
|
||||
}
|
||||
}
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
if (res >= 0)
|
||||
res = count;
|
||||
return res;
|
||||
@@ -4444,8 +4438,8 @@ static const struct file_operations proc_slabinfo_operations = {
|
||||
|
||||
static void *leaks_start(struct seq_file *m, loff_t *pos)
|
||||
{
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
return seq_list_start(&cache_chain, *pos);
|
||||
mutex_lock(&slab_mutex);
|
||||
return seq_list_start(&slab_caches, *pos);
|
||||
}
|
||||
|
||||
static inline int add_caller(unsigned long *n, unsigned long v)
|
||||
@@ -4544,17 +4538,17 @@ static int leaks_show(struct seq_file *m, void *p)
|
||||
name = cachep->name;
|
||||
if (n[0] == n[1]) {
|
||||
/* Increase the buffer size */
|
||||
mutex_unlock(&cache_chain_mutex);
|
||||
mutex_unlock(&slab_mutex);
|
||||
m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
|
||||
if (!m->private) {
|
||||
/* Too bad, we are really out */
|
||||
m->private = n;
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
return -ENOMEM;
|
||||
}
|
||||
*(unsigned long *)m->private = n[0] * 2;
|
||||
kfree(n);
|
||||
mutex_lock(&cache_chain_mutex);
|
||||
mutex_lock(&slab_mutex);
|
||||
/* Now make sure this entry will be retried */
|
||||
m->count = m->size;
|
||||
return 0;
|
||||
|
Reference in New Issue
Block a user