[MIPS] Fixup migration to GENERIC_TIME

Since we already moved to GENERIC_TIME, we should implement alternatives
of old do_gettimeoffset routines to get sub-jiffies resolution from
gettimeofday().  This patch includes:

 * MIPS clocksource support (based on works by Manish Lachwani).
 * remove unused gettimeoffset routines and related codes.
 * remove unised 64bit do_div64_32().
 * simplify mips_hpt_init. (no argument needed, __init tag)
 * simplify c0_hpt_timer_init. (no need to write to c0_count)
 * remove some hpt_init routines.
 * mips_hpt_mask variable to specify bitmask of hpt value.
 * convert jmr3927_do_gettimeoffset to jmr3927_hpt_read.
 * convert ip27_do_gettimeoffset to ip27_hpt_read.
 * convert bcm1480_do_gettimeoffset to bcm1480_hpt_read.
 * simplify sb1250 hpt functions. (no need to subtract and shift)
    
Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This commit is contained in:
Atsushi Nemoto
2006-10-24 00:21:27 +09:00
committed by Ralf Baechle
parent 70e46f48cb
commit 16b7b2ac01
13 changed files with 104 additions and 523 deletions

View File

@@ -11,6 +11,7 @@
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/clocksource.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
@@ -67,15 +68,9 @@ int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
int (*rtc_mips_set_mmss)(unsigned long);
/* usecs per counter cycle, shifted to left by 32 bits */
static unsigned int sll32_usecs_per_cycle;
/* how many counter cycles in a jiffy */
static unsigned long cycles_per_jiffy __read_mostly;
/* Cycle counter value at the previous timer interrupt.. */
static unsigned int timerhi, timerlo;
/* expirelo is the count value for next CPU timer interrupt */
static unsigned int expirelo;
@@ -93,7 +88,7 @@ static unsigned int null_hpt_read(void)
return 0;
}
static void null_hpt_init(unsigned int count)
static void __init null_hpt_init(void)
{
/* nothing */
}
@@ -128,186 +123,18 @@ static unsigned int c0_hpt_read(void)
return read_c0_count();
}
/* For use solely as a high precision timer. */
static void c0_hpt_init(unsigned int count)
{
write_c0_count(read_c0_count() - count);
}
/* For use both as a high precision timer and an interrupt source. */
static void c0_hpt_timer_init(unsigned int count)
static void __init c0_hpt_timer_init(void)
{
count = read_c0_count() - count;
expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
write_c0_count(expirelo - cycles_per_jiffy);
expirelo = read_c0_count() + cycles_per_jiffy;
write_c0_compare(expirelo);
write_c0_count(count);
}
int (*mips_timer_state)(void);
void (*mips_timer_ack)(void);
unsigned int (*mips_hpt_read)(void);
void (*mips_hpt_init)(unsigned int);
/*
* Gettimeoffset routines. These routines returns the time duration
* since last timer interrupt in usecs.
*
* If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
* Otherwise use calibrate_gettimeoffset()
*
* If the CPU does not have the counter register, you can either supply
* your own gettimeoffset() routine, or use null_gettimeoffset(), which
* gives the same resolution as HZ.
*/
static unsigned long null_gettimeoffset(void)
{
return 0;
}
/* The function pointer to one of the gettimeoffset funcs. */
unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
static unsigned long fixed_rate_gettimeoffset(void)
{
u32 count;
unsigned long res;
/* Get last timer tick in absolute kernel time */
count = mips_hpt_read();
/* .. relative to previous jiffy (32 bits is enough) */
count -= timerlo;
__asm__("multu %1,%2"
: "=h" (res)
: "r" (count), "r" (sll32_usecs_per_cycle)
: "lo", GCC_REG_ACCUM);
/*
* Due to possible jiffies inconsistencies, we need to check
* the result so that we'll get a timer that is monotonic.
*/
if (res >= USECS_PER_JIFFY)
res = USECS_PER_JIFFY - 1;
return res;
}
/*
* Cached "1/(clocks per usec) * 2^32" value.
* It has to be recalculated once each jiffy.
*/
static unsigned long cached_quotient;
/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
static unsigned long last_jiffies;
/*
* This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
*/
static unsigned long calibrate_div32_gettimeoffset(void)
{
u32 count;
unsigned long res, tmp;
unsigned long quotient;
tmp = jiffies;
quotient = cached_quotient;
if (last_jiffies != tmp) {
last_jiffies = tmp;
if (last_jiffies != 0) {
unsigned long r0;
do_div64_32(r0, timerhi, timerlo, tmp);
do_div64_32(quotient, USECS_PER_JIFFY,
USECS_PER_JIFFY_FRAC, r0);
cached_quotient = quotient;
}
}
/* Get last timer tick in absolute kernel time */
count = mips_hpt_read();
/* .. relative to previous jiffy (32 bits is enough) */
count -= timerlo;
__asm__("multu %1,%2"
: "=h" (res)
: "r" (count), "r" (quotient)
: "lo", GCC_REG_ACCUM);
/*
* Due to possible jiffies inconsistencies, we need to check
* the result so that we'll get a timer that is monotonic.
*/
if (res >= USECS_PER_JIFFY)
res = USECS_PER_JIFFY - 1;
return res;
}
static unsigned long calibrate_div64_gettimeoffset(void)
{
u32 count;
unsigned long res, tmp;
unsigned long quotient;
tmp = jiffies;
quotient = cached_quotient;
if (last_jiffies != tmp) {
last_jiffies = tmp;
if (last_jiffies) {
unsigned long r0;
__asm__(".set push\n\t"
".set mips3\n\t"
"lwu %0,%3\n\t"
"dsll32 %1,%2,0\n\t"
"or %1,%1,%0\n\t"
"ddivu $0,%1,%4\n\t"
"mflo %1\n\t"
"dsll32 %0,%5,0\n\t"
"or %0,%0,%6\n\t"
"ddivu $0,%0,%1\n\t"
"mflo %0\n\t"
".set pop"
: "=&r" (quotient), "=&r" (r0)
: "r" (timerhi), "m" (timerlo),
"r" (tmp), "r" (USECS_PER_JIFFY),
"r" (USECS_PER_JIFFY_FRAC)
: "hi", "lo", GCC_REG_ACCUM);
cached_quotient = quotient;
}
}
/* Get last timer tick in absolute kernel time */
count = mips_hpt_read();
/* .. relative to previous jiffy (32 bits is enough) */
count -= timerlo;
__asm__("multu %1,%2"
: "=h" (res)
: "r" (count), "r" (quotient)
: "lo", GCC_REG_ACCUM);
/*
* Due to possible jiffies inconsistencies, we need to check
* the result so that we'll get a timer that is monotonic.
*/
if (res >= USECS_PER_JIFFY)
res = USECS_PER_JIFFY - 1;
return res;
}
void (*mips_hpt_init)(void) __initdata = null_hpt_init;
unsigned int mips_hpt_mask = 0xffffffff;
/* last time when xtime and rtc are sync'ed up */
static long last_rtc_update;
@@ -334,18 +161,10 @@ void local_timer_interrupt(int irq, void *dev_id)
*/
irqreturn_t timer_interrupt(int irq, void *dev_id)
{
unsigned long j;
unsigned int count;
write_seqlock(&xtime_lock);
count = mips_hpt_read();
mips_timer_ack();
/* Update timerhi/timerlo for intra-jiffy calibration. */
timerhi += count < timerlo; /* Wrap around */
timerlo = count;
/*
* call the generic timer interrupt handling
*/
@@ -368,47 +187,6 @@ irqreturn_t timer_interrupt(int irq, void *dev_id)
}
}
/*
* If jiffies has overflown in this timer_interrupt, we must
* update the timer[hi]/[lo] to make fast gettimeoffset funcs
* quotient calc still valid. -arca
*
* The first timer interrupt comes late as interrupts are
* enabled long after timers are initialized. Therefore the
* high precision timer is fast, leading to wrong gettimeoffset()
* calculations. We deal with it by setting it based on the
* number of its ticks between the second and the third interrupt.
* That is still somewhat imprecise, but it's a good estimate.
* --macro
*/
j = jiffies;
if (j < 4) {
static unsigned int prev_count;
static int hpt_initialized;
switch (j) {
case 0:
timerhi = timerlo = 0;
mips_hpt_init(count);
break;
case 2:
prev_count = count;
break;
case 3:
if (!hpt_initialized) {
unsigned int c3 = 3 * (count - prev_count);
timerhi = 0;
timerlo = c3;
mips_hpt_init(count - c3);
hpt_initialized = 1;
}
break;
default:
break;
}
}
write_sequnlock(&xtime_lock);
/*
@@ -476,12 +254,11 @@ asmlinkage void ll_local_timer_interrupt(int irq)
* 1) board_time_init() -
* a) (optional) set up RTC routines,
* b) (optional) calibrate and set the mips_hpt_frequency
* (only needed if you intended to use fixed_rate_gettimeoffset
* or use cpu counter as timer interrupt source)
* (only needed if you intended to use cpu counter as timer interrupt
* source)
* 2) setup xtime based on rtc_mips_get_time().
* 3) choose a appropriate gettimeoffset routine.
* 4) calculate a couple of cached variables for later usage
* 5) plat_timer_setup() -
* 3) calculate a couple of cached variables for later usage
* 4) plat_timer_setup() -
* a) (optional) over-write any choices made above by time_init().
* b) machine specific code should setup the timer irqaction.
* c) enable the timer interrupt
@@ -533,13 +310,48 @@ static unsigned int __init calibrate_hpt(void)
} while (--i);
hpt_end = mips_hpt_read();
hpt_count = hpt_end - hpt_start;
hpt_count = (hpt_end - hpt_start) & mips_hpt_mask;
hz = HZ;
frequency = (u64)hpt_count * (u64)hz;
return frequency >> log_2_loops;
}
static cycle_t read_mips_hpt(void)
{
return (cycle_t)mips_hpt_read();
}
static struct clocksource clocksource_mips = {
.name = "MIPS",
.read = read_mips_hpt,
.is_continuous = 1,
};
static void __init init_mips_clocksource(void)
{
u64 temp;
u32 shift;
if (!mips_hpt_frequency || mips_hpt_read == null_hpt_read)
return;
/* Calclate a somewhat reasonable rating value */
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
/* Find a shift value */
for (shift = 32; shift > 0; shift--) {
temp = (u64) NSEC_PER_SEC << shift;
do_div(temp, mips_hpt_frequency);
if ((temp >> 32) == 0)
break;
}
clocksource_mips.shift = shift;
clocksource_mips.mult = (u32)temp;
clocksource_mips.mask = mips_hpt_mask;
clocksource_register(&clocksource_mips);
}
void __init time_init(void)
{
if (board_time_init)
@@ -555,41 +367,21 @@ void __init time_init(void)
-xtime.tv_sec, -xtime.tv_nsec);
/* Choose appropriate high precision timer routines. */
if (!cpu_has_counter && !mips_hpt_read) {
if (!cpu_has_counter && !mips_hpt_read)
/* No high precision timer -- sorry. */
mips_hpt_read = null_hpt_read;
mips_hpt_init = null_hpt_init;
} else if (!mips_hpt_frequency && !mips_timer_state) {
else if (!mips_hpt_frequency && !mips_timer_state) {
/* A high precision timer of unknown frequency. */
if (!mips_hpt_read) {
if (!mips_hpt_read)
/* No external high precision timer -- use R4k. */
mips_hpt_read = c0_hpt_read;
mips_hpt_init = c0_hpt_init;
}
if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
(current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
(current_cpu_data.isa_level == MIPS_CPU_ISA_II))
/*
* We need to calibrate the counter but we don't have
* 64-bit division.
*/
do_gettimeoffset = calibrate_div32_gettimeoffset;
else
/*
* We need to calibrate the counter but we *do* have
* 64-bit division.
*/
do_gettimeoffset = calibrate_div64_gettimeoffset;
} else {
/* We know counter frequency. Or we can get it. */
if (!mips_hpt_read) {
/* No external high precision timer -- use R4k. */
mips_hpt_read = c0_hpt_read;
if (mips_timer_state)
mips_hpt_init = c0_hpt_init;
else {
if (!mips_timer_state) {
/* No external timer interrupt -- use R4k. */
mips_hpt_init = c0_hpt_timer_init;
mips_timer_ack = c0_timer_ack;
@@ -598,16 +390,9 @@ void __init time_init(void)
if (!mips_hpt_frequency)
mips_hpt_frequency = calibrate_hpt();
do_gettimeoffset = fixed_rate_gettimeoffset;
/* Calculate cache parameters. */
cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
do_div64_32(sll32_usecs_per_cycle,
1000000, mips_hpt_frequency / 2,
mips_hpt_frequency);
/* Report the high precision timer rate for a reference. */
printk("Using %u.%03u MHz high precision timer.\n",
((mips_hpt_frequency + 500) / 1000) / 1000,
@@ -619,7 +404,7 @@ void __init time_init(void)
mips_timer_ack = null_timer_ack;
/* This sets up the high precision timer for the first interrupt. */
mips_hpt_init(mips_hpt_read());
mips_hpt_init();
/*
* Call board specific timer interrupt setup.
@@ -633,6 +418,8 @@ void __init time_init(void)
* is not invoked accidentally.
*/
plat_timer_setup(&timer_irqaction);
init_mips_clocksource();
}
#define FEBRUARY 2