Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (106 commits) powerpc/p3060qds: Add support for P3060QDS board powerpc/83xx: Add shutdown request support to MCU handling on MPC8349 MITX powerpc/85xx: Make kexec to interate over online cpus powerpc/fsl_booke: Fix comment in head_fsl_booke.S powerpc/85xx: issue 15 EOI after core reset for FSL CoreNet devices powerpc/8xxx: Fix interrupt handling in MPC8xxx GPIO driver powerpc/85xx: Add 'fsl,pq3-gpio' compatiable for GPIO driver powerpc/86xx: Correct Gianfar support for GE boards powerpc/cpm: Clear muram before it is in use. drivers/virt: add ioctl for 32-bit compat on 64-bit to fsl-hv-manager powerpc/fsl_msi: add support for "msi-address-64" property powerpc/85xx: Setup secondary cores PIR with hard SMP id powerpc/fsl-booke: Fix settlbcam for 64-bit powerpc/85xx: Adding DCSR node to dtsi device trees powerpc/85xx: clean up FPGA device tree nodes for Freecsale QorIQ boards powerpc/85xx: fix PHYS_64BIT selection for P1022DS powerpc/fsl-booke: Fix setup_initial_memory_limit to not blindly map powerpc: respect mem= setting for early memory limit setup powerpc: Update corenet64_smp_defconfig powerpc: Update mpc85xx/corenet 32-bit defconfigs ... Fix up trivial conflicts in: - arch/powerpc/configs/40x/hcu4_defconfig removed stale file, edited elsewhere - arch/powerpc/include/asm/udbg.h, arch/powerpc/kernel/udbg.c: added opal and gelic drivers vs added ePAPR driver - drivers/tty/serial/8250.c moved UPIO_TSI to powerpc vs removed UPIO_DWAPB support
Этот коммит содержится в:
@@ -1,7 +1,8 @@
|
||||
/*
|
||||
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
|
||||
* PPC Huge TLB Page Support for Kernel.
|
||||
*
|
||||
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
||||
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
|
||||
*
|
||||
* Based on the IA-32 version:
|
||||
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
||||
@@ -11,24 +12,39 @@
|
||||
#include <linux/io.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/hugetlb.h>
|
||||
#include <linux/of_fdt.h>
|
||||
#include <linux/memblock.h>
|
||||
#include <linux/bootmem.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/setup.h>
|
||||
|
||||
#define PAGE_SHIFT_64K 16
|
||||
#define PAGE_SHIFT_16M 24
|
||||
#define PAGE_SHIFT_16G 34
|
||||
|
||||
unsigned int HPAGE_SHIFT;
|
||||
|
||||
/*
|
||||
* Tracks gpages after the device tree is scanned and before the
|
||||
* huge_boot_pages list is ready. On 64-bit implementations, this is
|
||||
* just used to track 16G pages and so is a single array. 32-bit
|
||||
* implementations may have more than one gpage size due to limitations
|
||||
* of the memory allocators, so we need multiple arrays
|
||||
*/
|
||||
#ifdef CONFIG_PPC64
|
||||
#define MAX_NUMBER_GPAGES 1024
|
||||
|
||||
/* Tracks the 16G pages after the device tree is scanned and before the
|
||||
* huge_boot_pages list is ready. */
|
||||
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
|
||||
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
|
||||
static unsigned nr_gpages;
|
||||
|
||||
/* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
|
||||
* will choke on pointers to hugepte tables, which is handy for
|
||||
* catching screwups early. */
|
||||
#else
|
||||
#define MAX_NUMBER_GPAGES 128
|
||||
struct psize_gpages {
|
||||
u64 gpage_list[MAX_NUMBER_GPAGES];
|
||||
unsigned int nr_gpages;
|
||||
};
|
||||
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
|
||||
#endif
|
||||
|
||||
static inline int shift_to_mmu_psize(unsigned int shift)
|
||||
{
|
||||
@@ -49,25 +65,6 @@ static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
|
||||
|
||||
#define hugepd_none(hpd) ((hpd).pd == 0)
|
||||
|
||||
static inline pte_t *hugepd_page(hugepd_t hpd)
|
||||
{
|
||||
BUG_ON(!hugepd_ok(hpd));
|
||||
return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
|
||||
}
|
||||
|
||||
static inline unsigned int hugepd_shift(hugepd_t hpd)
|
||||
{
|
||||
return hpd.pd & HUGEPD_SHIFT_MASK;
|
||||
}
|
||||
|
||||
static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
|
||||
{
|
||||
unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
|
||||
pte_t *dir = hugepd_page(*hpdp);
|
||||
|
||||
return dir + idx;
|
||||
}
|
||||
|
||||
pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
|
||||
{
|
||||
pgd_t *pg;
|
||||
@@ -93,7 +90,7 @@ pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift
|
||||
if (is_hugepd(pm))
|
||||
hpdp = (hugepd_t *)pm;
|
||||
else if (!pmd_none(*pm)) {
|
||||
return pte_offset_map(pm, ea);
|
||||
return pte_offset_kernel(pm, ea);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -114,8 +111,18 @@ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
||||
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
||||
unsigned long address, unsigned pdshift, unsigned pshift)
|
||||
{
|
||||
pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
|
||||
GFP_KERNEL|__GFP_REPEAT);
|
||||
struct kmem_cache *cachep;
|
||||
pte_t *new;
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
cachep = PGT_CACHE(pdshift - pshift);
|
||||
#else
|
||||
int i;
|
||||
int num_hugepd = 1 << (pshift - pdshift);
|
||||
cachep = hugepte_cache;
|
||||
#endif
|
||||
|
||||
new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
|
||||
|
||||
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
|
||||
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
|
||||
@@ -124,10 +131,31 @@ static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
||||
return -ENOMEM;
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
#ifdef CONFIG_PPC64
|
||||
if (!hugepd_none(*hpdp))
|
||||
kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
|
||||
kmem_cache_free(cachep, new);
|
||||
else
|
||||
hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
|
||||
hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
|
||||
#else
|
||||
/*
|
||||
* We have multiple higher-level entries that point to the same
|
||||
* actual pte location. Fill in each as we go and backtrack on error.
|
||||
* We need all of these so the DTLB pgtable walk code can find the
|
||||
* right higher-level entry without knowing if it's a hugepage or not.
|
||||
*/
|
||||
for (i = 0; i < num_hugepd; i++, hpdp++) {
|
||||
if (unlikely(!hugepd_none(*hpdp)))
|
||||
break;
|
||||
else
|
||||
hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
|
||||
}
|
||||
/* If we bailed from the for loop early, an error occurred, clean up */
|
||||
if (i < num_hugepd) {
|
||||
for (i = i - 1 ; i >= 0; i--, hpdp--)
|
||||
hpdp->pd = 0;
|
||||
kmem_cache_free(cachep, new);
|
||||
}
|
||||
#endif
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return 0;
|
||||
}
|
||||
@@ -169,11 +197,132 @@ pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz
|
||||
return hugepte_offset(hpdp, addr, pdshift);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PPC32
|
||||
/* Build list of addresses of gigantic pages. This function is used in early
|
||||
* boot before the buddy or bootmem allocator is setup.
|
||||
*/
|
||||
void add_gpage(unsigned long addr, unsigned long page_size,
|
||||
unsigned long number_of_pages)
|
||||
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
||||
{
|
||||
unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
|
||||
int i;
|
||||
|
||||
if (addr == 0)
|
||||
return;
|
||||
|
||||
gpage_freearray[idx].nr_gpages = number_of_pages;
|
||||
|
||||
for (i = 0; i < number_of_pages; i++) {
|
||||
gpage_freearray[idx].gpage_list[i] = addr;
|
||||
addr += page_size;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Moves the gigantic page addresses from the temporary list to the
|
||||
* huge_boot_pages list.
|
||||
*/
|
||||
int alloc_bootmem_huge_page(struct hstate *hstate)
|
||||
{
|
||||
struct huge_bootmem_page *m;
|
||||
int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
|
||||
int nr_gpages = gpage_freearray[idx].nr_gpages;
|
||||
|
||||
if (nr_gpages == 0)
|
||||
return 0;
|
||||
|
||||
#ifdef CONFIG_HIGHMEM
|
||||
/*
|
||||
* If gpages can be in highmem we can't use the trick of storing the
|
||||
* data structure in the page; allocate space for this
|
||||
*/
|
||||
m = alloc_bootmem(sizeof(struct huge_bootmem_page));
|
||||
m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
|
||||
#else
|
||||
m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
|
||||
#endif
|
||||
|
||||
list_add(&m->list, &huge_boot_pages);
|
||||
gpage_freearray[idx].nr_gpages = nr_gpages;
|
||||
gpage_freearray[idx].gpage_list[nr_gpages] = 0;
|
||||
m->hstate = hstate;
|
||||
|
||||
return 1;
|
||||
}
|
||||
/*
|
||||
* Scan the command line hugepagesz= options for gigantic pages; store those in
|
||||
* a list that we use to allocate the memory once all options are parsed.
|
||||
*/
|
||||
|
||||
unsigned long gpage_npages[MMU_PAGE_COUNT];
|
||||
|
||||
static int __init do_gpage_early_setup(char *param, char *val)
|
||||
{
|
||||
static phys_addr_t size;
|
||||
unsigned long npages;
|
||||
|
||||
/*
|
||||
* The hugepagesz and hugepages cmdline options are interleaved. We
|
||||
* use the size variable to keep track of whether or not this was done
|
||||
* properly and skip over instances where it is incorrect. Other
|
||||
* command-line parsing code will issue warnings, so we don't need to.
|
||||
*
|
||||
*/
|
||||
if ((strcmp(param, "default_hugepagesz") == 0) ||
|
||||
(strcmp(param, "hugepagesz") == 0)) {
|
||||
size = memparse(val, NULL);
|
||||
} else if (strcmp(param, "hugepages") == 0) {
|
||||
if (size != 0) {
|
||||
if (sscanf(val, "%lu", &npages) <= 0)
|
||||
npages = 0;
|
||||
gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
|
||||
size = 0;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This function allocates physical space for pages that are larger than the
|
||||
* buddy allocator can handle. We want to allocate these in highmem because
|
||||
* the amount of lowmem is limited. This means that this function MUST be
|
||||
* called before lowmem_end_addr is set up in MMU_init() in order for the lmb
|
||||
* allocate to grab highmem.
|
||||
*/
|
||||
void __init reserve_hugetlb_gpages(void)
|
||||
{
|
||||
static __initdata char cmdline[COMMAND_LINE_SIZE];
|
||||
phys_addr_t size, base;
|
||||
int i;
|
||||
|
||||
strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
|
||||
parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
|
||||
|
||||
/*
|
||||
* Walk gpage list in reverse, allocating larger page sizes first.
|
||||
* Skip over unsupported sizes, or sizes that have 0 gpages allocated.
|
||||
* When we reach the point in the list where pages are no longer
|
||||
* considered gpages, we're done.
|
||||
*/
|
||||
for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
|
||||
if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
|
||||
continue;
|
||||
else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
|
||||
break;
|
||||
|
||||
size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
|
||||
base = memblock_alloc_base(size * gpage_npages[i], size,
|
||||
MEMBLOCK_ALLOC_ANYWHERE);
|
||||
add_gpage(base, size, gpage_npages[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#else /* PPC64 */
|
||||
|
||||
/* Build list of addresses of gigantic pages. This function is used in early
|
||||
* boot before the buddy or bootmem allocator is setup.
|
||||
*/
|
||||
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
||||
{
|
||||
if (!addr)
|
||||
return;
|
||||
@@ -199,19 +348,79 @@ int alloc_bootmem_huge_page(struct hstate *hstate)
|
||||
m->hstate = hstate;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PPC32
|
||||
#define HUGEPD_FREELIST_SIZE \
|
||||
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
|
||||
|
||||
struct hugepd_freelist {
|
||||
struct rcu_head rcu;
|
||||
unsigned int index;
|
||||
void *ptes[0];
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
|
||||
|
||||
static void hugepd_free_rcu_callback(struct rcu_head *head)
|
||||
{
|
||||
struct hugepd_freelist *batch =
|
||||
container_of(head, struct hugepd_freelist, rcu);
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < batch->index; i++)
|
||||
kmem_cache_free(hugepte_cache, batch->ptes[i]);
|
||||
|
||||
free_page((unsigned long)batch);
|
||||
}
|
||||
|
||||
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
|
||||
{
|
||||
struct hugepd_freelist **batchp;
|
||||
|
||||
batchp = &__get_cpu_var(hugepd_freelist_cur);
|
||||
|
||||
if (atomic_read(&tlb->mm->mm_users) < 2 ||
|
||||
cpumask_equal(mm_cpumask(tlb->mm),
|
||||
cpumask_of(smp_processor_id()))) {
|
||||
kmem_cache_free(hugepte_cache, hugepte);
|
||||
return;
|
||||
}
|
||||
|
||||
if (*batchp == NULL) {
|
||||
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
|
||||
(*batchp)->index = 0;
|
||||
}
|
||||
|
||||
(*batchp)->ptes[(*batchp)->index++] = hugepte;
|
||||
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
|
||||
call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
|
||||
*batchp = NULL;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
|
||||
unsigned long start, unsigned long end,
|
||||
unsigned long floor, unsigned long ceiling)
|
||||
{
|
||||
pte_t *hugepte = hugepd_page(*hpdp);
|
||||
unsigned shift = hugepd_shift(*hpdp);
|
||||
int i;
|
||||
|
||||
unsigned long pdmask = ~((1UL << pdshift) - 1);
|
||||
unsigned int num_hugepd = 1;
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
unsigned int shift = hugepd_shift(*hpdp);
|
||||
#else
|
||||
/* Note: On 32-bit the hpdp may be the first of several */
|
||||
num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
|
||||
#endif
|
||||
|
||||
start &= pdmask;
|
||||
if (start < floor)
|
||||
@@ -224,9 +433,15 @@ static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshif
|
||||
if (end - 1 > ceiling - 1)
|
||||
return;
|
||||
|
||||
hpdp->pd = 0;
|
||||
for (i = 0; i < num_hugepd; i++, hpdp++)
|
||||
hpdp->pd = 0;
|
||||
|
||||
tlb->need_flush = 1;
|
||||
#ifdef CONFIG_PPC64
|
||||
pgtable_free_tlb(tlb, hugepte, pdshift - shift);
|
||||
#else
|
||||
hugepd_free(tlb, hugepte);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
||||
@@ -331,18 +546,27 @@ void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
||||
* too.
|
||||
*/
|
||||
|
||||
pgd = pgd_offset(tlb->mm, addr);
|
||||
do {
|
||||
next = pgd_addr_end(addr, end);
|
||||
pgd = pgd_offset(tlb->mm, addr);
|
||||
if (!is_hugepd(pgd)) {
|
||||
if (pgd_none_or_clear_bad(pgd))
|
||||
continue;
|
||||
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
||||
} else {
|
||||
#ifdef CONFIG_PPC32
|
||||
/*
|
||||
* Increment next by the size of the huge mapping since
|
||||
* on 32-bit there may be more than one entry at the pgd
|
||||
* level for a single hugepage, but all of them point to
|
||||
* the same kmem cache that holds the hugepte.
|
||||
*/
|
||||
next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
|
||||
#endif
|
||||
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
|
||||
addr, next, floor, ceiling);
|
||||
}
|
||||
} while (pgd++, addr = next, addr != end);
|
||||
} while (addr = next, addr != end);
|
||||
}
|
||||
|
||||
struct page *
|
||||
@@ -477,17 +701,35 @@ unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
||||
unsigned long len, unsigned long pgoff,
|
||||
unsigned long flags)
|
||||
{
|
||||
#ifdef CONFIG_PPC_MM_SLICES
|
||||
struct hstate *hstate = hstate_file(file);
|
||||
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
|
||||
|
||||
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
|
||||
#else
|
||||
return get_unmapped_area(file, addr, len, pgoff, flags);
|
||||
#endif
|
||||
}
|
||||
|
||||
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
||||
{
|
||||
#ifdef CONFIG_PPC_MM_SLICES
|
||||
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
|
||||
|
||||
return 1UL << mmu_psize_to_shift(psize);
|
||||
#else
|
||||
if (!is_vm_hugetlb_page(vma))
|
||||
return PAGE_SIZE;
|
||||
|
||||
return huge_page_size(hstate_vma(vma));
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline bool is_power_of_4(unsigned long x)
|
||||
{
|
||||
if (is_power_of_2(x))
|
||||
return (__ilog2(x) % 2) ? false : true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static int __init add_huge_page_size(unsigned long long size)
|
||||
@@ -497,9 +739,14 @@ static int __init add_huge_page_size(unsigned long long size)
|
||||
|
||||
/* Check that it is a page size supported by the hardware and
|
||||
* that it fits within pagetable and slice limits. */
|
||||
#ifdef CONFIG_PPC_FSL_BOOK3E
|
||||
if ((size < PAGE_SIZE) || !is_power_of_4(size))
|
||||
return -EINVAL;
|
||||
#else
|
||||
if (!is_power_of_2(size)
|
||||
|| (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
|
||||
return -EINVAL;
|
||||
#endif
|
||||
|
||||
if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
|
||||
return -EINVAL;
|
||||
@@ -536,6 +783,46 @@ static int __init hugepage_setup_sz(char *str)
|
||||
}
|
||||
__setup("hugepagesz=", hugepage_setup_sz);
|
||||
|
||||
#ifdef CONFIG_FSL_BOOKE
|
||||
struct kmem_cache *hugepte_cache;
|
||||
static int __init hugetlbpage_init(void)
|
||||
{
|
||||
int psize;
|
||||
|
||||
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
||||
unsigned shift;
|
||||
|
||||
if (!mmu_psize_defs[psize].shift)
|
||||
continue;
|
||||
|
||||
shift = mmu_psize_to_shift(psize);
|
||||
|
||||
/* Don't treat normal page sizes as huge... */
|
||||
if (shift != PAGE_SHIFT)
|
||||
if (add_huge_page_size(1ULL << shift) < 0)
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a kmem cache for hugeptes. The bottom bits in the pte have
|
||||
* size information encoded in them, so align them to allow this
|
||||
*/
|
||||
hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
|
||||
HUGEPD_SHIFT_MASK + 1, 0, NULL);
|
||||
if (hugepte_cache == NULL)
|
||||
panic("%s: Unable to create kmem cache for hugeptes\n",
|
||||
__func__);
|
||||
|
||||
/* Default hpage size = 4M */
|
||||
if (mmu_psize_defs[MMU_PAGE_4M].shift)
|
||||
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
|
||||
else
|
||||
panic("%s: Unable to set default huge page size\n", __func__);
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
static int __init hugetlbpage_init(void)
|
||||
{
|
||||
int psize;
|
||||
@@ -578,15 +865,23 @@ static int __init hugetlbpage_init(void)
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
module_init(hugetlbpage_init);
|
||||
|
||||
void flush_dcache_icache_hugepage(struct page *page)
|
||||
{
|
||||
int i;
|
||||
void *start;
|
||||
|
||||
BUG_ON(!PageCompound(page));
|
||||
|
||||
for (i = 0; i < (1UL << compound_order(page)); i++)
|
||||
__flush_dcache_icache(page_address(page+i));
|
||||
for (i = 0; i < (1UL << compound_order(page)); i++) {
|
||||
if (!PageHighMem(page)) {
|
||||
__flush_dcache_icache(page_address(page+i));
|
||||
} else {
|
||||
start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
|
||||
__flush_dcache_icache(start);
|
||||
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Ссылка в новой задаче
Block a user