Merge 5.10.33 into android12-5.10

Changes in 5.10.33
	vhost-vdpa: protect concurrent access to vhost device iotlb
	gpio: omap: Save and restore sysconfig
	KEYS: trusted: Fix TPM reservation for seal/unseal
	vdpa/mlx5: Set err = -ENOMEM in case dma_map_sg_attrs fails
	pinctrl: lewisburg: Update number of pins in community
	block: return -EBUSY when there are open partitions in blkdev_reread_part
	pinctrl: core: Show pin numbers for the controllers with base = 0
	arm64: dts: allwinner: Revert SD card CD GPIO for Pine64-LTS
	bpf: Permits pointers on stack for helper calls
	bpf: Allow variable-offset stack access
	bpf: Refactor and streamline bounds check into helper
	bpf: Tighten speculative pointer arithmetic mask
	locking/qrwlock: Fix ordering in queued_write_lock_slowpath()
	perf/x86/intel/uncore: Remove uncore extra PCI dev HSWEP_PCI_PCU_3
	perf/x86/kvm: Fix Broadwell Xeon stepping in isolation_ucodes[]
	perf auxtrace: Fix potential NULL pointer dereference
	perf map: Fix error return code in maps__clone()
	HID: google: add don USB id
	HID: alps: fix error return code in alps_input_configured()
	HID cp2112: fix support for multiple gpiochips
	HID: wacom: Assign boolean values to a bool variable
	soc: qcom: geni: shield geni_icc_get() for ACPI boot
	dmaengine: xilinx: dpdma: Fix descriptor issuing on video group
	dmaengine: xilinx: dpdma: Fix race condition in done IRQ
	ARM: dts: Fix swapped mmc order for omap3
	net: geneve: check skb is large enough for IPv4/IPv6 header
	dmaengine: tegra20: Fix runtime PM imbalance on error
	s390/entry: save the caller of psw_idle
	arm64: kprobes: Restore local irqflag if kprobes is cancelled
	xen-netback: Check for hotplug-status existence before watching
	cavium/liquidio: Fix duplicate argument
	kasan: fix hwasan build for gcc
	csky: change a Kconfig symbol name to fix e1000 build error
	ia64: fix discontig.c section mismatches
	ia64: tools: remove duplicate definition of ia64_mf() on ia64
	x86/crash: Fix crash_setup_memmap_entries() out-of-bounds access
	net: hso: fix NULL-deref on disconnect regression
	USB: CDC-ACM: fix poison/unpoison imbalance
	Linux 5.10.33

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I638db3c919ad938eaaaac3d687175252edcd7990
This commit is contained in:
Greg Kroah-Hartman
2021-04-29 08:50:53 +02:00
40 changed files with 744 additions and 295 deletions

View File

@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0 # SPDX-License-Identifier: GPL-2.0
VERSION = 5 VERSION = 5
PATCHLEVEL = 10 PATCHLEVEL = 10
SUBLEVEL = 32 SUBLEVEL = 33
EXTRAVERSION = EXTRAVERSION =
NAME = Dare mighty things NAME = Dare mighty things

View File

@@ -24,6 +24,9 @@
i2c0 = &i2c1; i2c0 = &i2c1;
i2c1 = &i2c2; i2c1 = &i2c2;
i2c2 = &i2c3; i2c2 = &i2c3;
mmc0 = &mmc1;
mmc1 = &mmc2;
mmc2 = &mmc3;
serial0 = &uart1; serial0 = &uart1;
serial1 = &uart2; serial1 = &uart2;
serial2 = &uart3; serial2 = &uart3;

View File

@@ -10,5 +10,5 @@
}; };
&mmc0 { &mmc0 {
cd-gpios = <&pio 5 6 GPIO_ACTIVE_LOW>; /* PF6 push-push switch */ broken-cd; /* card detect is broken on *some* boards */
}; };

View File

@@ -286,10 +286,12 @@ int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
if (!instruction_pointer(regs)) if (!instruction_pointer(regs))
BUG(); BUG();
if (kcb->kprobe_status == KPROBE_REENTER) if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb); restore_previous_kprobe(kcb);
else } else {
kprobes_restore_local_irqflag(kcb, regs);
reset_current_kprobe(); reset_current_kprobe();
}
break; break;
case KPROBE_HIT_ACTIVE: case KPROBE_HIT_ACTIVE:

View File

@@ -292,7 +292,7 @@ config FORCE_MAX_ZONEORDER
int "Maximum zone order" int "Maximum zone order"
default "11" default "11"
config RAM_BASE config DRAM_BASE
hex "DRAM start addr (the same with memory-section in dts)" hex "DRAM start addr (the same with memory-section in dts)"
default 0x0 default 0x0

View File

@@ -28,7 +28,7 @@
#define SSEG_SIZE 0x20000000 #define SSEG_SIZE 0x20000000
#define LOWMEM_LIMIT (SSEG_SIZE * 2) #define LOWMEM_LIMIT (SSEG_SIZE * 2)
#define PHYS_OFFSET_OFFSET (CONFIG_RAM_BASE & (SSEG_SIZE - 1)) #define PHYS_OFFSET_OFFSET (CONFIG_DRAM_BASE & (SSEG_SIZE - 1))
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__

View File

@@ -94,7 +94,7 @@ static int __init build_node_maps(unsigned long start, unsigned long len,
* acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
* called yet. Note that node 0 will also count all non-existent cpus. * called yet. Note that node 0 will also count all non-existent cpus.
*/ */
static int __meminit early_nr_cpus_node(int node) static int early_nr_cpus_node(int node)
{ {
int cpu, n = 0; int cpu, n = 0;
@@ -109,7 +109,7 @@ static int __meminit early_nr_cpus_node(int node)
* compute_pernodesize - compute size of pernode data * compute_pernodesize - compute size of pernode data
* @node: the node id. * @node: the node id.
*/ */
static unsigned long __meminit compute_pernodesize(int node) static unsigned long compute_pernodesize(int node)
{ {
unsigned long pernodesize = 0, cpus; unsigned long pernodesize = 0, cpus;
@@ -366,7 +366,7 @@ static void __init reserve_pernode_space(void)
} }
} }
static void __meminit scatter_node_data(void) static void scatter_node_data(void)
{ {
pg_data_t **dst; pg_data_t **dst;
int node; int node;

View File

@@ -994,6 +994,7 @@ ENDPROC(ext_int_handler)
* Load idle PSW. * Load idle PSW.
*/ */
ENTRY(psw_idle) ENTRY(psw_idle)
stg %r14,(__SF_GPRS+8*8)(%r15)
stg %r3,__SF_EMPTY(%r15) stg %r3,__SF_EMPTY(%r15)
larl %r1,.Lpsw_idle_exit larl %r1,.Lpsw_idle_exit
stg %r1,__SF_EMPTY+8(%r15) stg %r1,__SF_EMPTY+8(%r15)

View File

@@ -4387,7 +4387,7 @@ static const struct x86_cpu_desc isolation_ucodes[] = {
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009), INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009), INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002), INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 2, 0x0b000014), INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021), INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000), INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000), INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),

View File

@@ -1159,7 +1159,6 @@ enum {
SNBEP_PCI_QPI_PORT0_FILTER, SNBEP_PCI_QPI_PORT0_FILTER,
SNBEP_PCI_QPI_PORT1_FILTER, SNBEP_PCI_QPI_PORT1_FILTER,
BDX_PCI_QPI_PORT2_FILTER, BDX_PCI_QPI_PORT2_FILTER,
HSWEP_PCI_PCU_3,
}; };
static int snbep_qpi_hw_config(struct intel_uncore_box *box, struct perf_event *event) static int snbep_qpi_hw_config(struct intel_uncore_box *box, struct perf_event *event)
@@ -2816,22 +2815,33 @@ static struct intel_uncore_type *hswep_msr_uncores[] = {
NULL, NULL,
}; };
#define HSWEP_PCU_DID 0x2fc0
#define HSWEP_PCU_CAPID4_OFFET 0x94
#define hswep_get_chop(_cap) (((_cap) >> 6) & 0x3)
static bool hswep_has_limit_sbox(unsigned int device)
{
struct pci_dev *dev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
u32 capid4;
if (!dev)
return false;
pci_read_config_dword(dev, HSWEP_PCU_CAPID4_OFFET, &capid4);
if (!hswep_get_chop(capid4))
return true;
return false;
}
void hswep_uncore_cpu_init(void) void hswep_uncore_cpu_init(void)
{ {
int pkg = boot_cpu_data.logical_proc_id;
if (hswep_uncore_cbox.num_boxes > boot_cpu_data.x86_max_cores) if (hswep_uncore_cbox.num_boxes > boot_cpu_data.x86_max_cores)
hswep_uncore_cbox.num_boxes = boot_cpu_data.x86_max_cores; hswep_uncore_cbox.num_boxes = boot_cpu_data.x86_max_cores;
/* Detect 6-8 core systems with only two SBOXes */ /* Detect 6-8 core systems with only two SBOXes */
if (uncore_extra_pci_dev[pkg].dev[HSWEP_PCI_PCU_3]) { if (hswep_has_limit_sbox(HSWEP_PCU_DID))
u32 capid4;
pci_read_config_dword(uncore_extra_pci_dev[pkg].dev[HSWEP_PCI_PCU_3],
0x94, &capid4);
if (((capid4 >> 6) & 0x3) == 0)
hswep_uncore_sbox.num_boxes = 2; hswep_uncore_sbox.num_boxes = 2;
}
uncore_msr_uncores = hswep_msr_uncores; uncore_msr_uncores = hswep_msr_uncores;
} }
@@ -3094,11 +3104,6 @@ static const struct pci_device_id hswep_uncore_pci_ids[] = {
.driver_data = UNCORE_PCI_DEV_DATA(UNCORE_EXTRA_PCI_DEV, .driver_data = UNCORE_PCI_DEV_DATA(UNCORE_EXTRA_PCI_DEV,
SNBEP_PCI_QPI_PORT1_FILTER), SNBEP_PCI_QPI_PORT1_FILTER),
}, },
{ /* PCU.3 (for Capability registers) */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2fc0),
.driver_data = UNCORE_PCI_DEV_DATA(UNCORE_EXTRA_PCI_DEV,
HSWEP_PCI_PCU_3),
},
{ /* end: all zeroes */ } { /* end: all zeroes */ }
}; };
@@ -3190,27 +3195,18 @@ static struct event_constraint bdx_uncore_pcu_constraints[] = {
EVENT_CONSTRAINT_END EVENT_CONSTRAINT_END
}; };
#define BDX_PCU_DID 0x6fc0
void bdx_uncore_cpu_init(void) void bdx_uncore_cpu_init(void)
{ {
int pkg = topology_phys_to_logical_pkg(boot_cpu_data.phys_proc_id);
if (bdx_uncore_cbox.num_boxes > boot_cpu_data.x86_max_cores) if (bdx_uncore_cbox.num_boxes > boot_cpu_data.x86_max_cores)
bdx_uncore_cbox.num_boxes = boot_cpu_data.x86_max_cores; bdx_uncore_cbox.num_boxes = boot_cpu_data.x86_max_cores;
uncore_msr_uncores = bdx_msr_uncores; uncore_msr_uncores = bdx_msr_uncores;
/* BDX-DE doesn't have SBOX */
if (boot_cpu_data.x86_model == 86) {
uncore_msr_uncores[BDX_MSR_UNCORE_SBOX] = NULL;
/* Detect systems with no SBOXes */ /* Detect systems with no SBOXes */
} else if (uncore_extra_pci_dev[pkg].dev[HSWEP_PCI_PCU_3]) { if ((boot_cpu_data.x86_model == 86) || hswep_has_limit_sbox(BDX_PCU_DID))
struct pci_dev *pdev; uncore_msr_uncores[BDX_MSR_UNCORE_SBOX] = NULL;
u32 capid4;
pdev = uncore_extra_pci_dev[pkg].dev[HSWEP_PCI_PCU_3];
pci_read_config_dword(pdev, 0x94, &capid4);
if (((capid4 >> 6) & 0x3) == 0)
bdx_msr_uncores[BDX_MSR_UNCORE_SBOX] = NULL;
}
hswep_uncore_pcu.constraints = bdx_uncore_pcu_constraints; hswep_uncore_pcu.constraints = bdx_uncore_pcu_constraints;
} }
@@ -3431,11 +3427,6 @@ static const struct pci_device_id bdx_uncore_pci_ids[] = {
.driver_data = UNCORE_PCI_DEV_DATA(UNCORE_EXTRA_PCI_DEV, .driver_data = UNCORE_PCI_DEV_DATA(UNCORE_EXTRA_PCI_DEV,
BDX_PCI_QPI_PORT2_FILTER), BDX_PCI_QPI_PORT2_FILTER),
}, },
{ /* PCU.3 (for Capability registers) */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x6fc0),
.driver_data = UNCORE_PCI_DEV_DATA(UNCORE_EXTRA_PCI_DEV,
HSWEP_PCI_PCU_3),
},
{ /* end: all zeroes */ } { /* end: all zeroes */ }
}; };

View File

@@ -337,7 +337,7 @@ int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
struct crash_memmap_data cmd; struct crash_memmap_data cmd;
struct crash_mem *cmem; struct crash_mem *cmem;
cmem = vzalloc(sizeof(struct crash_mem)); cmem = vzalloc(struct_size(cmem, ranges, 1));
if (!cmem) if (!cmem)
return -ENOMEM; return -ENOMEM;

View File

@@ -98,6 +98,8 @@ static int blkdev_reread_part(struct block_device *bdev, fmode_t mode)
return -EINVAL; return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) if (!capable(CAP_SYS_ADMIN))
return -EACCES; return -EACCES;
if (bdev->bd_part_count)
return -EBUSY;
/* /*
* Reopen the device to revalidate the driver state and force a * Reopen the device to revalidate the driver state and force a

View File

@@ -723,7 +723,7 @@ static void tegra_dma_issue_pending(struct dma_chan *dc)
goto end; goto end;
} }
if (!tdc->busy) { if (!tdc->busy) {
err = pm_runtime_get_sync(tdc->tdma->dev); err = pm_runtime_resume_and_get(tdc->tdma->dev);
if (err < 0) { if (err < 0) {
dev_err(tdc2dev(tdc), "Failed to enable DMA\n"); dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
goto end; goto end;
@@ -818,7 +818,7 @@ static void tegra_dma_synchronize(struct dma_chan *dc)
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
int err; int err;
err = pm_runtime_get_sync(tdc->tdma->dev); err = pm_runtime_resume_and_get(tdc->tdma->dev);
if (err < 0) { if (err < 0) {
dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err); dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
return; return;

View File

@@ -839,6 +839,7 @@ static void xilinx_dpdma_chan_queue_transfer(struct xilinx_dpdma_chan *chan)
struct xilinx_dpdma_tx_desc *desc; struct xilinx_dpdma_tx_desc *desc;
struct virt_dma_desc *vdesc; struct virt_dma_desc *vdesc;
u32 reg, channels; u32 reg, channels;
bool first_frame;
lockdep_assert_held(&chan->lock); lockdep_assert_held(&chan->lock);
@@ -852,14 +853,6 @@ static void xilinx_dpdma_chan_queue_transfer(struct xilinx_dpdma_chan *chan)
chan->running = true; chan->running = true;
} }
if (chan->video_group)
channels = xilinx_dpdma_chan_video_group_ready(chan);
else
channels = BIT(chan->id);
if (!channels)
return;
vdesc = vchan_next_desc(&chan->vchan); vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc) if (!vdesc)
return; return;
@@ -884,13 +877,26 @@ static void xilinx_dpdma_chan_queue_transfer(struct xilinx_dpdma_chan *chan)
FIELD_PREP(XILINX_DPDMA_CH_DESC_START_ADDRE_MASK, FIELD_PREP(XILINX_DPDMA_CH_DESC_START_ADDRE_MASK,
upper_32_bits(sw_desc->dma_addr))); upper_32_bits(sw_desc->dma_addr)));
if (chan->first_frame) first_frame = chan->first_frame;
chan->first_frame = false;
if (chan->video_group) {
channels = xilinx_dpdma_chan_video_group_ready(chan);
/*
* Trigger the transfer only when all channels in the group are
* ready.
*/
if (!channels)
return;
} else {
channels = BIT(chan->id);
}
if (first_frame)
reg = XILINX_DPDMA_GBL_TRIG_MASK(channels); reg = XILINX_DPDMA_GBL_TRIG_MASK(channels);
else else
reg = XILINX_DPDMA_GBL_RETRIG_MASK(channels); reg = XILINX_DPDMA_GBL_RETRIG_MASK(channels);
chan->first_frame = false;
dpdma_write(xdev->reg, XILINX_DPDMA_GBL, reg); dpdma_write(xdev->reg, XILINX_DPDMA_GBL, reg);
} }
@@ -1042,13 +1048,14 @@ static int xilinx_dpdma_chan_stop(struct xilinx_dpdma_chan *chan)
*/ */
static void xilinx_dpdma_chan_done_irq(struct xilinx_dpdma_chan *chan) static void xilinx_dpdma_chan_done_irq(struct xilinx_dpdma_chan *chan)
{ {
struct xilinx_dpdma_tx_desc *active = chan->desc.active; struct xilinx_dpdma_tx_desc *active;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&chan->lock, flags); spin_lock_irqsave(&chan->lock, flags);
xilinx_dpdma_debugfs_desc_done_irq(chan); xilinx_dpdma_debugfs_desc_done_irq(chan);
active = chan->desc.active;
if (active) if (active)
vchan_cyclic_callback(&active->vdesc); vchan_cyclic_callback(&active->vdesc);
else else

View File

@@ -29,6 +29,7 @@
#define OMAP4_GPIO_DEBOUNCINGTIME_MASK 0xFF #define OMAP4_GPIO_DEBOUNCINGTIME_MASK 0xFF
struct gpio_regs { struct gpio_regs {
u32 sysconfig;
u32 irqenable1; u32 irqenable1;
u32 irqenable2; u32 irqenable2;
u32 wake_en; u32 wake_en;
@@ -1072,6 +1073,7 @@ static void omap_gpio_init_context(struct gpio_bank *p)
const struct omap_gpio_reg_offs *regs = p->regs; const struct omap_gpio_reg_offs *regs = p->regs;
void __iomem *base = p->base; void __iomem *base = p->base;
p->context.sysconfig = readl_relaxed(base + regs->sysconfig);
p->context.ctrl = readl_relaxed(base + regs->ctrl); p->context.ctrl = readl_relaxed(base + regs->ctrl);
p->context.oe = readl_relaxed(base + regs->direction); p->context.oe = readl_relaxed(base + regs->direction);
p->context.wake_en = readl_relaxed(base + regs->wkup_en); p->context.wake_en = readl_relaxed(base + regs->wkup_en);
@@ -1091,6 +1093,7 @@ static void omap_gpio_restore_context(struct gpio_bank *bank)
const struct omap_gpio_reg_offs *regs = bank->regs; const struct omap_gpio_reg_offs *regs = bank->regs;
void __iomem *base = bank->base; void __iomem *base = bank->base;
writel_relaxed(bank->context.sysconfig, base + regs->sysconfig);
writel_relaxed(bank->context.wake_en, base + regs->wkup_en); writel_relaxed(bank->context.wake_en, base + regs->wkup_en);
writel_relaxed(bank->context.ctrl, base + regs->ctrl); writel_relaxed(bank->context.ctrl, base + regs->ctrl);
writel_relaxed(bank->context.leveldetect0, base + regs->leveldetect0); writel_relaxed(bank->context.leveldetect0, base + regs->leveldetect0);
@@ -1118,6 +1121,10 @@ static void omap_gpio_idle(struct gpio_bank *bank, bool may_lose_context)
bank->saved_datain = readl_relaxed(base + bank->regs->datain); bank->saved_datain = readl_relaxed(base + bank->regs->datain);
/* Save syconfig, it's runtime value can be different from init value */
if (bank->loses_context)
bank->context.sysconfig = readl_relaxed(base + bank->regs->sysconfig);
if (!bank->enabled_non_wakeup_gpios) if (!bank->enabled_non_wakeup_gpios)
goto update_gpio_context_count; goto update_gpio_context_count;
@@ -1282,6 +1289,7 @@ out_unlock:
static const struct omap_gpio_reg_offs omap2_gpio_regs = { static const struct omap_gpio_reg_offs omap2_gpio_regs = {
.revision = OMAP24XX_GPIO_REVISION, .revision = OMAP24XX_GPIO_REVISION,
.sysconfig = OMAP24XX_GPIO_SYSCONFIG,
.direction = OMAP24XX_GPIO_OE, .direction = OMAP24XX_GPIO_OE,
.datain = OMAP24XX_GPIO_DATAIN, .datain = OMAP24XX_GPIO_DATAIN,
.dataout = OMAP24XX_GPIO_DATAOUT, .dataout = OMAP24XX_GPIO_DATAOUT,
@@ -1305,6 +1313,7 @@ static const struct omap_gpio_reg_offs omap2_gpio_regs = {
static const struct omap_gpio_reg_offs omap4_gpio_regs = { static const struct omap_gpio_reg_offs omap4_gpio_regs = {
.revision = OMAP4_GPIO_REVISION, .revision = OMAP4_GPIO_REVISION,
.sysconfig = OMAP4_GPIO_SYSCONFIG,
.direction = OMAP4_GPIO_OE, .direction = OMAP4_GPIO_OE,
.datain = OMAP4_GPIO_DATAIN, .datain = OMAP4_GPIO_DATAIN,
.dataout = OMAP4_GPIO_DATAOUT, .dataout = OMAP4_GPIO_DATAOUT,

View File

@@ -761,6 +761,7 @@ static int alps_input_configured(struct hid_device *hdev, struct hid_input *hi)
if (input_register_device(data->input2)) { if (input_register_device(data->input2)) {
input_free_device(input2); input_free_device(input2);
ret = -ENOENT;
goto exit; goto exit;
} }
} }

View File

@@ -161,6 +161,7 @@ struct cp2112_device {
atomic_t read_avail; atomic_t read_avail;
atomic_t xfer_avail; atomic_t xfer_avail;
struct gpio_chip gc; struct gpio_chip gc;
struct irq_chip irq;
u8 *in_out_buffer; u8 *in_out_buffer;
struct mutex lock; struct mutex lock;
@@ -1175,16 +1176,6 @@ static int cp2112_gpio_irq_type(struct irq_data *d, unsigned int type)
return 0; return 0;
} }
static struct irq_chip cp2112_gpio_irqchip = {
.name = "cp2112-gpio",
.irq_startup = cp2112_gpio_irq_startup,
.irq_shutdown = cp2112_gpio_irq_shutdown,
.irq_ack = cp2112_gpio_irq_ack,
.irq_mask = cp2112_gpio_irq_mask,
.irq_unmask = cp2112_gpio_irq_unmask,
.irq_set_type = cp2112_gpio_irq_type,
};
static int __maybe_unused cp2112_allocate_irq(struct cp2112_device *dev, static int __maybe_unused cp2112_allocate_irq(struct cp2112_device *dev,
int pin) int pin)
{ {
@@ -1339,8 +1330,17 @@ static int cp2112_probe(struct hid_device *hdev, const struct hid_device_id *id)
dev->gc.can_sleep = 1; dev->gc.can_sleep = 1;
dev->gc.parent = &hdev->dev; dev->gc.parent = &hdev->dev;
dev->irq.name = "cp2112-gpio";
dev->irq.irq_startup = cp2112_gpio_irq_startup;
dev->irq.irq_shutdown = cp2112_gpio_irq_shutdown;
dev->irq.irq_ack = cp2112_gpio_irq_ack;
dev->irq.irq_mask = cp2112_gpio_irq_mask;
dev->irq.irq_unmask = cp2112_gpio_irq_unmask;
dev->irq.irq_set_type = cp2112_gpio_irq_type;
dev->irq.flags = IRQCHIP_MASK_ON_SUSPEND;
girq = &dev->gc.irq; girq = &dev->gc.irq;
girq->chip = &cp2112_gpio_irqchip; girq->chip = &dev->irq;
/* The event comes from the outside so no parent handler */ /* The event comes from the outside so no parent handler */
girq->parent_handler = NULL; girq->parent_handler = NULL;
girq->num_parents = 0; girq->num_parents = 0;

View File

@@ -526,6 +526,8 @@ static void hammer_remove(struct hid_device *hdev)
} }
static const struct hid_device_id hammer_devices[] = { static const struct hid_device_id hammer_devices[] = {
{ HID_DEVICE(BUS_USB, HID_GROUP_GENERIC,
USB_VENDOR_ID_GOOGLE, USB_DEVICE_ID_GOOGLE_DON) },
{ HID_DEVICE(BUS_USB, HID_GROUP_GENERIC, { HID_DEVICE(BUS_USB, HID_GROUP_GENERIC,
USB_VENDOR_ID_GOOGLE, USB_DEVICE_ID_GOOGLE_HAMMER) }, USB_VENDOR_ID_GOOGLE, USB_DEVICE_ID_GOOGLE_HAMMER) },
{ HID_DEVICE(BUS_USB, HID_GROUP_GENERIC, { HID_DEVICE(BUS_USB, HID_GROUP_GENERIC,

View File

@@ -486,6 +486,7 @@
#define USB_DEVICE_ID_GOOGLE_MASTERBALL 0x503c #define USB_DEVICE_ID_GOOGLE_MASTERBALL 0x503c
#define USB_DEVICE_ID_GOOGLE_MAGNEMITE 0x503d #define USB_DEVICE_ID_GOOGLE_MAGNEMITE 0x503d
#define USB_DEVICE_ID_GOOGLE_MOONBALL 0x5044 #define USB_DEVICE_ID_GOOGLE_MOONBALL 0x5044
#define USB_DEVICE_ID_GOOGLE_DON 0x5050
#define USB_VENDOR_ID_GOTOP 0x08f2 #define USB_VENDOR_ID_GOTOP 0x08f2
#define USB_DEVICE_ID_SUPER_Q2 0x007f #define USB_DEVICE_ID_SUPER_Q2 0x007f

View File

@@ -2533,7 +2533,7 @@ static void wacom_wac_finger_slot(struct wacom_wac *wacom_wac,
!wacom_wac->shared->is_touch_on) { !wacom_wac->shared->is_touch_on) {
if (!wacom_wac->shared->touch_down) if (!wacom_wac->shared->touch_down)
return; return;
prox = 0; prox = false;
} }
wacom_wac->hid_data.num_received++; wacom_wac->hid_data.num_received++;

View File

@@ -412,7 +412,7 @@
| CN6XXX_INTR_M0UNWI_ERR \ | CN6XXX_INTR_M0UNWI_ERR \
| CN6XXX_INTR_M1UPB0_ERR \ | CN6XXX_INTR_M1UPB0_ERR \
| CN6XXX_INTR_M1UPWI_ERR \ | CN6XXX_INTR_M1UPWI_ERR \
| CN6XXX_INTR_M1UPB0_ERR \ | CN6XXX_INTR_M1UNB0_ERR \
| CN6XXX_INTR_M1UNWI_ERR \ | CN6XXX_INTR_M1UNWI_ERR \
| CN6XXX_INTR_INSTR_DB_OF_ERR \ | CN6XXX_INTR_INSTR_DB_OF_ERR \
| CN6XXX_INTR_SLIST_DB_OF_ERR \ | CN6XXX_INTR_SLIST_DB_OF_ERR \

View File

@@ -890,6 +890,9 @@ static int geneve_xmit_skb(struct sk_buff *skb, struct net_device *dev,
__be16 sport; __be16 sport;
int err; int err;
if (!pskb_network_may_pull(skb, sizeof(struct iphdr)))
return -EINVAL;
sport = udp_flow_src_port(geneve->net, skb, 1, USHRT_MAX, true); sport = udp_flow_src_port(geneve->net, skb, 1, USHRT_MAX, true);
rt = geneve_get_v4_rt(skb, dev, gs4, &fl4, info, rt = geneve_get_v4_rt(skb, dev, gs4, &fl4, info,
geneve->cfg.info.key.tp_dst, sport); geneve->cfg.info.key.tp_dst, sport);
@@ -984,6 +987,9 @@ static int geneve6_xmit_skb(struct sk_buff *skb, struct net_device *dev,
__be16 sport; __be16 sport;
int err; int err;
if (!pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
return -EINVAL;
sport = udp_flow_src_port(geneve->net, skb, 1, USHRT_MAX, true); sport = udp_flow_src_port(geneve->net, skb, 1, USHRT_MAX, true);
dst = geneve_get_v6_dst(skb, dev, gs6, &fl6, info, dst = geneve_get_v6_dst(skb, dev, gs6, &fl6, info,
geneve->cfg.info.key.tp_dst, sport); geneve->cfg.info.key.tp_dst, sport);

View File

@@ -3104,7 +3104,7 @@ static void hso_free_interface(struct usb_interface *interface)
cancel_work_sync(&serial_table[i]->async_put_intf); cancel_work_sync(&serial_table[i]->async_put_intf);
cancel_work_sync(&serial_table[i]->async_get_intf); cancel_work_sync(&serial_table[i]->async_get_intf);
hso_serial_tty_unregister(serial); hso_serial_tty_unregister(serial);
kref_put(&serial_table[i]->ref, hso_serial_ref_free); kref_put(&serial->parent->ref, hso_serial_ref_free);
} }
} }

View File

@@ -824,11 +824,15 @@ static void connect(struct backend_info *be)
xenvif_carrier_on(be->vif); xenvif_carrier_on(be->vif);
unregister_hotplug_status_watch(be); unregister_hotplug_status_watch(be);
err = xenbus_watch_pathfmt(dev, &be->hotplug_status_watch, NULL, if (xenbus_exists(XBT_NIL, dev->nodename, "hotplug-status")) {
hotplug_status_changed, err = xenbus_watch_pathfmt(dev, &be->hotplug_status_watch,
"%s/%s", dev->nodename, "hotplug-status"); NULL, hotplug_status_changed,
if (!err) "%s/%s", dev->nodename,
"hotplug-status");
if (err)
goto err;
be->have_hotplug_status_watch = 1; be->have_hotplug_status_watch = 1;
}
netif_tx_wake_all_queues(be->vif->dev); netif_tx_wake_all_queues(be->vif->dev);

View File

@@ -1604,8 +1604,8 @@ static int pinctrl_pins_show(struct seq_file *s, void *what)
unsigned i, pin; unsigned i, pin;
#ifdef CONFIG_GPIOLIB #ifdef CONFIG_GPIOLIB
struct pinctrl_gpio_range *range; struct pinctrl_gpio_range *range;
unsigned int gpio_num;
struct gpio_chip *chip; struct gpio_chip *chip;
int gpio_num;
#endif #endif
seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
@@ -1625,7 +1625,7 @@ static int pinctrl_pins_show(struct seq_file *s, void *what)
seq_printf(s, "pin %d (%s) ", pin, desc->name); seq_printf(s, "pin %d (%s) ", pin, desc->name);
#ifdef CONFIG_GPIOLIB #ifdef CONFIG_GPIOLIB
gpio_num = 0; gpio_num = -1;
list_for_each_entry(range, &pctldev->gpio_ranges, node) { list_for_each_entry(range, &pctldev->gpio_ranges, node) {
if ((pin >= range->pin_base) && if ((pin >= range->pin_base) &&
(pin < (range->pin_base + range->npins))) { (pin < (range->pin_base + range->npins))) {
@@ -1633,10 +1633,12 @@ static int pinctrl_pins_show(struct seq_file *s, void *what)
break; break;
} }
} }
if (gpio_num >= 0)
chip = gpio_to_chip(gpio_num); chip = gpio_to_chip(gpio_num);
if (chip && chip->gpiodev && chip->gpiodev->base) else
seq_printf(s, "%u:%s ", gpio_num - chip = NULL;
chip->gpiodev->base, chip->label); if (chip)
seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
else else
seq_puts(s, "0:? "); seq_puts(s, "0:? ");
#endif #endif

View File

@@ -299,9 +299,9 @@ static const struct pinctrl_pin_desc lbg_pins[] = {
static const struct intel_community lbg_communities[] = { static const struct intel_community lbg_communities[] = {
LBG_COMMUNITY(0, 0, 71), LBG_COMMUNITY(0, 0, 71),
LBG_COMMUNITY(1, 72, 132), LBG_COMMUNITY(1, 72, 132),
LBG_COMMUNITY(3, 133, 144), LBG_COMMUNITY(3, 133, 143),
LBG_COMMUNITY(4, 145, 180), LBG_COMMUNITY(4, 144, 178),
LBG_COMMUNITY(5, 181, 246), LBG_COMMUNITY(5, 179, 246),
}; };
static const struct intel_pinctrl_soc_data lbg_soc_data = { static const struct intel_pinctrl_soc_data lbg_soc_data = {

View File

@@ -741,6 +741,9 @@ int geni_icc_get(struct geni_se *se, const char *icc_ddr)
int i, err; int i, err;
const char *icc_names[] = {"qup-core", "qup-config", icc_ddr}; const char *icc_names[] = {"qup-core", "qup-config", icc_ddr};
if (has_acpi_companion(se->dev))
return 0;
for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) { for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) {
if (!icc_names[i]) if (!icc_names[i])
continue; continue;

View File

@@ -1637,12 +1637,13 @@ static int acm_resume(struct usb_interface *intf)
struct urb *urb; struct urb *urb;
int rv = 0; int rv = 0;
acm_unpoison_urbs(acm);
spin_lock_irq(&acm->write_lock); spin_lock_irq(&acm->write_lock);
if (--acm->susp_count) if (--acm->susp_count)
goto out; goto out;
acm_unpoison_urbs(acm);
if (tty_port_initialized(&acm->port)) { if (tty_port_initialized(&acm->port)) {
rv = usb_submit_urb(acm->ctrlurb, GFP_ATOMIC); rv = usb_submit_urb(acm->ctrlurb, GFP_ATOMIC);

View File

@@ -273,8 +273,10 @@ done:
mr->log_size = log_entity_size; mr->log_size = log_entity_size;
mr->nsg = nsg; mr->nsg = nsg;
mr->nent = dma_map_sg_attrs(dma, mr->sg_head.sgl, mr->nsg, DMA_BIDIRECTIONAL, 0); mr->nent = dma_map_sg_attrs(dma, mr->sg_head.sgl, mr->nsg, DMA_BIDIRECTIONAL, 0);
if (!mr->nent) if (!mr->nent) {
err = -ENOMEM;
goto err_map; goto err_map;
}
err = create_direct_mr(mvdev, mr); err = create_direct_mr(mvdev, mr);
if (err) if (err)

View File

@@ -749,9 +749,11 @@ static int vhost_vdpa_process_iotlb_msg(struct vhost_dev *dev,
const struct vdpa_config_ops *ops = vdpa->config; const struct vdpa_config_ops *ops = vdpa->config;
int r = 0; int r = 0;
mutex_lock(&dev->mutex);
r = vhost_dev_check_owner(dev); r = vhost_dev_check_owner(dev);
if (r) if (r)
return r; goto unlock;
switch (msg->type) { switch (msg->type) {
case VHOST_IOTLB_UPDATE: case VHOST_IOTLB_UPDATE:
@@ -772,6 +774,8 @@ static int vhost_vdpa_process_iotlb_msg(struct vhost_dev *dev,
r = -EINVAL; r = -EINVAL;
break; break;
} }
unlock:
mutex_unlock(&dev->mutex);
return r; return r;
} }

View File

@@ -1259,6 +1259,11 @@ static inline bool bpf_allow_ptr_leaks(void)
return perfmon_capable(); return perfmon_capable();
} }
static inline bool bpf_allow_uninit_stack(void)
{
return perfmon_capable();
}
static inline bool bpf_allow_ptr_to_map_access(void) static inline bool bpf_allow_ptr_to_map_access(void)
{ {
return perfmon_capable(); return perfmon_capable();

View File

@@ -187,7 +187,7 @@ struct bpf_func_state {
* 0 = main function, 1 = first callee. * 0 = main function, 1 = first callee.
*/ */
u32 frameno; u32 frameno;
/* subprog number == index within subprog_stack_depth /* subprog number == index within subprog_info
* zero == main subprog * zero == main subprog
*/ */
u32 subprogno; u32 subprogno;
@@ -390,6 +390,7 @@ struct bpf_verifier_env {
u32 used_map_cnt; /* number of used maps */ u32 used_map_cnt; /* number of used maps */
u32 id_gen; /* used to generate unique reg IDs */ u32 id_gen; /* used to generate unique reg IDs */
bool allow_ptr_leaks; bool allow_ptr_leaks;
bool allow_uninit_stack;
bool allow_ptr_to_map_access; bool allow_ptr_to_map_access;
bool bpf_capable; bool bpf_capable;
bool bypass_spec_v1; bool bypass_spec_v1;

View File

@@ -85,6 +85,7 @@
* omap2+ specific GPIO registers * omap2+ specific GPIO registers
*/ */
#define OMAP24XX_GPIO_REVISION 0x0000 #define OMAP24XX_GPIO_REVISION 0x0000
#define OMAP24XX_GPIO_SYSCONFIG 0x0010
#define OMAP24XX_GPIO_IRQSTATUS1 0x0018 #define OMAP24XX_GPIO_IRQSTATUS1 0x0018
#define OMAP24XX_GPIO_IRQSTATUS2 0x0028 #define OMAP24XX_GPIO_IRQSTATUS2 0x0028
#define OMAP24XX_GPIO_IRQENABLE2 0x002c #define OMAP24XX_GPIO_IRQENABLE2 0x002c
@@ -108,6 +109,7 @@
#define OMAP24XX_GPIO_SETDATAOUT 0x0094 #define OMAP24XX_GPIO_SETDATAOUT 0x0094
#define OMAP4_GPIO_REVISION 0x0000 #define OMAP4_GPIO_REVISION 0x0000
#define OMAP4_GPIO_SYSCONFIG 0x0010
#define OMAP4_GPIO_EOI 0x0020 #define OMAP4_GPIO_EOI 0x0020
#define OMAP4_GPIO_IRQSTATUSRAW0 0x0024 #define OMAP4_GPIO_IRQSTATUSRAW0 0x0024
#define OMAP4_GPIO_IRQSTATUSRAW1 0x0028 #define OMAP4_GPIO_IRQSTATUSRAW1 0x0028
@@ -148,6 +150,7 @@
#ifndef __ASSEMBLER__ #ifndef __ASSEMBLER__
struct omap_gpio_reg_offs { struct omap_gpio_reg_offs {
u16 revision; u16 revision;
u16 sysconfig;
u16 direction; u16 direction;
u16 datain; u16 datain;
u16 dataout; u16 dataout;

View File

@@ -2268,12 +2268,14 @@ static void save_register_state(struct bpf_func_state *state,
state->stack[spi].slot_type[i] = STACK_SPILL; state->stack[spi].slot_type[i] = STACK_SPILL;
} }
/* check_stack_read/write functions track spill/fill of registers, /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
* stack boundary and alignment are checked in check_mem_access() * stack boundary and alignment are checked in check_mem_access()
*/ */
static int check_stack_write(struct bpf_verifier_env *env, static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
struct bpf_func_state *state, /* func where register points to */ /* stack frame we're writing to */
int off, int size, int value_regno, int insn_idx) struct bpf_func_state *state,
int off, int size, int value_regno,
int insn_idx)
{ {
struct bpf_func_state *cur; /* state of the current function */ struct bpf_func_state *cur; /* state of the current function */
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
@@ -2399,9 +2401,175 @@ static int check_stack_write(struct bpf_verifier_env *env,
return 0; return 0;
} }
static int check_stack_read(struct bpf_verifier_env *env, /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
struct bpf_func_state *reg_state /* func where register points to */, * known to contain a variable offset.
int off, int size, int value_regno) * This function checks whether the write is permitted and conservatively
* tracks the effects of the write, considering that each stack slot in the
* dynamic range is potentially written to.
*
* 'off' includes 'regno->off'.
* 'value_regno' can be -1, meaning that an unknown value is being written to
* the stack.
*
* Spilled pointers in range are not marked as written because we don't know
* what's going to be actually written. This means that read propagation for
* future reads cannot be terminated by this write.
*
* For privileged programs, uninitialized stack slots are considered
* initialized by this write (even though we don't know exactly what offsets
* are going to be written to). The idea is that we don't want the verifier to
* reject future reads that access slots written to through variable offsets.
*/
static int check_stack_write_var_off(struct bpf_verifier_env *env,
/* func where register points to */
struct bpf_func_state *state,
int ptr_regno, int off, int size,
int value_regno, int insn_idx)
{
struct bpf_func_state *cur; /* state of the current function */
int min_off, max_off;
int i, err;
struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
bool writing_zero = false;
/* set if the fact that we're writing a zero is used to let any
* stack slots remain STACK_ZERO
*/
bool zero_used = false;
cur = env->cur_state->frame[env->cur_state->curframe];
ptr_reg = &cur->regs[ptr_regno];
min_off = ptr_reg->smin_value + off;
max_off = ptr_reg->smax_value + off + size;
if (value_regno >= 0)
value_reg = &cur->regs[value_regno];
if (value_reg && register_is_null(value_reg))
writing_zero = true;
err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
state->acquired_refs, true);
if (err)
return err;
/* Variable offset writes destroy any spilled pointers in range. */
for (i = min_off; i < max_off; i++) {
u8 new_type, *stype;
int slot, spi;
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
if (!env->allow_ptr_leaks
&& *stype != NOT_INIT
&& *stype != SCALAR_VALUE) {
/* Reject the write if there's are spilled pointers in
* range. If we didn't reject here, the ptr status
* would be erased below (even though not all slots are
* actually overwritten), possibly opening the door to
* leaks.
*/
verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
insn_idx, i);
return -EINVAL;
}
/* Erase all spilled pointers. */
state->stack[spi].spilled_ptr.type = NOT_INIT;
/* Update the slot type. */
new_type = STACK_MISC;
if (writing_zero && *stype == STACK_ZERO) {
new_type = STACK_ZERO;
zero_used = true;
}
/* If the slot is STACK_INVALID, we check whether it's OK to
* pretend that it will be initialized by this write. The slot
* might not actually be written to, and so if we mark it as
* initialized future reads might leak uninitialized memory.
* For privileged programs, we will accept such reads to slots
* that may or may not be written because, if we're reject
* them, the error would be too confusing.
*/
if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
insn_idx, i);
return -EINVAL;
}
*stype = new_type;
}
if (zero_used) {
/* backtracking doesn't work for STACK_ZERO yet. */
err = mark_chain_precision(env, value_regno);
if (err)
return err;
}
return 0;
}
/* When register 'dst_regno' is assigned some values from stack[min_off,
* max_off), we set the register's type according to the types of the
* respective stack slots. If all the stack values are known to be zeros, then
* so is the destination reg. Otherwise, the register is considered to be
* SCALAR. This function does not deal with register filling; the caller must
* ensure that all spilled registers in the stack range have been marked as
* read.
*/
static void mark_reg_stack_read(struct bpf_verifier_env *env,
/* func where src register points to */
struct bpf_func_state *ptr_state,
int min_off, int max_off, int dst_regno)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
int i, slot, spi;
u8 *stype;
int zeros = 0;
for (i = min_off; i < max_off; i++) {
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
stype = ptr_state->stack[spi].slot_type;
if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
break;
zeros++;
}
if (zeros == max_off - min_off) {
/* any access_size read into register is zero extended,
* so the whole register == const_zero
*/
__mark_reg_const_zero(&state->regs[dst_regno]);
/* backtracking doesn't support STACK_ZERO yet,
* so mark it precise here, so that later
* backtracking can stop here.
* Backtracking may not need this if this register
* doesn't participate in pointer adjustment.
* Forward propagation of precise flag is not
* necessary either. This mark is only to stop
* backtracking. Any register that contributed
* to const 0 was marked precise before spill.
*/
state->regs[dst_regno].precise = true;
} else {
/* have read misc data from the stack */
mark_reg_unknown(env, state->regs, dst_regno);
}
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
}
/* Read the stack at 'off' and put the results into the register indicated by
* 'dst_regno'. It handles reg filling if the addressed stack slot is a
* spilled reg.
*
* 'dst_regno' can be -1, meaning that the read value is not going to a
* register.
*
* The access is assumed to be within the current stack bounds.
*/
static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
/* func where src register points to */
struct bpf_func_state *reg_state,
int off, int size, int dst_regno)
{ {
struct bpf_verifier_state *vstate = env->cur_state; struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe]; struct bpf_func_state *state = vstate->frame[vstate->curframe];
@@ -2409,11 +2577,6 @@ static int check_stack_read(struct bpf_verifier_env *env,
struct bpf_reg_state *reg; struct bpf_reg_state *reg;
u8 *stype; u8 *stype;
if (reg_state->allocated_stack <= slot) {
verbose(env, "invalid read from stack off %d+0 size %d\n",
off, size);
return -EACCES;
}
stype = reg_state->stack[spi].slot_type; stype = reg_state->stack[spi].slot_type;
reg = &reg_state->stack[spi].spilled_ptr; reg = &reg_state->stack[spi].spilled_ptr;
@@ -2424,9 +2587,9 @@ static int check_stack_read(struct bpf_verifier_env *env,
verbose(env, "invalid size of register fill\n"); verbose(env, "invalid size of register fill\n");
return -EACCES; return -EACCES;
} }
if (value_regno >= 0) { if (dst_regno >= 0) {
mark_reg_unknown(env, state->regs, value_regno); mark_reg_unknown(env, state->regs, dst_regno);
state->regs[value_regno].live |= REG_LIVE_WRITTEN; state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} }
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
return 0; return 0;
@@ -2438,16 +2601,16 @@ static int check_stack_read(struct bpf_verifier_env *env,
} }
} }
if (value_regno >= 0) { if (dst_regno >= 0) {
/* restore register state from stack */ /* restore register state from stack */
state->regs[value_regno] = *reg; state->regs[dst_regno] = *reg;
/* mark reg as written since spilled pointer state likely /* mark reg as written since spilled pointer state likely
* has its liveness marks cleared by is_state_visited() * has its liveness marks cleared by is_state_visited()
* which resets stack/reg liveness for state transitions * which resets stack/reg liveness for state transitions
*/ */
state->regs[value_regno].live |= REG_LIVE_WRITTEN; state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
/* If value_regno==-1, the caller is asking us whether /* If dst_regno==-1, the caller is asking us whether
* it is acceptable to use this value as a SCALAR_VALUE * it is acceptable to use this value as a SCALAR_VALUE
* (e.g. for XADD). * (e.g. for XADD).
* We must not allow unprivileged callers to do that * We must not allow unprivileged callers to do that
@@ -2459,70 +2622,167 @@ static int check_stack_read(struct bpf_verifier_env *env,
} }
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else { } else {
int zeros = 0; u8 type;
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) type = stype[(slot - i) % BPF_REG_SIZE];
if (type == STACK_MISC)
continue; continue;
if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { if (type == STACK_ZERO)
zeros++;
continue; continue;
}
verbose(env, "invalid read from stack off %d+%d size %d\n", verbose(env, "invalid read from stack off %d+%d size %d\n",
off, i, size); off, i, size);
return -EACCES; return -EACCES;
} }
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (value_regno >= 0) { if (dst_regno >= 0)
if (zeros == size) { mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
/* any size read into register is zero extended,
* so the whole register == const_zero
*/
__mark_reg_const_zero(&state->regs[value_regno]);
/* backtracking doesn't support STACK_ZERO yet,
* so mark it precise here, so that later
* backtracking can stop here.
* Backtracking may not need this if this register
* doesn't participate in pointer adjustment.
* Forward propagation of precise flag is not
* necessary either. This mark is only to stop
* backtracking. Any register that contributed
* to const 0 was marked precise before spill.
*/
state->regs[value_regno].precise = true;
} else {
/* have read misc data from the stack */
mark_reg_unknown(env, state->regs, value_regno);
}
state->regs[value_regno].live |= REG_LIVE_WRITTEN;
}
} }
return 0; return 0;
} }
static int check_stack_access(struct bpf_verifier_env *env, enum stack_access_src {
const struct bpf_reg_state *reg, ACCESS_DIRECT = 1, /* the access is performed by an instruction */
int off, int size) ACCESS_HELPER = 2, /* the access is performed by a helper */
};
static int check_stack_range_initialized(struct bpf_verifier_env *env,
int regno, int off, int access_size,
bool zero_size_allowed,
enum stack_access_src type,
struct bpf_call_arg_meta *meta);
static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
{ {
/* Stack accesses must be at a fixed offset, so that we return cur_regs(env) + regno;
* can determine what type of data were returned. See }
* check_stack_read().
/* Read the stack at 'ptr_regno + off' and put the result into the register
* 'dst_regno'.
* 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
* but not its variable offset.
* 'size' is assumed to be <= reg size and the access is assumed to be aligned.
*
* As opposed to check_stack_read_fixed_off, this function doesn't deal with
* filling registers (i.e. reads of spilled register cannot be detected when
* the offset is not fixed). We conservatively mark 'dst_regno' as containing
* SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
* offset; for a fixed offset check_stack_read_fixed_off should be used
* instead.
*/ */
if (!tnum_is_const(reg->var_off)) { static int check_stack_read_var_off(struct bpf_verifier_env *env,
int ptr_regno, int off, int size, int dst_regno)
{
/* The state of the source register. */
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *ptr_state = func(env, reg);
int err;
int min_off, max_off;
/* Note that we pass a NULL meta, so raw access will not be permitted.
*/
err = check_stack_range_initialized(env, ptr_regno, off, size,
false, ACCESS_DIRECT, NULL);
if (err)
return err;
min_off = reg->smin_value + off;
max_off = reg->smax_value + off;
mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
return 0;
}
/* check_stack_read dispatches to check_stack_read_fixed_off or
* check_stack_read_var_off.
*
* The caller must ensure that the offset falls within the allocated stack
* bounds.
*
* 'dst_regno' is a register which will receive the value from the stack. It
* can be -1, meaning that the read value is not going to a register.
*/
static int check_stack_read(struct bpf_verifier_env *env,
int ptr_regno, int off, int size,
int dst_regno)
{
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *state = func(env, reg);
int err;
/* Some accesses are only permitted with a static offset. */
bool var_off = !tnum_is_const(reg->var_off);
/* The offset is required to be static when reads don't go to a
* register, in order to not leak pointers (see
* check_stack_read_fixed_off).
*/
if (dst_regno < 0 && var_off) {
char tn_buf[48]; char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "variable stack access var_off=%s off=%d size=%d\n", verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
tn_buf, off, size); tn_buf, off, size);
return -EACCES; return -EACCES;
} }
/* Variable offset is prohibited for unprivileged mode for simplicity
* since it requires corresponding support in Spectre masking for stack
* ALU. See also retrieve_ptr_limit().
*/
if (!env->bypass_spec_v1 && var_off) {
char tn_buf[48];
if (off >= 0 || off < -MAX_BPF_STACK) { tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid stack off=%d size=%d\n", off, size); verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
ptr_regno, tn_buf);
return -EACCES; return -EACCES;
} }
return 0; if (!var_off) {
off += reg->var_off.value;
err = check_stack_read_fixed_off(env, state, off, size,
dst_regno);
} else {
/* Variable offset stack reads need more conservative handling
* than fixed offset ones. Note that dst_regno >= 0 on this
* branch.
*/
err = check_stack_read_var_off(env, ptr_regno, off, size,
dst_regno);
}
return err;
}
/* check_stack_write dispatches to check_stack_write_fixed_off or
* check_stack_write_var_off.
*
* 'ptr_regno' is the register used as a pointer into the stack.
* 'off' includes 'ptr_regno->off', but not its variable offset (if any).
* 'value_regno' is the register whose value we're writing to the stack. It can
* be -1, meaning that we're not writing from a register.
*
* The caller must ensure that the offset falls within the maximum stack size.
*/
static int check_stack_write(struct bpf_verifier_env *env,
int ptr_regno, int off, int size,
int value_regno, int insn_idx)
{
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *state = func(env, reg);
int err;
if (tnum_is_const(reg->var_off)) {
off += reg->var_off.value;
err = check_stack_write_fixed_off(env, state, off, size,
value_regno, insn_idx);
} else {
/* Variable offset stack reads need more conservative handling
* than fixed offset ones.
*/
err = check_stack_write_var_off(env, state,
ptr_regno, off, size,
value_regno, insn_idx);
}
return err;
} }
static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
@@ -2851,11 +3111,6 @@ static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
return -EACCES; return -EACCES;
} }
static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
{
return cur_regs(env) + regno;
}
static bool is_pointer_value(struct bpf_verifier_env *env, int regno) static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{ {
return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
@@ -2974,8 +3229,8 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
break; break;
case PTR_TO_STACK: case PTR_TO_STACK:
pointer_desc = "stack "; pointer_desc = "stack ";
/* The stack spill tracking logic in check_stack_write() /* The stack spill tracking logic in check_stack_write_fixed_off()
* and check_stack_read() relies on stack accesses being * and check_stack_read_fixed_off() relies on stack accesses being
* aligned. * aligned.
*/ */
strict = true; strict = true;
@@ -3393,6 +3648,91 @@ static int check_ptr_to_map_access(struct bpf_verifier_env *env,
return 0; return 0;
} }
/* Check that the stack access at the given offset is within bounds. The
* maximum valid offset is -1.
*
* The minimum valid offset is -MAX_BPF_STACK for writes, and
* -state->allocated_stack for reads.
*/
static int check_stack_slot_within_bounds(int off,
struct bpf_func_state *state,
enum bpf_access_type t)
{
int min_valid_off;
if (t == BPF_WRITE)
min_valid_off = -MAX_BPF_STACK;
else
min_valid_off = -state->allocated_stack;
if (off < min_valid_off || off > -1)
return -EACCES;
return 0;
}
/* Check that the stack access at 'regno + off' falls within the maximum stack
* bounds.
*
* 'off' includes `regno->offset`, but not its dynamic part (if any).
*/
static int check_stack_access_within_bounds(
struct bpf_verifier_env *env,
int regno, int off, int access_size,
enum stack_access_src src, enum bpf_access_type type)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
struct bpf_func_state *state = func(env, reg);
int min_off, max_off;
int err;
char *err_extra;
if (src == ACCESS_HELPER)
/* We don't know if helpers are reading or writing (or both). */
err_extra = " indirect access to";
else if (type == BPF_READ)
err_extra = " read from";
else
err_extra = " write to";
if (tnum_is_const(reg->var_off)) {
min_off = reg->var_off.value + off;
if (access_size > 0)
max_off = min_off + access_size - 1;
else
max_off = min_off;
} else {
if (reg->smax_value >= BPF_MAX_VAR_OFF ||
reg->smin_value <= -BPF_MAX_VAR_OFF) {
verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
err_extra, regno);
return -EACCES;
}
min_off = reg->smin_value + off;
if (access_size > 0)
max_off = reg->smax_value + off + access_size - 1;
else
max_off = min_off;
}
err = check_stack_slot_within_bounds(min_off, state, type);
if (!err)
err = check_stack_slot_within_bounds(max_off, state, type);
if (err) {
if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid%s stack R%d off=%d size=%d\n",
err_extra, regno, off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
err_extra, regno, tn_buf, access_size);
}
}
return err;
}
/* check whether memory at (regno + off) is accessible for t = (read | write) /* check whether memory at (regno + off) is accessible for t = (read | write)
* if t==write, value_regno is a register which value is stored into memory * if t==write, value_regno is a register which value is stored into memory
@@ -3505,8 +3845,8 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
} }
} else if (reg->type == PTR_TO_STACK) { } else if (reg->type == PTR_TO_STACK) {
off += reg->var_off.value; /* Basic bounds checks. */
err = check_stack_access(env, reg, off, size); err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
if (err) if (err)
return err; return err;
@@ -3515,12 +3855,12 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (err) if (err)
return err; return err;
if (t == BPF_WRITE) if (t == BPF_READ)
err = check_stack_write(env, state, off, size, err = check_stack_read(env, regno, off, size,
value_regno, insn_idx);
else
err = check_stack_read(env, state, off, size,
value_regno); value_regno);
else
err = check_stack_write(env, regno, off, size,
value_regno, insn_idx);
} else if (reg_is_pkt_pointer(reg)) { } else if (reg_is_pkt_pointer(reg)) {
if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
verbose(env, "cannot write into packet\n"); verbose(env, "cannot write into packet\n");
@@ -3642,49 +3982,53 @@ static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_ins
BPF_SIZE(insn->code), BPF_WRITE, -1, true); BPF_SIZE(insn->code), BPF_WRITE, -1, true);
} }
static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, /* When register 'regno' is used to read the stack (either directly or through
int off, int access_size, * a helper function) make sure that it's within stack boundary and, depending
bool zero_size_allowed) * on the access type, that all elements of the stack are initialized.
{ *
struct bpf_reg_state *reg = reg_state(env, regno); * 'off' includes 'regno->off', but not its dynamic part (if any).
*
if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || * All registers that have been spilled on the stack in the slots within the
access_size < 0 || (access_size == 0 && !zero_size_allowed)) { * read offsets are marked as read.
if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
regno, off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
regno, tn_buf, access_size);
}
return -EACCES;
}
return 0;
}
/* when register 'regno' is passed into function that will read 'access_size'
* bytes from that pointer, make sure that it's within stack boundary
* and all elements of stack are initialized.
* Unlike most pointer bounds-checking functions, this one doesn't take an
* 'off' argument, so it has to add in reg->off itself.
*/ */
static int check_stack_boundary(struct bpf_verifier_env *env, int regno, static int check_stack_range_initialized(
struct bpf_verifier_env *env, int regno, int off,
int access_size, bool zero_size_allowed, int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta) enum stack_access_src type, struct bpf_call_arg_meta *meta)
{ {
struct bpf_reg_state *reg = reg_state(env, regno); struct bpf_reg_state *reg = reg_state(env, regno);
struct bpf_func_state *state = func(env, reg); struct bpf_func_state *state = func(env, reg);
int err, min_off, max_off, i, j, slot, spi; int err, min_off, max_off, i, j, slot, spi;
char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
enum bpf_access_type bounds_check_type;
/* Some accesses can write anything into the stack, others are
* read-only.
*/
bool clobber = false;
if (tnum_is_const(reg->var_off)) { if (access_size == 0 && !zero_size_allowed) {
min_off = max_off = reg->var_off.value + reg->off; verbose(env, "invalid zero-sized read\n");
err = __check_stack_boundary(env, regno, min_off, access_size, return -EACCES;
zero_size_allowed); }
if (type == ACCESS_HELPER) {
/* The bounds checks for writes are more permissive than for
* reads. However, if raw_mode is not set, we'll do extra
* checks below.
*/
bounds_check_type = BPF_WRITE;
clobber = true;
} else {
bounds_check_type = BPF_READ;
}
err = check_stack_access_within_bounds(env, regno, off, access_size,
type, bounds_check_type);
if (err) if (err)
return err; return err;
if (tnum_is_const(reg->var_off)) {
min_off = max_off = reg->var_off.value + off;
} else { } else {
/* Variable offset is prohibited for unprivileged mode for /* Variable offset is prohibited for unprivileged mode for
* simplicity since it requires corresponding support in * simplicity since it requires corresponding support in
@@ -3695,8 +4039,8 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
char tn_buf[48]; char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
regno, tn_buf); regno, err_extra, tn_buf);
return -EACCES; return -EACCES;
} }
/* Only initialized buffer on stack is allowed to be accessed /* Only initialized buffer on stack is allowed to be accessed
@@ -3708,28 +4052,8 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
if (meta && meta->raw_mode) if (meta && meta->raw_mode)
meta = NULL; meta = NULL;
if (reg->smax_value >= BPF_MAX_VAR_OFF || min_off = reg->smin_value + off;
reg->smax_value <= -BPF_MAX_VAR_OFF) { max_off = reg->smax_value + off;
verbose(env, "R%d unbounded indirect variable offset stack access\n",
regno);
return -EACCES;
}
min_off = reg->smin_value + reg->off;
max_off = reg->smax_value + reg->off;
err = __check_stack_boundary(env, regno, min_off, access_size,
zero_size_allowed);
if (err) {
verbose(env, "R%d min value is outside of stack bound\n",
regno);
return err;
}
err = __check_stack_boundary(env, regno, max_off, access_size,
zero_size_allowed);
if (err) {
verbose(env, "R%d max value is outside of stack bound\n",
regno);
return err;
}
} }
if (meta && meta->raw_mode) { if (meta && meta->raw_mode) {
@@ -3749,8 +4073,10 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
if (*stype == STACK_MISC) if (*stype == STACK_MISC)
goto mark; goto mark;
if (*stype == STACK_ZERO) { if (*stype == STACK_ZERO) {
if (clobber) {
/* helper can write anything into the stack */ /* helper can write anything into the stack */
*stype = STACK_MISC; *stype = STACK_MISC;
}
goto mark; goto mark;
} }
@@ -3759,23 +4085,26 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
goto mark; goto mark;
if (state->stack[spi].slot_type[0] == STACK_SPILL && if (state->stack[spi].slot_type[0] == STACK_SPILL &&
state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
env->allow_ptr_leaks)) {
if (clobber) {
__mark_reg_unknown(env, &state->stack[spi].spilled_ptr); __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++) for (j = 0; j < BPF_REG_SIZE; j++)
state->stack[spi].slot_type[j] = STACK_MISC; state->stack[spi].slot_type[j] = STACK_MISC;
}
goto mark; goto mark;
} }
err: err:
if (tnum_is_const(reg->var_off)) { if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid indirect read from stack off %d+%d size %d\n", verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
min_off, i - min_off, access_size); err_extra, regno, min_off, i - min_off, access_size);
} else { } else {
char tn_buf[48]; char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
tn_buf, i - min_off, access_size); err_extra, regno, tn_buf, i - min_off, access_size);
} }
return -EACCES; return -EACCES;
mark: mark:
@@ -3824,8 +4153,10 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
"rdwr", "rdwr",
&env->prog->aux->max_rdwr_access); &env->prog->aux->max_rdwr_access);
case PTR_TO_STACK: case PTR_TO_STACK:
return check_stack_boundary(env, regno, access_size, return check_stack_range_initialized(
zero_size_allowed, meta); env,
regno, reg->off, access_size,
zero_size_allowed, ACCESS_HELPER, meta);
default: /* scalar_value or invalid ptr */ default: /* scalar_value or invalid ptr */
/* Allow zero-byte read from NULL, regardless of pointer type */ /* Allow zero-byte read from NULL, regardless of pointer type */
if (zero_size_allowed && access_size == 0 && if (zero_size_allowed && access_size == 0 &&
@@ -5343,7 +5674,7 @@ static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bool off_is_neg = off_reg->smin_value < 0; bool off_is_neg = off_reg->smin_value < 0;
bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
(opcode == BPF_SUB && !off_is_neg); (opcode == BPF_SUB && !off_is_neg);
u32 off, max = 0, ptr_limit = 0; u32 max = 0, ptr_limit = 0;
if (!tnum_is_const(off_reg->var_off) && if (!tnum_is_const(off_reg->var_off) &&
(off_reg->smin_value < 0) != (off_reg->smax_value < 0)) (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
@@ -5352,26 +5683,18 @@ static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
switch (ptr_reg->type) { switch (ptr_reg->type) {
case PTR_TO_STACK: case PTR_TO_STACK:
/* Offset 0 is out-of-bounds, but acceptable start for the /* Offset 0 is out-of-bounds, but acceptable start for the
* left direction, see BPF_REG_FP. * left direction, see BPF_REG_FP. Also, unknown scalar
* offset where we would need to deal with min/max bounds is
* currently prohibited for unprivileged.
*/ */
max = MAX_BPF_STACK + mask_to_left; max = MAX_BPF_STACK + mask_to_left;
/* Indirect variable offset stack access is prohibited in ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
* unprivileged mode so it's not handled here.
*/
off = ptr_reg->off + ptr_reg->var_off.value;
if (mask_to_left)
ptr_limit = MAX_BPF_STACK + off;
else
ptr_limit = -off - 1;
break; break;
case PTR_TO_MAP_VALUE: case PTR_TO_MAP_VALUE:
max = ptr_reg->map_ptr->value_size; max = ptr_reg->map_ptr->value_size;
if (mask_to_left) { ptr_limit = (mask_to_left ?
ptr_limit = ptr_reg->umax_value + ptr_reg->off; ptr_reg->smin_value :
} else { ptr_reg->umax_value) + ptr_reg->off;
off = ptr_reg->smin_value + ptr_reg->off;
ptr_limit = ptr_reg->map_ptr->value_size - off - 1;
}
break; break;
default: default:
return REASON_TYPE; return REASON_TYPE;
@@ -5426,10 +5749,12 @@ static int sanitize_ptr_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn, struct bpf_insn *insn,
const struct bpf_reg_state *ptr_reg, const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg, const struct bpf_reg_state *off_reg,
struct bpf_reg_state *dst_reg) struct bpf_reg_state *dst_reg,
struct bpf_insn_aux_data *tmp_aux,
const bool commit_window)
{ {
struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux;
struct bpf_verifier_state *vstate = env->cur_state; struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_insn_aux_data *aux = cur_aux(env);
bool off_is_neg = off_reg->smin_value < 0; bool off_is_neg = off_reg->smin_value < 0;
bool ptr_is_dst_reg = ptr_reg == dst_reg; bool ptr_is_dst_reg = ptr_reg == dst_reg;
u8 opcode = BPF_OP(insn->code); u8 opcode = BPF_OP(insn->code);
@@ -5448,18 +5773,33 @@ static int sanitize_ptr_alu(struct bpf_verifier_env *env,
if (vstate->speculative) if (vstate->speculative)
goto do_sim; goto do_sim;
alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
alu_state |= ptr_is_dst_reg ?
BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode); err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode);
if (err < 0) if (err < 0)
return err; return err;
if (commit_window) {
/* In commit phase we narrow the masking window based on
* the observed pointer move after the simulated operation.
*/
alu_state = tmp_aux->alu_state;
alu_limit = abs(tmp_aux->alu_limit - alu_limit);
} else {
alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
alu_state |= ptr_is_dst_reg ?
BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
}
err = update_alu_sanitation_state(aux, alu_state, alu_limit); err = update_alu_sanitation_state(aux, alu_state, alu_limit);
if (err < 0) if (err < 0)
return err; return err;
do_sim: do_sim:
/* If we're in commit phase, we're done here given we already
* pushed the truncated dst_reg into the speculative verification
* stack.
*/
if (commit_window)
return 0;
/* Simulate and find potential out-of-bounds access under /* Simulate and find potential out-of-bounds access under
* speculative execution from truncation as a result of * speculative execution from truncation as a result of
* masking when off was not within expected range. If off * masking when off was not within expected range. If off
@@ -5518,6 +5858,72 @@ static int sanitize_err(struct bpf_verifier_env *env,
return -EACCES; return -EACCES;
} }
/* check that stack access falls within stack limits and that 'reg' doesn't
* have a variable offset.
*
* Variable offset is prohibited for unprivileged mode for simplicity since it
* requires corresponding support in Spectre masking for stack ALU. See also
* retrieve_ptr_limit().
*
*
* 'off' includes 'reg->off'.
*/
static int check_stack_access_for_ptr_arithmetic(
struct bpf_verifier_env *env,
int regno,
const struct bpf_reg_state *reg,
int off)
{
if (!tnum_is_const(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
regno, tn_buf, off);
return -EACCES;
}
if (off >= 0 || off < -MAX_BPF_STACK) {
verbose(env, "R%d stack pointer arithmetic goes out of range, "
"prohibited for !root; off=%d\n", regno, off);
return -EACCES;
}
return 0;
}
static int sanitize_check_bounds(struct bpf_verifier_env *env,
const struct bpf_insn *insn,
const struct bpf_reg_state *dst_reg)
{
u32 dst = insn->dst_reg;
/* For unprivileged we require that resulting offset must be in bounds
* in order to be able to sanitize access later on.
*/
if (env->bypass_spec_v1)
return 0;
switch (dst_reg->type) {
case PTR_TO_STACK:
if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
dst_reg->off + dst_reg->var_off.value))
return -EACCES;
break;
case PTR_TO_MAP_VALUE:
if (check_map_access(env, dst, dst_reg->off, 1, false)) {
verbose(env, "R%d pointer arithmetic of map value goes out of range, "
"prohibited for !root\n", dst);
return -EACCES;
}
break;
default:
break;
}
return 0;
}
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
* Caller should also handle BPF_MOV case separately. * Caller should also handle BPF_MOV case separately.
* If we return -EACCES, caller may want to try again treating pointer as a * If we return -EACCES, caller may want to try again treating pointer as a
@@ -5536,6 +5942,7 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
struct bpf_insn_aux_data tmp_aux = {};
u8 opcode = BPF_OP(insn->code); u8 opcode = BPF_OP(insn->code);
u32 dst = insn->dst_reg; u32 dst = insn->dst_reg;
int ret; int ret;
@@ -5602,12 +6009,15 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
/* pointer types do not carry 32-bit bounds at the moment. */ /* pointer types do not carry 32-bit bounds at the moment. */
__mark_reg32_unbounded(dst_reg); __mark_reg32_unbounded(dst_reg);
switch (opcode) { if (sanitize_needed(opcode)) {
case BPF_ADD: ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg); &tmp_aux, false);
if (ret < 0) if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg); return sanitize_err(env, insn, ret, off_reg, dst_reg);
}
switch (opcode) {
case BPF_ADD:
/* We can take a fixed offset as long as it doesn't overflow /* We can take a fixed offset as long as it doesn't overflow
* the s32 'off' field * the s32 'off' field
*/ */
@@ -5658,10 +6068,6 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
} }
break; break;
case BPF_SUB: case BPF_SUB:
ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg);
if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg);
if (dst_reg == off_reg) { if (dst_reg == off_reg) {
/* scalar -= pointer. Creates an unknown scalar */ /* scalar -= pointer. Creates an unknown scalar */
verbose(env, "R%d tried to subtract pointer from scalar\n", verbose(env, "R%d tried to subtract pointer from scalar\n",
@@ -5742,22 +6148,13 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
__reg_deduce_bounds(dst_reg); __reg_deduce_bounds(dst_reg);
__reg_bound_offset(dst_reg); __reg_bound_offset(dst_reg);
/* For unprivileged we require that resulting offset must be in bounds if (sanitize_check_bounds(env, insn, dst_reg) < 0)
* in order to be able to sanitize access later on.
*/
if (!env->bypass_spec_v1) {
if (dst_reg->type == PTR_TO_MAP_VALUE &&
check_map_access(env, dst, dst_reg->off, 1, false)) {
verbose(env, "R%d pointer arithmetic of map value goes out of range, "
"prohibited for !root\n", dst);
return -EACCES; return -EACCES;
} else if (dst_reg->type == PTR_TO_STACK && if (sanitize_needed(opcode)) {
check_stack_access(env, dst_reg, dst_reg->off + ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
dst_reg->var_off.value, 1)) { &tmp_aux, true);
verbose(env, "R%d stack pointer arithmetic goes out of range, " if (ret < 0)
"prohibited for !root\n", dst); return sanitize_err(env, insn, ret, off_reg, dst_reg);
return -EACCES;
}
} }
return 0; return 0;
@@ -11951,6 +12348,7 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
env->strict_alignment = false; env->strict_alignment = false;
env->allow_ptr_leaks = bpf_allow_ptr_leaks(); env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->allow_uninit_stack = bpf_allow_uninit_stack();
env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
env->bypass_spec_v1 = bpf_bypass_spec_v1(); env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4(); env->bypass_spec_v4 = bpf_bypass_spec_v4();

View File

@@ -61,6 +61,8 @@ EXPORT_SYMBOL(queued_read_lock_slowpath);
*/ */
void queued_write_lock_slowpath(struct qrwlock *lock) void queued_write_lock_slowpath(struct qrwlock *lock)
{ {
int cnts;
/* Put the writer into the wait queue */ /* Put the writer into the wait queue */
arch_spin_lock(&lock->wait_lock); arch_spin_lock(&lock->wait_lock);
@@ -74,9 +76,8 @@ void queued_write_lock_slowpath(struct qrwlock *lock)
/* When no more readers or writers, set the locked flag */ /* When no more readers or writers, set the locked flag */
do { do {
atomic_cond_read_acquire(&lock->cnts, VAL == _QW_WAITING); cnts = atomic_cond_read_relaxed(&lock->cnts, VAL == _QW_WAITING);
} while (atomic_cmpxchg_relaxed(&lock->cnts, _QW_WAITING, } while (!atomic_try_cmpxchg_acquire(&lock->cnts, &cnts, _QW_LOCKED));
_QW_LOCKED) != _QW_WAITING);
unlock: unlock:
arch_spin_unlock(&lock->wait_lock); arch_spin_unlock(&lock->wait_lock);
} }

View File

@@ -2,6 +2,8 @@
CFLAGS_KASAN_NOSANITIZE := -fno-builtin CFLAGS_KASAN_NOSANITIZE := -fno-builtin
KASAN_SHADOW_OFFSET ?= $(CONFIG_KASAN_SHADOW_OFFSET) KASAN_SHADOW_OFFSET ?= $(CONFIG_KASAN_SHADOW_OFFSET)
cc-param = $(call cc-option, -mllvm -$(1), $(call cc-option, --param $(1)))
ifdef CONFIG_KASAN_STACK ifdef CONFIG_KASAN_STACK
stack_enable := 1 stack_enable := 1
else else
@@ -18,8 +20,6 @@ endif
CFLAGS_KASAN_MINIMAL := -fsanitize=kernel-address CFLAGS_KASAN_MINIMAL := -fsanitize=kernel-address
cc-param = $(call cc-option, -mllvm -$(1), $(call cc-option, --param $(1)))
# -fasan-shadow-offset fails without -fsanitize # -fasan-shadow-offset fails without -fsanitize
CFLAGS_KASAN_SHADOW := $(call cc-option, -fsanitize=kernel-address \ CFLAGS_KASAN_SHADOW := $(call cc-option, -fsanitize=kernel-address \
-fasan-shadow-offset=$(KASAN_SHADOW_OFFSET), \ -fasan-shadow-offset=$(KASAN_SHADOW_OFFSET), \
@@ -42,14 +42,14 @@ endif # CONFIG_KASAN_GENERIC
ifdef CONFIG_KASAN_SW_TAGS ifdef CONFIG_KASAN_SW_TAGS
ifdef CONFIG_KASAN_INLINE ifdef CONFIG_KASAN_INLINE
instrumentation_flags := -mllvm -hwasan-mapping-offset=$(KASAN_SHADOW_OFFSET) instrumentation_flags := $(call cc-param,hwasan-mapping-offset=$(KASAN_SHADOW_OFFSET))
else else
instrumentation_flags := -mllvm -hwasan-instrument-with-calls=1 instrumentation_flags := $(call cc-param,hwasan-instrument-with-calls=1)
endif endif
CFLAGS_KASAN := -fsanitize=kernel-hwaddress \ CFLAGS_KASAN := -fsanitize=kernel-hwaddress \
-mllvm -hwasan-instrument-stack=$(stack_enable) \ $(call cc-param,hwasan-instrument-stack=$(stack_enable)) \
-mllvm -hwasan-use-short-granules=0 \ $(call cc-param,hwasan-use-short-granules=0) \
$(instrumentation_flags) $(instrumentation_flags)
endif # CONFIG_KASAN_SW_TAGS endif # CONFIG_KASAN_SW_TAGS

View File

@@ -79,7 +79,7 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
if (i == ARRAY_SIZE(tpm2_hash_map)) if (i == ARRAY_SIZE(tpm2_hash_map))
return -EINVAL; return -EINVAL;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE); rc = tpm_try_get_ops(chip);
if (rc) if (rc)
return rc; return rc;

View File

@@ -39,9 +39,6 @@
* sequential memory pages only. * sequential memory pages only.
*/ */
/* XXX From arch/ia64/include/uapi/asm/gcc_intrin.h */
#define ia64_mf() asm volatile ("mf" ::: "memory")
#define mb() ia64_mf() #define mb() ia64_mf()
#define rmb() mb() #define rmb() mb()
#define wmb() mb() #define wmb() mb()

View File

@@ -636,7 +636,7 @@ int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
break; break;
} }
if (itr) if (itr && itr->parse_snapshot_options)
return itr->parse_snapshot_options(itr, opts, str); return itr->parse_snapshot_options(itr, opts, str);
pr_err("No AUX area tracing to snapshot\n"); pr_err("No AUX area tracing to snapshot\n");

View File

@@ -836,15 +836,18 @@ out:
int maps__clone(struct thread *thread, struct maps *parent) int maps__clone(struct thread *thread, struct maps *parent)
{ {
struct maps *maps = thread->maps; struct maps *maps = thread->maps;
int err = -ENOMEM; int err;
struct map *map; struct map *map;
down_read(&parent->lock); down_read(&parent->lock);
maps__for_each_entry(parent, map) { maps__for_each_entry(parent, map) {
struct map *new = map__clone(map); struct map *new = map__clone(map);
if (new == NULL)
if (new == NULL) {
err = -ENOMEM;
goto out_unlock; goto out_unlock;
}
err = unwind__prepare_access(maps, new, NULL); err = unwind__prepare_access(maps, new, NULL);
if (err) if (err)