RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart.  As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown.  When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts.  In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This commit is contained in:
Andrew Waterman
2017-10-25 14:30:32 -07:00
committed by Palmer Dabbelt
parent 28dfbe6ed4
commit 08f051eda3
8 changed files with 174 additions and 30 deletions

View File

@@ -1,5 +1,6 @@
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017 SiFive
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
@@ -19,6 +20,7 @@
#include <linux/mm.h>
#include <linux/sched.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
static inline void enter_lazy_tlb(struct mm_struct *mm,
struct task_struct *task)
@@ -46,12 +48,54 @@ static inline void set_pgdir(pgd_t *pgd)
csr_write(sptbr, virt_to_pfn(pgd) | SPTBR_MODE);
}
/*
* When necessary, performs a deferred icache flush for the given MM context,
* on the local CPU. RISC-V has no direct mechanism for instruction cache
* shoot downs, so instead we send an IPI that informs the remote harts they
* need to flush their local instruction caches. To avoid pathologically slow
* behavior in a common case (a bunch of single-hart processes on a many-hart
* machine, ie 'make -j') we avoid the IPIs for harts that are not currently
* executing a MM context and instead schedule a deferred local instruction
* cache flush to be performed before execution resumes on each hart. This
* actually performs that local instruction cache flush, which implicitly only
* refers to the current hart.
*/
static inline void flush_icache_deferred(struct mm_struct *mm)
{
#ifdef CONFIG_SMP
unsigned int cpu = smp_processor_id();
cpumask_t *mask = &mm->context.icache_stale_mask;
if (cpumask_test_cpu(cpu, mask)) {
cpumask_clear_cpu(cpu, mask);
/*
* Ensure the remote hart's writes are visible to this hart.
* This pairs with a barrier in flush_icache_mm.
*/
smp_mb();
local_flush_icache_all();
}
#endif
}
static inline void switch_mm(struct mm_struct *prev,
struct mm_struct *next, struct task_struct *task)
{
if (likely(prev != next)) {
/*
* Mark the current MM context as inactive, and the next as
* active. This is at least used by the icache flushing
* routines in order to determine who should
*/
unsigned int cpu = smp_processor_id();
cpumask_clear_cpu(cpu, mm_cpumask(prev));
cpumask_set_cpu(cpu, mm_cpumask(next));
set_pgdir(next->pgd);
local_flush_tlb_all();
flush_icache_deferred(next);
}
}