RISC-V: Flush I$ when making a dirty page executable
The RISC-V ISA allows for instruction caches that are not coherent WRT stores, even on a single hart. As a result, we need to explicitly flush the instruction cache whenever marking a dirty page as executable in order to preserve the correct system behavior. Local instruction caches aren't that scary (our implementations actually flush the cache, but RISC-V is defined to allow higher-performance implementations to exist), but RISC-V defines no way to perform an instruction cache shootdown. When explicitly asked to do so we can shoot down remote instruction caches via an IPI, but this is a bit on the slow side. Instead of requiring an IPI to all harts whenever marking a page as executable, we simply flush the currently running harts. In order to maintain correct behavior, we additionally mark every other hart as needing a deferred instruction cache which will be taken before anything runs on it. Signed-off-by: Andrew Waterman <andrew@sifive.com> Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This commit is contained in:

committed by
Palmer Dabbelt

parent
28dfbe6ed4
commit
08f051eda3
@@ -1,5 +1,6 @@
|
||||
/*
|
||||
* Copyright (C) 2012 Regents of the University of California
|
||||
* Copyright (C) 2017 SiFive
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
@@ -19,6 +20,7 @@
|
||||
#include <linux/mm.h>
|
||||
#include <linux/sched.h>
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
static inline void enter_lazy_tlb(struct mm_struct *mm,
|
||||
struct task_struct *task)
|
||||
@@ -46,12 +48,54 @@ static inline void set_pgdir(pgd_t *pgd)
|
||||
csr_write(sptbr, virt_to_pfn(pgd) | SPTBR_MODE);
|
||||
}
|
||||
|
||||
/*
|
||||
* When necessary, performs a deferred icache flush for the given MM context,
|
||||
* on the local CPU. RISC-V has no direct mechanism for instruction cache
|
||||
* shoot downs, so instead we send an IPI that informs the remote harts they
|
||||
* need to flush their local instruction caches. To avoid pathologically slow
|
||||
* behavior in a common case (a bunch of single-hart processes on a many-hart
|
||||
* machine, ie 'make -j') we avoid the IPIs for harts that are not currently
|
||||
* executing a MM context and instead schedule a deferred local instruction
|
||||
* cache flush to be performed before execution resumes on each hart. This
|
||||
* actually performs that local instruction cache flush, which implicitly only
|
||||
* refers to the current hart.
|
||||
*/
|
||||
static inline void flush_icache_deferred(struct mm_struct *mm)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
unsigned int cpu = smp_processor_id();
|
||||
cpumask_t *mask = &mm->context.icache_stale_mask;
|
||||
|
||||
if (cpumask_test_cpu(cpu, mask)) {
|
||||
cpumask_clear_cpu(cpu, mask);
|
||||
/*
|
||||
* Ensure the remote hart's writes are visible to this hart.
|
||||
* This pairs with a barrier in flush_icache_mm.
|
||||
*/
|
||||
smp_mb();
|
||||
local_flush_icache_all();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void switch_mm(struct mm_struct *prev,
|
||||
struct mm_struct *next, struct task_struct *task)
|
||||
{
|
||||
if (likely(prev != next)) {
|
||||
/*
|
||||
* Mark the current MM context as inactive, and the next as
|
||||
* active. This is at least used by the icache flushing
|
||||
* routines in order to determine who should
|
||||
*/
|
||||
unsigned int cpu = smp_processor_id();
|
||||
|
||||
cpumask_clear_cpu(cpu, mm_cpumask(prev));
|
||||
cpumask_set_cpu(cpu, mm_cpumask(next));
|
||||
|
||||
set_pgdir(next->pgd);
|
||||
local_flush_tlb_all();
|
||||
|
||||
flush_icache_deferred(next);
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user