xen: switch to linear virtual mapped sparse p2m list

At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.

Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined  page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.

Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:

Elapsed time: 32:50 ->  32:35
System:       18:07 ->  17:47
User:        104:00 -> 103:30

Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
                                    the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough

Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
This commit is contained in:
Juergen Gross
2014-11-28 11:53:58 +01:00
committed by David Vrabel
parent 0aad568983
commit 054954eb05
4 changed files with 363 additions and 460 deletions

View File

@@ -1158,20 +1158,16 @@ static void __init xen_cleanhighmap(unsigned long vaddr,
* instead of somewhere later and be confusing. */
xen_mc_flush();
}
static void __init xen_pagetable_p2m_copy(void)
static void __init xen_pagetable_p2m_free(void)
{
unsigned long size;
unsigned long addr;
unsigned long new_mfn_list;
if (xen_feature(XENFEAT_auto_translated_physmap))
return;
size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
new_mfn_list = xen_revector_p2m_tree();
/* No memory or already called. */
if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
return;
/* using __ka address and sticking INVALID_P2M_ENTRY! */
@@ -1189,8 +1185,6 @@ static void __init xen_pagetable_p2m_copy(void)
size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
memblock_free(__pa(xen_start_info->mfn_list), size);
/* And revector! Bye bye old array */
xen_start_info->mfn_list = new_mfn_list;
/* At this stage, cleanup_highmap has already cleaned __ka space
* from _brk_limit way up to the max_pfn_mapped (which is the end of
@@ -1214,14 +1208,26 @@ static void __init xen_pagetable_p2m_copy(void)
}
#endif
static void __init xen_pagetable_p2m_setup(void)
{
if (xen_feature(XENFEAT_auto_translated_physmap))
return;
xen_vmalloc_p2m_tree();
#ifdef CONFIG_X86_64
xen_pagetable_p2m_free();
#endif
/* And revector! Bye bye old array */
xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
}
static void __init xen_pagetable_init(void)
{
paging_init();
#ifdef CONFIG_X86_64
xen_pagetable_p2m_copy();
#else
xen_revector_p2m_tree();
#endif
xen_pagetable_p2m_setup();
/* Allocate and initialize top and mid mfn levels for p2m structure */
xen_build_mfn_list_list();