spi-topcliff-pch.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  4. *
  5. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  6. */
  7. #include <linux/delay.h>
  8. #include <linux/pci.h>
  9. #include <linux/wait.h>
  10. #include <linux/spi/spi.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/sched.h>
  13. #include <linux/spi/spidev.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/pch_dma.h>
  19. /* Register offsets */
  20. #define PCH_SPCR 0x00 /* SPI control register */
  21. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  22. #define PCH_SPSR 0x08 /* SPI status register */
  23. #define PCH_SPDWR 0x0C /* SPI write data register */
  24. #define PCH_SPDRR 0x10 /* SPI read data register */
  25. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  26. #define PCH_SRST 0x1C /* SPI reset register */
  27. #define PCH_ADDRESS_SIZE 0x20
  28. #define PCH_SPSR_TFD 0x000007C0
  29. #define PCH_SPSR_RFD 0x0000F800
  30. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  31. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  32. #define PCH_RX_THOLD 7
  33. #define PCH_RX_THOLD_MAX 15
  34. #define PCH_TX_THOLD 2
  35. #define PCH_MAX_BAUDRATE 5000000
  36. #define PCH_MAX_FIFO_DEPTH 16
  37. #define STATUS_RUNNING 1
  38. #define STATUS_EXITING 2
  39. #define PCH_SLEEP_TIME 10
  40. #define SSN_LOW 0x02U
  41. #define SSN_HIGH 0x03U
  42. #define SSN_NO_CONTROL 0x00U
  43. #define PCH_MAX_CS 0xFF
  44. #define PCI_DEVICE_ID_GE_SPI 0x8816
  45. #define SPCR_SPE_BIT (1 << 0)
  46. #define SPCR_MSTR_BIT (1 << 1)
  47. #define SPCR_LSBF_BIT (1 << 4)
  48. #define SPCR_CPHA_BIT (1 << 5)
  49. #define SPCR_CPOL_BIT (1 << 6)
  50. #define SPCR_TFIE_BIT (1 << 8)
  51. #define SPCR_RFIE_BIT (1 << 9)
  52. #define SPCR_FIE_BIT (1 << 10)
  53. #define SPCR_ORIE_BIT (1 << 11)
  54. #define SPCR_MDFIE_BIT (1 << 12)
  55. #define SPCR_FICLR_BIT (1 << 24)
  56. #define SPSR_TFI_BIT (1 << 0)
  57. #define SPSR_RFI_BIT (1 << 1)
  58. #define SPSR_FI_BIT (1 << 2)
  59. #define SPSR_ORF_BIT (1 << 3)
  60. #define SPBRR_SIZE_BIT (1 << 10)
  61. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  62. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  63. #define SPCR_RFIC_FIELD 20
  64. #define SPCR_TFIC_FIELD 16
  65. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  66. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  67. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  68. #define PCH_CLOCK_HZ 50000000
  69. #define PCH_MAX_SPBR 1023
  70. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  71. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  72. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  73. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  74. /*
  75. * Set the number of SPI instance max
  76. * Intel EG20T PCH : 1ch
  77. * LAPIS Semiconductor ML7213 IOH : 2ch
  78. * LAPIS Semiconductor ML7223 IOH : 1ch
  79. * LAPIS Semiconductor ML7831 IOH : 1ch
  80. */
  81. #define PCH_SPI_MAX_DEV 2
  82. #define PCH_BUF_SIZE 4096
  83. #define PCH_DMA_TRANS_SIZE 12
  84. static int use_dma = 1;
  85. struct pch_spi_dma_ctrl {
  86. struct pci_dev *dma_dev;
  87. struct dma_async_tx_descriptor *desc_tx;
  88. struct dma_async_tx_descriptor *desc_rx;
  89. struct pch_dma_slave param_tx;
  90. struct pch_dma_slave param_rx;
  91. struct dma_chan *chan_tx;
  92. struct dma_chan *chan_rx;
  93. struct scatterlist *sg_tx_p;
  94. struct scatterlist *sg_rx_p;
  95. struct scatterlist sg_tx;
  96. struct scatterlist sg_rx;
  97. int nent;
  98. void *tx_buf_virt;
  99. void *rx_buf_virt;
  100. dma_addr_t tx_buf_dma;
  101. dma_addr_t rx_buf_dma;
  102. };
  103. /**
  104. * struct pch_spi_data - Holds the SPI channel specific details
  105. * @io_remap_addr: The remapped PCI base address
  106. * @io_base_addr: Base address
  107. * @master: Pointer to the SPI master structure
  108. * @work: Reference to work queue handler
  109. * @wait: Wait queue for waking up upon receiving an
  110. * interrupt.
  111. * @transfer_complete: Status of SPI Transfer
  112. * @bcurrent_msg_processing: Status flag for message processing
  113. * @lock: Lock for protecting this structure
  114. * @queue: SPI Message queue
  115. * @status: Status of the SPI driver
  116. * @bpw_len: Length of data to be transferred in bits per
  117. * word
  118. * @transfer_active: Flag showing active transfer
  119. * @tx_index: Transmit data count; for bookkeeping during
  120. * transfer
  121. * @rx_index: Receive data count; for bookkeeping during
  122. * transfer
  123. * @pkt_tx_buff: Buffer for data to be transmitted
  124. * @pkt_rx_buff: Buffer for received data
  125. * @n_curnt_chip: The chip number that this SPI driver currently
  126. * operates on
  127. * @current_chip: Reference to the current chip that this SPI
  128. * driver currently operates on
  129. * @current_msg: The current message that this SPI driver is
  130. * handling
  131. * @cur_trans: The current transfer that this SPI driver is
  132. * handling
  133. * @board_dat: Reference to the SPI device data structure
  134. * @plat_dev: platform_device structure
  135. * @ch: SPI channel number
  136. * @dma: Local DMA information
  137. * @use_dma: True if DMA is to be used
  138. * @irq_reg_sts: Status of IRQ registration
  139. * @save_total_len: Save length while data is being transferred
  140. */
  141. struct pch_spi_data {
  142. void __iomem *io_remap_addr;
  143. unsigned long io_base_addr;
  144. struct spi_master *master;
  145. struct work_struct work;
  146. wait_queue_head_t wait;
  147. u8 transfer_complete;
  148. u8 bcurrent_msg_processing;
  149. spinlock_t lock;
  150. struct list_head queue;
  151. u8 status;
  152. u32 bpw_len;
  153. u8 transfer_active;
  154. u32 tx_index;
  155. u32 rx_index;
  156. u16 *pkt_tx_buff;
  157. u16 *pkt_rx_buff;
  158. u8 n_curnt_chip;
  159. struct spi_device *current_chip;
  160. struct spi_message *current_msg;
  161. struct spi_transfer *cur_trans;
  162. struct pch_spi_board_data *board_dat;
  163. struct platform_device *plat_dev;
  164. int ch;
  165. struct pch_spi_dma_ctrl dma;
  166. int use_dma;
  167. u8 irq_reg_sts;
  168. int save_total_len;
  169. };
  170. /**
  171. * struct pch_spi_board_data - Holds the SPI device specific details
  172. * @pdev: Pointer to the PCI device
  173. * @suspend_sts: Status of suspend
  174. * @num: The number of SPI device instance
  175. */
  176. struct pch_spi_board_data {
  177. struct pci_dev *pdev;
  178. u8 suspend_sts;
  179. int num;
  180. };
  181. struct pch_pd_dev_save {
  182. int num;
  183. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  184. struct pch_spi_board_data *board_dat;
  185. };
  186. static const struct pci_device_id pch_spi_pcidev_id[] = {
  187. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  188. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  189. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  190. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  191. { }
  192. };
  193. /**
  194. * pch_spi_writereg() - Performs register writes
  195. * @master: Pointer to struct spi_master.
  196. * @idx: Register offset.
  197. * @val: Value to be written to register.
  198. */
  199. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  200. {
  201. struct pch_spi_data *data = spi_master_get_devdata(master);
  202. iowrite32(val, (data->io_remap_addr + idx));
  203. }
  204. /**
  205. * pch_spi_readreg() - Performs register reads
  206. * @master: Pointer to struct spi_master.
  207. * @idx: Register offset.
  208. */
  209. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  210. {
  211. struct pch_spi_data *data = spi_master_get_devdata(master);
  212. return ioread32(data->io_remap_addr + idx);
  213. }
  214. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  215. u32 set, u32 clr)
  216. {
  217. u32 tmp = pch_spi_readreg(master, idx);
  218. tmp = (tmp & ~clr) | set;
  219. pch_spi_writereg(master, idx, tmp);
  220. }
  221. static void pch_spi_set_master_mode(struct spi_master *master)
  222. {
  223. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  224. }
  225. /**
  226. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  227. * @master: Pointer to struct spi_master.
  228. */
  229. static void pch_spi_clear_fifo(struct spi_master *master)
  230. {
  231. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  232. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  233. }
  234. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  235. void __iomem *io_remap_addr)
  236. {
  237. u32 n_read, tx_index, rx_index, bpw_len;
  238. u16 *pkt_rx_buffer, *pkt_tx_buff;
  239. int read_cnt;
  240. u32 reg_spcr_val;
  241. void __iomem *spsr;
  242. void __iomem *spdrr;
  243. void __iomem *spdwr;
  244. spsr = io_remap_addr + PCH_SPSR;
  245. iowrite32(reg_spsr_val, spsr);
  246. if (data->transfer_active) {
  247. rx_index = data->rx_index;
  248. tx_index = data->tx_index;
  249. bpw_len = data->bpw_len;
  250. pkt_rx_buffer = data->pkt_rx_buff;
  251. pkt_tx_buff = data->pkt_tx_buff;
  252. spdrr = io_remap_addr + PCH_SPDRR;
  253. spdwr = io_remap_addr + PCH_SPDWR;
  254. n_read = PCH_READABLE(reg_spsr_val);
  255. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  256. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  257. if (tx_index < bpw_len)
  258. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  259. }
  260. /* disable RFI if not needed */
  261. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  262. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  263. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  264. /* reset rx threshold */
  265. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  266. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  267. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  268. }
  269. /* update counts */
  270. data->tx_index = tx_index;
  271. data->rx_index = rx_index;
  272. /* if transfer complete interrupt */
  273. if (reg_spsr_val & SPSR_FI_BIT) {
  274. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  275. /* disable interrupts */
  276. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  277. PCH_ALL);
  278. /* transfer is completed;
  279. inform pch_spi_process_messages */
  280. data->transfer_complete = true;
  281. data->transfer_active = false;
  282. wake_up(&data->wait);
  283. } else {
  284. dev_vdbg(&data->master->dev,
  285. "%s : Transfer is not completed",
  286. __func__);
  287. }
  288. }
  289. }
  290. }
  291. /**
  292. * pch_spi_handler() - Interrupt handler
  293. * @irq: The interrupt number.
  294. * @dev_id: Pointer to struct pch_spi_board_data.
  295. */
  296. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  297. {
  298. u32 reg_spsr_val;
  299. void __iomem *spsr;
  300. void __iomem *io_remap_addr;
  301. irqreturn_t ret = IRQ_NONE;
  302. struct pch_spi_data *data = dev_id;
  303. struct pch_spi_board_data *board_dat = data->board_dat;
  304. if (board_dat->suspend_sts) {
  305. dev_dbg(&board_dat->pdev->dev,
  306. "%s returning due to suspend\n", __func__);
  307. return IRQ_NONE;
  308. }
  309. io_remap_addr = data->io_remap_addr;
  310. spsr = io_remap_addr + PCH_SPSR;
  311. reg_spsr_val = ioread32(spsr);
  312. if (reg_spsr_val & SPSR_ORF_BIT) {
  313. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  314. if (data->current_msg->complete) {
  315. data->transfer_complete = true;
  316. data->current_msg->status = -EIO;
  317. data->current_msg->complete(data->current_msg->context);
  318. data->bcurrent_msg_processing = false;
  319. data->current_msg = NULL;
  320. data->cur_trans = NULL;
  321. }
  322. }
  323. if (data->use_dma)
  324. return IRQ_NONE;
  325. /* Check if the interrupt is for SPI device */
  326. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  327. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  328. ret = IRQ_HANDLED;
  329. }
  330. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  331. __func__, ret);
  332. return ret;
  333. }
  334. /**
  335. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  336. * @master: Pointer to struct spi_master.
  337. * @speed_hz: Baud rate.
  338. */
  339. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  340. {
  341. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  342. /* if baud rate is less than we can support limit it */
  343. if (n_spbr > PCH_MAX_SPBR)
  344. n_spbr = PCH_MAX_SPBR;
  345. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  346. }
  347. /**
  348. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  349. * @master: Pointer to struct spi_master.
  350. * @bits_per_word: Bits per word for SPI transfer.
  351. */
  352. static void pch_spi_set_bits_per_word(struct spi_master *master,
  353. u8 bits_per_word)
  354. {
  355. if (bits_per_word == 8)
  356. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  357. else
  358. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  359. }
  360. /**
  361. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  362. * @spi: Pointer to struct spi_device.
  363. */
  364. static void pch_spi_setup_transfer(struct spi_device *spi)
  365. {
  366. u32 flags = 0;
  367. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  368. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  369. spi->max_speed_hz);
  370. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  371. /* set bits per word */
  372. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  373. if (!(spi->mode & SPI_LSB_FIRST))
  374. flags |= SPCR_LSBF_BIT;
  375. if (spi->mode & SPI_CPOL)
  376. flags |= SPCR_CPOL_BIT;
  377. if (spi->mode & SPI_CPHA)
  378. flags |= SPCR_CPHA_BIT;
  379. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  380. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  381. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  382. pch_spi_clear_fifo(spi->master);
  383. }
  384. /**
  385. * pch_spi_reset() - Clears SPI registers
  386. * @master: Pointer to struct spi_master.
  387. */
  388. static void pch_spi_reset(struct spi_master *master)
  389. {
  390. /* write 1 to reset SPI */
  391. pch_spi_writereg(master, PCH_SRST, 0x1);
  392. /* clear reset */
  393. pch_spi_writereg(master, PCH_SRST, 0x0);
  394. }
  395. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  396. {
  397. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  398. int retval;
  399. unsigned long flags;
  400. /* We won't process any messages if we have been asked to terminate */
  401. if (data->status == STATUS_EXITING) {
  402. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  403. retval = -ESHUTDOWN;
  404. goto err_out;
  405. }
  406. /* If suspended ,return -EINVAL */
  407. if (data->board_dat->suspend_sts) {
  408. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  409. retval = -EINVAL;
  410. goto err_out;
  411. }
  412. /* set status of message */
  413. pmsg->actual_length = 0;
  414. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  415. pmsg->status = -EINPROGRESS;
  416. spin_lock_irqsave(&data->lock, flags);
  417. /* add message to queue */
  418. list_add_tail(&pmsg->queue, &data->queue);
  419. spin_unlock_irqrestore(&data->lock, flags);
  420. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  421. schedule_work(&data->work);
  422. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  423. retval = 0;
  424. err_out:
  425. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  426. return retval;
  427. }
  428. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  429. struct spi_device *pspi)
  430. {
  431. if (data->current_chip != NULL) {
  432. if (pspi->chip_select != data->n_curnt_chip) {
  433. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  434. data->current_chip = NULL;
  435. }
  436. }
  437. data->current_chip = pspi;
  438. data->n_curnt_chip = data->current_chip->chip_select;
  439. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  440. pch_spi_setup_transfer(pspi);
  441. }
  442. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  443. {
  444. int size;
  445. u32 n_writes;
  446. int j;
  447. struct spi_message *pmsg, *tmp;
  448. const u8 *tx_buf;
  449. const u16 *tx_sbuf;
  450. /* set baud rate if needed */
  451. if (data->cur_trans->speed_hz) {
  452. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  453. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  454. }
  455. /* set bits per word if needed */
  456. if (data->cur_trans->bits_per_word &&
  457. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  458. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  459. pch_spi_set_bits_per_word(data->master,
  460. data->cur_trans->bits_per_word);
  461. *bpw = data->cur_trans->bits_per_word;
  462. } else {
  463. *bpw = data->current_msg->spi->bits_per_word;
  464. }
  465. /* reset Tx/Rx index */
  466. data->tx_index = 0;
  467. data->rx_index = 0;
  468. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  469. /* find alloc size */
  470. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  471. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  472. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  473. if (data->pkt_tx_buff != NULL) {
  474. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  475. if (!data->pkt_rx_buff) {
  476. kfree(data->pkt_tx_buff);
  477. data->pkt_tx_buff = NULL;
  478. }
  479. }
  480. if (!data->pkt_rx_buff) {
  481. /* flush queue and set status of all transfers to -ENOMEM */
  482. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  483. pmsg->status = -ENOMEM;
  484. if (pmsg->complete)
  485. pmsg->complete(pmsg->context);
  486. /* delete from queue */
  487. list_del_init(&pmsg->queue);
  488. }
  489. return;
  490. }
  491. /* copy Tx Data */
  492. if (data->cur_trans->tx_buf != NULL) {
  493. if (*bpw == 8) {
  494. tx_buf = data->cur_trans->tx_buf;
  495. for (j = 0; j < data->bpw_len; j++)
  496. data->pkt_tx_buff[j] = *tx_buf++;
  497. } else {
  498. tx_sbuf = data->cur_trans->tx_buf;
  499. for (j = 0; j < data->bpw_len; j++)
  500. data->pkt_tx_buff[j] = *tx_sbuf++;
  501. }
  502. }
  503. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  504. n_writes = data->bpw_len;
  505. if (n_writes > PCH_MAX_FIFO_DEPTH)
  506. n_writes = PCH_MAX_FIFO_DEPTH;
  507. dev_dbg(&data->master->dev,
  508. "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
  509. __func__);
  510. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  511. for (j = 0; j < n_writes; j++)
  512. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  513. /* update tx_index */
  514. data->tx_index = j;
  515. /* reset transfer complete flag */
  516. data->transfer_complete = false;
  517. data->transfer_active = true;
  518. }
  519. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  520. {
  521. struct spi_message *pmsg, *tmp;
  522. dev_dbg(&data->master->dev, "%s called\n", __func__);
  523. /* Invoke complete callback
  524. * [To the spi core..indicating end of transfer] */
  525. data->current_msg->status = 0;
  526. if (data->current_msg->complete) {
  527. dev_dbg(&data->master->dev,
  528. "%s:Invoking callback of SPI core\n", __func__);
  529. data->current_msg->complete(data->current_msg->context);
  530. }
  531. /* update status in global variable */
  532. data->bcurrent_msg_processing = false;
  533. dev_dbg(&data->master->dev,
  534. "%s:data->bcurrent_msg_processing = false\n", __func__);
  535. data->current_msg = NULL;
  536. data->cur_trans = NULL;
  537. /* check if we have items in list and not suspending
  538. * return 1 if list empty */
  539. if ((list_empty(&data->queue) == 0) &&
  540. (!data->board_dat->suspend_sts) &&
  541. (data->status != STATUS_EXITING)) {
  542. /* We have some more work to do (either there is more tranint
  543. * bpw;sfer requests in the current message or there are
  544. *more messages)
  545. */
  546. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  547. schedule_work(&data->work);
  548. } else if (data->board_dat->suspend_sts ||
  549. data->status == STATUS_EXITING) {
  550. dev_dbg(&data->master->dev,
  551. "%s suspend/remove initiated, flushing queue\n",
  552. __func__);
  553. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  554. pmsg->status = -EIO;
  555. if (pmsg->complete)
  556. pmsg->complete(pmsg->context);
  557. /* delete from queue */
  558. list_del_init(&pmsg->queue);
  559. }
  560. }
  561. }
  562. static void pch_spi_set_ir(struct pch_spi_data *data)
  563. {
  564. /* enable interrupts, set threshold, enable SPI */
  565. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  566. /* set receive threshold to PCH_RX_THOLD */
  567. pch_spi_setclr_reg(data->master, PCH_SPCR,
  568. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  569. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  570. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  571. MASK_RFIC_SPCR_BITS | PCH_ALL);
  572. else
  573. /* set receive threshold to maximum */
  574. pch_spi_setclr_reg(data->master, PCH_SPCR,
  575. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  576. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  577. SPCR_SPE_BIT,
  578. MASK_RFIC_SPCR_BITS | PCH_ALL);
  579. /* Wait until the transfer completes; go to sleep after
  580. initiating the transfer. */
  581. dev_dbg(&data->master->dev,
  582. "%s:waiting for transfer to get over\n", __func__);
  583. wait_event_interruptible(data->wait, data->transfer_complete);
  584. /* clear all interrupts */
  585. pch_spi_writereg(data->master, PCH_SPSR,
  586. pch_spi_readreg(data->master, PCH_SPSR));
  587. /* Disable interrupts and SPI transfer */
  588. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  589. /* clear FIFO */
  590. pch_spi_clear_fifo(data->master);
  591. }
  592. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  593. {
  594. int j;
  595. u8 *rx_buf;
  596. u16 *rx_sbuf;
  597. /* copy Rx Data */
  598. if (!data->cur_trans->rx_buf)
  599. return;
  600. if (bpw == 8) {
  601. rx_buf = data->cur_trans->rx_buf;
  602. for (j = 0; j < data->bpw_len; j++)
  603. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  604. } else {
  605. rx_sbuf = data->cur_trans->rx_buf;
  606. for (j = 0; j < data->bpw_len; j++)
  607. *rx_sbuf++ = data->pkt_rx_buff[j];
  608. }
  609. }
  610. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  611. {
  612. int j;
  613. u8 *rx_buf;
  614. u16 *rx_sbuf;
  615. const u8 *rx_dma_buf;
  616. const u16 *rx_dma_sbuf;
  617. /* copy Rx Data */
  618. if (!data->cur_trans->rx_buf)
  619. return;
  620. if (bpw == 8) {
  621. rx_buf = data->cur_trans->rx_buf;
  622. rx_dma_buf = data->dma.rx_buf_virt;
  623. for (j = 0; j < data->bpw_len; j++)
  624. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  625. data->cur_trans->rx_buf = rx_buf;
  626. } else {
  627. rx_sbuf = data->cur_trans->rx_buf;
  628. rx_dma_sbuf = data->dma.rx_buf_virt;
  629. for (j = 0; j < data->bpw_len; j++)
  630. *rx_sbuf++ = *rx_dma_sbuf++;
  631. data->cur_trans->rx_buf = rx_sbuf;
  632. }
  633. }
  634. static int pch_spi_start_transfer(struct pch_spi_data *data)
  635. {
  636. struct pch_spi_dma_ctrl *dma;
  637. unsigned long flags;
  638. int rtn;
  639. dma = &data->dma;
  640. spin_lock_irqsave(&data->lock, flags);
  641. /* disable interrupts, SPI set enable */
  642. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  643. spin_unlock_irqrestore(&data->lock, flags);
  644. /* Wait until the transfer completes; go to sleep after
  645. initiating the transfer. */
  646. dev_dbg(&data->master->dev,
  647. "%s:waiting for transfer to get over\n", __func__);
  648. rtn = wait_event_interruptible_timeout(data->wait,
  649. data->transfer_complete,
  650. msecs_to_jiffies(2 * HZ));
  651. if (!rtn)
  652. dev_err(&data->master->dev,
  653. "%s wait-event timeout\n", __func__);
  654. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  655. DMA_FROM_DEVICE);
  656. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  657. DMA_FROM_DEVICE);
  658. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  659. async_tx_ack(dma->desc_rx);
  660. async_tx_ack(dma->desc_tx);
  661. kfree(dma->sg_tx_p);
  662. kfree(dma->sg_rx_p);
  663. spin_lock_irqsave(&data->lock, flags);
  664. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  665. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  666. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  667. SPCR_SPE_BIT);
  668. /* clear all interrupts */
  669. pch_spi_writereg(data->master, PCH_SPSR,
  670. pch_spi_readreg(data->master, PCH_SPSR));
  671. /* clear FIFO */
  672. pch_spi_clear_fifo(data->master);
  673. spin_unlock_irqrestore(&data->lock, flags);
  674. return rtn;
  675. }
  676. static void pch_dma_rx_complete(void *arg)
  677. {
  678. struct pch_spi_data *data = arg;
  679. /* transfer is completed;inform pch_spi_process_messages_dma */
  680. data->transfer_complete = true;
  681. wake_up_interruptible(&data->wait);
  682. }
  683. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  684. {
  685. struct pch_dma_slave *param = slave;
  686. if ((chan->chan_id == param->chan_id) &&
  687. (param->dma_dev == chan->device->dev)) {
  688. chan->private = param;
  689. return true;
  690. } else {
  691. return false;
  692. }
  693. }
  694. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  695. {
  696. dma_cap_mask_t mask;
  697. struct dma_chan *chan;
  698. struct pci_dev *dma_dev;
  699. struct pch_dma_slave *param;
  700. struct pch_spi_dma_ctrl *dma;
  701. unsigned int width;
  702. if (bpw == 8)
  703. width = PCH_DMA_WIDTH_1_BYTE;
  704. else
  705. width = PCH_DMA_WIDTH_2_BYTES;
  706. dma = &data->dma;
  707. dma_cap_zero(mask);
  708. dma_cap_set(DMA_SLAVE, mask);
  709. /* Get DMA's dev information */
  710. dma_dev = pci_get_slot(data->board_dat->pdev->bus,
  711. PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
  712. /* Set Tx DMA */
  713. param = &dma->param_tx;
  714. param->dma_dev = &dma_dev->dev;
  715. param->chan_id = data->ch * 2; /* Tx = 0, 2 */
  716. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  717. param->width = width;
  718. chan = dma_request_channel(mask, pch_spi_filter, param);
  719. if (!chan) {
  720. dev_err(&data->master->dev,
  721. "ERROR: dma_request_channel FAILS(Tx)\n");
  722. goto out;
  723. }
  724. dma->chan_tx = chan;
  725. /* Set Rx DMA */
  726. param = &dma->param_rx;
  727. param->dma_dev = &dma_dev->dev;
  728. param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
  729. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  730. param->width = width;
  731. chan = dma_request_channel(mask, pch_spi_filter, param);
  732. if (!chan) {
  733. dev_err(&data->master->dev,
  734. "ERROR: dma_request_channel FAILS(Rx)\n");
  735. dma_release_channel(dma->chan_tx);
  736. dma->chan_tx = NULL;
  737. goto out;
  738. }
  739. dma->chan_rx = chan;
  740. dma->dma_dev = dma_dev;
  741. return;
  742. out:
  743. pci_dev_put(dma_dev);
  744. data->use_dma = 0;
  745. }
  746. static void pch_spi_release_dma(struct pch_spi_data *data)
  747. {
  748. struct pch_spi_dma_ctrl *dma;
  749. dma = &data->dma;
  750. if (dma->chan_tx) {
  751. dma_release_channel(dma->chan_tx);
  752. dma->chan_tx = NULL;
  753. }
  754. if (dma->chan_rx) {
  755. dma_release_channel(dma->chan_rx);
  756. dma->chan_rx = NULL;
  757. }
  758. pci_dev_put(dma->dma_dev);
  759. }
  760. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  761. {
  762. const u8 *tx_buf;
  763. const u16 *tx_sbuf;
  764. u8 *tx_dma_buf;
  765. u16 *tx_dma_sbuf;
  766. struct scatterlist *sg;
  767. struct dma_async_tx_descriptor *desc_tx;
  768. struct dma_async_tx_descriptor *desc_rx;
  769. int num;
  770. int i;
  771. int size;
  772. int rem;
  773. int head;
  774. unsigned long flags;
  775. struct pch_spi_dma_ctrl *dma;
  776. dma = &data->dma;
  777. /* set baud rate if needed */
  778. if (data->cur_trans->speed_hz) {
  779. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  780. spin_lock_irqsave(&data->lock, flags);
  781. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  782. spin_unlock_irqrestore(&data->lock, flags);
  783. }
  784. /* set bits per word if needed */
  785. if (data->cur_trans->bits_per_word &&
  786. (data->current_msg->spi->bits_per_word !=
  787. data->cur_trans->bits_per_word)) {
  788. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  789. spin_lock_irqsave(&data->lock, flags);
  790. pch_spi_set_bits_per_word(data->master,
  791. data->cur_trans->bits_per_word);
  792. spin_unlock_irqrestore(&data->lock, flags);
  793. *bpw = data->cur_trans->bits_per_word;
  794. } else {
  795. *bpw = data->current_msg->spi->bits_per_word;
  796. }
  797. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  798. if (data->bpw_len > PCH_BUF_SIZE) {
  799. data->bpw_len = PCH_BUF_SIZE;
  800. data->cur_trans->len -= PCH_BUF_SIZE;
  801. }
  802. /* copy Tx Data */
  803. if (data->cur_trans->tx_buf != NULL) {
  804. if (*bpw == 8) {
  805. tx_buf = data->cur_trans->tx_buf;
  806. tx_dma_buf = dma->tx_buf_virt;
  807. for (i = 0; i < data->bpw_len; i++)
  808. *tx_dma_buf++ = *tx_buf++;
  809. } else {
  810. tx_sbuf = data->cur_trans->tx_buf;
  811. tx_dma_sbuf = dma->tx_buf_virt;
  812. for (i = 0; i < data->bpw_len; i++)
  813. *tx_dma_sbuf++ = *tx_sbuf++;
  814. }
  815. }
  816. /* Calculate Rx parameter for DMA transmitting */
  817. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  818. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  819. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  820. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  821. } else {
  822. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  823. rem = PCH_DMA_TRANS_SIZE;
  824. }
  825. size = PCH_DMA_TRANS_SIZE;
  826. } else {
  827. num = 1;
  828. size = data->bpw_len;
  829. rem = data->bpw_len;
  830. }
  831. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  832. __func__, num, size, rem);
  833. spin_lock_irqsave(&data->lock, flags);
  834. /* set receive fifo threshold and transmit fifo threshold */
  835. pch_spi_setclr_reg(data->master, PCH_SPCR,
  836. ((size - 1) << SPCR_RFIC_FIELD) |
  837. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  838. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  839. spin_unlock_irqrestore(&data->lock, flags);
  840. /* RX */
  841. dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
  842. if (!dma->sg_rx_p)
  843. return;
  844. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  845. /* offset, length setting */
  846. sg = dma->sg_rx_p;
  847. for (i = 0; i < num; i++, sg++) {
  848. if (i == (num - 2)) {
  849. sg->offset = size * i;
  850. sg->offset = sg->offset * (*bpw / 8);
  851. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  852. sg->offset);
  853. sg_dma_len(sg) = rem;
  854. } else if (i == (num - 1)) {
  855. sg->offset = size * (i - 1) + rem;
  856. sg->offset = sg->offset * (*bpw / 8);
  857. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  858. sg->offset);
  859. sg_dma_len(sg) = size;
  860. } else {
  861. sg->offset = size * i;
  862. sg->offset = sg->offset * (*bpw / 8);
  863. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  864. sg->offset);
  865. sg_dma_len(sg) = size;
  866. }
  867. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  868. }
  869. sg = dma->sg_rx_p;
  870. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  871. num, DMA_DEV_TO_MEM,
  872. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  873. if (!desc_rx) {
  874. dev_err(&data->master->dev,
  875. "%s:dmaengine_prep_slave_sg Failed\n", __func__);
  876. return;
  877. }
  878. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  879. desc_rx->callback = pch_dma_rx_complete;
  880. desc_rx->callback_param = data;
  881. dma->nent = num;
  882. dma->desc_rx = desc_rx;
  883. /* Calculate Tx parameter for DMA transmitting */
  884. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  885. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  886. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  887. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  888. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  889. } else {
  890. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  891. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  892. PCH_DMA_TRANS_SIZE - head;
  893. }
  894. size = PCH_DMA_TRANS_SIZE;
  895. } else {
  896. num = 1;
  897. size = data->bpw_len;
  898. rem = data->bpw_len;
  899. head = 0;
  900. }
  901. dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
  902. if (!dma->sg_tx_p)
  903. return;
  904. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  905. /* offset, length setting */
  906. sg = dma->sg_tx_p;
  907. for (i = 0; i < num; i++, sg++) {
  908. if (i == 0) {
  909. sg->offset = 0;
  910. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  911. sg->offset);
  912. sg_dma_len(sg) = size + head;
  913. } else if (i == (num - 1)) {
  914. sg->offset = head + size * i;
  915. sg->offset = sg->offset * (*bpw / 8);
  916. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  917. sg->offset);
  918. sg_dma_len(sg) = rem;
  919. } else {
  920. sg->offset = head + size * i;
  921. sg->offset = sg->offset * (*bpw / 8);
  922. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  923. sg->offset);
  924. sg_dma_len(sg) = size;
  925. }
  926. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  927. }
  928. sg = dma->sg_tx_p;
  929. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  930. sg, num, DMA_MEM_TO_DEV,
  931. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  932. if (!desc_tx) {
  933. dev_err(&data->master->dev,
  934. "%s:dmaengine_prep_slave_sg Failed\n", __func__);
  935. return;
  936. }
  937. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  938. desc_tx->callback = NULL;
  939. desc_tx->callback_param = data;
  940. dma->nent = num;
  941. dma->desc_tx = desc_tx;
  942. dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
  943. spin_lock_irqsave(&data->lock, flags);
  944. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  945. desc_rx->tx_submit(desc_rx);
  946. desc_tx->tx_submit(desc_tx);
  947. spin_unlock_irqrestore(&data->lock, flags);
  948. /* reset transfer complete flag */
  949. data->transfer_complete = false;
  950. }
  951. static void pch_spi_process_messages(struct work_struct *pwork)
  952. {
  953. struct spi_message *pmsg, *tmp;
  954. struct pch_spi_data *data;
  955. int bpw;
  956. data = container_of(pwork, struct pch_spi_data, work);
  957. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  958. spin_lock(&data->lock);
  959. /* check if suspend has been initiated;if yes flush queue */
  960. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  961. dev_dbg(&data->master->dev,
  962. "%s suspend/remove initiated, flushing queue\n", __func__);
  963. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  964. pmsg->status = -EIO;
  965. if (pmsg->complete) {
  966. spin_unlock(&data->lock);
  967. pmsg->complete(pmsg->context);
  968. spin_lock(&data->lock);
  969. }
  970. /* delete from queue */
  971. list_del_init(&pmsg->queue);
  972. }
  973. spin_unlock(&data->lock);
  974. return;
  975. }
  976. data->bcurrent_msg_processing = true;
  977. dev_dbg(&data->master->dev,
  978. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  979. /* Get the message from the queue and delete it from there. */
  980. data->current_msg = list_entry(data->queue.next, struct spi_message,
  981. queue);
  982. list_del_init(&data->current_msg->queue);
  983. data->current_msg->status = 0;
  984. pch_spi_select_chip(data, data->current_msg->spi);
  985. spin_unlock(&data->lock);
  986. if (data->use_dma)
  987. pch_spi_request_dma(data,
  988. data->current_msg->spi->bits_per_word);
  989. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  990. do {
  991. int cnt;
  992. /* If we are already processing a message get the next
  993. transfer structure from the message otherwise retrieve
  994. the 1st transfer request from the message. */
  995. spin_lock(&data->lock);
  996. if (data->cur_trans == NULL) {
  997. data->cur_trans =
  998. list_entry(data->current_msg->transfers.next,
  999. struct spi_transfer, transfer_list);
  1000. dev_dbg(&data->master->dev,
  1001. "%s :Getting 1st transfer message\n",
  1002. __func__);
  1003. } else {
  1004. data->cur_trans =
  1005. list_entry(data->cur_trans->transfer_list.next,
  1006. struct spi_transfer, transfer_list);
  1007. dev_dbg(&data->master->dev,
  1008. "%s :Getting next transfer message\n",
  1009. __func__);
  1010. }
  1011. spin_unlock(&data->lock);
  1012. if (!data->cur_trans->len)
  1013. goto out;
  1014. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1015. data->save_total_len = data->cur_trans->len;
  1016. if (data->use_dma) {
  1017. int i;
  1018. char *save_rx_buf = data->cur_trans->rx_buf;
  1019. for (i = 0; i < cnt; i++) {
  1020. pch_spi_handle_dma(data, &bpw);
  1021. if (!pch_spi_start_transfer(data)) {
  1022. data->transfer_complete = true;
  1023. data->current_msg->status = -EIO;
  1024. data->current_msg->complete
  1025. (data->current_msg->context);
  1026. data->bcurrent_msg_processing = false;
  1027. data->current_msg = NULL;
  1028. data->cur_trans = NULL;
  1029. goto out;
  1030. }
  1031. pch_spi_copy_rx_data_for_dma(data, bpw);
  1032. }
  1033. data->cur_trans->rx_buf = save_rx_buf;
  1034. } else {
  1035. pch_spi_set_tx(data, &bpw);
  1036. pch_spi_set_ir(data);
  1037. pch_spi_copy_rx_data(data, bpw);
  1038. kfree(data->pkt_rx_buff);
  1039. data->pkt_rx_buff = NULL;
  1040. kfree(data->pkt_tx_buff);
  1041. data->pkt_tx_buff = NULL;
  1042. }
  1043. /* increment message count */
  1044. data->cur_trans->len = data->save_total_len;
  1045. data->current_msg->actual_length += data->cur_trans->len;
  1046. dev_dbg(&data->master->dev,
  1047. "%s:data->current_msg->actual_length=%d\n",
  1048. __func__, data->current_msg->actual_length);
  1049. spi_transfer_delay_exec(data->cur_trans);
  1050. spin_lock(&data->lock);
  1051. /* No more transfer in this message. */
  1052. if ((data->cur_trans->transfer_list.next) ==
  1053. &(data->current_msg->transfers)) {
  1054. pch_spi_nomore_transfer(data);
  1055. }
  1056. spin_unlock(&data->lock);
  1057. } while (data->cur_trans != NULL);
  1058. out:
  1059. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1060. if (data->use_dma)
  1061. pch_spi_release_dma(data);
  1062. }
  1063. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1064. struct pch_spi_data *data)
  1065. {
  1066. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1067. flush_work(&data->work);
  1068. }
  1069. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1070. struct pch_spi_data *data)
  1071. {
  1072. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1073. /* reset PCH SPI h/w */
  1074. pch_spi_reset(data->master);
  1075. dev_dbg(&board_dat->pdev->dev,
  1076. "%s pch_spi_reset invoked successfully\n", __func__);
  1077. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1078. return 0;
  1079. }
  1080. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1081. struct pch_spi_data *data)
  1082. {
  1083. struct pch_spi_dma_ctrl *dma;
  1084. dma = &data->dma;
  1085. if (dma->tx_buf_dma)
  1086. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1087. dma->tx_buf_virt, dma->tx_buf_dma);
  1088. if (dma->rx_buf_dma)
  1089. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1090. dma->rx_buf_virt, dma->rx_buf_dma);
  1091. }
  1092. static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1093. struct pch_spi_data *data)
  1094. {
  1095. struct pch_spi_dma_ctrl *dma;
  1096. int ret;
  1097. dma = &data->dma;
  1098. ret = 0;
  1099. /* Get Consistent memory for Tx DMA */
  1100. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1101. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1102. if (!dma->tx_buf_virt)
  1103. ret = -ENOMEM;
  1104. /* Get Consistent memory for Rx DMA */
  1105. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1106. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1107. if (!dma->rx_buf_virt)
  1108. ret = -ENOMEM;
  1109. return ret;
  1110. }
  1111. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1112. {
  1113. int ret;
  1114. struct spi_master *master;
  1115. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1116. struct pch_spi_data *data;
  1117. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1118. master = spi_alloc_master(&board_dat->pdev->dev,
  1119. sizeof(struct pch_spi_data));
  1120. if (!master) {
  1121. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1122. plat_dev->id);
  1123. return -ENOMEM;
  1124. }
  1125. data = spi_master_get_devdata(master);
  1126. data->master = master;
  1127. platform_set_drvdata(plat_dev, data);
  1128. /* baseaddress + address offset) */
  1129. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1130. PCH_ADDRESS_SIZE * plat_dev->id;
  1131. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
  1132. if (!data->io_remap_addr) {
  1133. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1134. ret = -ENOMEM;
  1135. goto err_pci_iomap;
  1136. }
  1137. data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
  1138. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1139. plat_dev->id, data->io_remap_addr);
  1140. /* initialize members of SPI master */
  1141. master->num_chipselect = PCH_MAX_CS;
  1142. master->transfer = pch_spi_transfer;
  1143. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1144. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1145. master->max_speed_hz = PCH_MAX_BAUDRATE;
  1146. master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
  1147. data->board_dat = board_dat;
  1148. data->plat_dev = plat_dev;
  1149. data->n_curnt_chip = 255;
  1150. data->status = STATUS_RUNNING;
  1151. data->ch = plat_dev->id;
  1152. data->use_dma = use_dma;
  1153. INIT_LIST_HEAD(&data->queue);
  1154. spin_lock_init(&data->lock);
  1155. INIT_WORK(&data->work, pch_spi_process_messages);
  1156. init_waitqueue_head(&data->wait);
  1157. ret = pch_spi_get_resources(board_dat, data);
  1158. if (ret) {
  1159. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1160. goto err_spi_get_resources;
  1161. }
  1162. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1163. IRQF_SHARED, KBUILD_MODNAME, data);
  1164. if (ret) {
  1165. dev_err(&plat_dev->dev,
  1166. "%s request_irq failed\n", __func__);
  1167. goto err_request_irq;
  1168. }
  1169. data->irq_reg_sts = true;
  1170. pch_spi_set_master_mode(master);
  1171. if (use_dma) {
  1172. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1173. ret = pch_alloc_dma_buf(board_dat, data);
  1174. if (ret)
  1175. goto err_spi_register_master;
  1176. }
  1177. ret = spi_register_master(master);
  1178. if (ret != 0) {
  1179. dev_err(&plat_dev->dev,
  1180. "%s spi_register_master FAILED\n", __func__);
  1181. goto err_spi_register_master;
  1182. }
  1183. return 0;
  1184. err_spi_register_master:
  1185. pch_free_dma_buf(board_dat, data);
  1186. free_irq(board_dat->pdev->irq, data);
  1187. err_request_irq:
  1188. pch_spi_free_resources(board_dat, data);
  1189. err_spi_get_resources:
  1190. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1191. err_pci_iomap:
  1192. spi_master_put(master);
  1193. return ret;
  1194. }
  1195. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1196. {
  1197. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1198. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1199. int count;
  1200. unsigned long flags;
  1201. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1202. __func__, plat_dev->id, board_dat->pdev->irq);
  1203. if (use_dma)
  1204. pch_free_dma_buf(board_dat, data);
  1205. /* check for any pending messages; no action is taken if the queue
  1206. * is still full; but at least we tried. Unload anyway */
  1207. count = 500;
  1208. spin_lock_irqsave(&data->lock, flags);
  1209. data->status = STATUS_EXITING;
  1210. while ((list_empty(&data->queue) == 0) && --count) {
  1211. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1212. __func__);
  1213. spin_unlock_irqrestore(&data->lock, flags);
  1214. msleep(PCH_SLEEP_TIME);
  1215. spin_lock_irqsave(&data->lock, flags);
  1216. }
  1217. spin_unlock_irqrestore(&data->lock, flags);
  1218. pch_spi_free_resources(board_dat, data);
  1219. /* disable interrupts & free IRQ */
  1220. if (data->irq_reg_sts) {
  1221. /* disable interrupts */
  1222. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1223. data->irq_reg_sts = false;
  1224. free_irq(board_dat->pdev->irq, data);
  1225. }
  1226. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1227. spi_unregister_master(data->master);
  1228. return 0;
  1229. }
  1230. #ifdef CONFIG_PM
  1231. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1232. pm_message_t state)
  1233. {
  1234. u8 count;
  1235. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1236. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1237. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1238. if (!board_dat) {
  1239. dev_err(&pd_dev->dev,
  1240. "%s pci_get_drvdata returned NULL\n", __func__);
  1241. return -EFAULT;
  1242. }
  1243. /* check if the current message is processed:
  1244. Only after thats done the transfer will be suspended */
  1245. count = 255;
  1246. while ((--count) > 0) {
  1247. if (!(data->bcurrent_msg_processing))
  1248. break;
  1249. msleep(PCH_SLEEP_TIME);
  1250. }
  1251. /* Free IRQ */
  1252. if (data->irq_reg_sts) {
  1253. /* disable all interrupts */
  1254. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1255. pch_spi_reset(data->master);
  1256. free_irq(board_dat->pdev->irq, data);
  1257. data->irq_reg_sts = false;
  1258. dev_dbg(&pd_dev->dev,
  1259. "%s free_irq invoked successfully.\n", __func__);
  1260. }
  1261. return 0;
  1262. }
  1263. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1264. {
  1265. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1266. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1267. int retval;
  1268. if (!board_dat) {
  1269. dev_err(&pd_dev->dev,
  1270. "%s pci_get_drvdata returned NULL\n", __func__);
  1271. return -EFAULT;
  1272. }
  1273. if (!data->irq_reg_sts) {
  1274. /* register IRQ */
  1275. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1276. IRQF_SHARED, KBUILD_MODNAME, data);
  1277. if (retval < 0) {
  1278. dev_err(&pd_dev->dev,
  1279. "%s request_irq failed\n", __func__);
  1280. return retval;
  1281. }
  1282. /* reset PCH SPI h/w */
  1283. pch_spi_reset(data->master);
  1284. pch_spi_set_master_mode(data->master);
  1285. data->irq_reg_sts = true;
  1286. }
  1287. return 0;
  1288. }
  1289. #else
  1290. #define pch_spi_pd_suspend NULL
  1291. #define pch_spi_pd_resume NULL
  1292. #endif
  1293. static struct platform_driver pch_spi_pd_driver = {
  1294. .driver = {
  1295. .name = "pch-spi",
  1296. },
  1297. .probe = pch_spi_pd_probe,
  1298. .remove = pch_spi_pd_remove,
  1299. .suspend = pch_spi_pd_suspend,
  1300. .resume = pch_spi_pd_resume
  1301. };
  1302. static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1303. {
  1304. struct pch_spi_board_data *board_dat;
  1305. struct platform_device *pd_dev = NULL;
  1306. int retval;
  1307. int i;
  1308. struct pch_pd_dev_save *pd_dev_save;
  1309. pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
  1310. if (!pd_dev_save)
  1311. return -ENOMEM;
  1312. board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
  1313. if (!board_dat) {
  1314. retval = -ENOMEM;
  1315. goto err_no_mem;
  1316. }
  1317. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1318. if (retval) {
  1319. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1320. goto pci_request_regions;
  1321. }
  1322. board_dat->pdev = pdev;
  1323. board_dat->num = id->driver_data;
  1324. pd_dev_save->num = id->driver_data;
  1325. pd_dev_save->board_dat = board_dat;
  1326. retval = pci_enable_device(pdev);
  1327. if (retval) {
  1328. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1329. goto pci_enable_device;
  1330. }
  1331. for (i = 0; i < board_dat->num; i++) {
  1332. pd_dev = platform_device_alloc("pch-spi", i);
  1333. if (!pd_dev) {
  1334. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1335. retval = -ENOMEM;
  1336. goto err_platform_device;
  1337. }
  1338. pd_dev_save->pd_save[i] = pd_dev;
  1339. pd_dev->dev.parent = &pdev->dev;
  1340. retval = platform_device_add_data(pd_dev, board_dat,
  1341. sizeof(*board_dat));
  1342. if (retval) {
  1343. dev_err(&pdev->dev,
  1344. "platform_device_add_data failed\n");
  1345. platform_device_put(pd_dev);
  1346. goto err_platform_device;
  1347. }
  1348. retval = platform_device_add(pd_dev);
  1349. if (retval) {
  1350. dev_err(&pdev->dev, "platform_device_add failed\n");
  1351. platform_device_put(pd_dev);
  1352. goto err_platform_device;
  1353. }
  1354. }
  1355. pci_set_drvdata(pdev, pd_dev_save);
  1356. return 0;
  1357. err_platform_device:
  1358. while (--i >= 0)
  1359. platform_device_unregister(pd_dev_save->pd_save[i]);
  1360. pci_disable_device(pdev);
  1361. pci_enable_device:
  1362. pci_release_regions(pdev);
  1363. pci_request_regions:
  1364. kfree(board_dat);
  1365. err_no_mem:
  1366. kfree(pd_dev_save);
  1367. return retval;
  1368. }
  1369. static void pch_spi_remove(struct pci_dev *pdev)
  1370. {
  1371. int i;
  1372. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1373. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1374. for (i = 0; i < pd_dev_save->num; i++)
  1375. platform_device_unregister(pd_dev_save->pd_save[i]);
  1376. pci_disable_device(pdev);
  1377. pci_release_regions(pdev);
  1378. kfree(pd_dev_save->board_dat);
  1379. kfree(pd_dev_save);
  1380. }
  1381. static int __maybe_unused pch_spi_suspend(struct device *dev)
  1382. {
  1383. struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
  1384. dev_dbg(dev, "%s ENTRY\n", __func__);
  1385. pd_dev_save->board_dat->suspend_sts = true;
  1386. return 0;
  1387. }
  1388. static int __maybe_unused pch_spi_resume(struct device *dev)
  1389. {
  1390. struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
  1391. dev_dbg(dev, "%s ENTRY\n", __func__);
  1392. /* set suspend status to false */
  1393. pd_dev_save->board_dat->suspend_sts = false;
  1394. return 0;
  1395. }
  1396. static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
  1397. static struct pci_driver pch_spi_pcidev_driver = {
  1398. .name = "pch_spi",
  1399. .id_table = pch_spi_pcidev_id,
  1400. .probe = pch_spi_probe,
  1401. .remove = pch_spi_remove,
  1402. .driver.pm = &pch_spi_pm_ops,
  1403. };
  1404. static int __init pch_spi_init(void)
  1405. {
  1406. int ret;
  1407. ret = platform_driver_register(&pch_spi_pd_driver);
  1408. if (ret)
  1409. return ret;
  1410. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1411. if (ret) {
  1412. platform_driver_unregister(&pch_spi_pd_driver);
  1413. return ret;
  1414. }
  1415. return 0;
  1416. }
  1417. module_init(pch_spi_init);
  1418. static void __exit pch_spi_exit(void)
  1419. {
  1420. pci_unregister_driver(&pch_spi_pcidev_driver);
  1421. platform_driver_unregister(&pch_spi_pd_driver);
  1422. }
  1423. module_exit(pch_spi_exit);
  1424. module_param(use_dma, int, 0644);
  1425. MODULE_PARM_DESC(use_dma,
  1426. "to use DMA for data transfers pass 1 else 0; default 1");
  1427. MODULE_LICENSE("GPL");
  1428. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1429. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);