spi-bcm63xx-hsspi.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /*
  2. * Broadcom BCM63XX High Speed SPI Controller driver
  3. *
  4. * Copyright 2000-2010 Broadcom Corporation
  5. * Copyright 2012-2013 Jonas Gorski <[email protected]>
  6. *
  7. * Licensed under the GNU/GPL. See COPYING for details.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/init.h>
  11. #include <linux/io.h>
  12. #include <linux/clk.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/mutex.h>
  21. #include <linux/of.h>
  22. #include <linux/reset.h>
  23. #include <linux/pm_runtime.h>
  24. #define HSSPI_GLOBAL_CTRL_REG 0x0
  25. #define GLOBAL_CTRL_CS_POLARITY_SHIFT 0
  26. #define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff
  27. #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8
  28. #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00
  29. #define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16)
  30. #define GLOBAL_CTRL_CLK_POLARITY BIT(17)
  31. #define GLOBAL_CTRL_MOSI_IDLE BIT(18)
  32. #define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4
  33. #define HSSPI_INT_STATUS_REG 0x8
  34. #define HSSPI_INT_STATUS_MASKED_REG 0xc
  35. #define HSSPI_INT_MASK_REG 0x10
  36. #define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0)
  37. #define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1)
  38. #define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2)
  39. #define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3)
  40. #define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4)
  41. #define HSSPI_INT_CLEAR_ALL 0xff001f1f
  42. #define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40)
  43. #define PINGPONG_CMD_COMMAND_MASK 0xf
  44. #define PINGPONG_COMMAND_NOOP 0
  45. #define PINGPONG_COMMAND_START_NOW 1
  46. #define PINGPONG_COMMAND_START_TRIGGER 2
  47. #define PINGPONG_COMMAND_HALT 3
  48. #define PINGPONG_COMMAND_FLUSH 4
  49. #define PINGPONG_CMD_PROFILE_SHIFT 8
  50. #define PINGPONG_CMD_SS_SHIFT 12
  51. #define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40)
  52. #define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20)
  53. #define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff
  54. #define CLK_CTRL_SPI_CLK_2X_SEL BIT(14)
  55. #define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15)
  56. #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20)
  57. #define SIGNAL_CTRL_LATCH_RISING BIT(12)
  58. #define SIGNAL_CTRL_LAUNCH_RISING BIT(13)
  59. #define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16)
  60. #define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20)
  61. #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8
  62. #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12
  63. #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16
  64. #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18
  65. #define MODE_CTRL_MODE_3WIRE BIT(20)
  66. #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24
  67. #define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200)
  68. #define HSSPI_OP_MULTIBIT BIT(11)
  69. #define HSSPI_OP_CODE_SHIFT 13
  70. #define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT)
  71. #define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT)
  72. #define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT)
  73. #define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT)
  74. #define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT)
  75. #define HSSPI_BUFFER_LEN 512
  76. #define HSSPI_OPCODE_LEN 2
  77. #define HSSPI_MAX_PREPEND_LEN 15
  78. #define HSSPI_MAX_SYNC_CLOCK 30000000
  79. #define HSSPI_SPI_MAX_CS 8
  80. #define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */
  81. struct bcm63xx_hsspi {
  82. struct completion done;
  83. struct mutex bus_mutex;
  84. struct platform_device *pdev;
  85. struct clk *clk;
  86. struct clk *pll_clk;
  87. void __iomem *regs;
  88. u8 __iomem *fifo;
  89. u32 speed_hz;
  90. u8 cs_polarity;
  91. };
  92. static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned int cs,
  93. bool active)
  94. {
  95. u32 reg;
  96. mutex_lock(&bs->bus_mutex);
  97. reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
  98. reg &= ~BIT(cs);
  99. if (active == !(bs->cs_polarity & BIT(cs)))
  100. reg |= BIT(cs);
  101. __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
  102. mutex_unlock(&bs->bus_mutex);
  103. }
  104. static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs,
  105. struct spi_device *spi, int hz)
  106. {
  107. unsigned int profile = spi->chip_select;
  108. u32 reg;
  109. reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz));
  110. __raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg,
  111. bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile));
  112. reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
  113. if (hz > HSSPI_MAX_SYNC_CLOCK)
  114. reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH;
  115. else
  116. reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH;
  117. __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
  118. mutex_lock(&bs->bus_mutex);
  119. /* setup clock polarity */
  120. reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
  121. reg &= ~GLOBAL_CTRL_CLK_POLARITY;
  122. if (spi->mode & SPI_CPOL)
  123. reg |= GLOBAL_CTRL_CLK_POLARITY;
  124. __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
  125. mutex_unlock(&bs->bus_mutex);
  126. }
  127. static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t)
  128. {
  129. struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master);
  130. unsigned int chip_select = spi->chip_select;
  131. u16 opcode = 0;
  132. int pending = t->len;
  133. int step_size = HSSPI_BUFFER_LEN;
  134. const u8 *tx = t->tx_buf;
  135. u8 *rx = t->rx_buf;
  136. u32 val = 0;
  137. bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz);
  138. bcm63xx_hsspi_set_cs(bs, spi->chip_select, true);
  139. if (tx && rx)
  140. opcode = HSSPI_OP_READ_WRITE;
  141. else if (tx)
  142. opcode = HSSPI_OP_WRITE;
  143. else if (rx)
  144. opcode = HSSPI_OP_READ;
  145. if (opcode != HSSPI_OP_READ)
  146. step_size -= HSSPI_OPCODE_LEN;
  147. if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) ||
  148. (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) {
  149. opcode |= HSSPI_OP_MULTIBIT;
  150. if (t->rx_nbits == SPI_NBITS_DUAL)
  151. val |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT;
  152. if (t->tx_nbits == SPI_NBITS_DUAL)
  153. val |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT;
  154. }
  155. __raw_writel(val | 0xff,
  156. bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select));
  157. while (pending > 0) {
  158. int curr_step = min_t(int, step_size, pending);
  159. reinit_completion(&bs->done);
  160. if (tx) {
  161. memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step);
  162. tx += curr_step;
  163. }
  164. __raw_writew(opcode | curr_step, bs->fifo);
  165. /* enable interrupt */
  166. __raw_writel(HSSPI_PINGx_CMD_DONE(0),
  167. bs->regs + HSSPI_INT_MASK_REG);
  168. /* start the transfer */
  169. __raw_writel(!chip_select << PINGPONG_CMD_SS_SHIFT |
  170. chip_select << PINGPONG_CMD_PROFILE_SHIFT |
  171. PINGPONG_COMMAND_START_NOW,
  172. bs->regs + HSSPI_PINGPONG_COMMAND_REG(0));
  173. if (wait_for_completion_timeout(&bs->done, HZ) == 0) {
  174. dev_err(&bs->pdev->dev, "transfer timed out!\n");
  175. return -ETIMEDOUT;
  176. }
  177. if (rx) {
  178. memcpy_fromio(rx, bs->fifo, curr_step);
  179. rx += curr_step;
  180. }
  181. pending -= curr_step;
  182. }
  183. return 0;
  184. }
  185. static int bcm63xx_hsspi_setup(struct spi_device *spi)
  186. {
  187. struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master);
  188. u32 reg;
  189. reg = __raw_readl(bs->regs +
  190. HSSPI_PROFILE_SIGNAL_CTRL_REG(spi->chip_select));
  191. reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING);
  192. if (spi->mode & SPI_CPHA)
  193. reg |= SIGNAL_CTRL_LAUNCH_RISING;
  194. else
  195. reg |= SIGNAL_CTRL_LATCH_RISING;
  196. __raw_writel(reg, bs->regs +
  197. HSSPI_PROFILE_SIGNAL_CTRL_REG(spi->chip_select));
  198. mutex_lock(&bs->bus_mutex);
  199. reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
  200. /* only change actual polarities if there is no transfer */
  201. if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) {
  202. if (spi->mode & SPI_CS_HIGH)
  203. reg |= BIT(spi->chip_select);
  204. else
  205. reg &= ~BIT(spi->chip_select);
  206. __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
  207. }
  208. if (spi->mode & SPI_CS_HIGH)
  209. bs->cs_polarity |= BIT(spi->chip_select);
  210. else
  211. bs->cs_polarity &= ~BIT(spi->chip_select);
  212. mutex_unlock(&bs->bus_mutex);
  213. return 0;
  214. }
  215. static int bcm63xx_hsspi_transfer_one(struct spi_master *master,
  216. struct spi_message *msg)
  217. {
  218. struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
  219. struct spi_transfer *t;
  220. struct spi_device *spi = msg->spi;
  221. int status = -EINVAL;
  222. int dummy_cs;
  223. u32 reg;
  224. /* This controller does not support keeping CS active during idle.
  225. * To work around this, we use the following ugly hack:
  226. *
  227. * a. Invert the target chip select's polarity so it will be active.
  228. * b. Select a "dummy" chip select to use as the hardware target.
  229. * c. Invert the dummy chip select's polarity so it will be inactive
  230. * during the actual transfers.
  231. * d. Tell the hardware to send to the dummy chip select. Thanks to
  232. * the multiplexed nature of SPI the actual target will receive
  233. * the transfer and we see its response.
  234. *
  235. * e. At the end restore the polarities again to their default values.
  236. */
  237. dummy_cs = !spi->chip_select;
  238. bcm63xx_hsspi_set_cs(bs, dummy_cs, true);
  239. list_for_each_entry(t, &msg->transfers, transfer_list) {
  240. status = bcm63xx_hsspi_do_txrx(spi, t);
  241. if (status)
  242. break;
  243. msg->actual_length += t->len;
  244. spi_transfer_delay_exec(t);
  245. if (t->cs_change)
  246. bcm63xx_hsspi_set_cs(bs, spi->chip_select, false);
  247. }
  248. mutex_lock(&bs->bus_mutex);
  249. reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
  250. reg &= ~GLOBAL_CTRL_CS_POLARITY_MASK;
  251. reg |= bs->cs_polarity;
  252. __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
  253. mutex_unlock(&bs->bus_mutex);
  254. msg->status = status;
  255. spi_finalize_current_message(master);
  256. return 0;
  257. }
  258. static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id)
  259. {
  260. struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id;
  261. if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0)
  262. return IRQ_NONE;
  263. __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
  264. __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
  265. complete(&bs->done);
  266. return IRQ_HANDLED;
  267. }
  268. static int bcm63xx_hsspi_probe(struct platform_device *pdev)
  269. {
  270. struct spi_master *master;
  271. struct bcm63xx_hsspi *bs;
  272. void __iomem *regs;
  273. struct device *dev = &pdev->dev;
  274. struct clk *clk, *pll_clk = NULL;
  275. int irq, ret;
  276. u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS;
  277. struct reset_control *reset;
  278. irq = platform_get_irq(pdev, 0);
  279. if (irq < 0)
  280. return irq;
  281. regs = devm_platform_ioremap_resource(pdev, 0);
  282. if (IS_ERR(regs))
  283. return PTR_ERR(regs);
  284. clk = devm_clk_get(dev, "hsspi");
  285. if (IS_ERR(clk))
  286. return PTR_ERR(clk);
  287. reset = devm_reset_control_get_optional_exclusive(dev, NULL);
  288. if (IS_ERR(reset))
  289. return PTR_ERR(reset);
  290. ret = clk_prepare_enable(clk);
  291. if (ret)
  292. return ret;
  293. ret = reset_control_reset(reset);
  294. if (ret) {
  295. dev_err(dev, "unable to reset device: %d\n", ret);
  296. goto out_disable_clk;
  297. }
  298. rate = clk_get_rate(clk);
  299. if (!rate) {
  300. pll_clk = devm_clk_get(dev, "pll");
  301. if (IS_ERR(pll_clk)) {
  302. ret = PTR_ERR(pll_clk);
  303. goto out_disable_clk;
  304. }
  305. ret = clk_prepare_enable(pll_clk);
  306. if (ret)
  307. goto out_disable_clk;
  308. rate = clk_get_rate(pll_clk);
  309. if (!rate) {
  310. ret = -EINVAL;
  311. goto out_disable_pll_clk;
  312. }
  313. }
  314. master = spi_alloc_master(&pdev->dev, sizeof(*bs));
  315. if (!master) {
  316. ret = -ENOMEM;
  317. goto out_disable_pll_clk;
  318. }
  319. bs = spi_master_get_devdata(master);
  320. bs->pdev = pdev;
  321. bs->clk = clk;
  322. bs->pll_clk = pll_clk;
  323. bs->regs = regs;
  324. bs->speed_hz = rate;
  325. bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0));
  326. mutex_init(&bs->bus_mutex);
  327. init_completion(&bs->done);
  328. master->dev.of_node = dev->of_node;
  329. if (!dev->of_node)
  330. master->bus_num = HSSPI_BUS_NUM;
  331. of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  332. if (num_cs > 8) {
  333. dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n",
  334. num_cs);
  335. num_cs = HSSPI_SPI_MAX_CS;
  336. }
  337. master->num_chipselect = num_cs;
  338. master->setup = bcm63xx_hsspi_setup;
  339. master->transfer_one_message = bcm63xx_hsspi_transfer_one;
  340. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
  341. SPI_RX_DUAL | SPI_TX_DUAL;
  342. master->bits_per_word_mask = SPI_BPW_MASK(8);
  343. master->auto_runtime_pm = true;
  344. platform_set_drvdata(pdev, master);
  345. /* Initialize the hardware */
  346. __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
  347. /* clean up any pending interrupts */
  348. __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
  349. /* read out default CS polarities */
  350. reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
  351. bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK;
  352. __raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF,
  353. bs->regs + HSSPI_GLOBAL_CTRL_REG);
  354. ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED,
  355. pdev->name, bs);
  356. if (ret)
  357. goto out_put_master;
  358. pm_runtime_enable(&pdev->dev);
  359. /* register and we are done */
  360. ret = devm_spi_register_master(dev, master);
  361. if (ret)
  362. goto out_pm_disable;
  363. return 0;
  364. out_pm_disable:
  365. pm_runtime_disable(&pdev->dev);
  366. out_put_master:
  367. spi_master_put(master);
  368. out_disable_pll_clk:
  369. clk_disable_unprepare(pll_clk);
  370. out_disable_clk:
  371. clk_disable_unprepare(clk);
  372. return ret;
  373. }
  374. static int bcm63xx_hsspi_remove(struct platform_device *pdev)
  375. {
  376. struct spi_master *master = platform_get_drvdata(pdev);
  377. struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
  378. /* reset the hardware and block queue progress */
  379. __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
  380. clk_disable_unprepare(bs->pll_clk);
  381. clk_disable_unprepare(bs->clk);
  382. return 0;
  383. }
  384. #ifdef CONFIG_PM_SLEEP
  385. static int bcm63xx_hsspi_suspend(struct device *dev)
  386. {
  387. struct spi_master *master = dev_get_drvdata(dev);
  388. struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
  389. spi_master_suspend(master);
  390. clk_disable_unprepare(bs->pll_clk);
  391. clk_disable_unprepare(bs->clk);
  392. return 0;
  393. }
  394. static int bcm63xx_hsspi_resume(struct device *dev)
  395. {
  396. struct spi_master *master = dev_get_drvdata(dev);
  397. struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
  398. int ret;
  399. ret = clk_prepare_enable(bs->clk);
  400. if (ret)
  401. return ret;
  402. if (bs->pll_clk) {
  403. ret = clk_prepare_enable(bs->pll_clk);
  404. if (ret) {
  405. clk_disable_unprepare(bs->clk);
  406. return ret;
  407. }
  408. }
  409. spi_master_resume(master);
  410. return 0;
  411. }
  412. #endif
  413. static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend,
  414. bcm63xx_hsspi_resume);
  415. static const struct of_device_id bcm63xx_hsspi_of_match[] = {
  416. { .compatible = "brcm,bcm6328-hsspi", },
  417. { },
  418. };
  419. MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match);
  420. static struct platform_driver bcm63xx_hsspi_driver = {
  421. .driver = {
  422. .name = "bcm63xx-hsspi",
  423. .pm = &bcm63xx_hsspi_pm_ops,
  424. .of_match_table = bcm63xx_hsspi_of_match,
  425. },
  426. .probe = bcm63xx_hsspi_probe,
  427. .remove = bcm63xx_hsspi_remove,
  428. };
  429. module_platform_driver(bcm63xx_hsspi_driver);
  430. MODULE_ALIAS("platform:bcm63xx_hsspi");
  431. MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver");
  432. MODULE_AUTHOR("Jonas Gorski <[email protected]>");
  433. MODULE_LICENSE("GPL");