qpnp-qg.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) "QG-K: %s: " fmt, __func__
  7. #include <linux/debugfs.h>
  8. #include <linux/alarmtimer.h>
  9. #include <linux/cdev.h>
  10. #include <linux/device.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/iio/iio.h>
  13. #include <linux/kernel.h>
  14. #include <linux/ktime.h>
  15. #include <linux/module.h>
  16. #include <linux/of.h>
  17. #include <linux/of_irq.h>
  18. #include <linux/of_device.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/power_supply.h>
  21. #include <linux/regmap.h>
  22. #include <linux/slab.h>
  23. #include <linux/timekeeping.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/pmic-voter.h>
  26. #include <linux/poll.h>
  27. #include <linux/iio/consumer.h>
  28. #include <dt-bindings/iio/qti_power_supply_iio.h>
  29. #include <uapi/linux/qg.h>
  30. #include <uapi/linux/qg-profile.h>
  31. #include "fg-alg.h"
  32. #include "qg-sdam.h"
  33. #include "qg-core.h"
  34. #include "qg-iio.h"
  35. #include "qg-reg.h"
  36. #include "qg-util.h"
  37. #include "qg-soc.h"
  38. #include "qg-battery-profile.h"
  39. #include "qg-defs.h"
  40. #include "battery-profile-loader.h"
  41. static const struct qg_config config[] = {
  42. [PM2250] = {QG_LITE, PM2250},
  43. [PM6150] = {QG_PMIC5, PM6150},
  44. [PMI632] = {QG_PMIC5, PMI632},
  45. [PM7250B] = {QG_PMIC5, PM7250B},
  46. };
  47. static const char *qg_get_battery_type(struct qpnp_qg *chip);
  48. static int qg_process_rt_fifo(struct qpnp_qg *chip);
  49. static int qg_load_battery_profile(struct qpnp_qg *chip);
  50. static int qg_debug_mask;
  51. static int qg_esr_mod_count = 30;
  52. static ssize_t esr_mod_count_show(struct device *dev, struct device_attribute
  53. *attr, char *buf)
  54. {
  55. return scnprintf(buf, PAGE_SIZE, "%d\n", qg_esr_mod_count);
  56. }
  57. static ssize_t esr_mod_count_store(struct device *dev,
  58. struct device_attribute *attr, const char *buf, size_t count)
  59. {
  60. int val;
  61. if (kstrtos32(buf, 0, &val))
  62. return -EINVAL;
  63. qg_esr_mod_count = val;
  64. return count;
  65. }
  66. static DEVICE_ATTR_RW(esr_mod_count);
  67. static int qg_esr_count = 3;
  68. static ssize_t esr_count_show(struct device *dev, struct device_attribute
  69. *attr, char *buf)
  70. {
  71. return scnprintf(buf, PAGE_SIZE, "%d\n", qg_esr_count);
  72. }
  73. static ssize_t esr_count_store(struct device *dev, struct device_attribute
  74. *attr, const char *buf, size_t count)
  75. {
  76. int val;
  77. if (kstrtos32(buf, 0, &val))
  78. return -EINVAL;
  79. qg_esr_count = val;
  80. return count;
  81. }
  82. static DEVICE_ATTR_RW(esr_count);
  83. static ssize_t battery_type_show(struct device *dev,
  84. struct device_attribute
  85. *attr, char *buf)
  86. {
  87. struct qpnp_qg *chip = dev_get_drvdata(dev);
  88. return scnprintf(buf, PAGE_SIZE, "%s\n",
  89. qg_get_battery_type(chip));
  90. }
  91. static DEVICE_ATTR_RO(battery_type);
  92. static struct attribute *qg_attrs[] = {
  93. &dev_attr_esr_mod_count.attr,
  94. &dev_attr_esr_count.attr,
  95. &dev_attr_soc_interval_ms.attr,
  96. &dev_attr_soc_cold_interval_ms.attr,
  97. &dev_attr_maint_soc_update_ms.attr,
  98. &dev_attr_fvss_delta_soc_interval_ms.attr,
  99. &dev_attr_fvss_vbat_scaling.attr,
  100. &dev_attr_qg_ss_feature.attr,
  101. &dev_attr_battery_type.attr,
  102. NULL,
  103. };
  104. ATTRIBUTE_GROUPS(qg);
  105. static bool is_battery_present(struct qpnp_qg *chip)
  106. {
  107. bool present = true;
  108. u8 reg = 0;
  109. int rc;
  110. if (chip->qg_version == QG_LITE) {
  111. rc = qg_read(chip, chip->qg_base + QG_STATUS2_REG, &reg, 1);
  112. if (rc < 0)
  113. pr_err("Failed to read battery presence, rc=%d\n", rc);
  114. else
  115. present = !(reg & BATTERY_MISSING_BIT);
  116. } else {
  117. rc = qg_read(chip, chip->qg_base + QG_STATUS1_REG, &reg, 1);
  118. if (rc < 0)
  119. pr_err("Failed to read battery presence, rc=%d\n", rc);
  120. else
  121. present = !!(reg & BATTERY_PRESENT_BIT);
  122. }
  123. return present;
  124. }
  125. #define DEBUG_BATT_ID_LOW 6000
  126. #define DEBUG_BATT_ID_HIGH 8500
  127. static bool is_debug_batt_id(struct qpnp_qg *chip)
  128. {
  129. if (is_between(DEBUG_BATT_ID_LOW, DEBUG_BATT_ID_HIGH,
  130. chip->batt_id_ohm))
  131. return true;
  132. return false;
  133. }
  134. static int qg_read_ocv(struct qpnp_qg *chip, u32 *ocv_uv, u32 *ocv_raw, u8 type)
  135. {
  136. int rc, addr;
  137. u64 temp = 0;
  138. char ocv_name[20];
  139. switch (type) {
  140. case S3_GOOD_OCV:
  141. addr = QG_S3_GOOD_OCV_V_DATA0_REG;
  142. strscpy(ocv_name, "S3_GOOD_OCV", 20);
  143. break;
  144. case S7_PON_OCV:
  145. addr = QG_S7_PON_OCV_V_DATA0_REG;
  146. strscpy(ocv_name, "S7_PON_OCV", 20);
  147. break;
  148. case S3_LAST_OCV:
  149. addr = QG_LAST_S3_SLEEP_V_DATA0_REG;
  150. strscpy(ocv_name, "S3_LAST_OCV", 20);
  151. break;
  152. case SDAM_PON_OCV:
  153. addr = QG_SDAM_PON_OCV_OFFSET;
  154. strscpy(ocv_name, "SDAM_PON_OCV", 20);
  155. break;
  156. default:
  157. pr_err("Invalid OCV type %d\n", type);
  158. return -EINVAL;
  159. }
  160. if (type == SDAM_PON_OCV) {
  161. rc = qg_sdam_read(SDAM_PON_OCV_UV, ocv_raw);
  162. if (rc < 0) {
  163. pr_err("Failed to read SDAM PON OCV rc=%d\n", rc);
  164. return rc;
  165. }
  166. } else {
  167. rc = qg_read(chip, chip->qg_base + addr, (u8 *)ocv_raw, 2);
  168. if (rc < 0) {
  169. pr_err("Failed to read ocv, rc=%d\n", rc);
  170. return rc;
  171. }
  172. }
  173. temp = *ocv_raw;
  174. *ocv_uv = V_RAW_TO_UV(temp);
  175. pr_debug("%s: OCV_RAW=%x OCV=%duV\n", ocv_name, *ocv_raw, *ocv_uv);
  176. return rc;
  177. }
  178. #define DEFAULT_S3_FIFO_LENGTH 3
  179. static int qg_update_fifo_length(struct qpnp_qg *chip, u8 length)
  180. {
  181. int rc;
  182. u8 s3_entry_fifo_length = 0;
  183. if (!length || length > chip->max_fifo_length) {
  184. pr_err("Invalid FIFO length %d\n", length);
  185. return -EINVAL;
  186. }
  187. rc = qg_masked_write(chip, chip->qg_base + QG_S2_NORMAL_MEAS_CTL2_REG,
  188. FIFO_LENGTH_MASK, (length - 1) << FIFO_LENGTH_SHIFT);
  189. if (rc < 0)
  190. pr_err("Failed to write S2 FIFO length, rc=%d\n", rc);
  191. /* update the S3 FIFO length, when S2 length is updated */
  192. if (length > 3 && !chip->dt.qg_sleep_config)
  193. s3_entry_fifo_length = (chip->dt.s3_entry_fifo_length > 0) ?
  194. chip->dt.s3_entry_fifo_length : DEFAULT_S3_FIFO_LENGTH;
  195. else /* Use S3 length as 1 for any S2 length <= 3 */
  196. s3_entry_fifo_length = 1;
  197. rc = qg_masked_write(chip,
  198. chip->qg_base + QG_S3_SLEEP_OCV_IBAT_CTL1_REG,
  199. SLEEP_IBAT_QUALIFIED_LENGTH_MASK,
  200. s3_entry_fifo_length - 1);
  201. if (rc < 0)
  202. pr_err("Failed to write S3-entry fifo-length, rc=%d\n",
  203. rc);
  204. return rc;
  205. }
  206. static int qg_master_hold(struct qpnp_qg *chip, bool hold)
  207. {
  208. int rc;
  209. /* clear the master */
  210. rc = qg_masked_write(chip, chip->qg_base + QG_DATA_CTL1_REG,
  211. MASTER_HOLD_OR_CLR_BIT, 0);
  212. if (rc < 0)
  213. return rc;
  214. if (hold) {
  215. /* 0 -> 1, hold the master */
  216. rc = qg_masked_write(chip, chip->qg_base + QG_DATA_CTL1_REG,
  217. MASTER_HOLD_OR_CLR_BIT,
  218. MASTER_HOLD_OR_CLR_BIT);
  219. if (rc < 0)
  220. return rc;
  221. }
  222. qg_dbg(chip, QG_DEBUG_STATUS, "Master hold = %d\n", hold);
  223. return rc;
  224. }
  225. static void qg_notify_charger(struct qpnp_qg *chip)
  226. {
  227. union power_supply_propval prop = {0, };
  228. int rc;
  229. if (!chip->batt_psy)
  230. return;
  231. if (!chip->profile_loaded)
  232. return;
  233. prop.intval = chip->bp.float_volt_uv;
  234. rc = power_supply_set_property(chip->batt_psy,
  235. POWER_SUPPLY_PROP_VOLTAGE_MAX, &prop);
  236. if (rc < 0) {
  237. pr_err("Failed to set voltage_max property on batt_psy, rc=%d\n",
  238. rc);
  239. return;
  240. }
  241. prop.intval = chip->bp.fastchg_curr_ma * 1000;
  242. rc = power_supply_set_property(chip->batt_psy,
  243. POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, &prop);
  244. if (rc < 0) {
  245. pr_err("Failed to set constant_charge_current_max property on batt_psy, rc=%d\n",
  246. rc);
  247. return;
  248. }
  249. pr_debug("Notified charger on float voltage and FCC\n");
  250. rc = power_supply_get_property(chip->batt_psy,
  251. POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, &prop);
  252. if (rc < 0) {
  253. pr_err("Failed to get charge term current, rc=%d\n", rc);
  254. return;
  255. }
  256. chip->chg_iterm_ma = prop.intval;
  257. }
  258. static bool is_batt_available(struct qpnp_qg *chip)
  259. {
  260. if (chip->batt_psy)
  261. return true;
  262. chip->batt_psy = power_supply_get_by_name("battery");
  263. if (!chip->batt_psy)
  264. return false;
  265. /* batt_psy is initialized, set the fcc and fv */
  266. qg_notify_charger(chip);
  267. return true;
  268. }
  269. static int qg_store_soc_params(struct qpnp_qg *chip)
  270. {
  271. int rc, batt_temp = 0, i;
  272. unsigned long rtc_sec = 0;
  273. u32 flash_ocv = 0;
  274. rc = get_rtc_time(&rtc_sec);
  275. if (rc < 0)
  276. pr_err("Failed to get RTC time, rc=%d\n", rc);
  277. else
  278. chip->sdam_data[SDAM_TIME_SEC] = rtc_sec;
  279. rc = qg_get_battery_temp(chip, &batt_temp);
  280. if (rc < 0)
  281. pr_err("Failed to get battery-temp, rc = %d\n", rc);
  282. else
  283. chip->sdam_data[SDAM_TEMP] = (u32)batt_temp;
  284. for (i = 0; i <= SDAM_TIME_SEC; i++) {
  285. rc |= qg_sdam_write(i, chip->sdam_data[i]);
  286. qg_dbg(chip, QG_DEBUG_STATUS, "SDAM write param %d value=%d\n",
  287. i, chip->sdam_data[i]);
  288. }
  289. /* store the SDAM OCV */
  290. flash_ocv = chip->sdam_data[SDAM_OCV_UV] / 20000;
  291. rc = qg_sdam_write(SDAM_FLASH_OCV, flash_ocv);
  292. if (rc < 0)
  293. pr_err("Failed to update flash-ocv rc=%d\n", rc);
  294. return rc;
  295. }
  296. #define MAX_FIFO_CNT_FOR_ESR 50
  297. static int qg_config_s2_state(struct qpnp_qg *chip,
  298. enum s2_state requested_state, bool state_enable,
  299. bool process_fifo)
  300. {
  301. int rc, acc_interval, acc_length;
  302. u8 fifo_length, reg = 0, state = S2_DEFAULT;
  303. if ((chip->s2_state_mask & requested_state) && state_enable)
  304. return 0; /* No change in state */
  305. if (!(chip->s2_state_mask & requested_state) && !state_enable)
  306. return 0; /* No change in state */
  307. if (state_enable)
  308. chip->s2_state_mask |= requested_state;
  309. else
  310. chip->s2_state_mask &= ~requested_state;
  311. /* define the priority of the states */
  312. if (chip->s2_state_mask & S2_FAST_CHARGING)
  313. state = S2_FAST_CHARGING;
  314. else if (chip->s2_state_mask & S2_LOW_VBAT)
  315. state = S2_LOW_VBAT;
  316. else if (chip->s2_state_mask & S2_SLEEP)
  317. state = S2_SLEEP;
  318. else
  319. state = S2_DEFAULT;
  320. if (state == chip->s2_state)
  321. return 0;
  322. switch (state) {
  323. case S2_FAST_CHARGING:
  324. fifo_length = chip->dt.fast_chg_s2_fifo_length;
  325. acc_interval = chip->dt.s2_acc_intvl_ms;
  326. acc_length = chip->dt.s2_acc_length;
  327. break;
  328. case S2_LOW_VBAT:
  329. fifo_length = chip->dt.s2_vbat_low_fifo_length;
  330. acc_interval = chip->dt.s2_acc_intvl_ms;
  331. acc_length = chip->dt.s2_acc_length;
  332. break;
  333. case S2_SLEEP:
  334. fifo_length = chip->dt.sleep_s2_fifo_length;
  335. acc_interval = chip->dt.sleep_s2_acc_intvl_ms;
  336. acc_length = chip->dt.sleep_s2_acc_length;
  337. break;
  338. case S2_DEFAULT:
  339. fifo_length = chip->dt.s2_fifo_length;
  340. acc_interval = chip->dt.s2_acc_intvl_ms;
  341. acc_length = chip->dt.s2_acc_length;
  342. break;
  343. default:
  344. pr_err("Invalid S2 state %d\n", state);
  345. return -EINVAL;
  346. }
  347. if (fifo_length)
  348. qg_esr_mod_count = MAX_FIFO_CNT_FOR_ESR / fifo_length;
  349. rc = qg_master_hold(chip, true);
  350. if (rc < 0) {
  351. pr_err("Failed to hold master, rc=%d\n", rc);
  352. return rc;
  353. }
  354. if (process_fifo) {
  355. rc = qg_process_rt_fifo(chip);
  356. if (rc < 0) {
  357. pr_err("Failed to process FIFO real-time, rc=%d\n", rc);
  358. goto done;
  359. }
  360. }
  361. rc = qg_update_fifo_length(chip, fifo_length);
  362. if (rc < 0) {
  363. pr_err("Failed to update S2 fifo-length, rc=%d\n", rc);
  364. goto done;
  365. }
  366. reg = acc_interval / 10;
  367. rc = qg_write(chip, chip->qg_base + QG_S2_NORMAL_MEAS_CTL3_REG,
  368. &reg, 1);
  369. if (rc < 0) {
  370. pr_err("Failed to update S2 acc intrvl, rc=%d\n", rc);
  371. goto done;
  372. }
  373. reg = ilog2(acc_length) - 1;
  374. rc = qg_masked_write(chip, chip->qg_base + QG_S2_NORMAL_MEAS_CTL2_REG,
  375. NUM_OF_ACCUM_MASK, reg);
  376. if (rc < 0) {
  377. pr_err("Failed to update S2 ACC length, rc=%d\n", rc);
  378. goto done;
  379. }
  380. chip->s2_state = state;
  381. qg_dbg(chip, QG_DEBUG_STATUS, "S2 New state=%x fifo_length=%d interval=%d acc_length=%d\n",
  382. state, fifo_length, acc_interval, acc_length);
  383. done:
  384. qg_master_hold(chip, false);
  385. /* FIFO restarted */
  386. chip->last_fifo_update_time = ktime_get_boottime();
  387. return rc;
  388. }
  389. static int qg_process_fifo(struct qpnp_qg *chip, u32 fifo_length)
  390. {
  391. int rc = 0, i, j = 0, temp;
  392. u8 v_fifo[MAX_FIFO_LENGTH * 2], i_fifo[MAX_FIFO_LENGTH * 2];
  393. u32 sample_interval = 0, sample_count = 0, fifo_v = 0, fifo_i = 0;
  394. unsigned long rtc_sec = 0;
  395. bool qg_v_mode = (chip->qg_mode == QG_V_MODE);
  396. rc = get_rtc_time(&rtc_sec);
  397. if (rc < 0)
  398. pr_err("Failed to get RTC time, rc=%d\n", rc);
  399. chip->kdata.fifo_time = (u32)rtc_sec;
  400. if (!fifo_length) {
  401. pr_debug("No FIFO data\n");
  402. return 0;
  403. }
  404. qg_dbg(chip, QG_DEBUG_FIFO, "FIFO length=%d\n", fifo_length);
  405. rc = get_sample_interval(chip, &sample_interval);
  406. if (rc < 0) {
  407. pr_err("Failed to get FIFO sample interval, rc=%d\n", rc);
  408. return rc;
  409. }
  410. rc = get_sample_count(chip, &sample_count);
  411. if (rc < 0) {
  412. pr_err("Failed to get FIFO sample count, rc=%d\n", rc);
  413. return rc;
  414. }
  415. /*
  416. * If there is pending data from suspend, append the new FIFO
  417. * data to it. Only do this if we can accomadate 8 FIFOs
  418. */
  419. if (chip->suspend_data &&
  420. (chip->kdata.fifo_length < (MAX_FIFO_LENGTH / 2))) {
  421. j = chip->kdata.fifo_length; /* append the data */
  422. chip->suspend_data = false;
  423. qg_dbg(chip, QG_DEBUG_FIFO,
  424. "Pending suspend-data FIFO length=%d\n", j);
  425. } else {
  426. /* clear any old pending data */
  427. chip->kdata.fifo_length = 0;
  428. }
  429. for (i = 0; i < fifo_length * 2; i = i + 2, j++) {
  430. rc = qg_read(chip, chip->qg_base + QG_V_FIFO0_DATA0_REG + i,
  431. &v_fifo[i], 2);
  432. if (rc < 0) {
  433. pr_err("Failed to read QG_V_FIFO, rc=%d\n", rc);
  434. return rc;
  435. }
  436. rc = qg_read(chip, chip->qg_base + QG_I_FIFO0_DATA0_REG + i,
  437. &i_fifo[i], 2);
  438. if (rc < 0) {
  439. pr_err("Failed to read QG_I_FIFO, rc=%d\n", rc);
  440. return rc;
  441. }
  442. fifo_v = v_fifo[i] | (v_fifo[i + 1] << 8);
  443. fifo_i = i_fifo[i] | (i_fifo[i + 1] << 8);
  444. if (fifo_v == FIFO_V_RESET_VAL ||
  445. (fifo_i == FIFO_I_RESET_VAL && !qg_v_mode)) {
  446. pr_err("Invalid FIFO data V_RAW=%x I_RAW=%x - FIFO rejected\n",
  447. fifo_v, fifo_i);
  448. return -EINVAL;
  449. }
  450. temp = sign_extend32(fifo_i, 15);
  451. chip->kdata.fifo[j].v = V_RAW_TO_UV(fifo_v);
  452. chip->kdata.fifo[j].i =
  453. qg_v_mode ? 0 : qg_iraw_to_ua(chip, temp);
  454. chip->kdata.fifo[j].interval = sample_interval;
  455. chip->kdata.fifo[j].count = sample_count;
  456. chip->last_fifo_v_uv = chip->kdata.fifo[j].v;
  457. chip->last_fifo_i_ua = chip->kdata.fifo[j].i;
  458. qg_dbg(chip, QG_DEBUG_FIFO, "FIFO %d raw_v=%d uV=%d raw_i=%d uA=%d interval=%d count=%d\n",
  459. j, fifo_v,
  460. chip->kdata.fifo[j].v,
  461. qg_v_mode ? 0 : fifo_i,
  462. (int)chip->kdata.fifo[j].i,
  463. chip->kdata.fifo[j].interval,
  464. chip->kdata.fifo[j].count);
  465. }
  466. chip->kdata.fifo_length += fifo_length;
  467. chip->kdata.seq_no = chip->seq_no++ % U32_MAX;
  468. return rc;
  469. }
  470. static int qg_process_accumulator(struct qpnp_qg *chip)
  471. {
  472. int rc, sample_interval = 0;
  473. u8 count, index = chip->kdata.fifo_length;
  474. u64 acc_v = 0, acc_i = 0;
  475. s64 temp = 0;
  476. bool qg_v_mode = (chip->qg_mode == QG_V_MODE);
  477. rc = qg_read(chip, chip->qg_base + QG_ACCUM_CNT_RT_REG,
  478. &count, 1);
  479. if (rc < 0) {
  480. pr_err("Failed to read ACC count, rc=%d\n", rc);
  481. return rc;
  482. }
  483. if (!count || count < 10) { /* Ignore small accumulator data */
  484. pr_debug("No ACCUMULATOR data!\n");
  485. return 0;
  486. }
  487. rc = get_sample_interval(chip, &sample_interval);
  488. if (rc < 0) {
  489. pr_err("Failed to get ACC sample interval, rc=%d\n", rc);
  490. return 0;
  491. }
  492. rc = qg_read(chip, chip->qg_base + QG_V_ACCUM_DATA0_RT_REG,
  493. (u8 *)&acc_v, 3);
  494. if (rc < 0) {
  495. pr_err("Failed to read ACC RT V data, rc=%d\n", rc);
  496. return rc;
  497. }
  498. rc = qg_read(chip, chip->qg_base + QG_I_ACCUM_DATA0_RT_REG,
  499. (u8 *)&acc_i, 3);
  500. if (rc < 0) {
  501. pr_err("Failed to read ACC RT I data, rc=%d\n", rc);
  502. return rc;
  503. }
  504. temp = sign_extend64(acc_i, 23);
  505. chip->kdata.fifo[index].v = V_RAW_TO_UV(div_u64(acc_v, count));
  506. chip->kdata.fifo[index].i = qg_v_mode ?
  507. 0 : qg_iraw_to_ua(chip, div_s64(temp, count));
  508. chip->kdata.fifo[index].interval = sample_interval;
  509. chip->kdata.fifo[index].count = count;
  510. chip->kdata.fifo_length++;
  511. if (chip->kdata.fifo_length == MAX_FIFO_LENGTH)
  512. chip->kdata.fifo_length = MAX_FIFO_LENGTH - 1;
  513. chip->last_fifo_v_uv = chip->kdata.fifo[index].v;
  514. chip->last_fifo_i_ua = chip->kdata.fifo[index].i;
  515. if (chip->kdata.fifo_length == 1) /* Only accumulator data */
  516. chip->kdata.seq_no = chip->seq_no++ % U32_MAX;
  517. qg_dbg(chip, QG_DEBUG_FIFO, "ACC v_avg=%duV i_avg=%duA interval=%d count=%d\n",
  518. chip->kdata.fifo[index].v,
  519. (int)chip->kdata.fifo[index].i,
  520. chip->kdata.fifo[index].interval,
  521. chip->kdata.fifo[index].count);
  522. return rc;
  523. }
  524. static int qg_process_rt_fifo(struct qpnp_qg *chip)
  525. {
  526. int rc;
  527. u32 fifo_length = 0;
  528. /* Get the real-time FIFO length */
  529. rc = get_fifo_length(chip, &fifo_length, true);
  530. if (rc < 0) {
  531. pr_err("Failed to read RT FIFO length, rc=%d\n", rc);
  532. return rc;
  533. }
  534. rc = qg_process_fifo(chip, fifo_length);
  535. if (rc < 0) {
  536. pr_err("Failed to process FIFO data, rc=%d\n", rc);
  537. return rc;
  538. }
  539. rc = qg_process_accumulator(chip);
  540. if (rc < 0) {
  541. pr_err("Failed to process ACC data, rc=%d\n", rc);
  542. return rc;
  543. }
  544. return rc;
  545. }
  546. #define MIN_FIFO_FULL_TIME_MS 12000
  547. static int process_rt_fifo_data(struct qpnp_qg *chip, bool update_smb)
  548. {
  549. int rc = 0;
  550. ktime_t now = ktime_get_boottime();
  551. s64 time_delta;
  552. /*
  553. * Reject the FIFO read event if there are back-to-back requests
  554. * This is done to gaurantee that there is always a minimum FIFO
  555. * data to be processed, ignore this if vbat_low is set.
  556. */
  557. time_delta = ktime_ms_delta(now, chip->last_user_update_time);
  558. qg_dbg(chip, QG_DEBUG_FIFO, "time_delta=%lld ms update_smb=%d\n",
  559. time_delta, update_smb);
  560. if (time_delta > MIN_FIFO_FULL_TIME_MS || update_smb) {
  561. rc = qg_master_hold(chip, true);
  562. if (rc < 0) {
  563. pr_err("Failed to hold master, rc=%d\n", rc);
  564. goto done;
  565. }
  566. rc = qg_process_rt_fifo(chip);
  567. if (rc < 0) {
  568. pr_err("Failed to process FIFO real-time, rc=%d\n", rc);
  569. goto done;
  570. }
  571. if (update_smb) {
  572. rc = qg_masked_write(chip, chip->qg_base +
  573. QG_MODE_CTL1_REG, PARALLEL_IBAT_SENSE_EN_BIT,
  574. chip->parallel_enabled ?
  575. PARALLEL_IBAT_SENSE_EN_BIT : 0);
  576. if (rc < 0) {
  577. pr_err("Failed to update SMB_EN, rc=%d\n", rc);
  578. goto done;
  579. }
  580. qg_dbg(chip, QG_DEBUG_STATUS, "Parallel SENSE %d\n",
  581. chip->parallel_enabled);
  582. }
  583. rc = qg_master_hold(chip, false);
  584. if (rc < 0) {
  585. pr_err("Failed to release master, rc=%d\n", rc);
  586. goto done;
  587. }
  588. /* FIFOs restarted */
  589. chip->last_fifo_update_time = ktime_get_boottime();
  590. /* signal the read thread */
  591. chip->data_ready = true;
  592. wake_up_interruptible(&chip->qg_wait_q);
  593. chip->last_user_update_time = now;
  594. /* vote to stay awake until userspace reads data */
  595. vote(chip->awake_votable, FIFO_RT_DONE_VOTER, true, 0);
  596. } else {
  597. qg_dbg(chip, QG_DEBUG_FIFO, "FIFO processing too early time_delta=%lld\n",
  598. time_delta);
  599. }
  600. done:
  601. qg_master_hold(chip, false);
  602. return rc;
  603. }
  604. #define VBAT_LOW_HYST_UV 50000 /* 50mV */
  605. static int qg_vbat_low_wa(struct qpnp_qg *chip)
  606. {
  607. int rc, i, temp = 0;
  608. u32 vbat_low_uv = 0;
  609. if (chip->wa_flags & QG_VBAT_LOW_WA) {
  610. rc = qg_get_battery_temp(chip, &temp);
  611. if (rc < 0) {
  612. pr_err("Failed to read batt_temp rc=%d\n", rc);
  613. temp = 250;
  614. }
  615. vbat_low_uv = 1000 * ((temp < chip->dt.cold_temp_threshold) ?
  616. chip->dt.vbatt_low_cold_mv :
  617. chip->dt.vbatt_low_mv);
  618. for (i = 0; i < chip->kdata.fifo_length; i++) {
  619. if ((chip->kdata.fifo[i].v > (vbat_low_uv +
  620. VBAT_LOW_HYST_UV)) && chip->vbat_low) {
  621. chip->vbat_low = false;
  622. pr_info("Exit VBAT_LOW vbat_avg=%duV vbat_low=%duV\n",
  623. chip->kdata.fifo[i].v, vbat_low_uv);
  624. break;
  625. } else if ((chip->kdata.fifo[i].v < vbat_low_uv) &&
  626. !chip->vbat_low) {
  627. chip->vbat_low = true;
  628. pr_info("Enter VBAT_LOW vbat_avg=%duV vbat_low=%duV\n",
  629. chip->kdata.fifo[i].v, vbat_low_uv);
  630. break;
  631. }
  632. }
  633. }
  634. rc = qg_config_s2_state(chip, S2_LOW_VBAT,
  635. chip->vbat_low ? true : false, false);
  636. if (rc < 0)
  637. pr_err("Failed to configure for VBAT_LOW rc=%d\n", rc);
  638. return rc;
  639. }
  640. static int qg_vbat_thresholds_config(struct qpnp_qg *chip)
  641. {
  642. int rc, temp = 0, vbat_mv;
  643. u8 reg;
  644. rc = qg_get_battery_temp(chip, &temp);
  645. if (rc < 0) {
  646. pr_err("Failed to read batt_temp rc=%d\n", rc);
  647. return rc;
  648. }
  649. vbat_mv = (temp < chip->dt.cold_temp_threshold) ?
  650. chip->dt.vbatt_empty_cold_mv :
  651. chip->dt.vbatt_empty_mv;
  652. rc = qg_read(chip, chip->qg_base + QG_VBAT_EMPTY_THRESHOLD_REG,
  653. &reg, 1);
  654. if (rc < 0) {
  655. pr_err("Failed to read vbat-empty, rc=%d\n", rc);
  656. return rc;
  657. }
  658. if (vbat_mv == (reg * 50)) /* No change */
  659. goto config_vbat_low;
  660. reg = vbat_mv / 50;
  661. rc = qg_write(chip, chip->qg_base + QG_VBAT_EMPTY_THRESHOLD_REG,
  662. &reg, 1);
  663. if (rc < 0) {
  664. pr_err("Failed to write vbat-empty, rc=%d\n", rc);
  665. return rc;
  666. }
  667. qg_dbg(chip, QG_DEBUG_STATUS,
  668. "VBAT EMPTY threshold updated to %dmV temp=%d\n",
  669. vbat_mv, temp);
  670. config_vbat_low:
  671. if (chip->qg_version == QG_LITE)
  672. return 0;
  673. vbat_mv = (temp < chip->dt.cold_temp_threshold) ?
  674. chip->dt.vbatt_low_cold_mv :
  675. chip->dt.vbatt_low_mv;
  676. rc = qg_read(chip, chip->qg_base + QG_VBAT_LOW_THRESHOLD_REG,
  677. &reg, 1);
  678. if (rc < 0) {
  679. pr_err("Failed to read vbat-low, rc=%d\n", rc);
  680. return rc;
  681. }
  682. if (vbat_mv == (reg * 50)) /* No change */
  683. return 0;
  684. reg = vbat_mv / 50;
  685. rc = qg_write(chip, chip->qg_base + QG_VBAT_LOW_THRESHOLD_REG,
  686. &reg, 1);
  687. if (rc < 0) {
  688. pr_err("Failed to write vbat-low, rc=%d\n", rc);
  689. return rc;
  690. }
  691. qg_dbg(chip, QG_DEBUG_STATUS,
  692. "VBAT LOW threshold updated to %dmV temp=%d\n",
  693. vbat_mv, temp);
  694. return rc;
  695. }
  696. static int qg_fast_charge_config(struct qpnp_qg *chip)
  697. {
  698. int rc = 0;
  699. if (!chip->dt.qg_fast_chg_cfg)
  700. return 0;
  701. rc = qg_config_s2_state(chip, S2_FAST_CHARGING,
  702. (chip->charge_status == POWER_SUPPLY_STATUS_CHARGING)
  703. ? true : false, false);
  704. if (rc < 0)
  705. pr_err("Failed to exit S2_SLEEP rc=%d\n", rc);
  706. return rc;
  707. }
  708. static void qg_retrieve_esr_params(struct qpnp_qg *chip)
  709. {
  710. u32 data = 0;
  711. int rc;
  712. rc = qg_sdam_read(SDAM_ESR_CHARGE_DELTA, &data);
  713. if (!rc && data) {
  714. chip->kdata.param[QG_ESR_CHARGE_DELTA].data = data;
  715. chip->kdata.param[QG_ESR_CHARGE_DELTA].valid = true;
  716. qg_dbg(chip, QG_DEBUG_ESR,
  717. "ESR_CHARGE_DELTA SDAM=%d\n", data);
  718. } else if (rc < 0) {
  719. pr_err("Failed to read ESR_CHARGE_DELTA rc=%d\n", rc);
  720. }
  721. rc = qg_sdam_read(SDAM_ESR_DISCHARGE_DELTA, &data);
  722. if (!rc && data) {
  723. chip->kdata.param[QG_ESR_DISCHARGE_DELTA].data = data;
  724. chip->kdata.param[QG_ESR_DISCHARGE_DELTA].valid = true;
  725. qg_dbg(chip, QG_DEBUG_ESR,
  726. "ESR_DISCHARGE_DELTA SDAM=%d\n", data);
  727. } else if (rc < 0) {
  728. pr_err("Failed to read ESR_DISCHARGE_DELTA rc=%d\n", rc);
  729. }
  730. rc = qg_sdam_read(SDAM_ESR_CHARGE_SF, &data);
  731. if (!rc && data) {
  732. data = CAP(QG_ESR_SF_MIN, QG_ESR_SF_MAX, data);
  733. chip->kdata.param[QG_ESR_CHARGE_SF].data = data;
  734. chip->kdata.param[QG_ESR_CHARGE_SF].valid = true;
  735. qg_dbg(chip, QG_DEBUG_ESR,
  736. "ESR_CHARGE_SF SDAM=%d\n", data);
  737. } else if (rc < 0) {
  738. pr_err("Failed to read ESR_CHARGE_SF rc=%d\n", rc);
  739. }
  740. rc = qg_sdam_read(SDAM_ESR_DISCHARGE_SF, &data);
  741. if (!rc && data) {
  742. data = CAP(QG_ESR_SF_MIN, QG_ESR_SF_MAX, data);
  743. chip->kdata.param[QG_ESR_DISCHARGE_SF].data = data;
  744. chip->kdata.param[QG_ESR_DISCHARGE_SF].valid = true;
  745. qg_dbg(chip, QG_DEBUG_ESR,
  746. "ESR_DISCHARGE_SF SDAM=%d\n", data);
  747. } else if (rc < 0) {
  748. pr_err("Failed to read ESR_DISCHARGE_SF rc=%d\n", rc);
  749. }
  750. }
  751. static void qg_store_esr_params(struct qpnp_qg *chip)
  752. {
  753. unsigned int esr;
  754. if (chip->udata.param[QG_ESR_CHARGE_DELTA].valid) {
  755. esr = chip->udata.param[QG_ESR_CHARGE_DELTA].data;
  756. qg_sdam_write(SDAM_ESR_CHARGE_DELTA, esr);
  757. qg_dbg(chip, QG_DEBUG_ESR,
  758. "SDAM store ESR_CHARGE_DELTA=%d\n", esr);
  759. }
  760. if (chip->udata.param[QG_ESR_DISCHARGE_DELTA].valid) {
  761. esr = chip->udata.param[QG_ESR_DISCHARGE_DELTA].data;
  762. qg_sdam_write(SDAM_ESR_DISCHARGE_DELTA, esr);
  763. qg_dbg(chip, QG_DEBUG_ESR,
  764. "SDAM store ESR_DISCHARGE_DELTA=%d\n", esr);
  765. }
  766. if (chip->udata.param[QG_ESR_CHARGE_SF].valid) {
  767. esr = chip->udata.param[QG_ESR_CHARGE_SF].data;
  768. qg_sdam_write(SDAM_ESR_CHARGE_SF, esr);
  769. qg_dbg(chip, QG_DEBUG_ESR,
  770. "SDAM store ESR_CHARGE_SF=%d\n", esr);
  771. }
  772. if (chip->udata.param[QG_ESR_DISCHARGE_SF].valid) {
  773. esr = chip->udata.param[QG_ESR_DISCHARGE_SF].data;
  774. qg_sdam_write(SDAM_ESR_DISCHARGE_SF, esr);
  775. qg_dbg(chip, QG_DEBUG_ESR,
  776. "SDAM store ESR_DISCHARGE_SF=%d\n", esr);
  777. }
  778. }
  779. #define MAX_ESR_RETRY_COUNT 10
  780. #define ESR_SD_PERCENT 10
  781. static int qg_process_esr_data(struct qpnp_qg *chip)
  782. {
  783. int i;
  784. int pre_i, post_i, pre_v, post_v, first_pre_i = 0;
  785. int diff_v, diff_i, esr_avg = 0, count = 0;
  786. for (i = 0; i < qg_esr_count; i++) {
  787. if (!chip->esr_data[i].valid)
  788. continue;
  789. pre_i = chip->esr_data[i].pre_esr_i;
  790. pre_v = chip->esr_data[i].pre_esr_v;
  791. post_i = chip->esr_data[i].post_esr_i;
  792. post_v = chip->esr_data[i].post_esr_v;
  793. /*
  794. * Check if any of the pre/post readings have changed
  795. * signs by comparing it with the first valid
  796. * pre_i value.
  797. */
  798. if (!first_pre_i)
  799. first_pre_i = pre_i;
  800. if ((first_pre_i < 0 && pre_i > 0) ||
  801. (first_pre_i > 0 && post_i < 0) ||
  802. (first_pre_i < 0 && post_i > 0)) {
  803. qg_dbg(chip, QG_DEBUG_ESR,
  804. "ESR-sign mismatch %d reject all data\n", i);
  805. esr_avg = count = 0;
  806. break;
  807. }
  808. /* calculate ESR */
  809. diff_v = abs(post_v - pre_v);
  810. diff_i = abs(post_i - pre_i);
  811. if (!diff_v || !diff_i ||
  812. (diff_i < chip->dt.esr_qual_i_ua) ||
  813. (diff_v < chip->dt.esr_qual_v_uv)) {
  814. qg_dbg(chip, QG_DEBUG_ESR,
  815. "ESR (%d) V/I %duA %duV fails qualification\n",
  816. i, diff_i, diff_v);
  817. chip->esr_data[i].valid = false;
  818. continue;
  819. }
  820. chip->esr_data[i].esr =
  821. DIV_ROUND_CLOSEST(diff_v * 1000, diff_i);
  822. qg_dbg(chip, QG_DEBUG_ESR,
  823. "ESR qualified: i=%d pre_i=%d pre_v=%d post_i=%d post_v=%d esr_diff_v=%d esr_diff_i=%d esr=%d\n",
  824. i, pre_i, pre_v, post_i, post_v,
  825. diff_v, diff_i, chip->esr_data[i].esr);
  826. esr_avg += chip->esr_data[i].esr;
  827. count++;
  828. }
  829. if (!count) {
  830. qg_dbg(chip, QG_DEBUG_ESR,
  831. "No ESR samples qualified, ESR not found\n");
  832. chip->esr_avg = 0;
  833. return 0;
  834. }
  835. esr_avg /= count;
  836. qg_dbg(chip, QG_DEBUG_ESR,
  837. "ESR all sample average=%d count=%d apply_SD=%d\n",
  838. esr_avg, count, (esr_avg * ESR_SD_PERCENT) / 100);
  839. /*
  840. * Reject ESR samples which do not fall in
  841. * 10% the standard-deviation
  842. */
  843. count = 0;
  844. for (i = 0; i < qg_esr_count; i++) {
  845. if (!chip->esr_data[i].valid)
  846. continue;
  847. if ((abs(chip->esr_data[i].esr - esr_avg) <=
  848. (esr_avg * ESR_SD_PERCENT) / 100)) {
  849. /* valid ESR */
  850. chip->esr_avg += chip->esr_data[i].esr;
  851. count++;
  852. qg_dbg(chip, QG_DEBUG_ESR,
  853. "Valid ESR after SD (%d) %d mOhm\n",
  854. i, chip->esr_data[i].esr);
  855. } else {
  856. qg_dbg(chip, QG_DEBUG_ESR,
  857. "ESR (%d) %d falls-out of SD(%d)\n",
  858. i, chip->esr_data[i].esr, ESR_SD_PERCENT);
  859. }
  860. }
  861. if (count >= QG_MIN_ESR_COUNT) {
  862. chip->esr_avg /= count;
  863. qg_dbg(chip, QG_DEBUG_ESR, "Average estimated ESR %d mOhm\n",
  864. chip->esr_avg);
  865. } else {
  866. qg_dbg(chip, QG_DEBUG_ESR,
  867. "Not enough ESR samples, ESR not found\n");
  868. chip->esr_avg = 0;
  869. }
  870. return 0;
  871. }
  872. static int qg_esr_estimate(struct qpnp_qg *chip)
  873. {
  874. int rc, i, ibat = 0, temp = 0;
  875. u8 esr_done_count, reg0 = 0, reg1 = 0;
  876. bool is_charging = false;
  877. if (chip->dt.esr_disable)
  878. return 0;
  879. /*
  880. * Charge - enable ESR estimation if IBAT > MIN_IBAT.
  881. * Discharge - enable ESR estimation only if enabled via DT.
  882. */
  883. rc = qg_get_battery_current(chip, &ibat);
  884. if (rc < 0)
  885. return rc;
  886. if (chip->charge_status == POWER_SUPPLY_STATUS_CHARGING &&
  887. ibat > chip->dt.esr_min_ibat_ua) {
  888. qg_dbg(chip, QG_DEBUG_ESR,
  889. "Skip CHG ESR, Fails IBAT ibat(%d) min_ibat(%d)\n",
  890. ibat, chip->dt.esr_min_ibat_ua);
  891. return 0;
  892. }
  893. if (chip->charge_status != POWER_SUPPLY_STATUS_CHARGING &&
  894. !chip->dt.esr_discharge_enable)
  895. return 0;
  896. /* Ignore ESR if battery-temp is below a threshold */
  897. rc = qg_get_battery_temp(chip, &temp);
  898. if (rc < 0)
  899. return rc;
  900. if (temp < chip->dt.esr_low_temp_threshold) {
  901. qg_dbg(chip, QG_DEBUG_ESR,
  902. "Battery temperature(%d) below threshold(%d) for ESR\n",
  903. temp, chip->dt.esr_low_temp_threshold);
  904. return 0;
  905. }
  906. if (chip->batt_soc != INT_MIN && (chip->batt_soc <
  907. chip->dt.esr_disable_soc)) {
  908. qg_dbg(chip, QG_DEBUG_ESR,
  909. "Skip ESR, batt-soc below %d\n",
  910. chip->dt.esr_disable_soc);
  911. return 0;
  912. }
  913. qg_dbg(chip, QG_DEBUG_ESR, "FIFO done count=%d ESR mod count=%d\n",
  914. chip->fifo_done_count, qg_esr_mod_count);
  915. if ((chip->fifo_done_count % qg_esr_mod_count) != 0)
  916. return 0;
  917. if (qg_esr_count > QG_MAX_ESR_COUNT)
  918. qg_esr_count = QG_MAX_ESR_COUNT;
  919. if (qg_esr_count < QG_MIN_ESR_COUNT)
  920. qg_esr_count = QG_MIN_ESR_COUNT;
  921. /* clear all data */
  922. chip->esr_avg = 0;
  923. memset(&chip->esr_data, 0, sizeof(chip->esr_data));
  924. rc = qg_master_hold(chip, true);
  925. if (rc < 0) {
  926. pr_err("Failed to hold master, rc=%d\n", rc);
  927. goto done;
  928. }
  929. for (i = 0; i < qg_esr_count; i++) {
  930. /* Fire ESR measurement */
  931. rc = qg_masked_write(chip,
  932. chip->qg_base + QG_ESR_MEAS_TRIG_REG,
  933. HW_ESR_MEAS_START_BIT, HW_ESR_MEAS_START_BIT);
  934. if (rc < 0) {
  935. pr_err("Failed to start ESR rc=%d\n", rc);
  936. continue;
  937. }
  938. esr_done_count = reg0 = reg1 = 0;
  939. do {
  940. /* delay for ESR processing to complete */
  941. msleep(50);
  942. esr_done_count++;
  943. rc = qg_read(chip,
  944. chip->qg_base + QG_STATUS1_REG, &reg0, 1);
  945. if (rc < 0)
  946. continue;
  947. rc = qg_read(chip,
  948. chip->qg_base + QG_STATUS4_REG, &reg1, 1);
  949. if (rc < 0)
  950. continue;
  951. /* check ESR-done status */
  952. if (!(reg1 & ESR_MEAS_IN_PROGRESS_BIT) &&
  953. (reg0 & ESR_MEAS_DONE_BIT)) {
  954. qg_dbg(chip, QG_DEBUG_ESR,
  955. "ESR measurement done %d count %d\n",
  956. i, esr_done_count);
  957. break;
  958. }
  959. } while (esr_done_count < MAX_ESR_RETRY_COUNT);
  960. if (esr_done_count == MAX_ESR_RETRY_COUNT) {
  961. pr_err("Failed to get ESR done for %d iteration\n", i);
  962. continue;
  963. } else {
  964. /* found a valid ESR, read pre-post data */
  965. rc = qg_read_raw_data(chip, QG_PRE_ESR_V_DATA0_REG,
  966. &chip->esr_data[i].pre_esr_v);
  967. if (rc < 0)
  968. goto done;
  969. rc = qg_read_raw_data(chip, QG_PRE_ESR_I_DATA0_REG,
  970. &chip->esr_data[i].pre_esr_i);
  971. if (rc < 0)
  972. goto done;
  973. rc = qg_read_raw_data(chip, QG_POST_ESR_V_DATA0_REG,
  974. &chip->esr_data[i].post_esr_v);
  975. if (rc < 0)
  976. goto done;
  977. rc = qg_read_raw_data(chip, QG_POST_ESR_I_DATA0_REG,
  978. &chip->esr_data[i].post_esr_i);
  979. if (rc < 0)
  980. goto done;
  981. chip->esr_data[i].pre_esr_v =
  982. V_RAW_TO_UV(chip->esr_data[i].pre_esr_v);
  983. ibat = sign_extend32(chip->esr_data[i].pre_esr_i, 15);
  984. chip->esr_data[i].pre_esr_i = qg_iraw_to_ua(chip, ibat);
  985. chip->esr_data[i].post_esr_v =
  986. V_RAW_TO_UV(chip->esr_data[i].post_esr_v);
  987. ibat = sign_extend32(chip->esr_data[i].post_esr_i, 15);
  988. chip->esr_data[i].post_esr_i =
  989. qg_iraw_to_ua(chip, ibat);
  990. chip->esr_data[i].valid = true;
  991. if ((int)chip->esr_data[i].pre_esr_i < 0)
  992. is_charging = true;
  993. qg_dbg(chip, QG_DEBUG_ESR,
  994. "ESR values for %d iteration pre_v=%d pre_i=%d post_v=%d post_i=%d\n",
  995. i, chip->esr_data[i].pre_esr_v,
  996. (int)chip->esr_data[i].pre_esr_i,
  997. chip->esr_data[i].post_esr_v,
  998. (int)chip->esr_data[i].post_esr_i);
  999. }
  1000. /* delay before the next ESR measurement */
  1001. msleep(200);
  1002. }
  1003. rc = qg_process_esr_data(chip);
  1004. if (rc < 0)
  1005. pr_err("Failed to process ESR data rc=%d\n", rc);
  1006. rc = qg_master_hold(chip, false);
  1007. if (rc < 0) {
  1008. pr_err("Failed to release master, rc=%d\n", rc);
  1009. goto done;
  1010. }
  1011. /* FIFOs restarted */
  1012. chip->last_fifo_update_time = ktime_get_boottime();
  1013. if (chip->esr_avg) {
  1014. chip->kdata.param[QG_ESR].data = chip->esr_avg;
  1015. chip->kdata.param[QG_ESR].valid = true;
  1016. qg_dbg(chip, QG_DEBUG_ESR, "ESR_SW=%d during %s\n",
  1017. chip->esr_avg, is_charging ? "CHARGE" : "DISCHARGE");
  1018. qg_retrieve_esr_params(chip);
  1019. chip->esr_actual = chip->esr_avg;
  1020. }
  1021. return 0;
  1022. done:
  1023. qg_master_hold(chip, false);
  1024. return rc;
  1025. }
  1026. static void process_udata_work(struct work_struct *work)
  1027. {
  1028. struct qpnp_qg *chip = container_of(work,
  1029. struct qpnp_qg, udata_work);
  1030. int rc;
  1031. if (chip->udata.param[QG_CC_SOC].valid)
  1032. chip->cc_soc = chip->udata.param[QG_CC_SOC].data;
  1033. if (chip->udata.param[QG_BATT_SOC].valid)
  1034. chip->batt_soc = chip->udata.param[QG_BATT_SOC].data;
  1035. if (chip->udata.param[QG_FULL_SOC].valid)
  1036. chip->full_soc = chip->udata.param[QG_FULL_SOC].data;
  1037. if (chip->udata.param[QG_V_IBAT].valid)
  1038. chip->qg_v_ibat = chip->udata.param[QG_V_IBAT].data;
  1039. if (chip->udata.param[QG_SOC].valid ||
  1040. chip->udata.param[QG_SYS_SOC].valid) {
  1041. qg_dbg(chip, QG_DEBUG_SOC, "udata update: QG_SOC=%d QG_SYS_SOC=%d last_catchup_soc=%d\n",
  1042. chip->udata.param[QG_SOC].valid ?
  1043. chip->udata.param[QG_SOC].data : -EINVAL,
  1044. chip->udata.param[QG_SYS_SOC].valid ?
  1045. chip->udata.param[QG_SYS_SOC].data : -EINVAL,
  1046. chip->catch_up_soc);
  1047. if (chip->udata.param[QG_SYS_SOC].valid) {
  1048. chip->sys_soc = chip->udata.param[QG_SYS_SOC].data;
  1049. chip->catch_up_soc = qg_adjust_sys_soc(chip);
  1050. } else {
  1051. chip->catch_up_soc = chip->udata.param[QG_SOC].data;
  1052. }
  1053. qg_scale_soc(chip, chip->force_soc);
  1054. chip->force_soc = false;
  1055. /* update parameters to SDAM */
  1056. chip->sdam_data[SDAM_SOC] = chip->msoc;
  1057. chip->sdam_data[SDAM_OCV_UV] =
  1058. chip->udata.param[QG_OCV_UV].data;
  1059. chip->sdam_data[SDAM_RBAT_MOHM] =
  1060. chip->udata.param[QG_RBAT_MOHM].data;
  1061. chip->sdam_data[SDAM_VALID] = 1;
  1062. rc = qg_store_soc_params(chip);
  1063. if (rc < 0)
  1064. pr_err("Failed to update SDAM params, rc=%d\n", rc);
  1065. }
  1066. if (chip->udata.param[QG_ESR].valid)
  1067. chip->esr_last = chip->udata.param[QG_ESR].data;
  1068. if (chip->esr_actual != -EINVAL && chip->udata.param[QG_ESR].valid) {
  1069. chip->esr_nominal = chip->udata.param[QG_ESR].data;
  1070. if (chip->qg_psy)
  1071. power_supply_changed(chip->qg_psy);
  1072. }
  1073. if (!chip->dt.esr_disable)
  1074. qg_store_esr_params(chip);
  1075. qg_dbg(chip, QG_DEBUG_STATUS, "udata update: batt_soc=%d cc_soc=%d full_soc=%d qg_esr=%d\n",
  1076. (chip->batt_soc != INT_MIN) ? chip->batt_soc : -EINVAL,
  1077. (chip->cc_soc != INT_MIN) ? chip->cc_soc : -EINVAL,
  1078. chip->full_soc, chip->esr_last);
  1079. vote(chip->awake_votable, UDATA_READY_VOTER, false, 0);
  1080. }
  1081. #define MAX_FIFO_DELTA_PERCENT 10
  1082. static irqreturn_t qg_fifo_update_done_handler(int irq, void *data)
  1083. {
  1084. ktime_t now = ktime_get_boottime();
  1085. int rc, hw_delta_ms = 0, margin_ms = 0;
  1086. u32 fifo_length = 0;
  1087. s64 time_delta_ms = 0;
  1088. struct qpnp_qg *chip = data;
  1089. time_delta_ms = ktime_ms_delta(now, chip->last_fifo_update_time);
  1090. chip->last_fifo_update_time = now;
  1091. qg_dbg(chip, QG_DEBUG_IRQ, "IRQ triggered\n");
  1092. mutex_lock(&chip->data_lock);
  1093. rc = get_fifo_length(chip, &fifo_length, false);
  1094. if (rc < 0) {
  1095. pr_err("Failed to get FIFO length, rc=%d\n", rc);
  1096. goto done;
  1097. }
  1098. rc = qg_process_fifo(chip, fifo_length);
  1099. if (rc < 0) {
  1100. pr_err("Failed to process QG FIFO, rc=%d\n", rc);
  1101. goto done;
  1102. }
  1103. if (++chip->fifo_done_count == U32_MAX)
  1104. chip->fifo_done_count = 0;
  1105. rc = qg_vbat_thresholds_config(chip);
  1106. if (rc < 0)
  1107. pr_err("Failed to apply VBAT EMPTY config rc=%d\n", rc);
  1108. rc = qg_fast_charge_config(chip);
  1109. if (rc < 0)
  1110. pr_err("Failed to apply fast-charge config rc=%d\n", rc);
  1111. rc = qg_vbat_low_wa(chip);
  1112. if (rc < 0) {
  1113. pr_err("Failed to apply VBAT LOW WA, rc=%d\n", rc);
  1114. goto done;
  1115. }
  1116. rc = qg_esr_estimate(chip);
  1117. if (rc < 0) {
  1118. pr_err("Failed to estimate ESR, rc=%d\n", rc);
  1119. goto done;
  1120. }
  1121. rc = get_fifo_done_time(chip, false, &hw_delta_ms);
  1122. if (rc < 0)
  1123. hw_delta_ms = 0;
  1124. else
  1125. margin_ms = (hw_delta_ms * MAX_FIFO_DELTA_PERCENT) / 100;
  1126. if (abs(hw_delta_ms - time_delta_ms) < margin_ms) {
  1127. chip->kdata.param[QG_FIFO_TIME_DELTA].data = time_delta_ms;
  1128. chip->kdata.param[QG_FIFO_TIME_DELTA].valid = true;
  1129. qg_dbg(chip, QG_DEBUG_FIFO, "FIFO_done time_delta_ms=%lld\n",
  1130. time_delta_ms);
  1131. }
  1132. /* signal the read thread */
  1133. chip->data_ready = true;
  1134. wake_up_interruptible(&chip->qg_wait_q);
  1135. /* vote to stay awake until userspace reads data */
  1136. vote(chip->awake_votable, FIFO_DONE_VOTER, true, 0);
  1137. done:
  1138. mutex_unlock(&chip->data_lock);
  1139. return IRQ_HANDLED;
  1140. }
  1141. static irqreturn_t qg_vbat_low_handler(int irq, void *data)
  1142. {
  1143. int rc;
  1144. struct qpnp_qg *chip = data;
  1145. u8 status = 0;
  1146. qg_dbg(chip, QG_DEBUG_IRQ, "IRQ triggered\n");
  1147. mutex_lock(&chip->data_lock);
  1148. rc = qg_read(chip, chip->qg_base + QG_INT_RT_STS_REG, &status, 1);
  1149. if (rc < 0) {
  1150. pr_err("Failed to read RT status, rc=%d\n", rc);
  1151. goto done;
  1152. }
  1153. /* ignore VBAT low if battery is missing */
  1154. if ((status & BATTERY_MISSING_INT_RT_STS_BIT) ||
  1155. chip->battery_missing)
  1156. goto done;
  1157. chip->vbat_low = !!(status & VBAT_LOW_INT_RT_STS_BIT);
  1158. qg_dbg(chip, QG_DEBUG_IRQ, "VBAT_LOW = %d\n", chip->vbat_low);
  1159. done:
  1160. mutex_unlock(&chip->data_lock);
  1161. return IRQ_HANDLED;
  1162. }
  1163. static irqreturn_t qg_vbat_empty_handler(int irq, void *data)
  1164. {
  1165. struct qpnp_qg *chip = data;
  1166. u32 ocv_uv = 0;
  1167. int rc;
  1168. u8 status = 0;
  1169. qg_dbg(chip, QG_DEBUG_IRQ, "IRQ triggered\n");
  1170. rc = qg_read(chip, chip->qg_base + QG_INT_RT_STS_REG, &status, 1);
  1171. if (rc < 0)
  1172. pr_err("Failed to read RT status rc=%d\n", rc);
  1173. /* ignore VBAT empty if battery is missing */
  1174. if ((status & BATTERY_MISSING_INT_RT_STS_BIT) ||
  1175. chip->battery_missing)
  1176. return IRQ_HANDLED;
  1177. pr_warn("VBATT EMPTY SOC = 0\n");
  1178. chip->catch_up_soc = 0;
  1179. qg_scale_soc(chip, true);
  1180. qg_sdam_read(SDAM_OCV_UV, &ocv_uv);
  1181. chip->sdam_data[SDAM_SOC] = 0;
  1182. chip->sdam_data[SDAM_OCV_UV] = ocv_uv;
  1183. chip->sdam_data[SDAM_VALID] = 1;
  1184. qg_store_soc_params(chip);
  1185. if (chip->qg_psy)
  1186. power_supply_changed(chip->qg_psy);
  1187. return IRQ_HANDLED;
  1188. }
  1189. static irqreturn_t qg_good_ocv_handler(int irq, void *data)
  1190. {
  1191. int rc;
  1192. u8 status = 0;
  1193. u32 ocv_uv = 0, ocv_raw = 0;
  1194. struct qpnp_qg *chip = data;
  1195. unsigned long rtc_sec = 0;
  1196. qg_dbg(chip, QG_DEBUG_IRQ, "IRQ triggered\n");
  1197. mutex_lock(&chip->data_lock);
  1198. rc = qg_read(chip, chip->qg_base + QG_STATUS2_REG, &status, 1);
  1199. if (rc < 0) {
  1200. pr_err("Failed to read status2 register rc=%d\n", rc);
  1201. goto done;
  1202. }
  1203. if (!(status & GOOD_OCV_BIT))
  1204. goto done;
  1205. rc = qg_read_ocv(chip, &ocv_uv, &ocv_raw, S3_GOOD_OCV);
  1206. if (rc < 0) {
  1207. pr_err("Failed to read good_ocv, rc=%d\n", rc);
  1208. goto done;
  1209. }
  1210. get_rtc_time(&rtc_sec);
  1211. chip->kdata.fifo_time = (u32)rtc_sec;
  1212. chip->kdata.param[QG_GOOD_OCV_UV].data = ocv_uv;
  1213. chip->kdata.param[QG_GOOD_OCV_UV].valid = true;
  1214. vote(chip->awake_votable, GOOD_OCV_VOTER, true, 0);
  1215. /* signal the readd thread */
  1216. chip->data_ready = true;
  1217. wake_up_interruptible(&chip->qg_wait_q);
  1218. done:
  1219. mutex_unlock(&chip->data_lock);
  1220. return IRQ_HANDLED;
  1221. }
  1222. static struct qg_irq_info qg_irqs[] = {
  1223. [QG_BATT_MISSING_IRQ] = {
  1224. .name = "qg-batt-missing",
  1225. },
  1226. [QG_VBATT_LOW_IRQ] = {
  1227. .name = "qg-vbat-low",
  1228. .handler = qg_vbat_low_handler,
  1229. .wake = true,
  1230. },
  1231. [QG_VBATT_EMPTY_IRQ] = {
  1232. .name = "qg-vbat-empty",
  1233. .handler = qg_vbat_empty_handler,
  1234. .wake = true,
  1235. },
  1236. [QG_FIFO_UPDATE_DONE_IRQ] = {
  1237. .name = "qg-fifo-done",
  1238. .handler = qg_fifo_update_done_handler,
  1239. .wake = true,
  1240. },
  1241. [QG_GOOD_OCV_IRQ] = {
  1242. .name = "qg-good-ocv",
  1243. .handler = qg_good_ocv_handler,
  1244. .wake = true,
  1245. },
  1246. [QG_FSM_STAT_CHG_IRQ] = {
  1247. .name = "qg-fsm-state-chg",
  1248. },
  1249. [QG_EVENT_IRQ] = {
  1250. .name = "qg-event",
  1251. },
  1252. };
  1253. static int qg_awake_cb(struct votable *votable, void *data, int awake,
  1254. const char *client)
  1255. {
  1256. struct qpnp_qg *chip = data;
  1257. /* ignore if the QG device is not open */
  1258. if (!chip->qg_device_open)
  1259. return 0;
  1260. if (awake)
  1261. pm_stay_awake(chip->dev);
  1262. else
  1263. pm_relax(chip->dev);
  1264. pr_debug("client: %s awake: %d\n", client, awake);
  1265. return 0;
  1266. }
  1267. static int qg_fifo_irq_disable_cb(struct votable *votable, void *data,
  1268. int disable, const char *client)
  1269. {
  1270. if (disable) {
  1271. if (qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].wake)
  1272. disable_irq_wake(
  1273. qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].irq);
  1274. if (qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].irq)
  1275. disable_irq_nosync(
  1276. qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].irq);
  1277. } else {
  1278. if (qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].irq)
  1279. enable_irq(qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].irq);
  1280. if (qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].wake)
  1281. enable_irq_wake(
  1282. qg_irqs[QG_FIFO_UPDATE_DONE_IRQ].irq);
  1283. }
  1284. return 0;
  1285. }
  1286. static int qg_vbatt_irq_disable_cb(struct votable *votable, void *data,
  1287. int disable, const char *client)
  1288. {
  1289. if (disable) {
  1290. if (qg_irqs[QG_VBATT_LOW_IRQ].wake)
  1291. disable_irq_wake(qg_irqs[QG_VBATT_LOW_IRQ].irq);
  1292. if (qg_irqs[QG_VBATT_EMPTY_IRQ].wake)
  1293. disable_irq_wake(qg_irqs[QG_VBATT_EMPTY_IRQ].irq);
  1294. if (qg_irqs[QG_VBATT_LOW_IRQ].irq)
  1295. disable_irq_nosync(qg_irqs[QG_VBATT_LOW_IRQ].irq);
  1296. if (qg_irqs[QG_VBATT_EMPTY_IRQ].irq)
  1297. disable_irq_nosync(qg_irqs[QG_VBATT_EMPTY_IRQ].irq);
  1298. } else {
  1299. if (qg_irqs[QG_VBATT_LOW_IRQ].irq)
  1300. enable_irq(qg_irqs[QG_VBATT_LOW_IRQ].irq);
  1301. if (qg_irqs[QG_VBATT_EMPTY_IRQ].irq)
  1302. enable_irq(qg_irqs[QG_VBATT_EMPTY_IRQ].irq);
  1303. if (qg_irqs[QG_VBATT_LOW_IRQ].wake)
  1304. enable_irq_wake(qg_irqs[QG_VBATT_LOW_IRQ].irq);
  1305. if (qg_irqs[QG_VBATT_EMPTY_IRQ].wake)
  1306. enable_irq_wake(qg_irqs[QG_VBATT_EMPTY_IRQ].irq);
  1307. }
  1308. return 0;
  1309. }
  1310. static int qg_good_ocv_irq_disable_cb(struct votable *votable, void *data,
  1311. int disable, const char *client)
  1312. {
  1313. if (disable) {
  1314. if (qg_irqs[QG_GOOD_OCV_IRQ].wake)
  1315. disable_irq_wake(qg_irqs[QG_GOOD_OCV_IRQ].irq);
  1316. if (qg_irqs[QG_GOOD_OCV_IRQ].irq)
  1317. disable_irq_nosync(qg_irqs[QG_GOOD_OCV_IRQ].irq);
  1318. } else {
  1319. if (qg_irqs[QG_GOOD_OCV_IRQ].irq)
  1320. enable_irq(qg_irqs[QG_GOOD_OCV_IRQ].irq);
  1321. if (qg_irqs[QG_GOOD_OCV_IRQ].wake)
  1322. enable_irq_wake(qg_irqs[QG_GOOD_OCV_IRQ].irq);
  1323. }
  1324. return 0;
  1325. }
  1326. /* ALG callback functions below */
  1327. static int qg_get_learned_capacity(void *data, int64_t *learned_cap_uah)
  1328. {
  1329. struct qpnp_qg *chip = data;
  1330. int16_t cc_mah;
  1331. int rc;
  1332. if (!chip)
  1333. return -ENODEV;
  1334. if (chip->battery_missing || !chip->profile_loaded)
  1335. return -ENODEV;
  1336. rc = qg_sdam_multibyte_read(QG_SDAM_LEARNED_CAPACITY_OFFSET,
  1337. (u8 *)&cc_mah, 2);
  1338. if (rc < 0) {
  1339. pr_err("Error in reading learned_capacity, rc=%d\n", rc);
  1340. return rc;
  1341. }
  1342. *learned_cap_uah = cc_mah * 1000;
  1343. return 0;
  1344. }
  1345. static int qg_store_learned_capacity(void *data, int64_t learned_cap_uah)
  1346. {
  1347. struct qpnp_qg *chip = data;
  1348. int16_t cc_mah;
  1349. int rc;
  1350. if (!chip)
  1351. return -ENODEV;
  1352. if (chip->battery_missing || !learned_cap_uah)
  1353. return -ENODEV;
  1354. cc_mah = div64_s64(learned_cap_uah, 1000);
  1355. rc = qg_sdam_multibyte_write(QG_SDAM_LEARNED_CAPACITY_OFFSET,
  1356. (u8 *)&cc_mah, 2);
  1357. if (rc < 0) {
  1358. pr_err("Error in writing learned_capacity, rc=%d\n", rc);
  1359. return rc;
  1360. }
  1361. qg_dbg(chip, QG_DEBUG_ALG_CL, "Stored learned capacity %llduah\n",
  1362. learned_cap_uah);
  1363. return 0;
  1364. }
  1365. static int qg_get_batt_age_level(void *data, u32 *batt_age_level)
  1366. {
  1367. struct qpnp_qg *chip = data;
  1368. int rc;
  1369. if (!chip)
  1370. return -ENODEV;
  1371. if (chip->battery_missing || is_debug_batt_id(chip))
  1372. return -ENODEV;
  1373. *batt_age_level = 0;
  1374. rc = qg_sdam_read(SDAM_BATT_AGE_LEVEL, batt_age_level);
  1375. if (rc < 0) {
  1376. pr_err("Error in reading batt_age_level, rc=%d\n", rc);
  1377. return rc;
  1378. }
  1379. return 0;
  1380. }
  1381. static int qg_store_batt_age_level(void *data, u32 batt_age_level)
  1382. {
  1383. struct qpnp_qg *chip = data;
  1384. int rc;
  1385. if (!chip)
  1386. return -ENODEV;
  1387. if (chip->battery_missing)
  1388. return -ENODEV;
  1389. rc = qg_sdam_write(SDAM_BATT_AGE_LEVEL, batt_age_level);
  1390. if (rc < 0) {
  1391. pr_err("Error in writing batt_age_level, rc=%d\n", rc);
  1392. return rc;
  1393. }
  1394. return 0;
  1395. }
  1396. static int qg_get_cc_soc(void *data, int *cc_soc)
  1397. {
  1398. struct qpnp_qg *chip = data;
  1399. if (!chip)
  1400. return -ENODEV;
  1401. if (is_debug_batt_id(chip) || chip->battery_missing) {
  1402. *cc_soc = -EINVAL;
  1403. return 0;
  1404. }
  1405. if (chip->cc_soc == INT_MIN)
  1406. *cc_soc = -EINVAL;
  1407. else
  1408. *cc_soc = chip->cc_soc;
  1409. return 0;
  1410. }
  1411. static int qg_restore_cycle_count(void *data, u16 *buf, int length)
  1412. {
  1413. struct qpnp_qg *chip = data;
  1414. int id, rc = 0;
  1415. u8 tmp[2];
  1416. if (!chip)
  1417. return -ENODEV;
  1418. if (chip->battery_missing || !chip->profile_loaded)
  1419. return -ENODEV;
  1420. if (!buf || length > BUCKET_COUNT)
  1421. return -EINVAL;
  1422. for (id = 0; id < length; id++) {
  1423. rc = qg_sdam_multibyte_read(
  1424. QG_SDAM_CYCLE_COUNT_OFFSET + (id * 2),
  1425. (u8 *)tmp, 2);
  1426. if (rc < 0) {
  1427. pr_err("failed to read bucket %d rc=%d\n", id, rc);
  1428. return rc;
  1429. }
  1430. *buf++ = tmp[0] | tmp[1] << 8;
  1431. }
  1432. return rc;
  1433. }
  1434. static int qg_store_cycle_count(void *data, u16 *buf, int id, int length)
  1435. {
  1436. struct qpnp_qg *chip = data;
  1437. int rc = 0;
  1438. if (!chip)
  1439. return -ENODEV;
  1440. if (chip->battery_missing || !chip->profile_loaded)
  1441. return -ENODEV;
  1442. if (!buf || length > BUCKET_COUNT * 2 || id < 0 ||
  1443. id > BUCKET_COUNT - 1 ||
  1444. (((id * 2) + length) > BUCKET_COUNT * 2))
  1445. return -EINVAL;
  1446. rc = qg_sdam_multibyte_write(
  1447. QG_SDAM_CYCLE_COUNT_OFFSET + (id * 2),
  1448. (u8 *)buf, length);
  1449. if (rc < 0)
  1450. pr_err("failed to write bucket %d rc=%d\n", id, rc);
  1451. return rc;
  1452. }
  1453. #define DEFAULT_BATT_TYPE "Unknown Battery"
  1454. #define MISSING_BATT_TYPE "Missing Battery"
  1455. #define DEBUG_BATT_TYPE "Debug Board"
  1456. static const char *qg_get_battery_type(struct qpnp_qg *chip)
  1457. {
  1458. if (chip->battery_missing)
  1459. return MISSING_BATT_TYPE;
  1460. if (is_debug_batt_id(chip))
  1461. return DEBUG_BATT_TYPE;
  1462. if (chip->bp.batt_type_str) {
  1463. if (chip->profile_loaded)
  1464. return chip->bp.batt_type_str;
  1465. }
  1466. return DEFAULT_BATT_TYPE;
  1467. }
  1468. #define DEBUG_BATT_SOC 67
  1469. #define BATT_MISSING_SOC 50
  1470. #define EMPTY_SOC 0
  1471. #define FULL_SOC 100
  1472. static int qg_get_battery_capacity(struct qpnp_qg *chip, int *soc)
  1473. {
  1474. if (is_debug_batt_id(chip)) {
  1475. *soc = DEBUG_BATT_SOC;
  1476. return 0;
  1477. }
  1478. if (chip->battery_missing || !chip->profile_loaded) {
  1479. *soc = BATT_MISSING_SOC;
  1480. return 0;
  1481. }
  1482. if (chip->charge_full) {
  1483. *soc = FULL_SOC;
  1484. return 0;
  1485. }
  1486. mutex_lock(&chip->soc_lock);
  1487. if (chip->dt.linearize_soc && chip->maint_soc > 0)
  1488. *soc = chip->maint_soc;
  1489. else
  1490. *soc = chip->msoc;
  1491. mutex_unlock(&chip->soc_lock);
  1492. return 0;
  1493. }
  1494. static int qg_get_battery_capacity_real(struct qpnp_qg *chip, int *soc)
  1495. {
  1496. mutex_lock(&chip->soc_lock);
  1497. *soc = chip->msoc;
  1498. mutex_unlock(&chip->soc_lock);
  1499. return 0;
  1500. }
  1501. static int qg_get_charge_counter(struct qpnp_qg *chip, int *charge_counter)
  1502. {
  1503. int rc, cc_soc = 0;
  1504. int64_t temp = 0;
  1505. if (is_debug_batt_id(chip) || chip->battery_missing) {
  1506. *charge_counter = -EINVAL;
  1507. return 0;
  1508. }
  1509. rc = qg_get_learned_capacity(chip, &temp);
  1510. if (rc < 0 || !temp)
  1511. rc = qg_get_nominal_capacity((int *)&temp, 250, true);
  1512. if (rc < 0) {
  1513. pr_err("Failed to get FCC for charge-counter rc=%d\n", rc);
  1514. return rc;
  1515. }
  1516. cc_soc = CAP(0, 100, DIV_ROUND_CLOSEST(chip->cc_soc, 100));
  1517. *charge_counter = div_s64(temp * cc_soc, 100);
  1518. return 0;
  1519. }
  1520. static int qg_get_power(struct qpnp_qg *chip, int *val, bool average)
  1521. {
  1522. int rc, v_min, v_ocv, rbatt = 0, esr = 0;
  1523. s64 power;
  1524. if (is_debug_batt_id(chip)) {
  1525. *val = -EINVAL;
  1526. return 0;
  1527. }
  1528. v_min = chip->dt.sys_min_volt_mv * 1000;
  1529. rc = qg_sdam_read(SDAM_OCV_UV, &v_ocv);
  1530. if (rc < 0) {
  1531. pr_err("Failed to read OCV rc=%d\n", rc);
  1532. return rc;
  1533. }
  1534. rc = qg_sdam_read(SDAM_RBAT_MOHM, &rbatt);
  1535. if (rc < 0) {
  1536. pr_err("Failed to read T_RBAT rc=%d\n", rc);
  1537. return rc;
  1538. }
  1539. rbatt *= 1000; /* uohms */
  1540. esr = chip->esr_last * 1000;
  1541. if (rbatt <= 0 || esr <= 0) {
  1542. pr_debug("Invalid rbatt/esr rbatt=%d esr=%d\n", rbatt, esr);
  1543. *val = -EINVAL;
  1544. return 0;
  1545. }
  1546. power = (s64)v_min * (v_ocv - v_min);
  1547. if (average)
  1548. power = div_s64(power, rbatt);
  1549. else
  1550. power = div_s64(power, esr);
  1551. *val = power;
  1552. qg_dbg(chip, QG_DEBUG_STATUS, "v_min=%d v_ocv=%d rbatt=%d esr=%d power=%lld\n",
  1553. v_min, v_ocv, rbatt, esr, power);
  1554. return 0;
  1555. }
  1556. static int qg_get_ttf_param(void *data, enum ttf_param param, int *val)
  1557. {
  1558. struct qpnp_qg *chip = data;
  1559. int rc = 0;
  1560. int64_t temp = 0;
  1561. if (!chip)
  1562. return -ENODEV;
  1563. switch (param) {
  1564. case TTF_TTE_VALID:
  1565. *val = 1;
  1566. if (chip->battery_missing || is_debug_batt_id(chip))
  1567. *val = 0;
  1568. break;
  1569. case TTF_MSOC:
  1570. rc = qg_get_battery_capacity(chip, val);
  1571. break;
  1572. case TTF_VBAT:
  1573. rc = qg_get_battery_voltage(chip, val);
  1574. break;
  1575. case TTF_IBAT:
  1576. rc = qg_get_battery_current(chip, val);
  1577. break;
  1578. case TTF_FCC:
  1579. if (!chip->dt.cl_disable && chip->dt.cl_feedback_on)
  1580. rc = qg_get_learned_capacity(chip, &temp);
  1581. else
  1582. rc = qg_get_nominal_capacity((int *)&temp, 250,
  1583. true);
  1584. if (!rc) {
  1585. temp = div64_u64(temp, 1000);
  1586. *val = div64_u64(chip->full_soc * temp,
  1587. QG_SOC_FULL);
  1588. }
  1589. break;
  1590. case TTF_MODE:
  1591. if (chip->ttf->step_chg_cfg_valid)
  1592. *val = TTF_MODE_VBAT_STEP_CHG;
  1593. else
  1594. *val = TTF_MODE_NORMAL;
  1595. break;
  1596. case TTF_ITERM:
  1597. if (chip->chg_iterm_ma == INT_MIN)
  1598. *val = 0;
  1599. else
  1600. *val = chip->chg_iterm_ma;
  1601. break;
  1602. case TTF_RBATT:
  1603. rc = qg_sdam_read(SDAM_RBAT_MOHM, val);
  1604. if (!rc)
  1605. *val *= 1000;
  1606. break;
  1607. case TTF_VFLOAT:
  1608. *val = chip->bp.float_volt_uv;
  1609. break;
  1610. case TTF_CHG_TYPE:
  1611. *val = chip->charge_type;
  1612. break;
  1613. case TTF_CHG_STATUS:
  1614. *val = chip->charge_status;
  1615. break;
  1616. case TTF_CHG_DONE:
  1617. *val = chip->charge_done;
  1618. break;
  1619. default:
  1620. pr_err("Unsupported property %d\n", param);
  1621. rc = -EINVAL;
  1622. break;
  1623. }
  1624. return rc;
  1625. }
  1626. static int qg_ttf_awake_voter(void *data, bool val)
  1627. {
  1628. struct qpnp_qg *chip = data;
  1629. if (!chip)
  1630. return -ENODEV;
  1631. if (chip->battery_missing || !chip->profile_loaded)
  1632. return -ENODEV;
  1633. vote(chip->awake_votable, TTF_AWAKE_VOTER, val, 0);
  1634. return 0;
  1635. }
  1636. #define MAX_QG_OK_RETRIES 20
  1637. static int qg_reset(struct qpnp_qg *chip)
  1638. {
  1639. int rc = 0, count = 0, soc = 0;
  1640. u32 ocv_uv = 0, ocv_raw = 0;
  1641. u8 reg = 0;
  1642. qg_dbg(chip, QG_DEBUG_STATUS, "QG RESET triggered\n");
  1643. mutex_lock(&chip->data_lock);
  1644. /* hold and release master to clear FIFO's */
  1645. rc = qg_master_hold(chip, true);
  1646. if (rc < 0) {
  1647. pr_err("Failed to hold master, rc=%d\n", rc);
  1648. goto done;
  1649. }
  1650. /* delay for the master-hold */
  1651. msleep(20);
  1652. rc = qg_master_hold(chip, false);
  1653. if (rc < 0) {
  1654. pr_err("Failed to release master, rc=%d\n", rc);
  1655. goto done;
  1656. }
  1657. /* delay for master to settle */
  1658. msleep(20);
  1659. qg_get_battery_voltage(chip, &rc);
  1660. qg_get_battery_capacity(chip, &soc);
  1661. qg_dbg(chip, QG_DEBUG_STATUS, "VBAT=%duV SOC=%d\n", rc, soc);
  1662. /* Trigger S7 */
  1663. rc = qg_masked_write(chip, chip->qg_base + QG_STATE_TRIG_CMD_REG,
  1664. S7_PON_OCV_START, S7_PON_OCV_START);
  1665. if (rc < 0) {
  1666. pr_err("Failed to trigger S7, rc=%d\n", rc);
  1667. goto done;
  1668. }
  1669. /* poll for QG OK */
  1670. do {
  1671. rc = qg_read(chip, chip->qg_base + QG_STATUS1_REG, &reg, 1);
  1672. if (rc < 0) {
  1673. pr_err("Failed to read STATUS1_REG rc=%d\n", rc);
  1674. goto done;
  1675. }
  1676. if (reg & QG_OK_BIT)
  1677. break;
  1678. msleep(200);
  1679. count++;
  1680. } while (count < MAX_QG_OK_RETRIES);
  1681. if (count == MAX_QG_OK_RETRIES) {
  1682. qg_dbg(chip, QG_DEBUG_STATUS, "QG_OK not set\n");
  1683. goto done;
  1684. }
  1685. /* read S7 PON OCV */
  1686. rc = qg_read_ocv(chip, &ocv_uv, &ocv_raw, S7_PON_OCV);
  1687. if (rc < 0) {
  1688. pr_err("Failed to read PON OCV rc=%d\n", rc);
  1689. goto done;
  1690. }
  1691. qg_dbg(chip, QG_DEBUG_STATUS, "S7_OCV = %duV\n", ocv_uv);
  1692. chip->kdata.param[QG_GOOD_OCV_UV].data = ocv_uv;
  1693. chip->kdata.param[QG_GOOD_OCV_UV].valid = true;
  1694. /* clear all the userspace data */
  1695. chip->kdata.param[QG_CLEAR_LEARNT_DATA].data = 1;
  1696. chip->kdata.param[QG_CLEAR_LEARNT_DATA].valid = true;
  1697. vote(chip->awake_votable, GOOD_OCV_VOTER, true, 0);
  1698. /* signal the read thread */
  1699. chip->data_ready = true;
  1700. chip->force_soc = true;
  1701. wake_up_interruptible(&chip->qg_wait_q);
  1702. done:
  1703. mutex_unlock(&chip->data_lock);
  1704. return rc;
  1705. }
  1706. static int qg_setprop_batt_age_level(struct qpnp_qg *chip, int batt_age_level)
  1707. {
  1708. int rc = 0;
  1709. u16 data = 0;
  1710. if (!chip->dt.multi_profile_load)
  1711. return 0;
  1712. if (batt_age_level < 0) {
  1713. pr_err("Invalid age-level %d\n", batt_age_level);
  1714. return -EINVAL;
  1715. }
  1716. if (chip->batt_age_level == batt_age_level) {
  1717. qg_dbg(chip, QG_DEBUG_PROFILE, "Same age-level %d\n",
  1718. chip->batt_age_level);
  1719. return 0;
  1720. }
  1721. chip->batt_age_level = batt_age_level;
  1722. rc = qg_load_battery_profile(chip);
  1723. if (rc < 0) {
  1724. pr_err("failed to load profile\n");
  1725. } else {
  1726. rc = qg_store_batt_age_level(chip, batt_age_level);
  1727. if (rc < 0)
  1728. pr_err("error in storing batt_age_level rc =%d\n", rc);
  1729. }
  1730. /* Clear the learned capacity on loading a new profile */
  1731. rc = qg_sdam_multibyte_write(QG_SDAM_LEARNED_CAPACITY_OFFSET,
  1732. (u8 *)&data, 2);
  1733. if (rc < 0)
  1734. pr_err("Failed to clear SDAM learnt capacity rc=%d\n", rc);
  1735. qg_dbg(chip, QG_DEBUG_PROFILE, "Profile with batt_age_level = %d loaded\n",
  1736. chip->batt_age_level);
  1737. return rc;
  1738. }
  1739. static int qg_iio_write_raw(struct iio_dev *indio_dev,
  1740. struct iio_chan_spec const *chan, int val1,
  1741. int val2, long mask)
  1742. {
  1743. struct qpnp_qg *chip = iio_priv(indio_dev);
  1744. int rc = 0;
  1745. switch (chan->channel) {
  1746. case PSY_IIO_CHARGE_FULL:
  1747. if (chip->dt.cl_disable) {
  1748. pr_warn("Capacity learning disabled!\n");
  1749. return 0;
  1750. }
  1751. if (chip->cl->active) {
  1752. pr_warn("Capacity learning active!\n");
  1753. return 0;
  1754. }
  1755. if (val1 <= 0 || val1 > chip->cl->nom_cap_uah) {
  1756. pr_err("charge_full is out of bounds\n");
  1757. return -EINVAL;
  1758. }
  1759. mutex_lock(&chip->cl->lock);
  1760. rc = qg_store_learned_capacity(chip, val1);
  1761. if (!rc)
  1762. chip->cl->learned_cap_uah = val1;
  1763. mutex_unlock(&chip->cl->lock);
  1764. break;
  1765. case PSY_IIO_SOH:
  1766. chip->soh = val1;
  1767. qg_dbg(chip, QG_DEBUG_STATUS, "SOH update: SOH=%d esr_actual=%d esr_nominal=%d\n",
  1768. chip->soh, chip->esr_actual, chip->esr_nominal);
  1769. if (chip->sp)
  1770. soh_profile_update(chip->sp, chip->soh);
  1771. break;
  1772. case PSY_IIO_CLEAR_SOH:
  1773. chip->first_profile_load = val1;
  1774. break;
  1775. case PSY_IIO_ESR_ACTUAL:
  1776. chip->esr_actual = val1;
  1777. break;
  1778. case PSY_IIO_ESR_NOMINAL:
  1779. chip->esr_nominal = val1;
  1780. break;
  1781. case PSY_IIO_FG_RESET:
  1782. qg_reset(chip);
  1783. break;
  1784. case PSY_IIO_BATT_AGE_LEVEL:
  1785. rc = qg_setprop_batt_age_level(chip, val1);
  1786. break;
  1787. default:
  1788. pr_debug("Unsupported QG IIO chan %d\n", chan->channel);
  1789. rc = -EINVAL;
  1790. break;
  1791. }
  1792. if (rc < 0)
  1793. pr_err_ratelimited("Couldn't write IIO channel %d, rc = %d\n",
  1794. chan->channel, rc);
  1795. return rc;
  1796. }
  1797. static int qg_iio_read_raw(struct iio_dev *indio_dev,
  1798. struct iio_chan_spec const *chan, int *val1,
  1799. int *val2, long mask)
  1800. {
  1801. struct qpnp_qg *chip = iio_priv(indio_dev);
  1802. int64_t temp = 0;
  1803. int rc = 0;
  1804. *val1 = 0;
  1805. switch (chan->channel) {
  1806. case PSY_IIO_CAPACITY:
  1807. rc = qg_get_battery_capacity(chip, val1);
  1808. break;
  1809. case PSY_IIO_CAPACITY_RAW:
  1810. *val1 = chip->sys_soc;
  1811. break;
  1812. case PSY_IIO_REAL_CAPACITY:
  1813. rc = qg_get_battery_capacity_real(chip, val1);
  1814. break;
  1815. case PSY_IIO_VOLTAGE_NOW:
  1816. rc = qg_get_battery_voltage(chip, val1);
  1817. break;
  1818. case PSY_IIO_CURRENT_NOW:
  1819. rc = qg_get_battery_current(chip, val1);
  1820. break;
  1821. case PSY_IIO_VOLTAGE_OCV:
  1822. rc = qg_sdam_read(SDAM_OCV_UV, val1);
  1823. break;
  1824. case PSY_IIO_TEMP:
  1825. rc = qg_get_battery_temp(chip, val1);
  1826. break;
  1827. case PSY_IIO_RESISTANCE_ID:
  1828. *val1 = chip->batt_id_ohm;
  1829. break;
  1830. case PSY_IIO_DEBUG_BATTERY:
  1831. *val1 = is_debug_batt_id(chip);
  1832. break;
  1833. case PSY_IIO_RESISTANCE:
  1834. rc = qg_sdam_read(SDAM_RBAT_MOHM, val1);
  1835. if (!rc)
  1836. *val1 *= 1000;
  1837. break;
  1838. case PSY_IIO_SOC_REPORTING_READY:
  1839. *val1 = chip->soc_reporting_ready;
  1840. break;
  1841. case PSY_IIO_RESISTANCE_CAPACITIVE:
  1842. *val1 = chip->dt.rbat_conn_mohm;
  1843. break;
  1844. case PSY_IIO_VOLTAGE_MIN:
  1845. *val1 = chip->dt.vbatt_cutoff_mv * 1000;
  1846. break;
  1847. case PSY_IIO_VOLTAGE_MAX:
  1848. *val1 = chip->bp.float_volt_uv;
  1849. break;
  1850. case PSY_IIO_BATT_FULL_CURRENT:
  1851. *val1 = chip->dt.iterm_ma * 1000;
  1852. break;
  1853. case PSY_IIO_BATT_PROFILE_VERSION:
  1854. *val1 = chip->bp.qg_profile_version;
  1855. break;
  1856. case PSY_IIO_CHARGE_COUNTER:
  1857. rc = qg_get_charge_counter(chip, val1);
  1858. break;
  1859. case PSY_IIO_CHARGE_FULL:
  1860. if (!chip->dt.cl_disable && chip->dt.cl_feedback_on)
  1861. rc = qg_get_learned_capacity(chip, &temp);
  1862. else
  1863. rc = qg_get_nominal_capacity((int *)&temp, 250, true);
  1864. if (!rc)
  1865. *val1 = (int)temp;
  1866. break;
  1867. case PSY_IIO_CHARGE_FULL_DESIGN:
  1868. rc = qg_get_nominal_capacity((int *)&temp, 250, true);
  1869. if (!rc)
  1870. *val1 = (int)temp;
  1871. break;
  1872. case PSY_IIO_CYCLE_COUNT:
  1873. rc = get_cycle_count(chip->counter, val1);
  1874. break;
  1875. case PSY_IIO_TIME_TO_FULL_AVG:
  1876. rc = ttf_get_time_to_full(chip->ttf, val1);
  1877. break;
  1878. case PSY_IIO_TIME_TO_FULL_NOW:
  1879. rc = ttf_get_time_to_full(chip->ttf, val1);
  1880. break;
  1881. case PSY_IIO_TIME_TO_EMPTY_AVG:
  1882. rc = ttf_get_time_to_empty(chip->ttf, val1);
  1883. break;
  1884. case PSY_IIO_ESR_ACTUAL:
  1885. *val1 = (chip->esr_actual == -EINVAL) ? -EINVAL :
  1886. (chip->esr_actual * 1000);
  1887. break;
  1888. case PSY_IIO_ESR_NOMINAL:
  1889. *val1 = (chip->esr_nominal == -EINVAL) ? -EINVAL :
  1890. (chip->esr_nominal * 1000);
  1891. break;
  1892. case PSY_IIO_SOH:
  1893. *val1 = chip->soh;
  1894. break;
  1895. case PSY_IIO_CLEAR_SOH:
  1896. *val1 = chip->first_profile_load;
  1897. break;
  1898. case PSY_IIO_CC_SOC:
  1899. rc = qg_get_cc_soc(chip, val1);
  1900. break;
  1901. case PSY_IIO_FG_RESET:
  1902. *val1 = 0;
  1903. break;
  1904. case PSY_IIO_VOLTAGE_AVG:
  1905. rc = qg_get_vbat_avg(chip, val1);
  1906. break;
  1907. case PSY_IIO_CURRENT_AVG:
  1908. rc = qg_get_ibat_avg(chip, val1);
  1909. break;
  1910. case PSY_IIO_POWER_NOW:
  1911. rc = qg_get_power(chip, val1, false);
  1912. break;
  1913. case PSY_IIO_POWER_AVG:
  1914. rc = qg_get_power(chip, val1, true);
  1915. break;
  1916. case PSY_IIO_SCALE_MODE_EN:
  1917. *val1 = chip->fvss_active;
  1918. break;
  1919. case PSY_IIO_BATT_AGE_LEVEL:
  1920. *val1 = chip->batt_age_level;
  1921. break;
  1922. case PSY_IIO_FG_TYPE:
  1923. *val1 = chip->qg_mode;
  1924. break;
  1925. default:
  1926. pr_debug("Unsupported QG IIO chan %d\n", chan->channel);
  1927. rc = -EINVAL;
  1928. break;
  1929. }
  1930. if (rc < 0) {
  1931. pr_err_ratelimited("Couldn't read IIO channel %d, rc = %d\n",
  1932. chan->channel, rc);
  1933. return rc;
  1934. }
  1935. return IIO_VAL_INT;
  1936. }
  1937. static int qg_iio_fwnode_xlate(struct iio_dev *indio_dev,
  1938. const struct fwnode_reference_args *iiospec)
  1939. {
  1940. struct qpnp_qg *chip = iio_priv(indio_dev);
  1941. struct iio_chan_spec *iio_chan = chip->iio_chan;
  1942. int i;
  1943. for (i = 0; i < ARRAY_SIZE(qg_iio_psy_channels);
  1944. i++, iio_chan++)
  1945. if (iio_chan->channel == iiospec->args[0])
  1946. return i;
  1947. return -EINVAL;
  1948. }
  1949. static const struct iio_info qg_iio_info = {
  1950. .read_raw = qg_iio_read_raw,
  1951. .write_raw = qg_iio_write_raw,
  1952. .fwnode_xlate = qg_iio_fwnode_xlate,
  1953. };
  1954. #define DEFAULT_CL_BEGIN_IBAT_UA (-100000)
  1955. static bool qg_cl_ok_to_begin(void *data)
  1956. {
  1957. struct qpnp_qg *chip = data;
  1958. if (chip->last_fifo_i_ua < DEFAULT_CL_BEGIN_IBAT_UA)
  1959. return true;
  1960. return false;
  1961. }
  1962. #define DEFAULT_RECHARGE_SOC 95
  1963. static int qg_charge_full_update(struct qpnp_qg *chip)
  1964. {
  1965. union power_supply_propval prop = {0, };
  1966. int rc, recharge_soc, health, val;
  1967. if (!chip->dt.hold_soc_while_full)
  1968. goto out;
  1969. rc = power_supply_get_property(chip->batt_psy,
  1970. POWER_SUPPLY_PROP_HEALTH, &prop);
  1971. if (rc < 0) {
  1972. pr_err("Failed to get battery health, rc=%d\n", rc);
  1973. goto out;
  1974. }
  1975. health = prop.intval;
  1976. rc = qg_read_iio_chan(chip, RECHARGE_SOC, &val);
  1977. if (rc < 0 || val < 0) {
  1978. pr_debug("Failed to get recharge-soc\n");
  1979. recharge_soc = DEFAULT_RECHARGE_SOC;
  1980. } else {
  1981. recharge_soc = val;
  1982. }
  1983. chip->recharge_soc = recharge_soc;
  1984. qg_dbg(chip, QG_DEBUG_STATUS, "msoc=%d health=%d charge_full=%d charge_done=%d\n",
  1985. chip->msoc, health, chip->charge_full,
  1986. chip->charge_done);
  1987. if (chip->charge_done && !chip->charge_full) {
  1988. if (chip->msoc >= 99 && health == POWER_SUPPLY_HEALTH_GOOD) {
  1989. chip->charge_full = true;
  1990. qg_dbg(chip, QG_DEBUG_STATUS, "Setting charge_full (0->1) @ msoc=%d\n",
  1991. chip->msoc);
  1992. } else if (health != POWER_SUPPLY_HEALTH_GOOD) {
  1993. /* terminated in JEITA */
  1994. qg_dbg(chip, QG_DEBUG_STATUS, "Terminated charging @ msoc=%d\n",
  1995. chip->msoc);
  1996. }
  1997. } else if ((!chip->charge_done || chip->msoc <= recharge_soc)
  1998. && chip->charge_full) {
  1999. bool input_present = is_input_present(chip);
  2000. /*
  2001. * force a recharge only if SOC <= recharge SOC and
  2002. * we have not started charging.
  2003. */
  2004. if ((chip->wa_flags & QG_RECHARGE_SOC_WA) &&
  2005. input_present && chip->msoc <= recharge_soc &&
  2006. chip->charge_status != POWER_SUPPLY_STATUS_CHARGING) {
  2007. /* Force recharge */
  2008. rc = qg_write_iio_chan(chip, FORCE_RECHARGE, 0);
  2009. if (rc < 0)
  2010. pr_err("Failed to force recharge rc=%d\n", rc);
  2011. else
  2012. qg_dbg(chip, QG_DEBUG_STATUS, "Forced recharge\n");
  2013. }
  2014. if (chip->charge_done)
  2015. return 0; /* wait for recharge */
  2016. /*
  2017. * If SOC has indeed dropped below recharge-SOC or
  2018. * the input is removed, if linearize-soc is set scale
  2019. * msoc from 100% for better UX.
  2020. */
  2021. if (chip->msoc < recharge_soc || !input_present) {
  2022. if (chip->dt.linearize_soc) {
  2023. get_rtc_time(&chip->last_maint_soc_update_time);
  2024. chip->maint_soc = FULL_SOC;
  2025. qg_scale_soc(chip, false);
  2026. }
  2027. chip->charge_full = false;
  2028. qg_dbg(chip, QG_DEBUG_STATUS, "msoc=%d recharge_soc=%d charge_full (1->0)\n",
  2029. chip->msoc, recharge_soc);
  2030. } else {
  2031. /* continue with charge_full state */
  2032. qg_dbg(chip, QG_DEBUG_STATUS, "msoc=%d recharge_soc=%d charge_full=%d input_present=%d\n",
  2033. chip->msoc, recharge_soc,
  2034. chip->charge_full, input_present);
  2035. }
  2036. }
  2037. out:
  2038. return 0;
  2039. }
  2040. static int qg_parallel_status_update(struct qpnp_qg *chip)
  2041. {
  2042. int rc;
  2043. bool parallel_enabled = is_parallel_enabled(chip);
  2044. bool update_smb = false;
  2045. if (parallel_enabled == chip->parallel_enabled)
  2046. return 0;
  2047. chip->parallel_enabled = parallel_enabled;
  2048. qg_dbg(chip, QG_DEBUG_STATUS,
  2049. "Parallel status changed Enabled=%d\n", parallel_enabled);
  2050. mutex_lock(&chip->data_lock);
  2051. /*
  2052. * dt.qg_ext_sense = Uses external rsense, if defined do not
  2053. * enable SMB sensing (for non-CP parallel charger).
  2054. * dt.cp_iin_sns = Uses CP IIN_SNS, enable SMB sensing (for CP charger).
  2055. */
  2056. if (is_cp_available(chip))
  2057. update_smb = chip->dt.use_cp_iin_sns ? true : false;
  2058. else if (is_parallel_available(chip))
  2059. update_smb = chip->dt.qg_ext_sense ? false : true;
  2060. rc = process_rt_fifo_data(chip, update_smb);
  2061. if (rc < 0)
  2062. pr_err("Failed to process RT FIFO data, rc=%d\n", rc);
  2063. mutex_unlock(&chip->data_lock);
  2064. return 0;
  2065. }
  2066. static int qg_input_status_update(struct qpnp_qg *chip)
  2067. {
  2068. bool usb_present = is_usb_present(chip);
  2069. bool dc_present = is_dc_present(chip);
  2070. if ((chip->usb_present != usb_present) ||
  2071. (chip->dc_present != dc_present)) {
  2072. qg_dbg(chip, QG_DEBUG_STATUS,
  2073. "Input status changed usb_present=%d dc_present=%d\n",
  2074. usb_present, dc_present);
  2075. qg_scale_soc(chip, false);
  2076. }
  2077. chip->usb_present = usb_present;
  2078. chip->dc_present = dc_present;
  2079. return 0;
  2080. }
  2081. static int qg_handle_battery_removal(struct qpnp_qg *chip)
  2082. {
  2083. int rc, length = QG_SDAM_MAX_OFFSET - QG_SDAM_VALID_OFFSET;
  2084. u8 *data;
  2085. /* clear SDAM */
  2086. data = kcalloc(length, sizeof(*data), GFP_KERNEL);
  2087. if (!data)
  2088. return -ENOMEM;
  2089. rc = qg_sdam_multibyte_write(QG_SDAM_VALID_OFFSET, data, length);
  2090. if (rc < 0)
  2091. pr_err("Failed to clear SDAM rc=%d\n", rc);
  2092. return rc;
  2093. }
  2094. static int qg_handle_battery_insertion(struct qpnp_qg *chip)
  2095. {
  2096. int rc, count = 0;
  2097. u32 ocv_uv = 0, ocv_raw = 0;
  2098. u8 reg = 0;
  2099. do {
  2100. rc = qg_read(chip, chip->qg_base + QG_STATUS1_REG, &reg, 1);
  2101. if (rc < 0) {
  2102. pr_err("Failed to read STATUS1_REG rc=%d\n", rc);
  2103. return rc;
  2104. }
  2105. if (reg & QG_OK_BIT)
  2106. break;
  2107. msleep(200);
  2108. count++;
  2109. } while (count < MAX_QG_OK_RETRIES);
  2110. if (count == MAX_QG_OK_RETRIES) {
  2111. qg_dbg(chip, QG_DEBUG_STATUS, "QG_OK not set!\n");
  2112. return 0;
  2113. }
  2114. /* read S7 PON OCV */
  2115. rc = qg_read_ocv(chip, &ocv_uv, &ocv_raw, S7_PON_OCV);
  2116. if (rc < 0) {
  2117. pr_err("Failed to read PON OCV rc=%d\n", rc);
  2118. return rc;
  2119. }
  2120. qg_dbg(chip, QG_DEBUG_STATUS,
  2121. "S7_OCV on battery insertion = %duV\n", ocv_uv);
  2122. chip->kdata.param[QG_GOOD_OCV_UV].data = ocv_uv;
  2123. chip->kdata.param[QG_GOOD_OCV_UV].valid = true;
  2124. /* clear all the userspace data */
  2125. chip->kdata.param[QG_CLEAR_LEARNT_DATA].data = 1;
  2126. chip->kdata.param[QG_CLEAR_LEARNT_DATA].valid = true;
  2127. vote(chip->awake_votable, GOOD_OCV_VOTER, true, 0);
  2128. /* signal the read thread */
  2129. chip->data_ready = true;
  2130. wake_up_interruptible(&chip->qg_wait_q);
  2131. return 0;
  2132. }
  2133. static int qg_battery_status_update(struct qpnp_qg *chip)
  2134. {
  2135. int rc;
  2136. union power_supply_propval prop = {0, };
  2137. if (!is_batt_available(chip))
  2138. return 0;
  2139. mutex_lock(&chip->data_lock);
  2140. rc = power_supply_get_property(chip->batt_psy,
  2141. POWER_SUPPLY_PROP_PRESENT, &prop);
  2142. if (rc < 0) {
  2143. pr_err("Failed to get battery-present, rc=%d\n", rc);
  2144. goto done;
  2145. }
  2146. if (chip->battery_missing && prop.intval) {
  2147. pr_warn("Battery inserted!\n");
  2148. rc = qg_handle_battery_insertion(chip);
  2149. if (rc < 0)
  2150. pr_err("Failed in battery-insertion rc=%d\n", rc);
  2151. } else if (!chip->battery_missing && !prop.intval) {
  2152. pr_warn("Battery removed!\n");
  2153. rc = qg_handle_battery_removal(chip);
  2154. if (rc < 0)
  2155. pr_err("Failed in battery-removal rc=%d\n", rc);
  2156. }
  2157. chip->battery_missing = !prop.intval;
  2158. done:
  2159. mutex_unlock(&chip->data_lock);
  2160. return rc;
  2161. }
  2162. static void qg_sleep_exit_work(struct work_struct *work)
  2163. {
  2164. int rc;
  2165. struct qpnp_qg *chip = container_of(work,
  2166. struct qpnp_qg, qg_sleep_exit_work.work);
  2167. vote(chip->awake_votable, SLEEP_EXIT_VOTER, true, 0);
  2168. mutex_lock(&chip->data_lock);
  2169. /*
  2170. * if this work is executing, the system has been active
  2171. * for a while. So, force back the S2 active configuration
  2172. */
  2173. qg_dbg(chip, QG_DEBUG_STATUS, "sleep_exit_work: exit S2_SLEEP\n");
  2174. rc = qg_config_s2_state(chip, S2_SLEEP, false, true);
  2175. if (rc < 0)
  2176. pr_err("Failed to exit S2_SLEEP rc=%d\n", rc);
  2177. vote(chip->awake_votable, SLEEP_EXIT_DATA_VOTER, true, 0);
  2178. /* signal the read thread */
  2179. chip->data_ready = true;
  2180. wake_up_interruptible(&chip->qg_wait_q);
  2181. mutex_unlock(&chip->data_lock);
  2182. vote(chip->awake_votable, SLEEP_EXIT_VOTER, false, 0);
  2183. }
  2184. static void qg_status_change_work(struct work_struct *work)
  2185. {
  2186. struct qpnp_qg *chip = container_of(work,
  2187. struct qpnp_qg, qg_status_change_work);
  2188. union power_supply_propval prop = {0, };
  2189. int rc = 0, batt_temp = 0, val;
  2190. bool input_present = false;
  2191. if (!is_batt_available(chip)) {
  2192. pr_debug("batt-psy not available\n");
  2193. goto out;
  2194. }
  2195. rc = qg_battery_status_update(chip);
  2196. if (rc < 0)
  2197. pr_err("Failed to process battery status update rc=%d\n", rc);
  2198. rc = power_supply_get_property(chip->batt_psy,
  2199. POWER_SUPPLY_PROP_CHARGE_TYPE, &prop);
  2200. if (rc < 0)
  2201. pr_err("Failed to get charge-type, rc=%d\n", rc);
  2202. else
  2203. chip->charge_type = prop.intval;
  2204. rc = power_supply_get_property(chip->batt_psy,
  2205. POWER_SUPPLY_PROP_STATUS, &prop);
  2206. if (rc < 0)
  2207. pr_err("Failed to get charger status, rc=%d\n", rc);
  2208. else
  2209. chip->charge_status = prop.intval;
  2210. rc = qg_read_iio_chan(chip, CHARGE_DONE, &val);
  2211. if (rc < 0)
  2212. pr_err("Failed to get charge done status, rc=%d\n", rc);
  2213. else
  2214. chip->charge_done = val;
  2215. qg_dbg(chip, QG_DEBUG_STATUS, "charge_status=%d charge_done=%d\n",
  2216. chip->charge_status, chip->charge_done);
  2217. rc = qg_parallel_status_update(chip);
  2218. if (rc < 0)
  2219. pr_err("Failed to update parallel-status, rc=%d\n", rc);
  2220. rc = qg_input_status_update(chip);
  2221. if (rc < 0)
  2222. pr_err("Failed to update input status, rc=%d\n", rc);
  2223. /* get input status */
  2224. input_present = is_input_present(chip);
  2225. cycle_count_update(chip->counter,
  2226. DIV_ROUND_CLOSEST(chip->msoc * 255, 100),
  2227. chip->charge_status, chip->charge_done,
  2228. input_present);
  2229. if (!chip->dt.cl_disable) {
  2230. rc = qg_get_battery_temp(chip, &batt_temp);
  2231. if (rc < 0) {
  2232. pr_err("Failed to read BATT_TEMP at PON rc=%d\n", rc);
  2233. } else if (chip->batt_soc >= 0) {
  2234. cap_learning_update(chip->cl, batt_temp, chip->batt_soc,
  2235. chip->charge_status, chip->charge_done,
  2236. input_present, false);
  2237. }
  2238. }
  2239. rc = qg_charge_full_update(chip);
  2240. if (rc < 0)
  2241. pr_err("Failed in charge_full_update, rc=%d\n", rc);
  2242. ttf_update(chip->ttf, input_present);
  2243. out:
  2244. pm_relax(chip->dev);
  2245. }
  2246. static int qg_notifier_cb(struct notifier_block *nb,
  2247. unsigned long event, void *data)
  2248. {
  2249. struct power_supply *psy = data;
  2250. struct qpnp_qg *chip = container_of(nb, struct qpnp_qg, nb);
  2251. if (event != PSY_EVENT_PROP_CHANGED)
  2252. return NOTIFY_OK;
  2253. if (work_pending(&chip->qg_status_change_work))
  2254. return NOTIFY_OK;
  2255. if ((strcmp(psy->desc->name, "battery") == 0)
  2256. || (strcmp(psy->desc->name, "parallel") == 0)
  2257. || (strcmp(psy->desc->name, "usb") == 0)
  2258. || (strcmp(psy->desc->name, "dc") == 0)
  2259. || (strcmp(psy->desc->name, "charge_pump_master") == 0)) {
  2260. /*
  2261. * We cannot vote for awake votable here as that takes
  2262. * a mutex lock and this is executed in an atomic context.
  2263. */
  2264. pm_stay_awake(chip->dev);
  2265. schedule_work(&chip->qg_status_change_work);
  2266. }
  2267. return NOTIFY_OK;
  2268. }
  2269. static int qg_psy_get_property(struct power_supply *psy,
  2270. enum power_supply_property psp,
  2271. union power_supply_propval *pval)
  2272. {
  2273. if (psp == POWER_SUPPLY_PROP_TYPE)
  2274. pval->intval = POWER_SUPPLY_TYPE_MAINS;
  2275. return 0;
  2276. }
  2277. static enum power_supply_property qg_psy_props[] = {
  2278. POWER_SUPPLY_PROP_TYPE,
  2279. };
  2280. static const struct power_supply_desc qg_psy_desc = {
  2281. .name = "bms",
  2282. .type = POWER_SUPPLY_TYPE_MAINS,
  2283. .properties = qg_psy_props,
  2284. .num_properties = ARRAY_SIZE(qg_psy_props),
  2285. .get_property = qg_psy_get_property,
  2286. };
  2287. static int qg_init_psy(struct qpnp_qg *chip)
  2288. {
  2289. struct power_supply_config qg_psy_cfg = {};
  2290. int rc;
  2291. qg_psy_cfg.drv_data = chip;
  2292. chip->qg_psy = devm_power_supply_register(chip->dev,
  2293. &qg_psy_desc, &qg_psy_cfg);
  2294. if (IS_ERR_OR_NULL(chip->qg_psy)) {
  2295. pr_err("Failed to register qg_psy, rc = %d\n",
  2296. PTR_ERR(chip->qg_psy));
  2297. return -ENODEV;
  2298. }
  2299. chip->nb.notifier_call = qg_notifier_cb;
  2300. rc = power_supply_reg_notifier(&chip->nb);
  2301. if (rc < 0)
  2302. pr_err("Failed to register psy notifier rc = %d\n", rc);
  2303. return rc;
  2304. }
  2305. static int qg_init_iio_psy(struct qpnp_qg *chip,
  2306. struct platform_device *pdev)
  2307. {
  2308. struct iio_dev *indio_dev = chip->indio_dev;
  2309. struct iio_chan_spec *chan;
  2310. int qg_num_iio_channels = ARRAY_SIZE(qg_iio_psy_channels);
  2311. int rc, i;
  2312. chip->iio_chan = devm_kcalloc(chip->dev, qg_num_iio_channels,
  2313. sizeof(*chip->iio_chan), GFP_KERNEL);
  2314. if (!chip->iio_chan)
  2315. return -ENOMEM;
  2316. chip->int_iio_chans = devm_kcalloc(chip->dev,
  2317. qg_num_iio_channels,
  2318. sizeof(*chip->int_iio_chans),
  2319. GFP_KERNEL);
  2320. if (!chip->int_iio_chans)
  2321. return -ENOMEM;
  2322. chip->ext_iio_chans = devm_kcalloc(chip->dev,
  2323. ARRAY_SIZE(qg_ext_iio_chan_name),
  2324. sizeof(*chip->ext_iio_chans),
  2325. GFP_KERNEL);
  2326. if (!chip->ext_iio_chans)
  2327. return -ENOMEM;
  2328. indio_dev->info = &qg_iio_info;
  2329. indio_dev->dev.parent = chip->dev;
  2330. indio_dev->dev.of_node = chip->dev->of_node;
  2331. indio_dev->name = "qpnp,qg";
  2332. indio_dev->modes = INDIO_DIRECT_MODE;
  2333. indio_dev->channels = chip->iio_chan;
  2334. indio_dev->num_channels = qg_num_iio_channels;
  2335. for (i = 0; i < qg_num_iio_channels; i++) {
  2336. chip->int_iio_chans[i].indio_dev = indio_dev;
  2337. chan = &chip->iio_chan[i];
  2338. chip->int_iio_chans[i].channel = chan;
  2339. chan->address = i;
  2340. chan->channel = qg_iio_psy_channels[i].channel_num;
  2341. chan->type = qg_iio_psy_channels[i].type;
  2342. chan->datasheet_name =
  2343. qg_iio_psy_channels[i].datasheet_name;
  2344. chan->extend_name =
  2345. qg_iio_psy_channels[i].datasheet_name;
  2346. chan->info_mask_separate =
  2347. qg_iio_psy_channels[i].info_mask;
  2348. }
  2349. rc = devm_iio_device_register(chip->dev, indio_dev);
  2350. if (rc)
  2351. pr_err("Failed to register QG IIO device, rc=%d\n", rc);
  2352. return rc;
  2353. }
  2354. static ssize_t qg_device_read(struct file *file, char __user *buf, size_t count,
  2355. loff_t *ppos)
  2356. {
  2357. int rc;
  2358. struct qpnp_qg *chip = file->private_data;
  2359. unsigned long data_size = sizeof(chip->kdata);
  2360. if (count < data_size) {
  2361. pr_err("Invalid datasize %lu, expected lesser then %zu\n",
  2362. data_size, count);
  2363. return -EINVAL;
  2364. }
  2365. /* non-blocking access, return */
  2366. if (!chip->data_ready && (file->f_flags & O_NONBLOCK))
  2367. return 0;
  2368. /* blocking access wait on data_ready */
  2369. if (!(file->f_flags & O_NONBLOCK)) {
  2370. rc = wait_event_interruptible(chip->qg_wait_q,
  2371. chip->data_ready);
  2372. if (rc < 0) {
  2373. pr_debug("Failed wait! rc=%d\n", rc);
  2374. return rc;
  2375. }
  2376. }
  2377. mutex_lock(&chip->data_lock);
  2378. if (!chip->data_ready) {
  2379. pr_debug("No Data, false wakeup\n");
  2380. rc = -EFAULT;
  2381. goto fail_read;
  2382. }
  2383. if (copy_to_user(buf, &chip->kdata, data_size)) {
  2384. pr_err("Failed in copy_to_user\n");
  2385. rc = -EFAULT;
  2386. goto fail_read;
  2387. }
  2388. chip->data_ready = false;
  2389. /* release all wake sources */
  2390. vote(chip->awake_votable, GOOD_OCV_VOTER, false, 0);
  2391. vote(chip->awake_votable, FIFO_DONE_VOTER, false, 0);
  2392. vote(chip->awake_votable, FIFO_RT_DONE_VOTER, false, 0);
  2393. vote(chip->awake_votable, SUSPEND_DATA_VOTER, false, 0);
  2394. vote(chip->awake_votable, SLEEP_EXIT_DATA_VOTER, false, 0);
  2395. qg_dbg(chip, QG_DEBUG_DEVICE,
  2396. "QG device read complete Seq_no=%u Size=%ld\n",
  2397. chip->kdata.seq_no, data_size);
  2398. /* clear data */
  2399. memset(&chip->kdata, 0, sizeof(chip->kdata));
  2400. mutex_unlock(&chip->data_lock);
  2401. return data_size;
  2402. fail_read:
  2403. mutex_unlock(&chip->data_lock);
  2404. return rc;
  2405. }
  2406. static ssize_t qg_device_write(struct file *file, const char __user *buf,
  2407. size_t count, loff_t *ppos)
  2408. {
  2409. int rc = -EINVAL;
  2410. struct qpnp_qg *chip = file->private_data;
  2411. unsigned long data_size = sizeof(chip->udata);
  2412. mutex_lock(&chip->data_lock);
  2413. if (count == 0) {
  2414. pr_err("No data!\n");
  2415. goto fail;
  2416. }
  2417. if (count != 0 && count < data_size) {
  2418. pr_err("Invalid datasize %zu expected %lu\n", count, data_size);
  2419. goto fail;
  2420. }
  2421. if (copy_from_user(&chip->udata, buf, data_size)) {
  2422. pr_err("Failed in copy_from_user\n");
  2423. rc = -EFAULT;
  2424. goto fail;
  2425. }
  2426. rc = data_size;
  2427. vote(chip->awake_votable, UDATA_READY_VOTER, true, 0);
  2428. schedule_work(&chip->udata_work);
  2429. qg_dbg(chip, QG_DEBUG_DEVICE, "QG write complete size=%d\n", rc);
  2430. fail:
  2431. mutex_unlock(&chip->data_lock);
  2432. return rc;
  2433. }
  2434. static unsigned int qg_device_poll(struct file *file, poll_table *wait)
  2435. {
  2436. struct qpnp_qg *chip = file->private_data;
  2437. unsigned int mask = 0;
  2438. poll_wait(file, &chip->qg_wait_q, wait);
  2439. if (chip->data_ready)
  2440. mask = POLLIN | POLLRDNORM;
  2441. return mask;
  2442. }
  2443. static int qg_device_open(struct inode *inode, struct file *file)
  2444. {
  2445. struct qpnp_qg *chip = container_of(inode->i_cdev,
  2446. struct qpnp_qg, qg_cdev);
  2447. file->private_data = chip;
  2448. chip->qg_device_open = true;
  2449. qg_dbg(chip, QG_DEBUG_DEVICE, "QG device opened!\n");
  2450. return 0;
  2451. }
  2452. static int qg_device_release(struct inode *inode, struct file *file)
  2453. {
  2454. struct qpnp_qg *chip = container_of(inode->i_cdev,
  2455. struct qpnp_qg, qg_cdev);
  2456. file->private_data = chip;
  2457. chip->qg_device_open = false;
  2458. qg_dbg(chip, QG_DEBUG_DEVICE, "QG device closed!\n");
  2459. return 0;
  2460. }
  2461. static const struct file_operations qg_fops = {
  2462. .owner = THIS_MODULE,
  2463. .open = qg_device_open,
  2464. .release = qg_device_release,
  2465. .read = qg_device_read,
  2466. .write = qg_device_write,
  2467. .poll = qg_device_poll,
  2468. };
  2469. static int qg_register_device(struct qpnp_qg *chip)
  2470. {
  2471. int rc;
  2472. rc = alloc_chrdev_region(&chip->dev_no, 0, 1, "qg");
  2473. if (rc < 0) {
  2474. pr_err("Failed to allocate chardev rc=%d\n", rc);
  2475. return rc;
  2476. }
  2477. cdev_init(&chip->qg_cdev, &qg_fops);
  2478. rc = cdev_add(&chip->qg_cdev, chip->dev_no, 1);
  2479. if (rc < 0) {
  2480. pr_err("Failed to cdev_add rc=%d\n", rc);
  2481. goto unregister_chrdev;
  2482. }
  2483. chip->qg_class = class_create(THIS_MODULE, "qg");
  2484. if (IS_ERR_OR_NULL(chip->qg_class)) {
  2485. pr_err("Failed to create qg class\n");
  2486. rc = -EINVAL;
  2487. goto delete_cdev;
  2488. }
  2489. chip->qg_device = device_create(chip->qg_class, NULL, chip->dev_no,
  2490. NULL, "qg");
  2491. if (IS_ERR(chip->qg_device)) {
  2492. pr_err("Failed to create qg_device\n");
  2493. rc = -EINVAL;
  2494. goto destroy_class;
  2495. }
  2496. qg_dbg(chip, QG_DEBUG_DEVICE, "'/dev/qg' successfully created\n");
  2497. return 0;
  2498. destroy_class:
  2499. class_destroy(chip->qg_class);
  2500. delete_cdev:
  2501. cdev_del(&chip->qg_cdev);
  2502. unregister_chrdev:
  2503. unregister_chrdev_region(chip->dev_no, 1);
  2504. return rc;
  2505. }
  2506. #define BID_RPULL_OHM 100000
  2507. #define BID_VREF_MV 1875
  2508. static int get_batt_id_ohm(struct qpnp_qg *chip, u32 *batt_id_ohm)
  2509. {
  2510. int rc, batt_id_mv;
  2511. int64_t denom;
  2512. /* Read battery-id */
  2513. rc = iio_read_channel_processed(chip->batt_id_chan, &batt_id_mv);
  2514. if (rc < 0) {
  2515. pr_err("Failed to read BATT_ID over ADC, rc=%d\n", rc);
  2516. return rc;
  2517. }
  2518. batt_id_mv = div_s64(batt_id_mv, 1000);
  2519. if (batt_id_mv == 0) {
  2520. pr_debug("batt_id_mv = 0 from ADC\n");
  2521. return 0;
  2522. }
  2523. denom = div64_s64(BID_VREF_MV * 1000, batt_id_mv) - 1000;
  2524. if (denom <= 0) {
  2525. /* batt id connector might be open, return 0 kohms */
  2526. return 0;
  2527. }
  2528. *batt_id_ohm = div64_u64(BID_RPULL_OHM * 1000 + denom / 2, denom);
  2529. qg_dbg(chip, QG_DEBUG_PROFILE, "batt_id_mv=%d, batt_id_ohm=%d\n",
  2530. batt_id_mv, *batt_id_ohm);
  2531. return 0;
  2532. }
  2533. static int qg_load_battery_profile(struct qpnp_qg *chip)
  2534. {
  2535. struct device_node *node = chip->dev->of_node;
  2536. struct device_node *profile_node;
  2537. int rc, tuple_len, len, i, avail_age_level = 0;
  2538. chip->batt_node = of_find_node_by_name(node, "qcom,battery-data");
  2539. if (!chip->batt_node) {
  2540. pr_err("Batterydata not available\n");
  2541. return -ENXIO;
  2542. }
  2543. if (chip->dt.multi_profile_load) {
  2544. if (chip->batt_age_level == -EINVAL) {
  2545. rc = qg_get_batt_age_level(chip, &chip->batt_age_level);
  2546. if (rc < 0) {
  2547. pr_err("error in retrieving batt age level rc=%d\n",
  2548. rc);
  2549. return rc;
  2550. }
  2551. }
  2552. profile_node = of_batterydata_get_best_aged_profile(
  2553. chip->batt_node,
  2554. chip->batt_id_ohm / 1000,
  2555. chip->batt_age_level,
  2556. &avail_age_level);
  2557. if (chip->batt_age_level != avail_age_level) {
  2558. qg_dbg(chip, QG_DEBUG_PROFILE, "Batt_age_level %d doesn't exist, using %d\n",
  2559. chip->batt_age_level, avail_age_level);
  2560. chip->batt_age_level = avail_age_level;
  2561. }
  2562. } else {
  2563. profile_node = of_batterydata_get_best_profile(chip->batt_node,
  2564. chip->batt_id_ohm / 1000, NULL);
  2565. }
  2566. if (IS_ERR_OR_NULL(profile_node)) {
  2567. rc = profile_node ? PTR_ERR(profile_node) : -EINVAL;
  2568. pr_err("Failed to detect valid QG battery profile %d\n", rc);
  2569. return rc;
  2570. }
  2571. rc = of_property_read_string(profile_node, "qcom,battery-type",
  2572. &chip->bp.batt_type_str);
  2573. if (rc < 0) {
  2574. pr_err("Failed to detect battery type rc:%d\n", rc);
  2575. return rc;
  2576. }
  2577. rc = qg_batterydata_init(profile_node);
  2578. if (rc < 0) {
  2579. pr_err("Failed to initialize battery-profile rc=%d\n", rc);
  2580. return rc;
  2581. }
  2582. rc = of_property_read_u32(profile_node, "qcom,max-voltage-uv",
  2583. &chip->bp.float_volt_uv);
  2584. if (rc < 0) {
  2585. pr_err("Failed to read battery float-voltage rc:%d\n", rc);
  2586. chip->bp.float_volt_uv = -EINVAL;
  2587. }
  2588. rc = of_property_read_u32(profile_node, "qcom,fastchg-current-ma",
  2589. &chip->bp.fastchg_curr_ma);
  2590. if (rc < 0) {
  2591. pr_err("Failed to read battery fastcharge current rc:%d\n", rc);
  2592. chip->bp.fastchg_curr_ma = -EINVAL;
  2593. }
  2594. /*
  2595. * Update the max fcc values based on QG subtype including
  2596. * error margins.
  2597. */
  2598. chip->bp.fastchg_curr_ma = min(chip->max_fcc_limit_ma,
  2599. chip->bp.fastchg_curr_ma);
  2600. rc = of_property_read_u32(profile_node, "qcom,qg-batt-profile-ver",
  2601. &chip->bp.qg_profile_version);
  2602. if (rc < 0) {
  2603. pr_err("Failed to read QG profile version rc:%d\n", rc);
  2604. chip->bp.qg_profile_version = -EINVAL;
  2605. }
  2606. /*
  2607. * Currently step charging thresholds should be read only for Vbatt
  2608. * based and not for SOC based.
  2609. */
  2610. if (!of_property_read_bool(profile_node, "qcom,soc-based-step-chg") &&
  2611. of_find_property(profile_node, "qcom,step-chg-ranges", &len) &&
  2612. chip->bp.float_volt_uv > 0 && chip->bp.fastchg_curr_ma > 0) {
  2613. len /= sizeof(u32);
  2614. tuple_len = len / (sizeof(struct range_data) / sizeof(u32));
  2615. if (tuple_len <= 0 || tuple_len > MAX_STEP_CHG_ENTRIES)
  2616. return -EINVAL;
  2617. mutex_lock(&chip->ttf->lock);
  2618. chip->ttf->step_chg_cfg =
  2619. kcalloc(len, sizeof(*chip->ttf->step_chg_cfg),
  2620. GFP_KERNEL);
  2621. if (!chip->ttf->step_chg_cfg) {
  2622. mutex_unlock(&chip->ttf->lock);
  2623. return -ENOMEM;
  2624. }
  2625. chip->ttf->step_chg_data =
  2626. kcalloc(tuple_len, sizeof(*chip->ttf->step_chg_data),
  2627. GFP_KERNEL);
  2628. if (!chip->ttf->step_chg_data) {
  2629. kfree(chip->ttf->step_chg_cfg);
  2630. mutex_unlock(&chip->ttf->lock);
  2631. return -ENOMEM;
  2632. }
  2633. rc = qg_read_range_data_from_node(profile_node,
  2634. "qcom,step-chg-ranges",
  2635. chip->ttf->step_chg_cfg,
  2636. chip->bp.float_volt_uv,
  2637. chip->bp.fastchg_curr_ma * 1000);
  2638. if (rc < 0) {
  2639. pr_err("Error in reading qcom,step-chg-ranges from battery profile, rc=%d\n",
  2640. rc);
  2641. kfree(chip->ttf->step_chg_data);
  2642. kfree(chip->ttf->step_chg_cfg);
  2643. chip->ttf->step_chg_cfg = NULL;
  2644. mutex_unlock(&chip->ttf->lock);
  2645. return rc;
  2646. }
  2647. chip->ttf->step_chg_num_params = tuple_len;
  2648. chip->ttf->step_chg_cfg_valid = true;
  2649. mutex_unlock(&chip->ttf->lock);
  2650. if (chip->ttf->step_chg_cfg_valid) {
  2651. for (i = 0; i < tuple_len; i++)
  2652. pr_debug("Vbatt_low: %d Vbatt_high: %d FCC: %d\n",
  2653. chip->ttf->step_chg_cfg[i].low_threshold,
  2654. chip->ttf->step_chg_cfg[i].high_threshold,
  2655. chip->ttf->step_chg_cfg[i].value);
  2656. }
  2657. }
  2658. qg_dbg(chip, QG_DEBUG_PROFILE, "profile=%s FV=%duV FCC=%dma\n",
  2659. chip->bp.batt_type_str, chip->bp.float_volt_uv,
  2660. chip->bp.fastchg_curr_ma);
  2661. return 0;
  2662. }
  2663. static int qg_setup_battery(struct qpnp_qg *chip)
  2664. {
  2665. int rc;
  2666. if (!is_battery_present(chip)) {
  2667. qg_dbg(chip, QG_DEBUG_PROFILE, "Battery Missing!\n");
  2668. chip->battery_missing = true;
  2669. chip->profile_loaded = false;
  2670. chip->soc_reporting_ready = true;
  2671. } else {
  2672. /* battery present */
  2673. rc = get_batt_id_ohm(chip, &chip->batt_id_ohm);
  2674. if (rc < 0) {
  2675. pr_err("Failed to detect batt_id rc=%d\n", rc);
  2676. chip->profile_loaded = false;
  2677. } else {
  2678. rc = qg_load_battery_profile(chip);
  2679. if (rc < 0) {
  2680. pr_err("Failed to load battery-profile rc=%d\n",
  2681. rc);
  2682. chip->profile_loaded = false;
  2683. chip->soc_reporting_ready = true;
  2684. } else {
  2685. chip->profile_loaded = true;
  2686. }
  2687. }
  2688. }
  2689. qg_dbg(chip, QG_DEBUG_PROFILE, "battery_missing=%d batt_id_ohm=%d Ohm profile_loaded=%d profile=%s\n",
  2690. chip->battery_missing, chip->batt_id_ohm,
  2691. chip->profile_loaded, chip->bp.batt_type_str);
  2692. return 0;
  2693. }
  2694. static struct ocv_all ocv[] = {
  2695. [S7_PON_OCV] = { 0, 0, "S7_PON_OCV"},
  2696. [S3_GOOD_OCV] = { 0, 0, "S3_GOOD_OCV"},
  2697. [S3_LAST_OCV] = { 0, 0, "S3_LAST_OCV"},
  2698. [SDAM_PON_OCV] = { 0, 0, "SDAM_PON_OCV"},
  2699. };
  2700. #define S7_ERROR_MARGIN_UV 20000
  2701. static int qg_determine_pon_soc(struct qpnp_qg *chip)
  2702. {
  2703. int rc = 0, batt_temp = 0, i, shutdown_temp = 0;
  2704. bool use_pon_ocv = true;
  2705. unsigned long rtc_sec = 0;
  2706. u32 ocv_uv = 0, soc = 0, pon_soc = 0, full_soc = 0, cutoff_soc = 0;
  2707. u32 shutdown[SDAM_MAX] = {0}, soc_raw = 0;
  2708. char ocv_type[20] = "NONE";
  2709. if (!chip->profile_loaded) {
  2710. qg_dbg(chip, QG_DEBUG_PON, "No Profile, skipping PON soc\n");
  2711. return 0;
  2712. }
  2713. /* read all OCVs */
  2714. for (i = S7_PON_OCV; i < PON_OCV_MAX; i++) {
  2715. rc = qg_read_ocv(chip, &ocv[i].ocv_uv,
  2716. &ocv[i].ocv_raw, i);
  2717. if (rc < 0)
  2718. pr_err("Failed to read %s OCV rc=%d\n",
  2719. ocv[i].ocv_type, rc);
  2720. else
  2721. qg_dbg(chip, QG_DEBUG_PON, "%s OCV=%d\n",
  2722. ocv[i].ocv_type, ocv[i].ocv_uv);
  2723. }
  2724. rc = qg_get_battery_temp(chip, &batt_temp);
  2725. if (rc < 0) {
  2726. pr_err("Failed to read BATT_TEMP at PON rc=%d\n", rc);
  2727. goto done;
  2728. }
  2729. rc = get_rtc_time(&rtc_sec);
  2730. if (rc < 0) {
  2731. pr_err("Failed to read RTC time rc=%d\n", rc);
  2732. goto use_pon_ocv;
  2733. }
  2734. rc = qg_sdam_read_all(shutdown);
  2735. if (rc < 0) {
  2736. pr_err("Failed to read shutdown params rc=%d\n", rc);
  2737. goto use_pon_ocv;
  2738. }
  2739. shutdown_temp = sign_extend32(shutdown[SDAM_TEMP], 15);
  2740. rc = lookup_soc_ocv(&pon_soc, ocv[S7_PON_OCV].ocv_uv, batt_temp, false);
  2741. if (rc < 0) {
  2742. pr_err("Failed to lookup S7_PON SOC rc=%d\n", rc);
  2743. goto done;
  2744. }
  2745. qg_dbg(chip, QG_DEBUG_PON, "Shutdown: Valid=%d SOC=%d OCV=%duV time=%dsecs temp=%d, time_now=%ldsecs temp_now=%d S7_soc=%d\n",
  2746. shutdown[SDAM_VALID],
  2747. shutdown[SDAM_SOC],
  2748. shutdown[SDAM_OCV_UV],
  2749. shutdown[SDAM_TIME_SEC],
  2750. shutdown_temp,
  2751. rtc_sec, batt_temp,
  2752. pon_soc);
  2753. /*
  2754. * Use the shutdown SOC if
  2755. * 1. SDAM read is a success & SDAM data is valid
  2756. * 2. The device was powered off for < ignore_shutdown_time
  2757. * 2. Batt temp has not changed more than shutdown_temp_diff
  2758. */
  2759. if (!shutdown[SDAM_VALID])
  2760. goto use_pon_ocv;
  2761. if (!is_between(0, chip->dt.ignore_shutdown_soc_secs,
  2762. (rtc_sec - shutdown[SDAM_TIME_SEC])))
  2763. goto use_pon_ocv;
  2764. if (!is_between(0, chip->dt.shutdown_temp_diff,
  2765. abs(shutdown_temp - batt_temp)) &&
  2766. (shutdown_temp < 0 || batt_temp < 0))
  2767. goto use_pon_ocv;
  2768. if ((chip->dt.shutdown_soc_threshold != -EINVAL) &&
  2769. !is_between(0, chip->dt.shutdown_soc_threshold,
  2770. abs(pon_soc - shutdown[SDAM_SOC])))
  2771. goto use_pon_ocv;
  2772. use_pon_ocv = false;
  2773. ocv_uv = shutdown[SDAM_OCV_UV];
  2774. soc = shutdown[SDAM_SOC];
  2775. soc_raw = shutdown[SDAM_SOC] * 100;
  2776. strscpy(ocv_type, "SHUTDOWN_SOC", 20);
  2777. qg_dbg(chip, QG_DEBUG_PON, "Using SHUTDOWN_SOC @ PON\n");
  2778. use_pon_ocv:
  2779. if (use_pon_ocv) {
  2780. if (chip->wa_flags & QG_PON_OCV_WA) {
  2781. if (ocv[S3_LAST_OCV].ocv_raw == FIFO_V_RESET_VAL) {
  2782. if (!ocv[SDAM_PON_OCV].ocv_uv) {
  2783. strscpy(ocv_type, "S7_PON_SOC", 20);
  2784. ocv_uv = ocv[S7_PON_OCV].ocv_uv;
  2785. } else if (ocv[SDAM_PON_OCV].ocv_uv <=
  2786. ocv[S7_PON_OCV].ocv_uv) {
  2787. strscpy(ocv_type, "S7_PON_SOC", 20);
  2788. ocv_uv = ocv[S7_PON_OCV].ocv_uv;
  2789. } else if (!shutdown[SDAM_VALID] &&
  2790. ((ocv[SDAM_PON_OCV].ocv_uv -
  2791. ocv[S7_PON_OCV].ocv_uv) >
  2792. S7_ERROR_MARGIN_UV)) {
  2793. strscpy(ocv_type, "S7_PON_SOC", 20);
  2794. ocv_uv = ocv[S7_PON_OCV].ocv_uv;
  2795. } else {
  2796. strscpy(ocv_type, "SDAM_PON_SOC", 20);
  2797. ocv_uv = ocv[SDAM_PON_OCV].ocv_uv;
  2798. }
  2799. } else {
  2800. if (ocv[S3_LAST_OCV].ocv_uv >=
  2801. ocv[S7_PON_OCV].ocv_uv) {
  2802. strscpy(ocv_type, "S3_LAST_SOC", 20);
  2803. ocv_uv = ocv[S3_LAST_OCV].ocv_uv;
  2804. } else {
  2805. strscpy(ocv_type, "S7_PON_SOC", 20);
  2806. ocv_uv = ocv[S7_PON_OCV].ocv_uv;
  2807. }
  2808. }
  2809. } else {
  2810. /* Use S7 PON OCV */
  2811. strscpy(ocv_type, "S7_PON_SOC", 20);
  2812. ocv_uv = ocv[S7_PON_OCV].ocv_uv;
  2813. }
  2814. ocv_uv = CAP(QG_MIN_OCV_UV, QG_MAX_OCV_UV, ocv_uv);
  2815. rc = lookup_soc_ocv(&pon_soc, ocv_uv, batt_temp, false);
  2816. if (rc < 0) {
  2817. pr_err("Failed to lookup SOC@PON rc=%d\n", rc);
  2818. goto done;
  2819. }
  2820. rc = lookup_soc_ocv(&full_soc, chip->bp.float_volt_uv,
  2821. batt_temp, true);
  2822. if (rc < 0) {
  2823. pr_err("Failed to lookup FULL_SOC@PON rc=%d\n", rc);
  2824. goto done;
  2825. }
  2826. full_soc = CAP(0, 99, full_soc);
  2827. rc = lookup_soc_ocv(&cutoff_soc,
  2828. chip->dt.vbatt_cutoff_mv * 1000,
  2829. batt_temp, false);
  2830. if (rc < 0) {
  2831. pr_err("Failed to lookup CUTOFF_SOC@PON rc=%d\n", rc);
  2832. goto done;
  2833. }
  2834. if ((full_soc > cutoff_soc) && (pon_soc > cutoff_soc)) {
  2835. soc = DIV_ROUND_UP(((pon_soc - cutoff_soc) * 100),
  2836. (full_soc - cutoff_soc));
  2837. soc = CAP(0, 100, soc);
  2838. soc_raw = soc * 100;
  2839. } else {
  2840. soc_raw = pon_soc * 100;
  2841. soc = pon_soc;
  2842. }
  2843. qg_dbg(chip, QG_DEBUG_PON, "v_float=%d v_cutoff=%d FULL_SOC=%d CUTOFF_SOC=%d PON_SYS_SOC=%d pon_soc=%d\n",
  2844. chip->bp.float_volt_uv, chip->dt.vbatt_cutoff_mv * 1000,
  2845. full_soc, cutoff_soc, soc, pon_soc);
  2846. }
  2847. done:
  2848. if (rc < 0) {
  2849. pr_err("Failed to get %s @ PON, rc=%d\n", ocv_type, rc);
  2850. return rc;
  2851. }
  2852. if (chip->qg_mode == QG_V_I_MODE)
  2853. chip->cc_soc = soc_raw;
  2854. chip->sys_soc = soc_raw;
  2855. chip->last_adj_ssoc = chip->catch_up_soc = chip->msoc = soc;
  2856. chip->kdata.param[QG_PON_OCV_UV].data = ocv_uv;
  2857. chip->kdata.param[QG_PON_OCV_UV].valid = true;
  2858. /* write back to SDAM */
  2859. chip->sdam_data[SDAM_SOC] = soc;
  2860. chip->sdam_data[SDAM_OCV_UV] = ocv_uv;
  2861. chip->sdam_data[SDAM_VALID] = 1;
  2862. rc = qg_write_monotonic_soc(chip, chip->msoc);
  2863. if (rc < 0)
  2864. pr_err("Failed to update MSOC register rc=%d\n", rc);
  2865. rc = qg_store_soc_params(chip);
  2866. if (rc < 0)
  2867. pr_err("Failed to update sdam params rc=%d\n", rc);
  2868. pr_info("using %s @ PON ocv_uv=%duV soc=%d\n",
  2869. ocv_type, ocv_uv, chip->msoc);
  2870. /* SOC reporting is now ready */
  2871. chip->soc_reporting_ready = 1;
  2872. return 0;
  2873. }
  2874. static int qg_set_wa_flags(struct qpnp_qg *chip)
  2875. {
  2876. switch (chip->pmic_version) {
  2877. case PMI632:
  2878. chip->wa_flags |= QG_RECHARGE_SOC_WA;
  2879. if (!chip->dt.use_s7_ocv)
  2880. chip->wa_flags |= QG_PON_OCV_WA;
  2881. break;
  2882. case PM6150:
  2883. chip->wa_flags |= QG_CLK_ADJUST_WA |
  2884. QG_RECHARGE_SOC_WA;
  2885. qg_esr_mod_count = 10;
  2886. break;
  2887. case PM7250B:
  2888. qg_esr_mod_count = 10;
  2889. break;
  2890. case PM2250:
  2891. chip->wa_flags |= QG_CLK_ADJUST_WA |
  2892. QG_RECHARGE_SOC_WA |
  2893. QG_VBAT_LOW_WA;
  2894. break;
  2895. default:
  2896. pr_err("Unsupported PMIC version %d\n",
  2897. chip->pmic_version);
  2898. return -EINVAL;
  2899. }
  2900. qg_dbg(chip, QG_DEBUG_PON, "wa_flags = %x\n", chip->wa_flags);
  2901. return 0;
  2902. }
  2903. #define SDAM_MAGIC_NUMBER 0x12345678
  2904. static int qg_sanitize_sdam(struct qpnp_qg *chip)
  2905. {
  2906. int rc = 0;
  2907. u32 data = 0;
  2908. rc = qg_sdam_read(SDAM_MAGIC, &data);
  2909. if (rc < 0) {
  2910. pr_err("Failed to read SDAM rc=%d\n", rc);
  2911. return rc;
  2912. }
  2913. if (data == SDAM_MAGIC_NUMBER) {
  2914. qg_dbg(chip, QG_DEBUG_PON, "SDAM valid\n");
  2915. } else if (data == 0) {
  2916. rc = qg_sdam_write(SDAM_MAGIC, SDAM_MAGIC_NUMBER);
  2917. if (!rc)
  2918. qg_dbg(chip, QG_DEBUG_PON, "First boot. SDAM initialized\n");
  2919. chip->first_profile_load = true;
  2920. } else {
  2921. /* SDAM has invalid value */
  2922. rc = qg_sdam_clear();
  2923. if (!rc) {
  2924. pr_err("SDAM uninitialized, SDAM reset\n");
  2925. rc = qg_sdam_write(SDAM_MAGIC, SDAM_MAGIC_NUMBER);
  2926. }
  2927. chip->first_profile_load = true;
  2928. }
  2929. if (rc < 0)
  2930. pr_err("Failed in SDAM operation, rc=%d\n", rc);
  2931. return rc;
  2932. }
  2933. #define ADC_CONV_DLY_512MS 0xA
  2934. #define IBAT_5A_FCC_MA 4800
  2935. #define IBAT_10A_FCC_MA 9600
  2936. static int qg_hw_init(struct qpnp_qg *chip)
  2937. {
  2938. int rc, temp;
  2939. u8 reg;
  2940. /* read STATUS2 register to clear its last state */
  2941. qg_read(chip, chip->qg_base + QG_STATUS2_REG, &reg, 1);
  2942. /* read the QG perph_subtype */
  2943. rc = qg_read(chip, chip->qg_base + PERPH_SUBTYPE_REG,
  2944. &chip->qg_subtype, 1);
  2945. if (rc < 0) {
  2946. pr_err("Failed to read QG subtype rc=%d\n", rc);
  2947. return rc;
  2948. }
  2949. if (chip->qg_subtype == QG_ADC_IBAT_5A)
  2950. chip->max_fcc_limit_ma = IBAT_5A_FCC_MA;
  2951. else
  2952. chip->max_fcc_limit_ma = IBAT_10A_FCC_MA;
  2953. if (chip->qg_version == QG_LITE) {
  2954. rc = qg_read(chip, chip->qg_base + QG_MODE_CTL2_REG, &reg, 1);
  2955. if (rc < 0) {
  2956. pr_err("Failed to read QG mode rc=%d\n", rc);
  2957. return rc;
  2958. }
  2959. chip->qg_mode = (reg & VI_MODE_BIT) ? QG_V_I_MODE : QG_V_MODE;
  2960. } else {
  2961. chip->qg_mode = QG_V_I_MODE;
  2962. }
  2963. if (chip->qg_mode == QG_V_MODE) {
  2964. chip->dt.esr_disable = true;
  2965. chip->dt.cl_disable = true;
  2966. chip->dt.tcss_enable = false;
  2967. chip->dt.bass_enable = false;
  2968. }
  2969. rc = qg_set_wa_flags(chip);
  2970. if (rc < 0) {
  2971. pr_err("Failed to update PMIC type flags, rc=%d\n", rc);
  2972. return rc;
  2973. }
  2974. rc = qg_master_hold(chip, true);
  2975. if (rc < 0) {
  2976. pr_err("Failed to hold master, rc=%d\n", rc);
  2977. goto done_fifo;
  2978. }
  2979. rc = qg_process_rt_fifo(chip);
  2980. if (rc < 0) {
  2981. pr_err("Failed to process FIFO real-time, rc=%d\n", rc);
  2982. goto done_fifo;
  2983. }
  2984. /* update the changed S2 fifo DT parameters */
  2985. if (chip->dt.s2_fifo_length > 0) {
  2986. rc = qg_update_fifo_length(chip, chip->dt.s2_fifo_length);
  2987. if (rc < 0)
  2988. goto done_fifo;
  2989. }
  2990. if (chip->dt.s2_acc_length > 0) {
  2991. reg = ilog2(chip->dt.s2_acc_length) - 1;
  2992. rc = qg_masked_write(chip, chip->qg_base +
  2993. QG_S2_NORMAL_MEAS_CTL2_REG,
  2994. NUM_OF_ACCUM_MASK, reg);
  2995. if (rc < 0) {
  2996. pr_err("Failed to write S2 ACC length, rc=%d\n", rc);
  2997. goto done_fifo;
  2998. }
  2999. }
  3000. if (chip->dt.s2_acc_intvl_ms > 0) {
  3001. reg = chip->dt.s2_acc_intvl_ms / 10;
  3002. rc = qg_write(chip, chip->qg_base +
  3003. QG_S2_NORMAL_MEAS_CTL3_REG,
  3004. &reg, 1);
  3005. if (rc < 0) {
  3006. pr_err("Failed to write S2 ACC intrvl, rc=%d\n", rc);
  3007. goto done_fifo;
  3008. }
  3009. }
  3010. chip->s2_state = S2_DEFAULT;
  3011. chip->s2_state_mask |= S2_DEFAULT;
  3012. /* signal the read thread */
  3013. chip->data_ready = true;
  3014. wake_up_interruptible(&chip->qg_wait_q);
  3015. done_fifo:
  3016. rc = qg_master_hold(chip, false);
  3017. if (rc < 0) {
  3018. pr_err("Failed to release master, rc=%d\n", rc);
  3019. return rc;
  3020. }
  3021. chip->last_fifo_update_time = ktime_get_boottime();
  3022. if (chip->dt.ocv_timer_expiry_min != -EINVAL &&
  3023. chip->qg_version != QG_LITE) {
  3024. if (chip->dt.ocv_timer_expiry_min < 2)
  3025. chip->dt.ocv_timer_expiry_min = 2;
  3026. else if (chip->dt.ocv_timer_expiry_min > 30)
  3027. chip->dt.ocv_timer_expiry_min = 30;
  3028. reg = (chip->dt.ocv_timer_expiry_min - 2) / 4;
  3029. rc = qg_masked_write(chip,
  3030. chip->qg_base + QG_S3_SLEEP_OCV_MEAS_CTL4_REG,
  3031. SLEEP_IBAT_QUALIFIED_LENGTH_MASK, reg);
  3032. if (rc < 0) {
  3033. pr_err("Failed to write OCV timer, rc=%d\n", rc);
  3034. return rc;
  3035. }
  3036. }
  3037. if (chip->dt.ocv_tol_threshold_uv != -EINVAL) {
  3038. if (chip->dt.ocv_tol_threshold_uv < 0)
  3039. chip->dt.ocv_tol_threshold_uv = 0;
  3040. else if (chip->dt.ocv_tol_threshold_uv > 12262)
  3041. chip->dt.ocv_tol_threshold_uv = 12262;
  3042. reg = chip->dt.ocv_tol_threshold_uv / 195;
  3043. rc = qg_masked_write(chip,
  3044. chip->qg_base + QG_S3_SLEEP_OCV_TREND_CTL2_REG,
  3045. TREND_TOL_MASK, reg);
  3046. if (rc < 0) {
  3047. pr_err("Failed to write OCV tol-thresh, rc=%d\n", rc);
  3048. return rc;
  3049. }
  3050. }
  3051. if (chip->dt.s3_entry_fifo_length != -EINVAL) {
  3052. if (chip->dt.s3_entry_fifo_length < 1)
  3053. chip->dt.s3_entry_fifo_length = 1;
  3054. else if (chip->dt.s3_entry_fifo_length >
  3055. chip->max_fifo_length)
  3056. chip->dt.s3_entry_fifo_length =
  3057. chip->max_fifo_length;
  3058. reg = chip->dt.s3_entry_fifo_length - 1;
  3059. rc = qg_masked_write(chip,
  3060. chip->qg_base + QG_S3_SLEEP_OCV_IBAT_CTL1_REG,
  3061. SLEEP_IBAT_QUALIFIED_LENGTH_MASK, reg);
  3062. if (rc < 0) {
  3063. pr_err("Failed to write S3-entry fifo-length, rc=%d\n",
  3064. rc);
  3065. return rc;
  3066. }
  3067. }
  3068. if (chip->dt.s3_entry_ibat_ua != -EINVAL) {
  3069. if (chip->dt.s3_entry_ibat_ua < 0)
  3070. chip->dt.s3_entry_ibat_ua = 0;
  3071. else if (chip->dt.s3_entry_ibat_ua > 155550)
  3072. chip->dt.s3_entry_ibat_ua = 155550;
  3073. reg = chip->dt.s3_entry_ibat_ua / 610;
  3074. rc = qg_write(chip, chip->qg_base +
  3075. QG_S3_ENTRY_IBAT_THRESHOLD_REG,
  3076. &reg, 1);
  3077. if (rc < 0) {
  3078. pr_err("Failed to write S3-entry ibat-uA, rc=%d\n", rc);
  3079. return rc;
  3080. }
  3081. }
  3082. if (chip->dt.s3_exit_ibat_ua != -EINVAL) {
  3083. if (chip->dt.s3_exit_ibat_ua < 0)
  3084. chip->dt.s3_exit_ibat_ua = 0;
  3085. else if (chip->dt.s3_exit_ibat_ua > 155550)
  3086. chip->dt.s3_exit_ibat_ua = 155550;
  3087. rc = qg_read(chip, chip->qg_base +
  3088. QG_S3_ENTRY_IBAT_THRESHOLD_REG,
  3089. &reg, 1);
  3090. if (rc < 0) {
  3091. pr_err("Failed to read S3-entry ibat-uA, rc=%d\n", rc);
  3092. return rc;
  3093. }
  3094. temp = reg * 610;
  3095. if (chip->dt.s3_exit_ibat_ua < temp)
  3096. chip->dt.s3_exit_ibat_ua = temp;
  3097. else
  3098. chip->dt.s3_exit_ibat_ua -= temp;
  3099. reg = chip->dt.s3_exit_ibat_ua / 610;
  3100. rc = qg_write(chip,
  3101. chip->qg_base + QG_S3_EXIT_IBAT_THRESHOLD_REG,
  3102. &reg, 1);
  3103. if (rc < 0) {
  3104. pr_err("Failed to write S3-entry ibat-uA, rc=%d\n", rc);
  3105. return rc;
  3106. }
  3107. }
  3108. /* vbat based configs */
  3109. if (chip->dt.vbatt_low_mv < 0)
  3110. chip->dt.vbatt_low_mv = 0;
  3111. else if (chip->dt.vbatt_low_mv > 12750)
  3112. chip->dt.vbatt_low_mv = 12750;
  3113. if (chip->dt.vbatt_empty_mv < 0)
  3114. chip->dt.vbatt_empty_mv = 0;
  3115. else if (chip->dt.vbatt_empty_mv > 12750)
  3116. chip->dt.vbatt_empty_mv = 12750;
  3117. if (chip->dt.vbatt_empty_cold_mv < 0)
  3118. chip->dt.vbatt_empty_cold_mv = 0;
  3119. else if (chip->dt.vbatt_empty_cold_mv > 12750)
  3120. chip->dt.vbatt_empty_cold_mv = 12750;
  3121. rc = qg_vbat_thresholds_config(chip);
  3122. if (rc < 0) {
  3123. pr_err("Failed to configure VBAT empty/low rc=%d\n", rc);
  3124. return rc;
  3125. }
  3126. if (chip->qg_version != QG_LITE) {
  3127. /* disable S5 */
  3128. rc = qg_masked_write(chip, chip->qg_base +
  3129. QG_S5_OCV_VALIDATE_MEAS_CTL1_REG,
  3130. ALLOW_S5_BIT, 0);
  3131. if (rc < 0)
  3132. pr_err("Failed to disable S5 rc=%d\n", rc);
  3133. }
  3134. /* change PON OCV time to 512ms */
  3135. rc = qg_masked_write(chip, chip->qg_base +
  3136. QG_S7_PON_OCV_MEAS_CTL1_REG,
  3137. ADC_CONV_DLY_MASK,
  3138. ADC_CONV_DLY_512MS);
  3139. if (rc < 0)
  3140. pr_err("Failed to reconfigure S7-delay rc=%d\n", rc);
  3141. return 0;
  3142. }
  3143. static int qg_soh_batt_profile_init(struct qpnp_qg *chip)
  3144. {
  3145. int rc = 0;
  3146. if (!chip->dt.multi_profile_load)
  3147. return 0;
  3148. if (is_debug_batt_id(chip) || chip->battery_missing)
  3149. return 0;
  3150. if (!chip->sp)
  3151. chip->sp = devm_kzalloc(chip->dev, sizeof(*chip->sp),
  3152. GFP_KERNEL);
  3153. if (!chip->sp)
  3154. return -ENOMEM;
  3155. if (!chip->sp->initialized) {
  3156. chip->sp->batt_id_kohms = chip->batt_id_ohm / 1000;
  3157. chip->sp->bp_node = chip->batt_node;
  3158. chip->sp->last_batt_age_level = chip->batt_age_level;
  3159. chip->sp->bms_psy = chip->qg_psy;
  3160. chip->sp->iio_chan_list = chip->int_iio_chans;
  3161. rc = soh_profile_init(chip->dev, chip->sp);
  3162. if (rc < 0)
  3163. chip->sp = NULL;
  3164. else
  3165. qg_dbg(chip, QG_DEBUG_PROFILE, "SOH profile count: %d\n",
  3166. chip->sp->profile_count);
  3167. }
  3168. return rc;
  3169. }
  3170. static int qg_post_init(struct qpnp_qg *chip)
  3171. {
  3172. int rc = 0;
  3173. /* disable all IRQs if profile is not loaded */
  3174. if (!chip->profile_loaded) {
  3175. vote(chip->vbatt_irq_disable_votable,
  3176. PROFILE_IRQ_DISABLE, true, 0);
  3177. vote(chip->fifo_irq_disable_votable,
  3178. PROFILE_IRQ_DISABLE, true, 0);
  3179. vote(chip->good_ocv_irq_disable_votable,
  3180. PROFILE_IRQ_DISABLE, true, 0);
  3181. }
  3182. /* restore ESR data */
  3183. if (!chip->dt.esr_disable)
  3184. qg_retrieve_esr_params(chip);
  3185. /*soh based multi profile init */
  3186. rc = qg_soh_batt_profile_init(chip);
  3187. if (rc < 0) {
  3188. pr_err("Failed to initialize battery based on soh rc=%d\n",
  3189. rc);
  3190. return rc;
  3191. }
  3192. return 0;
  3193. }
  3194. static int qg_get_irq_index_byname(const char *irq_name)
  3195. {
  3196. int i;
  3197. for (i = 0; i < ARRAY_SIZE(qg_irqs); i++) {
  3198. if (strcmp(qg_irqs[i].name, irq_name) == 0)
  3199. return i;
  3200. }
  3201. return -ENOENT;
  3202. }
  3203. static int qg_request_interrupt(struct qpnp_qg *chip,
  3204. struct device_node *node, const char *irq_name)
  3205. {
  3206. int rc, irq, irq_index;
  3207. irq = of_irq_get_byname(node, irq_name);
  3208. if (irq < 0) {
  3209. pr_err("Failed to get irq %s byname\n", irq_name);
  3210. return irq;
  3211. }
  3212. irq_index = qg_get_irq_index_byname(irq_name);
  3213. if (irq_index < 0) {
  3214. pr_err("%s is not a defined irq\n", irq_name);
  3215. return irq_index;
  3216. }
  3217. if (!qg_irqs[irq_index].handler)
  3218. return 0;
  3219. rc = devm_request_threaded_irq(chip->dev, irq, NULL,
  3220. qg_irqs[irq_index].handler,
  3221. IRQF_ONESHOT, irq_name, chip);
  3222. if (rc < 0) {
  3223. pr_err("Failed to request irq %d\n", irq);
  3224. return rc;
  3225. }
  3226. qg_irqs[irq_index].irq = irq;
  3227. if (qg_irqs[irq_index].wake)
  3228. enable_irq_wake(irq);
  3229. qg_dbg(chip, QG_DEBUG_PON, "IRQ %s registered wakeable=%d\n",
  3230. qg_irqs[irq_index].name, qg_irqs[irq_index].wake);
  3231. return 0;
  3232. }
  3233. static int qg_request_irqs(struct qpnp_qg *chip)
  3234. {
  3235. struct device_node *node = chip->dev->of_node;
  3236. struct device_node *child;
  3237. const char *name;
  3238. struct property *prop;
  3239. int rc = 0;
  3240. for_each_available_child_of_node(node, child) {
  3241. of_property_for_each_string(child, "interrupt-names",
  3242. prop, name) {
  3243. rc = qg_request_interrupt(chip, child, name);
  3244. if (rc < 0)
  3245. return rc;
  3246. }
  3247. }
  3248. return 0;
  3249. }
  3250. #define QG_TTF_ITERM_DELTA_MA 1
  3251. static int qg_alg_init(struct qpnp_qg *chip)
  3252. {
  3253. struct cycle_counter *counter;
  3254. struct cap_learning *cl;
  3255. struct ttf *ttf;
  3256. struct device_node *node = chip->dev->of_node;
  3257. int rc;
  3258. counter = devm_kzalloc(chip->dev, sizeof(*counter), GFP_KERNEL);
  3259. if (!counter)
  3260. return -ENOMEM;
  3261. counter->restore_count = qg_restore_cycle_count;
  3262. counter->store_count = qg_store_cycle_count;
  3263. counter->data = chip;
  3264. rc = cycle_count_init(counter);
  3265. if (rc < 0) {
  3266. dev_err(chip->dev, "Error in initializing cycle counter, rc:%d\n",
  3267. rc);
  3268. counter->data = NULL;
  3269. return rc;
  3270. }
  3271. chip->counter = counter;
  3272. ttf = devm_kzalloc(chip->dev, sizeof(*ttf), GFP_KERNEL);
  3273. if (!ttf)
  3274. return -ENOMEM;
  3275. ttf->get_ttf_param = qg_get_ttf_param;
  3276. ttf->awake_voter = qg_ttf_awake_voter;
  3277. ttf->iterm_delta = QG_TTF_ITERM_DELTA_MA;
  3278. ttf->data = chip;
  3279. rc = ttf_tte_init(ttf);
  3280. if (rc < 0) {
  3281. dev_err(chip->dev, "Error in initializing ttf, rc:%d\n",
  3282. rc);
  3283. ttf->data = NULL;
  3284. counter->data = NULL;
  3285. return rc;
  3286. }
  3287. chip->ttf = ttf;
  3288. chip->dt.cl_disable = of_property_read_bool(node,
  3289. "qcom,cl-disable");
  3290. /*Return if capacity learning is disabled*/
  3291. if (chip->dt.cl_disable)
  3292. return 0;
  3293. cl = devm_kzalloc(chip->dev, sizeof(*cl), GFP_KERNEL);
  3294. if (!cl)
  3295. return -ENOMEM;
  3296. cl->cc_soc_max = QG_SOC_FULL;
  3297. cl->get_cc_soc = qg_get_cc_soc;
  3298. cl->get_learned_capacity = qg_get_learned_capacity;
  3299. cl->store_learned_capacity = qg_store_learned_capacity;
  3300. cl->ok_to_begin = qg_cl_ok_to_begin;
  3301. cl->data = chip;
  3302. rc = cap_learning_init(cl);
  3303. if (rc < 0) {
  3304. dev_err(chip->dev, "Error in initializing capacity learning, rc:%d\n",
  3305. rc);
  3306. counter->data = NULL;
  3307. cl->data = NULL;
  3308. return rc;
  3309. }
  3310. chip->cl = cl;
  3311. return 0;
  3312. }
  3313. #ifdef CONFIG_DEBUG_FS
  3314. static void qg_create_debugfs(struct qpnp_qg *chip)
  3315. {
  3316. chip->dfs_root = debugfs_create_dir("qgauge", NULL);
  3317. if (IS_ERR_OR_NULL(chip->dfs_root)) {
  3318. pr_err("Failed to create debugfs directory rc=%ld\n",
  3319. (long)chip->dfs_root);
  3320. return;
  3321. }
  3322. debugfs_create_u32("debug_mask", 0600, chip->dfs_root,
  3323. &qg_debug_mask);
  3324. }
  3325. #else
  3326. static void qg_create_debugfs(struct qpnp_qg *chip)
  3327. {
  3328. }
  3329. #endif
  3330. #define DEFAULT_S2_FIFO_LENGTH 5
  3331. #define DEFAULT_S2_VBAT_LOW_LENGTH 2
  3332. #define DEFAULT_S2_ACC_LENGTH 128
  3333. #define DEFAULT_S2_ACC_INTVL_MS 100
  3334. #define DEFAULT_SLEEP_S2_FIFO_LENGTH 8
  3335. #define DEFAULT_SLEEP_S2_ACC_LENGTH 256
  3336. #define DEFAULT_SLEEP_S2_ACC_INTVL_MS 200
  3337. #define DEFAULT_FAST_CHG_S2_FIFO_LENGTH 1
  3338. static int qg_parse_s2_dt(struct qpnp_qg *chip)
  3339. {
  3340. int rc;
  3341. struct device_node *node = chip->dev->of_node;
  3342. u32 temp;
  3343. /* S2 state params */
  3344. rc = of_property_read_u32(node, "qcom,s2-fifo-length", &temp);
  3345. if (rc < 0)
  3346. chip->dt.s2_fifo_length = DEFAULT_S2_FIFO_LENGTH;
  3347. else
  3348. chip->dt.s2_fifo_length = temp;
  3349. if (chip->dt.s2_fifo_length > chip->max_fifo_length) {
  3350. pr_err("Invalid S2 fifo-length=%d max_length=%d\n",
  3351. chip->dt.s2_fifo_length,
  3352. chip->max_fifo_length);
  3353. return -EINVAL;
  3354. }
  3355. rc = of_property_read_u32(node, "qcom,s2-vbat-low-fifo-length", &temp);
  3356. if (rc < 0)
  3357. chip->dt.s2_vbat_low_fifo_length = DEFAULT_S2_VBAT_LOW_LENGTH;
  3358. else
  3359. chip->dt.s2_vbat_low_fifo_length = temp;
  3360. rc = of_property_read_u32(node, "qcom,s2-acc-length", &temp);
  3361. if (rc < 0)
  3362. chip->dt.s2_acc_length = DEFAULT_S2_ACC_LENGTH;
  3363. else
  3364. chip->dt.s2_acc_length = temp;
  3365. rc = of_property_read_u32(node, "qcom,s2-acc-interval-ms", &temp);
  3366. if (rc < 0)
  3367. chip->dt.s2_acc_intvl_ms = DEFAULT_S2_ACC_INTVL_MS;
  3368. else
  3369. chip->dt.s2_acc_intvl_ms = temp;
  3370. qg_dbg(chip, QG_DEBUG_PON, "DT: S2 FIFO length=%d low_vbat_length=%d acc_length=%d acc_interval=%d\n",
  3371. chip->dt.s2_fifo_length, chip->dt.s2_vbat_low_fifo_length,
  3372. chip->dt.s2_acc_length, chip->dt.s2_acc_intvl_ms);
  3373. if (of_property_read_bool(node, "qcom,qg-sleep-config")) {
  3374. chip->dt.qg_sleep_config = true;
  3375. rc = of_property_read_u32(node,
  3376. "qcom,sleep-s2-fifo-length", &temp);
  3377. if (rc < 0)
  3378. chip->dt.sleep_s2_fifo_length =
  3379. DEFAULT_SLEEP_S2_FIFO_LENGTH;
  3380. else
  3381. chip->dt.sleep_s2_fifo_length = temp;
  3382. if (chip->dt.s2_fifo_length > chip->max_fifo_length) {
  3383. pr_err("Invalid S2 sleep-fifo-length=%d max_length=%d\n",
  3384. chip->dt.sleep_s2_fifo_length,
  3385. chip->max_fifo_length);
  3386. return -EINVAL;
  3387. }
  3388. rc = of_property_read_u32(node,
  3389. "qcom,sleep-s2-acc-length", &temp);
  3390. if (rc < 0)
  3391. chip->dt.sleep_s2_acc_length =
  3392. DEFAULT_SLEEP_S2_ACC_LENGTH;
  3393. else
  3394. chip->dt.sleep_s2_acc_length = temp;
  3395. rc = of_property_read_u32(node,
  3396. "qcom,sleep-s2-acc-intvl-ms", &temp);
  3397. if (rc < 0)
  3398. chip->dt.sleep_s2_acc_intvl_ms =
  3399. DEFAULT_SLEEP_S2_ACC_INTVL_MS;
  3400. else
  3401. chip->dt.sleep_s2_acc_intvl_ms = temp;
  3402. }
  3403. if (of_property_read_bool(node, "qcom,qg-fast-chg-config")) {
  3404. chip->dt.qg_fast_chg_cfg = true;
  3405. rc = of_property_read_u32(node,
  3406. "qcom,fast-chg-s2-fifo-length", &temp);
  3407. if (rc < 0)
  3408. chip->dt.fast_chg_s2_fifo_length =
  3409. DEFAULT_FAST_CHG_S2_FIFO_LENGTH;
  3410. else
  3411. chip->dt.fast_chg_s2_fifo_length = temp;
  3412. if (chip->dt.fast_chg_s2_fifo_length > chip->max_fifo_length) {
  3413. pr_err("Invalid S2 fast-fifo-length=%d max_length=%d\n",
  3414. chip->dt.fast_chg_s2_fifo_length,
  3415. chip->max_fifo_length);
  3416. return -EINVAL;
  3417. }
  3418. }
  3419. return 0;
  3420. }
  3421. #define DEFAULT_CL_MIN_START_SOC 10
  3422. #define DEFAULT_CL_MAX_START_SOC 15
  3423. #define DEFAULT_CL_MIN_TEMP_DECIDEGC 150
  3424. #define DEFAULT_CL_MAX_TEMP_DECIDEGC 500
  3425. #define DEFAULT_CL_MAX_INC_DECIPERC 10
  3426. #define DEFAULT_CL_MAX_DEC_DECIPERC 20
  3427. #define DEFAULT_CL_MIN_LIM_DECIPERC 500
  3428. #define DEFAULT_CL_MAX_LIM_DECIPERC 100
  3429. #define DEFAULT_CL_DELTA_BATT_SOC 10
  3430. #define DEFAULT_CL_WT_START_SOC 15
  3431. static int qg_parse_cl_dt(struct qpnp_qg *chip)
  3432. {
  3433. int rc;
  3434. struct device_node *node = chip->dev->of_node;
  3435. u32 temp;
  3436. if (chip->dt.cl_disable)
  3437. return 0;
  3438. chip->dt.cl_feedback_on = of_property_read_bool(node,
  3439. "qcom,cl-feedback-on");
  3440. rc = of_property_read_u32(node, "qcom,cl-min-start-soc", &temp);
  3441. if (rc < 0)
  3442. chip->cl->dt.min_start_soc = DEFAULT_CL_MIN_START_SOC;
  3443. else
  3444. chip->cl->dt.min_start_soc = temp;
  3445. rc = of_property_read_u32(node, "qcom,cl-max-start-soc", &temp);
  3446. if (rc < 0)
  3447. chip->cl->dt.max_start_soc = DEFAULT_CL_MAX_START_SOC;
  3448. else
  3449. chip->cl->dt.max_start_soc = temp;
  3450. rc = of_property_read_u32(node, "qcom,cl-min-temp", &temp);
  3451. if (rc < 0)
  3452. chip->cl->dt.min_temp = DEFAULT_CL_MIN_TEMP_DECIDEGC;
  3453. else
  3454. chip->cl->dt.min_temp = temp;
  3455. rc = of_property_read_u32(node, "qcom,cl-max-temp", &temp);
  3456. if (rc < 0)
  3457. chip->cl->dt.max_temp = DEFAULT_CL_MAX_TEMP_DECIDEGC;
  3458. else
  3459. chip->cl->dt.max_temp = temp;
  3460. rc = of_property_read_u32(node, "qcom,cl-max-increment", &temp);
  3461. if (rc < 0)
  3462. chip->cl->dt.max_cap_inc = DEFAULT_CL_MAX_INC_DECIPERC;
  3463. else
  3464. chip->cl->dt.max_cap_inc = temp;
  3465. rc = of_property_read_u32(node, "qcom,cl-max-decrement", &temp);
  3466. if (rc < 0)
  3467. chip->cl->dt.max_cap_dec = DEFAULT_CL_MAX_DEC_DECIPERC;
  3468. else
  3469. chip->cl->dt.max_cap_dec = temp;
  3470. rc = of_property_read_u32(node, "qcom,cl-min-limit", &temp);
  3471. if (rc < 0)
  3472. chip->cl->dt.min_cap_limit =
  3473. DEFAULT_CL_MIN_LIM_DECIPERC;
  3474. else
  3475. chip->cl->dt.min_cap_limit = temp;
  3476. rc = of_property_read_u32(node, "qcom,cl-max-limit", &temp);
  3477. if (rc < 0)
  3478. chip->cl->dt.max_cap_limit =
  3479. DEFAULT_CL_MAX_LIM_DECIPERC;
  3480. else
  3481. chip->cl->dt.max_cap_limit = temp;
  3482. chip->cl->dt.min_delta_batt_soc = DEFAULT_CL_DELTA_BATT_SOC;
  3483. /* read from DT property and update, if value exists */
  3484. of_property_read_u32(node, "qcom,cl-min-delta-batt-soc",
  3485. &chip->cl->dt.min_delta_batt_soc);
  3486. if (of_property_read_bool(node, "qcom,cl-wt-enable")) {
  3487. chip->cl->dt.cl_wt_enable = true;
  3488. chip->cl->dt.min_start_soc = DEFAULT_CL_WT_START_SOC;
  3489. chip->cl->dt.max_start_soc = -EINVAL;
  3490. }
  3491. qg_dbg(chip, QG_DEBUG_PON, "DT: cl_min_start_soc=%d cl_max_start_soc=%d cl_min_temp=%d cl_max_temp=%d chip->cl->dt.cl_wt_enable=%d\n",
  3492. chip->cl->dt.min_start_soc, chip->cl->dt.max_start_soc,
  3493. chip->cl->dt.min_temp, chip->cl->dt.max_temp,
  3494. chip->cl->dt.cl_wt_enable);
  3495. return 0;
  3496. }
  3497. #define DEFAULT_VBATT_EMPTY_MV 3200
  3498. #define DEFAULT_VBATT_EMPTY_COLD_MV 3000
  3499. #define DEFAULT_VBATT_CUTOFF_MV 3400
  3500. #define DEFAULT_VBATT_LOW_MV 3500
  3501. #define DEFAULT_VBATT_LOW_COLD_MV 3800
  3502. #define DEFAULT_ITERM_MA 100
  3503. #define DEFAULT_DELTA_SOC 1
  3504. #define DEFAULT_SHUTDOWN_SOC_SECS 360
  3505. #define DEFAULT_COLD_TEMP_THRESHOLD 0
  3506. #define DEFAULT_SHUTDOWN_TEMP_DIFF 60 /* 6 degC */
  3507. #define DEFAULT_ESR_QUAL_CURRENT_UA 130000
  3508. #define DEFAULT_ESR_QUAL_VBAT_UV 7000
  3509. #define DEFAULT_ESR_DISABLE_SOC 1000
  3510. #define ESR_CHG_MIN_IBAT_UA (-450000)
  3511. #define DEFAULT_SLEEP_TIME_SECS 1800 /* 30 mins */
  3512. #define DEFAULT_SYS_MIN_VOLT_MV 2800
  3513. #define DEFAULT_FVSS_VBAT_MV 3500
  3514. #define DEFAULT_TCSS_ENTRY_SOC 90
  3515. #define DEFAULT_ESR_LOW_TEMP_THRESHOLD 100 /* 10 deg */
  3516. static int qg_parse_dt(struct qpnp_qg *chip)
  3517. {
  3518. int rc = 0;
  3519. struct device_node *child, *node = chip->dev->of_node;
  3520. u32 base, temp;
  3521. u8 type;
  3522. if (!node) {
  3523. pr_err("Failed to find device-tree node\n");
  3524. return -ENXIO;
  3525. }
  3526. for_each_available_child_of_node(node, child) {
  3527. rc = of_property_read_u32(child, "reg", &base);
  3528. if (rc < 0) {
  3529. pr_err("Failed to read base address, rc=%d\n", rc);
  3530. return rc;
  3531. }
  3532. rc = qg_read(chip, base + PERPH_TYPE_REG, &type, 1);
  3533. if (rc < 0) {
  3534. pr_err("Failed to read type, rc=%d\n", rc);
  3535. return rc;
  3536. }
  3537. switch (type) {
  3538. case QG_TYPE:
  3539. chip->qg_base = base;
  3540. break;
  3541. default:
  3542. break;
  3543. }
  3544. }
  3545. if (!chip->qg_base) {
  3546. pr_err("QG device node missing\n");
  3547. return -EINVAL;
  3548. }
  3549. rc = qg_parse_s2_dt(chip);
  3550. if (rc < 0)
  3551. pr_err("Failed to parse S2 DT params rc=%d\n", rc);
  3552. rc = qg_parse_cl_dt(chip);
  3553. if (rc < 0)
  3554. pr_err("Failed to parse CL parameters rc=%d\n", rc);
  3555. /* OCV params */
  3556. rc = of_property_read_u32(node, "qcom,ocv-timer-expiry-min", &temp);
  3557. if (rc < 0)
  3558. chip->dt.ocv_timer_expiry_min = -EINVAL;
  3559. else
  3560. chip->dt.ocv_timer_expiry_min = temp;
  3561. rc = of_property_read_u32(node, "qcom,ocv-tol-threshold-uv", &temp);
  3562. if (rc < 0)
  3563. chip->dt.ocv_tol_threshold_uv = -EINVAL;
  3564. else
  3565. chip->dt.ocv_tol_threshold_uv = temp;
  3566. qg_dbg(chip, QG_DEBUG_PON, "DT: OCV timer_expiry =%dmin ocv_tol_threshold=%duV\n",
  3567. chip->dt.ocv_timer_expiry_min, chip->dt.ocv_tol_threshold_uv);
  3568. /* S3 sleep configuration */
  3569. rc = of_property_read_u32(node, "qcom,s3-entry-fifo-length", &temp);
  3570. if (rc < 0)
  3571. chip->dt.s3_entry_fifo_length = -EINVAL;
  3572. else
  3573. chip->dt.s3_entry_fifo_length = temp;
  3574. rc = of_property_read_u32(node, "qcom,s3-entry-ibat-ua", &temp);
  3575. if (rc < 0)
  3576. chip->dt.s3_entry_ibat_ua = -EINVAL;
  3577. else
  3578. chip->dt.s3_entry_ibat_ua = temp;
  3579. rc = of_property_read_u32(node, "qcom,s3-exit-ibat-ua", &temp);
  3580. if (rc < 0)
  3581. chip->dt.s3_exit_ibat_ua = -EINVAL;
  3582. else
  3583. chip->dt.s3_exit_ibat_ua = temp;
  3584. /* VBAT thresholds */
  3585. rc = of_property_read_u32(node, "qcom,vbatt-empty-mv", &temp);
  3586. if (rc < 0)
  3587. chip->dt.vbatt_empty_mv = DEFAULT_VBATT_EMPTY_MV;
  3588. else
  3589. chip->dt.vbatt_empty_mv = temp;
  3590. rc = of_property_read_u32(node, "qcom,vbatt-empty-cold-mv", &temp);
  3591. if (rc < 0)
  3592. chip->dt.vbatt_empty_cold_mv = DEFAULT_VBATT_EMPTY_COLD_MV;
  3593. else
  3594. chip->dt.vbatt_empty_cold_mv = temp;
  3595. rc = of_property_read_u32(node, "qcom,cold-temp-threshold", &temp);
  3596. if (rc < 0)
  3597. chip->dt.cold_temp_threshold = DEFAULT_COLD_TEMP_THRESHOLD;
  3598. else
  3599. chip->dt.cold_temp_threshold = temp;
  3600. rc = of_property_read_u32(node, "qcom,vbatt-low-mv", &temp);
  3601. if (rc < 0)
  3602. chip->dt.vbatt_low_mv = DEFAULT_VBATT_LOW_MV;
  3603. else
  3604. chip->dt.vbatt_low_mv = temp;
  3605. rc = of_property_read_u32(node, "qcom,vbatt-low-cold-mv", &temp);
  3606. if (rc < 0)
  3607. chip->dt.vbatt_low_cold_mv = DEFAULT_VBATT_LOW_COLD_MV;
  3608. else
  3609. chip->dt.vbatt_low_cold_mv = temp;
  3610. rc = of_property_read_u32(node, "qcom,vbatt-cutoff-mv", &temp);
  3611. if (rc < 0)
  3612. chip->dt.vbatt_cutoff_mv = DEFAULT_VBATT_CUTOFF_MV;
  3613. else
  3614. chip->dt.vbatt_cutoff_mv = temp;
  3615. /* IBAT thresholds */
  3616. rc = of_property_read_u32(node, "qcom,qg-iterm-ma", &temp);
  3617. if (rc < 0)
  3618. chip->dt.iterm_ma = DEFAULT_ITERM_MA;
  3619. else
  3620. chip->dt.iterm_ma = temp;
  3621. rc = of_property_read_u32(node, "qcom,delta-soc", &temp);
  3622. if (rc < 0)
  3623. chip->dt.delta_soc = DEFAULT_DELTA_SOC;
  3624. else
  3625. chip->dt.delta_soc = temp;
  3626. rc = of_property_read_u32(node, "qcom,ignore-shutdown-soc-secs", &temp);
  3627. if (rc < 0)
  3628. chip->dt.ignore_shutdown_soc_secs = DEFAULT_SHUTDOWN_SOC_SECS;
  3629. else
  3630. chip->dt.ignore_shutdown_soc_secs = temp;
  3631. rc = of_property_read_u32(node, "qcom,shutdown-temp-diff", &temp);
  3632. if (rc < 0)
  3633. chip->dt.shutdown_temp_diff = DEFAULT_SHUTDOWN_TEMP_DIFF;
  3634. else
  3635. chip->dt.shutdown_temp_diff = temp;
  3636. chip->dt.hold_soc_while_full = of_property_read_bool(node,
  3637. "qcom,hold-soc-while-full");
  3638. chip->dt.linearize_soc = of_property_read_bool(node,
  3639. "qcom,linearize-soc");
  3640. rc = of_property_read_u32(node, "qcom,rbat-conn-mohm", &temp);
  3641. if (rc < 0)
  3642. chip->dt.rbat_conn_mohm = 0;
  3643. else
  3644. chip->dt.rbat_conn_mohm = (int)temp;
  3645. /* esr */
  3646. chip->dt.esr_disable = of_property_read_bool(node,
  3647. "qcom,esr-disable");
  3648. chip->dt.esr_discharge_enable = of_property_read_bool(node,
  3649. "qcom,esr-discharge-enable");
  3650. rc = of_property_read_u32(node, "qcom,esr-qual-current-ua", &temp);
  3651. if (rc < 0)
  3652. chip->dt.esr_qual_i_ua = DEFAULT_ESR_QUAL_CURRENT_UA;
  3653. else
  3654. chip->dt.esr_qual_i_ua = temp;
  3655. rc = of_property_read_u32(node, "qcom,esr-qual-vbatt-uv", &temp);
  3656. if (rc < 0)
  3657. chip->dt.esr_qual_v_uv = DEFAULT_ESR_QUAL_VBAT_UV;
  3658. else
  3659. chip->dt.esr_qual_v_uv = temp;
  3660. rc = of_property_read_u32(node, "qcom,esr-disable-soc", &temp);
  3661. if (rc < 0)
  3662. chip->dt.esr_disable_soc = DEFAULT_ESR_DISABLE_SOC;
  3663. else
  3664. chip->dt.esr_disable_soc = temp * 100;
  3665. rc = of_property_read_u32(node, "qcom,esr-chg-min-ibat-ua", &temp);
  3666. if (rc < 0)
  3667. chip->dt.esr_min_ibat_ua = ESR_CHG_MIN_IBAT_UA;
  3668. else
  3669. chip->dt.esr_min_ibat_ua = (int)temp;
  3670. rc = of_property_read_u32(node, "qcom,esr-low-temp-threshold", &temp);
  3671. if (rc < 0)
  3672. chip->dt.esr_low_temp_threshold =
  3673. DEFAULT_ESR_LOW_TEMP_THRESHOLD;
  3674. else
  3675. chip->dt.esr_low_temp_threshold = (int)temp;
  3676. rc = of_property_read_u32(node, "qcom,shutdown-soc-threshold", &temp);
  3677. if (rc < 0)
  3678. chip->dt.shutdown_soc_threshold = -EINVAL;
  3679. else
  3680. chip->dt.shutdown_soc_threshold = temp;
  3681. rc = of_property_read_u32(node, "qcom,qg-sys-min-voltage", &temp);
  3682. if (rc < 0)
  3683. chip->dt.sys_min_volt_mv = DEFAULT_SYS_MIN_VOLT_MV;
  3684. else
  3685. chip->dt.sys_min_volt_mv = temp;
  3686. chip->dt.qg_ext_sense = of_property_read_bool(node, "qcom,qg-ext-sns");
  3687. chip->dt.use_cp_iin_sns = of_property_read_bool(node,
  3688. "qcom,use-cp-iin-sns");
  3689. chip->dt.use_s7_ocv = of_property_read_bool(node, "qcom,qg-use-s7-ocv");
  3690. rc = of_property_read_u32(node, "qcom,min-sleep-time-secs", &temp);
  3691. if (rc < 0)
  3692. chip->dt.min_sleep_time_secs = DEFAULT_SLEEP_TIME_SECS;
  3693. else
  3694. chip->dt.min_sleep_time_secs = temp;
  3695. if (of_property_read_bool(node, "qcom,fvss-enable")) {
  3696. chip->dt.fvss_enable = true;
  3697. rc = of_property_read_u32(node,
  3698. "qcom,fvss-vbatt-mv", &temp);
  3699. if (rc < 0)
  3700. chip->dt.fvss_vbat_mv = DEFAULT_FVSS_VBAT_MV;
  3701. else
  3702. chip->dt.fvss_vbat_mv = temp;
  3703. }
  3704. if (of_property_read_bool(node, "qcom,tcss-enable")) {
  3705. chip->dt.tcss_enable = true;
  3706. rc = of_property_read_u32(node,
  3707. "qcom,tcss-entry-soc", &temp);
  3708. if (rc < 0)
  3709. chip->dt.tcss_entry_soc = DEFAULT_TCSS_ENTRY_SOC;
  3710. else
  3711. chip->dt.tcss_entry_soc = temp;
  3712. }
  3713. chip->dt.bass_enable = of_property_read_bool(node, "qcom,bass-enable");
  3714. chip->dt.multi_profile_load = of_property_read_bool(node,
  3715. "qcom,multi-profile-load");
  3716. qg_dbg(chip, QG_DEBUG_PON, "DT: vbatt_empty_mv=%dmV vbatt_low_mv=%dmV delta_soc=%d ext-sns=%d\n",
  3717. chip->dt.vbatt_empty_mv, chip->dt.vbatt_low_mv,
  3718. chip->dt.delta_soc, chip->dt.qg_ext_sense);
  3719. return 0;
  3720. }
  3721. static int process_suspend(struct qpnp_qg *chip)
  3722. {
  3723. u8 status = 0;
  3724. int rc;
  3725. u32 fifo_rt_length = 0, sleep_fifo_length = 0;
  3726. /* skip if profile is not loaded */
  3727. if (!chip->profile_loaded)
  3728. return 0;
  3729. cancel_delayed_work_sync(&chip->ttf->ttf_work);
  3730. chip->suspend_data = false;
  3731. /* read STATUS2 register to clear its last state */
  3732. qg_read(chip, chip->qg_base + QG_STATUS2_REG, &status, 1);
  3733. /* ignore any suspend processing if we are charging */
  3734. if (chip->charge_status == POWER_SUPPLY_STATUS_CHARGING) {
  3735. /* Reset the sleep config if we are charging */
  3736. if (chip->dt.qg_sleep_config) {
  3737. qg_dbg(chip, QG_DEBUG_STATUS, "Suspend: Charging - Exit S2_SLEEP\n");
  3738. rc = qg_config_s2_state(chip, S2_SLEEP, false, true);
  3739. if (rc < 0)
  3740. pr_err("Failed to exit S2-sleep rc=%d\n", rc);
  3741. }
  3742. qg_dbg(chip, QG_DEBUG_PM, "Charging @ suspend - ignore processing\n");
  3743. return 0;
  3744. }
  3745. rc = get_fifo_length(chip, &fifo_rt_length, true);
  3746. if (rc < 0) {
  3747. pr_err("Failed to read FIFO RT count, rc=%d\n", rc);
  3748. return rc;
  3749. }
  3750. rc = qg_read(chip, chip->qg_base + QG_S3_SLEEP_OCV_IBAT_CTL1_REG,
  3751. (u8 *)&sleep_fifo_length, 1);
  3752. if (rc < 0) {
  3753. pr_err("Failed to read sleep FIFO count, rc=%d\n", rc);
  3754. return rc;
  3755. }
  3756. sleep_fifo_length &= SLEEP_IBAT_QUALIFIED_LENGTH_MASK;
  3757. sleep_fifo_length++;
  3758. if (chip->dt.qg_sleep_config) {
  3759. qg_dbg(chip, QG_DEBUG_STATUS, "Suspend: Forcing S2_SLEEP\n");
  3760. rc = qg_config_s2_state(chip, S2_SLEEP, true, true);
  3761. if (rc < 0)
  3762. pr_err("Failed to config S2_SLEEP rc=%d\n", rc);
  3763. if (chip->kdata.fifo_length > 0)
  3764. chip->suspend_data = true;
  3765. } else if (fifo_rt_length >=
  3766. (chip->dt.s2_fifo_length - sleep_fifo_length)) {
  3767. /*
  3768. * If the real-time FIFO count is greater than
  3769. * the #fifo to enter sleep, save the FIFO data
  3770. * and reset the fifo count. This is avoid a gauranteed wakeup
  3771. * due to fifo_done event as the curent FIFO length is already
  3772. * beyond the sleep length.
  3773. */
  3774. rc = qg_master_hold(chip, true);
  3775. if (rc < 0) {
  3776. pr_err("Failed to hold master, rc=%d\n", rc);
  3777. return rc;
  3778. }
  3779. rc = qg_process_rt_fifo(chip);
  3780. if (rc < 0) {
  3781. pr_err("Failed to process FIFO real-time, rc=%d\n", rc);
  3782. qg_master_hold(chip, false);
  3783. return rc;
  3784. }
  3785. rc = qg_master_hold(chip, false);
  3786. if (rc < 0) {
  3787. pr_err("Failed to release master, rc=%d\n", rc);
  3788. return rc;
  3789. }
  3790. /* FIFOs restarted */
  3791. chip->last_fifo_update_time = ktime_get_boottime();
  3792. chip->suspend_data = true;
  3793. }
  3794. get_rtc_time(&chip->suspend_time);
  3795. qg_dbg(chip, QG_DEBUG_PM, "FIFO rt_length=%d sleep_fifo_length=%d default_s2_count=%d suspend_data=%d time=%d\n",
  3796. fifo_rt_length, sleep_fifo_length,
  3797. chip->dt.s2_fifo_length, chip->suspend_data,
  3798. chip->suspend_time);
  3799. return rc;
  3800. }
  3801. #define QG_SLEEP_EXIT_TIME_MS 15000 /* 15 secs */
  3802. static int process_resume(struct qpnp_qg *chip)
  3803. {
  3804. u8 status2 = 0, rt_status = 0;
  3805. u32 ocv_uv = 0, ocv_raw = 0;
  3806. int rc;
  3807. unsigned long rtc_sec = 0, sleep_time_secs = 0;
  3808. /* skip if profile is not loaded */
  3809. if (!chip->profile_loaded)
  3810. return 0;
  3811. get_rtc_time(&rtc_sec);
  3812. sleep_time_secs = rtc_sec - chip->suspend_time;
  3813. if (chip->dt.qg_sleep_config)
  3814. schedule_delayed_work(&chip->qg_sleep_exit_work,
  3815. msecs_to_jiffies(QG_SLEEP_EXIT_TIME_MS));
  3816. rc = qg_read(chip, chip->qg_base + QG_STATUS2_REG, &status2, 1);
  3817. if (rc < 0) {
  3818. pr_err("Failed to read status2 register, rc=%d\n", rc);
  3819. return rc;
  3820. }
  3821. if (status2 & GOOD_OCV_BIT) {
  3822. rc = qg_read_ocv(chip, &ocv_uv, &ocv_raw, S3_GOOD_OCV);
  3823. if (rc < 0) {
  3824. pr_err("Failed to read good_ocv, rc=%d\n", rc);
  3825. return rc;
  3826. }
  3827. /* Clear suspend data as there has been a GOOD OCV */
  3828. memset(&chip->kdata, 0, sizeof(chip->kdata));
  3829. chip->kdata.fifo_time = (u32)rtc_sec;
  3830. chip->kdata.param[QG_GOOD_OCV_UV].data = ocv_uv;
  3831. chip->kdata.param[QG_GOOD_OCV_UV].valid = true;
  3832. chip->suspend_data = false;
  3833. /* allow SOC jump if we have slept longer */
  3834. if (sleep_time_secs >= chip->dt.min_sleep_time_secs)
  3835. chip->force_soc = true;
  3836. qg_dbg(chip, QG_DEBUG_PM, "GOOD OCV @ resume good_ocv=%d uV\n",
  3837. ocv_uv);
  3838. }
  3839. rc = qg_read(chip, chip->qg_base + QG_INT_LATCHED_STS_REG,
  3840. &rt_status, 1);
  3841. if (rc < 0) {
  3842. pr_err("Failed to read latched status register, rc=%d\n", rc);
  3843. return rc;
  3844. }
  3845. rt_status &= FIFO_UPDATE_DONE_INT_LAT_STS_BIT;
  3846. qg_dbg(chip, QG_DEBUG_PM, "FIFO_DONE_STS=%d suspend_data=%d good_ocv=%d sleep_time=%d secs\n",
  3847. !!rt_status, chip->suspend_data,
  3848. chip->kdata.param[QG_GOOD_OCV_UV].valid,
  3849. sleep_time_secs);
  3850. /*
  3851. * If this is not a wakeup from FIFO-done,
  3852. * process the data immediately if - we have data from
  3853. * suspend or there is a good OCV.
  3854. */
  3855. if (!rt_status && (chip->suspend_data ||
  3856. chip->kdata.param[QG_GOOD_OCV_UV].valid)) {
  3857. vote(chip->awake_votable, SUSPEND_DATA_VOTER, true, 0);
  3858. /* signal the read thread */
  3859. chip->data_ready = true;
  3860. wake_up_interruptible(&chip->qg_wait_q);
  3861. chip->suspend_data = false;
  3862. }
  3863. schedule_delayed_work(&chip->ttf->ttf_work, 0);
  3864. return rc;
  3865. }
  3866. static int qpnp_qg_suspend_noirq(struct device *dev)
  3867. {
  3868. int rc;
  3869. struct qpnp_qg *chip = dev_get_drvdata(dev);
  3870. /* cancel any pending sleep_exit work */
  3871. cancel_delayed_work_sync(&chip->qg_sleep_exit_work);
  3872. mutex_lock(&chip->data_lock);
  3873. rc = process_suspend(chip);
  3874. if (rc < 0)
  3875. pr_err("Failed to process QG suspend, rc=%d\n", rc);
  3876. mutex_unlock(&chip->data_lock);
  3877. return 0;
  3878. }
  3879. static int qpnp_qg_resume_noirq(struct device *dev)
  3880. {
  3881. int rc;
  3882. struct qpnp_qg *chip = dev_get_drvdata(dev);
  3883. mutex_lock(&chip->data_lock);
  3884. rc = process_resume(chip);
  3885. if (rc < 0)
  3886. pr_err("Failed to process QG resume, rc=%d\n", rc);
  3887. mutex_unlock(&chip->data_lock);
  3888. return 0;
  3889. }
  3890. static int qpnp_qg_suspend(struct device *dev)
  3891. {
  3892. struct qpnp_qg *chip = dev_get_drvdata(dev);
  3893. /* skip if profile is not loaded */
  3894. if (!chip->profile_loaded)
  3895. return 0;
  3896. /* disable GOOD_OCV IRQ in sleep */
  3897. vote(chip->good_ocv_irq_disable_votable,
  3898. QG_INIT_STATE_IRQ_DISABLE, true, 0);
  3899. return 0;
  3900. }
  3901. static int qpnp_qg_resume(struct device *dev)
  3902. {
  3903. struct qpnp_qg *chip = dev_get_drvdata(dev);
  3904. /* skip if profile is not loaded */
  3905. if (!chip->profile_loaded)
  3906. return 0;
  3907. /* enable GOOD_OCV IRQ when active */
  3908. vote(chip->good_ocv_irq_disable_votable,
  3909. QG_INIT_STATE_IRQ_DISABLE, false, 0);
  3910. return 0;
  3911. }
  3912. static const struct dev_pm_ops qpnp_qg_pm_ops = {
  3913. .suspend_noirq = qpnp_qg_suspend_noirq,
  3914. .resume_noirq = qpnp_qg_resume_noirq,
  3915. .suspend = qpnp_qg_suspend,
  3916. .resume = qpnp_qg_resume,
  3917. };
  3918. static int qpnp_qg_probe(struct platform_device *pdev)
  3919. {
  3920. int rc = 0, soc = 0, nom_cap_uah;
  3921. struct qpnp_qg *chip;
  3922. struct iio_dev *indio_dev;
  3923. struct qg_config *config;
  3924. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*chip));
  3925. if (!indio_dev)
  3926. return -ENOMEM;
  3927. chip = iio_priv(indio_dev);
  3928. chip->indio_dev = indio_dev;
  3929. chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
  3930. if (!chip->regmap) {
  3931. pr_err("Parent regmap is unavailable\n");
  3932. return -ENXIO;
  3933. }
  3934. /* ADC for BID & THERM */
  3935. chip->batt_id_chan = devm_iio_channel_get(&pdev->dev, "batt-id");
  3936. if (IS_ERR(chip->batt_id_chan)) {
  3937. rc = PTR_ERR(chip->batt_id_chan);
  3938. if (rc != -EPROBE_DEFER)
  3939. pr_err("batt-id channel unavailable, rc=%d\n", rc);
  3940. chip->batt_id_chan = NULL;
  3941. return rc;
  3942. }
  3943. chip->batt_therm_chan = devm_iio_channel_get(&pdev->dev, "batt-therm");
  3944. if (IS_ERR(chip->batt_therm_chan)) {
  3945. rc = PTR_ERR(chip->batt_therm_chan);
  3946. if (rc != -EPROBE_DEFER)
  3947. pr_err("batt-therm channel unavailable, rc=%d\n", rc);
  3948. chip->batt_therm_chan = NULL;
  3949. return rc;
  3950. }
  3951. chip->dev = &pdev->dev;
  3952. chip->debug_mask = &qg_debug_mask;
  3953. platform_set_drvdata(pdev, chip);
  3954. INIT_WORK(&chip->udata_work, process_udata_work);
  3955. INIT_WORK(&chip->qg_status_change_work, qg_status_change_work);
  3956. INIT_DELAYED_WORK(&chip->qg_sleep_exit_work, qg_sleep_exit_work);
  3957. mutex_init(&chip->bus_lock);
  3958. mutex_init(&chip->soc_lock);
  3959. mutex_init(&chip->data_lock);
  3960. init_waitqueue_head(&chip->qg_wait_q);
  3961. chip->maint_soc = -EINVAL;
  3962. chip->batt_soc = INT_MIN;
  3963. chip->cc_soc = INT_MIN;
  3964. chip->sys_soc = INT_MIN;
  3965. chip->full_soc = QG_SOC_FULL;
  3966. chip->chg_iterm_ma = INT_MIN;
  3967. chip->soh = -EINVAL;
  3968. chip->esr_actual = -EINVAL;
  3969. chip->esr_nominal = -EINVAL;
  3970. chip->batt_age_level = -EINVAL;
  3971. config = (struct qg_config *)of_device_get_match_data(
  3972. &pdev->dev);
  3973. if (!config) {
  3974. pr_err("Failed to get QG config data\n");
  3975. return -EINVAL;
  3976. }
  3977. chip->qg_version = config->qg_version;
  3978. chip->pmic_version = config->pmic_version;
  3979. qg_dbg(chip, QG_DEBUG_PON, "QG version:%d PMIC version:%d",
  3980. chip->qg_version, chip->pmic_version);
  3981. switch (chip->qg_version) {
  3982. case QG_LITE:
  3983. chip->max_fifo_length = 5;
  3984. break;
  3985. default:
  3986. chip->max_fifo_length = 8;
  3987. break;
  3988. }
  3989. qg_create_debugfs(chip);
  3990. rc = qg_alg_init(chip);
  3991. if (rc < 0) {
  3992. pr_err("Error in alg_init, rc:%d\n", rc);
  3993. return rc;
  3994. }
  3995. rc = qg_parse_dt(chip);
  3996. if (rc < 0) {
  3997. pr_err("Failed to parse DT, rc=%d\n", rc);
  3998. return rc;
  3999. }
  4000. rc = qg_hw_init(chip);
  4001. if (rc < 0) {
  4002. pr_err("Failed to hw_init, rc=%d\n", rc);
  4003. return rc;
  4004. }
  4005. rc = qg_sdam_init(chip->dev);
  4006. if (rc < 0) {
  4007. pr_err("Failed to initialize QG SDAM, rc=%d\n", rc);
  4008. return rc;
  4009. }
  4010. rc = qg_setup_battery(chip);
  4011. if (rc < 0) {
  4012. pr_err("Failed to setup battery, rc=%d\n", rc);
  4013. return rc;
  4014. }
  4015. rc = qg_register_device(chip);
  4016. if (rc < 0) {
  4017. pr_err("Failed to register QG char device, rc=%d\n", rc);
  4018. return rc;
  4019. }
  4020. rc = qg_sanitize_sdam(chip);
  4021. if (rc < 0) {
  4022. pr_err("Failed to sanitize SDAM, rc=%d\n", rc);
  4023. return rc;
  4024. }
  4025. rc = qg_soc_init(chip);
  4026. if (rc < 0) {
  4027. pr_err("Failed to initialize SOC scaling init rc=%d\n", rc);
  4028. return rc;
  4029. }
  4030. if (chip->profile_loaded) {
  4031. if (!chip->dt.cl_disable) {
  4032. /*
  4033. * Use FCC @ 25 C and charge-profile for
  4034. * Nominal Capacity
  4035. */
  4036. rc = qg_get_nominal_capacity(&nom_cap_uah, 250, true);
  4037. if (!rc) {
  4038. rc = cap_learning_post_profile_init(chip->cl,
  4039. nom_cap_uah);
  4040. if (rc < 0) {
  4041. pr_err("Error in cap_learning_post_profile_init rc=%d\n",
  4042. rc);
  4043. return rc;
  4044. }
  4045. }
  4046. }
  4047. rc = restore_cycle_count(chip->counter);
  4048. if (rc < 0) {
  4049. pr_err("Error in restoring cycle_count, rc=%d\n", rc);
  4050. return rc;
  4051. }
  4052. schedule_delayed_work(&chip->ttf->ttf_work, 10000);
  4053. }
  4054. rc = qg_determine_pon_soc(chip);
  4055. if (rc < 0) {
  4056. pr_err("Failed to determine initial state, rc=%d\n", rc);
  4057. goto fail_device;
  4058. }
  4059. chip->awake_votable = create_votable("QG_WS", VOTE_SET_ANY,
  4060. qg_awake_cb, chip);
  4061. if (IS_ERR(chip->awake_votable)) {
  4062. rc = PTR_ERR(chip->awake_votable);
  4063. chip->awake_votable = NULL;
  4064. goto fail_device;
  4065. }
  4066. chip->vbatt_irq_disable_votable = create_votable("QG_VBATT_IRQ_DISABLE",
  4067. VOTE_SET_ANY, qg_vbatt_irq_disable_cb, chip);
  4068. if (IS_ERR(chip->vbatt_irq_disable_votable)) {
  4069. rc = PTR_ERR(chip->vbatt_irq_disable_votable);
  4070. chip->vbatt_irq_disable_votable = NULL;
  4071. goto fail_device;
  4072. }
  4073. chip->fifo_irq_disable_votable = create_votable("QG_FIFO_IRQ_DISABLE",
  4074. VOTE_SET_ANY, qg_fifo_irq_disable_cb, chip);
  4075. if (IS_ERR(chip->fifo_irq_disable_votable)) {
  4076. rc = PTR_ERR(chip->fifo_irq_disable_votable);
  4077. chip->fifo_irq_disable_votable = NULL;
  4078. goto fail_device;
  4079. }
  4080. chip->good_ocv_irq_disable_votable =
  4081. create_votable("QG_GOOD_IRQ_DISABLE",
  4082. VOTE_SET_ANY, qg_good_ocv_irq_disable_cb, chip);
  4083. if (IS_ERR(chip->good_ocv_irq_disable_votable)) {
  4084. rc = PTR_ERR(chip->good_ocv_irq_disable_votable);
  4085. chip->good_ocv_irq_disable_votable = NULL;
  4086. goto fail_device;
  4087. }
  4088. rc = qg_init_iio_psy(chip, pdev);
  4089. if (rc < 0) {
  4090. pr_err("Failed to initialize QG IIO PSY, rc=%d\n", rc);
  4091. goto fail_votable;
  4092. }
  4093. rc = qg_init_psy(chip);
  4094. if (rc < 0) {
  4095. pr_err("Failed to initialize QG PSY, rc=%d\n", rc);
  4096. goto fail_votable;
  4097. }
  4098. rc = qg_request_irqs(chip);
  4099. if (rc < 0) {
  4100. pr_err("Failed to register QG interrupts, rc=%d\n", rc);
  4101. goto fail_votable;
  4102. }
  4103. rc = qg_post_init(chip);
  4104. if (rc < 0) {
  4105. pr_err("Failed in qg_post_init rc=%d\n", rc);
  4106. goto fail_votable;
  4107. }
  4108. rc = sysfs_create_groups(&chip->dev->kobj, qg_groups);
  4109. if (rc < 0) {
  4110. pr_err("Failed to create sysfs files rc=%d\n", rc);
  4111. goto fail_votable;
  4112. }
  4113. qg_get_battery_capacity(chip, &soc);
  4114. pr_info("QG initialized! battery_profile=%s SOC=%d QG_subtype=%d QG_version=%s QG_mode=%s\n",
  4115. qg_get_battery_type(chip), soc, chip->qg_subtype,
  4116. (chip->qg_version == QG_LITE) ? "QG_LITE" : "QG_PMIC5",
  4117. (chip->qg_mode == QG_V_I_MODE) ? "QG_V_I" : "QG_V");
  4118. return rc;
  4119. fail_votable:
  4120. destroy_votable(chip->awake_votable);
  4121. fail_device:
  4122. device_destroy(chip->qg_class, chip->dev_no);
  4123. cdev_del(&chip->qg_cdev);
  4124. unregister_chrdev_region(chip->dev_no, 1);
  4125. return rc;
  4126. }
  4127. static int qpnp_qg_remove(struct platform_device *pdev)
  4128. {
  4129. struct qpnp_qg *chip = platform_get_drvdata(pdev);
  4130. qg_batterydata_exit();
  4131. qg_soc_exit(chip);
  4132. cancel_delayed_work_sync(&chip->qg_sleep_exit_work);
  4133. cancel_work_sync(&chip->udata_work);
  4134. cancel_work_sync(&chip->qg_status_change_work);
  4135. sysfs_remove_groups(&chip->dev->kobj, qg_groups);
  4136. debugfs_remove_recursive(chip->dfs_root);
  4137. device_destroy(chip->qg_class, chip->dev_no);
  4138. cdev_del(&chip->qg_cdev);
  4139. unregister_chrdev_region(chip->dev_no, 1);
  4140. mutex_destroy(&chip->bus_lock);
  4141. mutex_destroy(&chip->data_lock);
  4142. mutex_destroy(&chip->soc_lock);
  4143. if (chip->awake_votable)
  4144. destroy_votable(chip->awake_votable);
  4145. return 0;
  4146. }
  4147. static void qpnp_qg_shutdown(struct platform_device *pdev)
  4148. {
  4149. struct qpnp_qg *chip = platform_get_drvdata(pdev);
  4150. bool input_present = is_input_present(chip);
  4151. if (!input_present || !chip->profile_loaded)
  4152. return;
  4153. /*
  4154. * Charging status doesn't matter when the device shuts down and we
  4155. * have to treat this as charge done. Hence pass charge_done as true.
  4156. */
  4157. cycle_count_update(chip->counter,
  4158. DIV_ROUND_CLOSEST(chip->msoc * 255, 100),
  4159. POWER_SUPPLY_STATUS_NOT_CHARGING,
  4160. true, input_present);
  4161. }
  4162. static const struct of_device_id match_table[] = {
  4163. {
  4164. .compatible = "qcom,qpnp-qg-lite",
  4165. .data = (void *)&config[PM2250],
  4166. },
  4167. {
  4168. .compatible = "qcom,pm6150-qg",
  4169. .data = (void *)&config[PM6150],
  4170. },
  4171. {
  4172. .compatible = "qcom,pmi632-qg",
  4173. .data = (void *)&config[PMI632],
  4174. },
  4175. {
  4176. .compatible = "qcom,pm7250b-qg",
  4177. .data = (void *)&config[PM7250B],
  4178. },
  4179. {
  4180. },
  4181. };
  4182. static struct platform_driver qpnp_qg_driver = {
  4183. .driver = {
  4184. .name = "qcom,qpnp-qg",
  4185. .of_match_table = match_table,
  4186. .pm = &qpnp_qg_pm_ops,
  4187. },
  4188. .probe = qpnp_qg_probe,
  4189. .remove = qpnp_qg_remove,
  4190. .shutdown = qpnp_qg_shutdown,
  4191. };
  4192. module_platform_driver(qpnp_qg_driver);
  4193. MODULE_DESCRIPTION("QPNP QG Driver");
  4194. MODULE_LICENSE("GPL");