msi.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * PCI Message Signaled Interrupt (MSI)
  4. *
  5. * Copyright (C) 2003-2004 Intel
  6. * Copyright (C) Tom Long Nguyen ([email protected])
  7. * Copyright (C) 2016 Christoph Hellwig.
  8. */
  9. #include <linux/err.h>
  10. #include <linux/export.h>
  11. #include <linux/irq.h>
  12. #include "../pci.h"
  13. #include "msi.h"
  14. static int pci_msi_enable = 1;
  15. int pci_msi_ignore_mask;
  16. static noinline void pci_msi_update_mask(struct msi_desc *desc, u32 clear, u32 set)
  17. {
  18. raw_spinlock_t *lock = &to_pci_dev(desc->dev)->msi_lock;
  19. unsigned long flags;
  20. if (!desc->pci.msi_attrib.can_mask)
  21. return;
  22. raw_spin_lock_irqsave(lock, flags);
  23. desc->pci.msi_mask &= ~clear;
  24. desc->pci.msi_mask |= set;
  25. pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->pci.mask_pos,
  26. desc->pci.msi_mask);
  27. raw_spin_unlock_irqrestore(lock, flags);
  28. }
  29. static inline void pci_msi_mask(struct msi_desc *desc, u32 mask)
  30. {
  31. pci_msi_update_mask(desc, 0, mask);
  32. }
  33. static inline void pci_msi_unmask(struct msi_desc *desc, u32 mask)
  34. {
  35. pci_msi_update_mask(desc, mask, 0);
  36. }
  37. static inline void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
  38. {
  39. return desc->pci.mask_base + desc->msi_index * PCI_MSIX_ENTRY_SIZE;
  40. }
  41. /*
  42. * This internal function does not flush PCI writes to the device. All
  43. * users must ensure that they read from the device before either assuming
  44. * that the device state is up to date, or returning out of this file.
  45. * It does not affect the msi_desc::msix_ctrl cache either. Use with care!
  46. */
  47. static void pci_msix_write_vector_ctrl(struct msi_desc *desc, u32 ctrl)
  48. {
  49. void __iomem *desc_addr = pci_msix_desc_addr(desc);
  50. if (desc->pci.msi_attrib.can_mask)
  51. writel(ctrl, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
  52. }
  53. static inline void pci_msix_mask(struct msi_desc *desc)
  54. {
  55. desc->pci.msix_ctrl |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
  56. pci_msix_write_vector_ctrl(desc, desc->pci.msix_ctrl);
  57. /* Flush write to device */
  58. readl(desc->pci.mask_base);
  59. }
  60. static inline void pci_msix_unmask(struct msi_desc *desc)
  61. {
  62. desc->pci.msix_ctrl &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
  63. pci_msix_write_vector_ctrl(desc, desc->pci.msix_ctrl);
  64. }
  65. static void __pci_msi_mask_desc(struct msi_desc *desc, u32 mask)
  66. {
  67. if (desc->pci.msi_attrib.is_msix)
  68. pci_msix_mask(desc);
  69. else
  70. pci_msi_mask(desc, mask);
  71. }
  72. static void __pci_msi_unmask_desc(struct msi_desc *desc, u32 mask)
  73. {
  74. if (desc->pci.msi_attrib.is_msix)
  75. pci_msix_unmask(desc);
  76. else
  77. pci_msi_unmask(desc, mask);
  78. }
  79. /**
  80. * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
  81. * @data: pointer to irqdata associated to that interrupt
  82. */
  83. void pci_msi_mask_irq(struct irq_data *data)
  84. {
  85. struct msi_desc *desc = irq_data_get_msi_desc(data);
  86. __pci_msi_mask_desc(desc, BIT(data->irq - desc->irq));
  87. }
  88. EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
  89. /**
  90. * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
  91. * @data: pointer to irqdata associated to that interrupt
  92. */
  93. void pci_msi_unmask_irq(struct irq_data *data)
  94. {
  95. struct msi_desc *desc = irq_data_get_msi_desc(data);
  96. __pci_msi_unmask_desc(desc, BIT(data->irq - desc->irq));
  97. }
  98. EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
  99. void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
  100. {
  101. struct pci_dev *dev = msi_desc_to_pci_dev(entry);
  102. BUG_ON(dev->current_state != PCI_D0);
  103. if (entry->pci.msi_attrib.is_msix) {
  104. void __iomem *base = pci_msix_desc_addr(entry);
  105. if (WARN_ON_ONCE(entry->pci.msi_attrib.is_virtual))
  106. return;
  107. msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
  108. msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
  109. msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
  110. } else {
  111. int pos = dev->msi_cap;
  112. u16 data;
  113. pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
  114. &msg->address_lo);
  115. if (entry->pci.msi_attrib.is_64) {
  116. pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
  117. &msg->address_hi);
  118. pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
  119. } else {
  120. msg->address_hi = 0;
  121. pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
  122. }
  123. msg->data = data;
  124. }
  125. }
  126. void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
  127. {
  128. struct pci_dev *dev = msi_desc_to_pci_dev(entry);
  129. if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
  130. /* Don't touch the hardware now */
  131. } else if (entry->pci.msi_attrib.is_msix) {
  132. void __iomem *base = pci_msix_desc_addr(entry);
  133. u32 ctrl = entry->pci.msix_ctrl;
  134. bool unmasked = !(ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT);
  135. if (entry->pci.msi_attrib.is_virtual)
  136. goto skip;
  137. /*
  138. * The specification mandates that the entry is masked
  139. * when the message is modified:
  140. *
  141. * "If software changes the Address or Data value of an
  142. * entry while the entry is unmasked, the result is
  143. * undefined."
  144. */
  145. if (unmasked)
  146. pci_msix_write_vector_ctrl(entry, ctrl | PCI_MSIX_ENTRY_CTRL_MASKBIT);
  147. writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
  148. writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
  149. writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
  150. if (unmasked)
  151. pci_msix_write_vector_ctrl(entry, ctrl);
  152. /* Ensure that the writes are visible in the device */
  153. readl(base + PCI_MSIX_ENTRY_DATA);
  154. } else {
  155. int pos = dev->msi_cap;
  156. u16 msgctl;
  157. pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
  158. msgctl &= ~PCI_MSI_FLAGS_QSIZE;
  159. msgctl |= entry->pci.msi_attrib.multiple << 4;
  160. pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
  161. pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
  162. msg->address_lo);
  163. if (entry->pci.msi_attrib.is_64) {
  164. pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
  165. msg->address_hi);
  166. pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
  167. msg->data);
  168. } else {
  169. pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
  170. msg->data);
  171. }
  172. /* Ensure that the writes are visible in the device */
  173. pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
  174. }
  175. skip:
  176. entry->msg = *msg;
  177. if (entry->write_msi_msg)
  178. entry->write_msi_msg(entry, entry->write_msi_msg_data);
  179. }
  180. void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
  181. {
  182. struct msi_desc *entry = irq_get_msi_desc(irq);
  183. __pci_write_msi_msg(entry, msg);
  184. }
  185. EXPORT_SYMBOL_GPL(pci_write_msi_msg);
  186. static void free_msi_irqs(struct pci_dev *dev)
  187. {
  188. pci_msi_teardown_msi_irqs(dev);
  189. if (dev->msix_base) {
  190. iounmap(dev->msix_base);
  191. dev->msix_base = NULL;
  192. }
  193. }
  194. static void pci_intx_for_msi(struct pci_dev *dev, int enable)
  195. {
  196. if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
  197. pci_intx(dev, enable);
  198. }
  199. static void pci_msi_set_enable(struct pci_dev *dev, int enable)
  200. {
  201. u16 control;
  202. pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
  203. control &= ~PCI_MSI_FLAGS_ENABLE;
  204. if (enable)
  205. control |= PCI_MSI_FLAGS_ENABLE;
  206. pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
  207. }
  208. /*
  209. * Architecture override returns true when the PCI MSI message should be
  210. * written by the generic restore function.
  211. */
  212. bool __weak arch_restore_msi_irqs(struct pci_dev *dev)
  213. {
  214. return true;
  215. }
  216. static void __pci_restore_msi_state(struct pci_dev *dev)
  217. {
  218. struct msi_desc *entry;
  219. u16 control;
  220. if (!dev->msi_enabled)
  221. return;
  222. entry = irq_get_msi_desc(dev->irq);
  223. pci_intx_for_msi(dev, 0);
  224. pci_msi_set_enable(dev, 0);
  225. if (arch_restore_msi_irqs(dev))
  226. __pci_write_msi_msg(entry, &entry->msg);
  227. pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
  228. pci_msi_update_mask(entry, 0, 0);
  229. control &= ~PCI_MSI_FLAGS_QSIZE;
  230. control |= (entry->pci.msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
  231. pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
  232. }
  233. static void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set)
  234. {
  235. u16 ctrl;
  236. pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
  237. ctrl &= ~clear;
  238. ctrl |= set;
  239. pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl);
  240. }
  241. static void __pci_restore_msix_state(struct pci_dev *dev)
  242. {
  243. struct msi_desc *entry;
  244. bool write_msg;
  245. if (!dev->msix_enabled)
  246. return;
  247. /* route the table */
  248. pci_intx_for_msi(dev, 0);
  249. pci_msix_clear_and_set_ctrl(dev, 0,
  250. PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
  251. write_msg = arch_restore_msi_irqs(dev);
  252. msi_lock_descs(&dev->dev);
  253. msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) {
  254. if (write_msg)
  255. __pci_write_msi_msg(entry, &entry->msg);
  256. pci_msix_write_vector_ctrl(entry, entry->pci.msix_ctrl);
  257. }
  258. msi_unlock_descs(&dev->dev);
  259. pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
  260. }
  261. void pci_restore_msi_state(struct pci_dev *dev)
  262. {
  263. __pci_restore_msi_state(dev);
  264. __pci_restore_msix_state(dev);
  265. }
  266. EXPORT_SYMBOL_GPL(pci_restore_msi_state);
  267. static void pcim_msi_release(void *pcidev)
  268. {
  269. struct pci_dev *dev = pcidev;
  270. dev->is_msi_managed = false;
  271. pci_free_irq_vectors(dev);
  272. }
  273. /*
  274. * Needs to be separate from pcim_release to prevent an ordering problem
  275. * vs. msi_device_data_release() in the MSI core code.
  276. */
  277. static int pcim_setup_msi_release(struct pci_dev *dev)
  278. {
  279. int ret;
  280. if (!pci_is_managed(dev) || dev->is_msi_managed)
  281. return 0;
  282. ret = devm_add_action(&dev->dev, pcim_msi_release, dev);
  283. if (!ret)
  284. dev->is_msi_managed = true;
  285. return ret;
  286. }
  287. /*
  288. * Ordering vs. devres: msi device data has to be installed first so that
  289. * pcim_msi_release() is invoked before it on device release.
  290. */
  291. static int pci_setup_msi_context(struct pci_dev *dev)
  292. {
  293. int ret = msi_setup_device_data(&dev->dev);
  294. if (!ret)
  295. ret = pcim_setup_msi_release(dev);
  296. return ret;
  297. }
  298. static int msi_setup_msi_desc(struct pci_dev *dev, int nvec,
  299. struct irq_affinity_desc *masks)
  300. {
  301. struct msi_desc desc;
  302. u16 control;
  303. /* MSI Entry Initialization */
  304. memset(&desc, 0, sizeof(desc));
  305. pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
  306. /* Lies, damned lies, and MSIs */
  307. if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING)
  308. control |= PCI_MSI_FLAGS_MASKBIT;
  309. /* Respect XEN's mask disabling */
  310. if (pci_msi_ignore_mask)
  311. control &= ~PCI_MSI_FLAGS_MASKBIT;
  312. desc.nvec_used = nvec;
  313. desc.pci.msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
  314. desc.pci.msi_attrib.can_mask = !!(control & PCI_MSI_FLAGS_MASKBIT);
  315. desc.pci.msi_attrib.default_irq = dev->irq;
  316. desc.pci.msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
  317. desc.pci.msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
  318. desc.affinity = masks;
  319. if (control & PCI_MSI_FLAGS_64BIT)
  320. desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
  321. else
  322. desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
  323. /* Save the initial mask status */
  324. if (desc.pci.msi_attrib.can_mask)
  325. pci_read_config_dword(dev, desc.pci.mask_pos, &desc.pci.msi_mask);
  326. return msi_add_msi_desc(&dev->dev, &desc);
  327. }
  328. static int msi_verify_entries(struct pci_dev *dev)
  329. {
  330. struct msi_desc *entry;
  331. if (!dev->no_64bit_msi)
  332. return 0;
  333. msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) {
  334. if (entry->msg.address_hi) {
  335. pci_err(dev, "arch assigned 64-bit MSI address %#x%08x but device only supports 32 bits\n",
  336. entry->msg.address_hi, entry->msg.address_lo);
  337. break;
  338. }
  339. }
  340. return !entry ? 0 : -EIO;
  341. }
  342. /**
  343. * msi_capability_init - configure device's MSI capability structure
  344. * @dev: pointer to the pci_dev data structure of MSI device function
  345. * @nvec: number of interrupts to allocate
  346. * @affd: description of automatic IRQ affinity assignments (may be %NULL)
  347. *
  348. * Setup the MSI capability structure of the device with the requested
  349. * number of interrupts. A return value of zero indicates the successful
  350. * setup of an entry with the new MSI IRQ. A negative return value indicates
  351. * an error, and a positive return value indicates the number of interrupts
  352. * which could have been allocated.
  353. */
  354. static int msi_capability_init(struct pci_dev *dev, int nvec,
  355. struct irq_affinity *affd)
  356. {
  357. struct irq_affinity_desc *masks = NULL;
  358. struct msi_desc *entry;
  359. int ret;
  360. /*
  361. * Disable MSI during setup in the hardware, but mark it enabled
  362. * so that setup code can evaluate it.
  363. */
  364. pci_msi_set_enable(dev, 0);
  365. dev->msi_enabled = 1;
  366. if (affd)
  367. masks = irq_create_affinity_masks(nvec, affd);
  368. msi_lock_descs(&dev->dev);
  369. ret = msi_setup_msi_desc(dev, nvec, masks);
  370. if (ret)
  371. goto fail;
  372. /* All MSIs are unmasked by default; mask them all */
  373. entry = msi_first_desc(&dev->dev, MSI_DESC_ALL);
  374. pci_msi_mask(entry, msi_multi_mask(entry));
  375. /* Configure MSI capability structure */
  376. ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
  377. if (ret)
  378. goto err;
  379. ret = msi_verify_entries(dev);
  380. if (ret)
  381. goto err;
  382. /* Set MSI enabled bits */
  383. pci_intx_for_msi(dev, 0);
  384. pci_msi_set_enable(dev, 1);
  385. pcibios_free_irq(dev);
  386. dev->irq = entry->irq;
  387. goto unlock;
  388. err:
  389. pci_msi_unmask(entry, msi_multi_mask(entry));
  390. free_msi_irqs(dev);
  391. fail:
  392. dev->msi_enabled = 0;
  393. unlock:
  394. msi_unlock_descs(&dev->dev);
  395. kfree(masks);
  396. return ret;
  397. }
  398. static void __iomem *msix_map_region(struct pci_dev *dev,
  399. unsigned int nr_entries)
  400. {
  401. resource_size_t phys_addr;
  402. u32 table_offset;
  403. unsigned long flags;
  404. u8 bir;
  405. pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
  406. &table_offset);
  407. bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
  408. flags = pci_resource_flags(dev, bir);
  409. if (!flags || (flags & IORESOURCE_UNSET))
  410. return NULL;
  411. table_offset &= PCI_MSIX_TABLE_OFFSET;
  412. phys_addr = pci_resource_start(dev, bir) + table_offset;
  413. return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
  414. }
  415. static int msix_setup_msi_descs(struct pci_dev *dev, void __iomem *base,
  416. struct msix_entry *entries, int nvec,
  417. struct irq_affinity_desc *masks)
  418. {
  419. int ret = 0, i, vec_count = pci_msix_vec_count(dev);
  420. struct irq_affinity_desc *curmsk;
  421. struct msi_desc desc;
  422. void __iomem *addr;
  423. memset(&desc, 0, sizeof(desc));
  424. desc.nvec_used = 1;
  425. desc.pci.msi_attrib.is_msix = 1;
  426. desc.pci.msi_attrib.is_64 = 1;
  427. desc.pci.msi_attrib.default_irq = dev->irq;
  428. desc.pci.mask_base = base;
  429. for (i = 0, curmsk = masks; i < nvec; i++, curmsk++) {
  430. desc.msi_index = entries ? entries[i].entry : i;
  431. desc.affinity = masks ? curmsk : NULL;
  432. desc.pci.msi_attrib.is_virtual = desc.msi_index >= vec_count;
  433. desc.pci.msi_attrib.can_mask = !pci_msi_ignore_mask &&
  434. !desc.pci.msi_attrib.is_virtual;
  435. if (desc.pci.msi_attrib.can_mask) {
  436. addr = pci_msix_desc_addr(&desc);
  437. desc.pci.msix_ctrl = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
  438. }
  439. ret = msi_add_msi_desc(&dev->dev, &desc);
  440. if (ret)
  441. break;
  442. }
  443. return ret;
  444. }
  445. static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries)
  446. {
  447. struct msi_desc *desc;
  448. if (entries) {
  449. msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL) {
  450. entries->vector = desc->irq;
  451. entries++;
  452. }
  453. }
  454. }
  455. static void msix_mask_all(void __iomem *base, int tsize)
  456. {
  457. u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
  458. int i;
  459. if (pci_msi_ignore_mask)
  460. return;
  461. for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE)
  462. writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL);
  463. }
  464. static int msix_setup_interrupts(struct pci_dev *dev, void __iomem *base,
  465. struct msix_entry *entries, int nvec,
  466. struct irq_affinity *affd)
  467. {
  468. struct irq_affinity_desc *masks = NULL;
  469. int ret;
  470. if (affd)
  471. masks = irq_create_affinity_masks(nvec, affd);
  472. msi_lock_descs(&dev->dev);
  473. ret = msix_setup_msi_descs(dev, base, entries, nvec, masks);
  474. if (ret)
  475. goto out_free;
  476. ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
  477. if (ret)
  478. goto out_free;
  479. /* Check if all MSI entries honor device restrictions */
  480. ret = msi_verify_entries(dev);
  481. if (ret)
  482. goto out_free;
  483. msix_update_entries(dev, entries);
  484. goto out_unlock;
  485. out_free:
  486. free_msi_irqs(dev);
  487. out_unlock:
  488. msi_unlock_descs(&dev->dev);
  489. kfree(masks);
  490. return ret;
  491. }
  492. /**
  493. * msix_capability_init - configure device's MSI-X capability
  494. * @dev: pointer to the pci_dev data structure of MSI-X device function
  495. * @entries: pointer to an array of struct msix_entry entries
  496. * @nvec: number of @entries
  497. * @affd: Optional pointer to enable automatic affinity assignment
  498. *
  499. * Setup the MSI-X capability structure of device function with a
  500. * single MSI-X IRQ. A return of zero indicates the successful setup of
  501. * requested MSI-X entries with allocated IRQs or non-zero for otherwise.
  502. **/
  503. static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
  504. int nvec, struct irq_affinity *affd)
  505. {
  506. void __iomem *base;
  507. int ret, tsize;
  508. u16 control;
  509. /*
  510. * Some devices require MSI-X to be enabled before the MSI-X
  511. * registers can be accessed. Mask all the vectors to prevent
  512. * interrupts coming in before they're fully set up.
  513. */
  514. pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL |
  515. PCI_MSIX_FLAGS_ENABLE);
  516. /* Mark it enabled so setup functions can query it */
  517. dev->msix_enabled = 1;
  518. pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
  519. /* Request & Map MSI-X table region */
  520. tsize = msix_table_size(control);
  521. base = msix_map_region(dev, tsize);
  522. if (!base) {
  523. ret = -ENOMEM;
  524. goto out_disable;
  525. }
  526. dev->msix_base = base;
  527. ret = msix_setup_interrupts(dev, base, entries, nvec, affd);
  528. if (ret)
  529. goto out_disable;
  530. /* Disable INTX */
  531. pci_intx_for_msi(dev, 0);
  532. /*
  533. * Ensure that all table entries are masked to prevent
  534. * stale entries from firing in a crash kernel.
  535. *
  536. * Done late to deal with a broken Marvell NVME device
  537. * which takes the MSI-X mask bits into account even
  538. * when MSI-X is disabled, which prevents MSI delivery.
  539. */
  540. msix_mask_all(base, tsize);
  541. pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
  542. pcibios_free_irq(dev);
  543. return 0;
  544. out_disable:
  545. dev->msix_enabled = 0;
  546. pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0);
  547. return ret;
  548. }
  549. /**
  550. * pci_msi_supported - check whether MSI may be enabled on a device
  551. * @dev: pointer to the pci_dev data structure of MSI device function
  552. * @nvec: how many MSIs have been requested?
  553. *
  554. * Look at global flags, the device itself, and its parent buses
  555. * to determine if MSI/-X are supported for the device. If MSI/-X is
  556. * supported return 1, else return 0.
  557. **/
  558. static int pci_msi_supported(struct pci_dev *dev, int nvec)
  559. {
  560. struct pci_bus *bus;
  561. /* MSI must be globally enabled and supported by the device */
  562. if (!pci_msi_enable)
  563. return 0;
  564. if (!dev || dev->no_msi)
  565. return 0;
  566. /*
  567. * You can't ask to have 0 or less MSIs configured.
  568. * a) it's stupid ..
  569. * b) the list manipulation code assumes nvec >= 1.
  570. */
  571. if (nvec < 1)
  572. return 0;
  573. /*
  574. * Any bridge which does NOT route MSI transactions from its
  575. * secondary bus to its primary bus must set NO_MSI flag on
  576. * the secondary pci_bus.
  577. *
  578. * The NO_MSI flag can either be set directly by:
  579. * - arch-specific PCI host bus controller drivers (deprecated)
  580. * - quirks for specific PCI bridges
  581. *
  582. * or indirectly by platform-specific PCI host bridge drivers by
  583. * advertising the 'msi_domain' property, which results in
  584. * the NO_MSI flag when no MSI domain is found for this bridge
  585. * at probe time.
  586. */
  587. for (bus = dev->bus; bus; bus = bus->parent)
  588. if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
  589. return 0;
  590. return 1;
  591. }
  592. /**
  593. * pci_msi_vec_count - Return the number of MSI vectors a device can send
  594. * @dev: device to report about
  595. *
  596. * This function returns the number of MSI vectors a device requested via
  597. * Multiple Message Capable register. It returns a negative errno if the
  598. * device is not capable sending MSI interrupts. Otherwise, the call succeeds
  599. * and returns a power of two, up to a maximum of 2^5 (32), according to the
  600. * MSI specification.
  601. **/
  602. int pci_msi_vec_count(struct pci_dev *dev)
  603. {
  604. int ret;
  605. u16 msgctl;
  606. if (!dev->msi_cap)
  607. return -EINVAL;
  608. pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
  609. ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
  610. return ret;
  611. }
  612. EXPORT_SYMBOL(pci_msi_vec_count);
  613. static void pci_msi_shutdown(struct pci_dev *dev)
  614. {
  615. struct msi_desc *desc;
  616. if (!pci_msi_enable || !dev || !dev->msi_enabled)
  617. return;
  618. pci_msi_set_enable(dev, 0);
  619. pci_intx_for_msi(dev, 1);
  620. dev->msi_enabled = 0;
  621. /* Return the device with MSI unmasked as initial states */
  622. desc = msi_first_desc(&dev->dev, MSI_DESC_ALL);
  623. if (!WARN_ON_ONCE(!desc))
  624. pci_msi_unmask(desc, msi_multi_mask(desc));
  625. /* Restore dev->irq to its default pin-assertion IRQ */
  626. dev->irq = desc->pci.msi_attrib.default_irq;
  627. pcibios_alloc_irq(dev);
  628. }
  629. void pci_disable_msi(struct pci_dev *dev)
  630. {
  631. if (!pci_msi_enable || !dev || !dev->msi_enabled)
  632. return;
  633. msi_lock_descs(&dev->dev);
  634. pci_msi_shutdown(dev);
  635. free_msi_irqs(dev);
  636. msi_unlock_descs(&dev->dev);
  637. }
  638. EXPORT_SYMBOL(pci_disable_msi);
  639. /**
  640. * pci_msix_vec_count - return the number of device's MSI-X table entries
  641. * @dev: pointer to the pci_dev data structure of MSI-X device function
  642. * This function returns the number of device's MSI-X table entries and
  643. * therefore the number of MSI-X vectors device is capable of sending.
  644. * It returns a negative errno if the device is not capable of sending MSI-X
  645. * interrupts.
  646. **/
  647. int pci_msix_vec_count(struct pci_dev *dev)
  648. {
  649. u16 control;
  650. if (!dev->msix_cap)
  651. return -EINVAL;
  652. pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
  653. return msix_table_size(control);
  654. }
  655. EXPORT_SYMBOL(pci_msix_vec_count);
  656. static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
  657. int nvec, struct irq_affinity *affd, int flags)
  658. {
  659. int nr_entries;
  660. int i, j;
  661. if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0)
  662. return -EINVAL;
  663. nr_entries = pci_msix_vec_count(dev);
  664. if (nr_entries < 0)
  665. return nr_entries;
  666. if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL))
  667. return nr_entries;
  668. if (entries) {
  669. /* Check for any invalid entries */
  670. for (i = 0; i < nvec; i++) {
  671. if (entries[i].entry >= nr_entries)
  672. return -EINVAL; /* invalid entry */
  673. for (j = i + 1; j < nvec; j++) {
  674. if (entries[i].entry == entries[j].entry)
  675. return -EINVAL; /* duplicate entry */
  676. }
  677. }
  678. }
  679. /* Check whether driver already requested for MSI IRQ */
  680. if (dev->msi_enabled) {
  681. pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
  682. return -EINVAL;
  683. }
  684. return msix_capability_init(dev, entries, nvec, affd);
  685. }
  686. static void pci_msix_shutdown(struct pci_dev *dev)
  687. {
  688. struct msi_desc *desc;
  689. if (!pci_msi_enable || !dev || !dev->msix_enabled)
  690. return;
  691. if (pci_dev_is_disconnected(dev)) {
  692. dev->msix_enabled = 0;
  693. return;
  694. }
  695. /* Return the device with MSI-X masked as initial states */
  696. msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL)
  697. pci_msix_mask(desc);
  698. pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
  699. pci_intx_for_msi(dev, 1);
  700. dev->msix_enabled = 0;
  701. pcibios_alloc_irq(dev);
  702. }
  703. void pci_disable_msix(struct pci_dev *dev)
  704. {
  705. if (!pci_msi_enable || !dev || !dev->msix_enabled)
  706. return;
  707. msi_lock_descs(&dev->dev);
  708. pci_msix_shutdown(dev);
  709. free_msi_irqs(dev);
  710. msi_unlock_descs(&dev->dev);
  711. }
  712. EXPORT_SYMBOL(pci_disable_msix);
  713. static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
  714. struct irq_affinity *affd)
  715. {
  716. int nvec;
  717. int rc;
  718. if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0)
  719. return -EINVAL;
  720. /* Check whether driver already requested MSI-X IRQs */
  721. if (dev->msix_enabled) {
  722. pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
  723. return -EINVAL;
  724. }
  725. if (maxvec < minvec)
  726. return -ERANGE;
  727. if (WARN_ON_ONCE(dev->msi_enabled))
  728. return -EINVAL;
  729. nvec = pci_msi_vec_count(dev);
  730. if (nvec < 0)
  731. return nvec;
  732. if (nvec < minvec)
  733. return -ENOSPC;
  734. if (nvec > maxvec)
  735. nvec = maxvec;
  736. rc = pci_setup_msi_context(dev);
  737. if (rc)
  738. return rc;
  739. for (;;) {
  740. if (affd) {
  741. nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
  742. if (nvec < minvec)
  743. return -ENOSPC;
  744. }
  745. rc = msi_capability_init(dev, nvec, affd);
  746. if (rc == 0)
  747. return nvec;
  748. if (rc < 0)
  749. return rc;
  750. if (rc < minvec)
  751. return -ENOSPC;
  752. nvec = rc;
  753. }
  754. }
  755. /* deprecated, don't use */
  756. int pci_enable_msi(struct pci_dev *dev)
  757. {
  758. int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
  759. if (rc < 0)
  760. return rc;
  761. return 0;
  762. }
  763. EXPORT_SYMBOL(pci_enable_msi);
  764. static int __pci_enable_msix_range(struct pci_dev *dev,
  765. struct msix_entry *entries, int minvec,
  766. int maxvec, struct irq_affinity *affd,
  767. int flags)
  768. {
  769. int rc, nvec = maxvec;
  770. if (maxvec < minvec)
  771. return -ERANGE;
  772. if (WARN_ON_ONCE(dev->msix_enabled))
  773. return -EINVAL;
  774. rc = pci_setup_msi_context(dev);
  775. if (rc)
  776. return rc;
  777. for (;;) {
  778. if (affd) {
  779. nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
  780. if (nvec < minvec)
  781. return -ENOSPC;
  782. }
  783. rc = __pci_enable_msix(dev, entries, nvec, affd, flags);
  784. if (rc == 0)
  785. return nvec;
  786. if (rc < 0)
  787. return rc;
  788. if (rc < minvec)
  789. return -ENOSPC;
  790. nvec = rc;
  791. }
  792. }
  793. /**
  794. * pci_enable_msix_range - configure device's MSI-X capability structure
  795. * @dev: pointer to the pci_dev data structure of MSI-X device function
  796. * @entries: pointer to an array of MSI-X entries
  797. * @minvec: minimum number of MSI-X IRQs requested
  798. * @maxvec: maximum number of MSI-X IRQs requested
  799. *
  800. * Setup the MSI-X capability structure of device function with a maximum
  801. * possible number of interrupts in the range between @minvec and @maxvec
  802. * upon its software driver call to request for MSI-X mode enabled on its
  803. * hardware device function. It returns a negative errno if an error occurs.
  804. * If it succeeds, it returns the actual number of interrupts allocated and
  805. * indicates the successful configuration of MSI-X capability structure
  806. * with new allocated MSI-X interrupts.
  807. **/
  808. int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
  809. int minvec, int maxvec)
  810. {
  811. return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
  812. }
  813. EXPORT_SYMBOL(pci_enable_msix_range);
  814. /**
  815. * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
  816. * @dev: PCI device to operate on
  817. * @min_vecs: minimum number of vectors required (must be >= 1)
  818. * @max_vecs: maximum (desired) number of vectors
  819. * @flags: flags or quirks for the allocation
  820. * @affd: optional description of the affinity requirements
  821. *
  822. * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
  823. * vectors if available, and fall back to a single legacy vector
  824. * if neither is available. Return the number of vectors allocated,
  825. * (which might be smaller than @max_vecs) if successful, or a negative
  826. * error code on error. If less than @min_vecs interrupt vectors are
  827. * available for @dev the function will fail with -ENOSPC.
  828. *
  829. * To get the Linux IRQ number used for a vector that can be passed to
  830. * request_irq() use the pci_irq_vector() helper.
  831. */
  832. int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
  833. unsigned int max_vecs, unsigned int flags,
  834. struct irq_affinity *affd)
  835. {
  836. struct irq_affinity msi_default_affd = {0};
  837. int nvecs = -ENOSPC;
  838. if (flags & PCI_IRQ_AFFINITY) {
  839. if (!affd)
  840. affd = &msi_default_affd;
  841. } else {
  842. if (WARN_ON(affd))
  843. affd = NULL;
  844. }
  845. if (flags & PCI_IRQ_MSIX) {
  846. nvecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
  847. affd, flags);
  848. if (nvecs > 0)
  849. return nvecs;
  850. }
  851. if (flags & PCI_IRQ_MSI) {
  852. nvecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, affd);
  853. if (nvecs > 0)
  854. return nvecs;
  855. }
  856. /* use legacy IRQ if allowed */
  857. if (flags & PCI_IRQ_LEGACY) {
  858. if (min_vecs == 1 && dev->irq) {
  859. /*
  860. * Invoke the affinity spreading logic to ensure that
  861. * the device driver can adjust queue configuration
  862. * for the single interrupt case.
  863. */
  864. if (affd)
  865. irq_create_affinity_masks(1, affd);
  866. pci_intx(dev, 1);
  867. return 1;
  868. }
  869. }
  870. return nvecs;
  871. }
  872. EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
  873. /**
  874. * pci_free_irq_vectors - free previously allocated IRQs for a device
  875. * @dev: PCI device to operate on
  876. *
  877. * Undoes the allocations and enabling in pci_alloc_irq_vectors().
  878. */
  879. void pci_free_irq_vectors(struct pci_dev *dev)
  880. {
  881. pci_disable_msix(dev);
  882. pci_disable_msi(dev);
  883. }
  884. EXPORT_SYMBOL(pci_free_irq_vectors);
  885. /**
  886. * pci_irq_vector - return Linux IRQ number of a device vector
  887. * @dev: PCI device to operate on
  888. * @nr: Interrupt vector index (0-based)
  889. *
  890. * @nr has the following meanings depending on the interrupt mode:
  891. * MSI-X: The index in the MSI-X vector table
  892. * MSI: The index of the enabled MSI vectors
  893. * INTx: Must be 0
  894. *
  895. * Return: The Linux interrupt number or -EINVAl if @nr is out of range.
  896. */
  897. int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
  898. {
  899. unsigned int irq;
  900. if (!dev->msi_enabled && !dev->msix_enabled)
  901. return !nr ? dev->irq : -EINVAL;
  902. irq = msi_get_virq(&dev->dev, nr);
  903. return irq ? irq : -EINVAL;
  904. }
  905. EXPORT_SYMBOL(pci_irq_vector);
  906. /**
  907. * pci_irq_get_affinity - return the affinity of a particular MSI vector
  908. * @dev: PCI device to operate on
  909. * @nr: device-relative interrupt vector index (0-based).
  910. *
  911. * @nr has the following meanings depending on the interrupt mode:
  912. * MSI-X: The index in the MSI-X vector table
  913. * MSI: The index of the enabled MSI vectors
  914. * INTx: Must be 0
  915. *
  916. * Return: A cpumask pointer or NULL if @nr is out of range
  917. */
  918. const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
  919. {
  920. int idx, irq = pci_irq_vector(dev, nr);
  921. struct msi_desc *desc;
  922. if (WARN_ON_ONCE(irq <= 0))
  923. return NULL;
  924. desc = irq_get_msi_desc(irq);
  925. /* Non-MSI does not have the information handy */
  926. if (!desc)
  927. return cpu_possible_mask;
  928. /* MSI[X] interrupts can be allocated without affinity descriptor */
  929. if (!desc->affinity)
  930. return NULL;
  931. /*
  932. * MSI has a mask array in the descriptor.
  933. * MSI-X has a single mask.
  934. */
  935. idx = dev->msi_enabled ? nr : 0;
  936. return &desc->affinity[idx].mask;
  937. }
  938. EXPORT_SYMBOL(pci_irq_get_affinity);
  939. struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
  940. {
  941. return to_pci_dev(desc->dev);
  942. }
  943. EXPORT_SYMBOL(msi_desc_to_pci_dev);
  944. void pci_no_msi(void)
  945. {
  946. pci_msi_enable = 0;
  947. }
  948. /**
  949. * pci_msi_enabled - is MSI enabled?
  950. *
  951. * Returns true if MSI has not been disabled by the command-line option
  952. * pci=nomsi.
  953. **/
  954. int pci_msi_enabled(void)
  955. {
  956. return pci_msi_enable;
  957. }
  958. EXPORT_SYMBOL(pci_msi_enabled);