tcp.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * NVMe over Fabrics TCP target.
  4. * Copyright (c) 2018 Lightbits Labs. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/err.h>
  11. #include <linux/nvme-tcp.h>
  12. #include <net/sock.h>
  13. #include <net/tcp.h>
  14. #include <linux/inet.h>
  15. #include <linux/llist.h>
  16. #include <crypto/hash.h>
  17. #include "nvmet.h"
  18. #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
  19. /* Define the socket priority to use for connections were it is desirable
  20. * that the NIC consider performing optimized packet processing or filtering.
  21. * A non-zero value being sufficient to indicate general consideration of any
  22. * possible optimization. Making it a module param allows for alternative
  23. * values that may be unique for some NIC implementations.
  24. */
  25. static int so_priority;
  26. module_param(so_priority, int, 0644);
  27. MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
  28. /* Define a time period (in usecs) that io_work() shall sample an activated
  29. * queue before determining it to be idle. This optional module behavior
  30. * can enable NIC solutions that support socket optimized packet processing
  31. * using advanced interrupt moderation techniques.
  32. */
  33. static int idle_poll_period_usecs;
  34. module_param(idle_poll_period_usecs, int, 0644);
  35. MODULE_PARM_DESC(idle_poll_period_usecs,
  36. "nvmet tcp io_work poll till idle time period in usecs");
  37. #define NVMET_TCP_RECV_BUDGET 8
  38. #define NVMET_TCP_SEND_BUDGET 8
  39. #define NVMET_TCP_IO_WORK_BUDGET 64
  40. enum nvmet_tcp_send_state {
  41. NVMET_TCP_SEND_DATA_PDU,
  42. NVMET_TCP_SEND_DATA,
  43. NVMET_TCP_SEND_R2T,
  44. NVMET_TCP_SEND_DDGST,
  45. NVMET_TCP_SEND_RESPONSE
  46. };
  47. enum nvmet_tcp_recv_state {
  48. NVMET_TCP_RECV_PDU,
  49. NVMET_TCP_RECV_DATA,
  50. NVMET_TCP_RECV_DDGST,
  51. NVMET_TCP_RECV_ERR,
  52. };
  53. enum {
  54. NVMET_TCP_F_INIT_FAILED = (1 << 0),
  55. };
  56. struct nvmet_tcp_cmd {
  57. struct nvmet_tcp_queue *queue;
  58. struct nvmet_req req;
  59. struct nvme_tcp_cmd_pdu *cmd_pdu;
  60. struct nvme_tcp_rsp_pdu *rsp_pdu;
  61. struct nvme_tcp_data_pdu *data_pdu;
  62. struct nvme_tcp_r2t_pdu *r2t_pdu;
  63. u32 rbytes_done;
  64. u32 wbytes_done;
  65. u32 pdu_len;
  66. u32 pdu_recv;
  67. int sg_idx;
  68. struct msghdr recv_msg;
  69. struct bio_vec *iov;
  70. u32 flags;
  71. struct list_head entry;
  72. struct llist_node lentry;
  73. /* send state */
  74. u32 offset;
  75. struct scatterlist *cur_sg;
  76. enum nvmet_tcp_send_state state;
  77. __le32 exp_ddgst;
  78. __le32 recv_ddgst;
  79. };
  80. enum nvmet_tcp_queue_state {
  81. NVMET_TCP_Q_CONNECTING,
  82. NVMET_TCP_Q_LIVE,
  83. NVMET_TCP_Q_DISCONNECTING,
  84. };
  85. struct nvmet_tcp_queue {
  86. struct socket *sock;
  87. struct nvmet_tcp_port *port;
  88. struct work_struct io_work;
  89. struct nvmet_cq nvme_cq;
  90. struct nvmet_sq nvme_sq;
  91. /* send state */
  92. struct nvmet_tcp_cmd *cmds;
  93. unsigned int nr_cmds;
  94. struct list_head free_list;
  95. struct llist_head resp_list;
  96. struct list_head resp_send_list;
  97. int send_list_len;
  98. struct nvmet_tcp_cmd *snd_cmd;
  99. /* recv state */
  100. int offset;
  101. int left;
  102. enum nvmet_tcp_recv_state rcv_state;
  103. struct nvmet_tcp_cmd *cmd;
  104. union nvme_tcp_pdu pdu;
  105. /* digest state */
  106. bool hdr_digest;
  107. bool data_digest;
  108. struct ahash_request *snd_hash;
  109. struct ahash_request *rcv_hash;
  110. unsigned long poll_end;
  111. spinlock_t state_lock;
  112. enum nvmet_tcp_queue_state state;
  113. struct sockaddr_storage sockaddr;
  114. struct sockaddr_storage sockaddr_peer;
  115. struct work_struct release_work;
  116. int idx;
  117. struct list_head queue_list;
  118. struct nvmet_tcp_cmd connect;
  119. struct page_frag_cache pf_cache;
  120. void (*data_ready)(struct sock *);
  121. void (*state_change)(struct sock *);
  122. void (*write_space)(struct sock *);
  123. };
  124. struct nvmet_tcp_port {
  125. struct socket *sock;
  126. struct work_struct accept_work;
  127. struct nvmet_port *nport;
  128. struct sockaddr_storage addr;
  129. void (*data_ready)(struct sock *);
  130. };
  131. static DEFINE_IDA(nvmet_tcp_queue_ida);
  132. static LIST_HEAD(nvmet_tcp_queue_list);
  133. static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
  134. static struct workqueue_struct *nvmet_tcp_wq;
  135. static const struct nvmet_fabrics_ops nvmet_tcp_ops;
  136. static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
  137. static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
  138. static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
  139. struct nvmet_tcp_cmd *cmd)
  140. {
  141. if (unlikely(!queue->nr_cmds)) {
  142. /* We didn't allocate cmds yet, send 0xffff */
  143. return USHRT_MAX;
  144. }
  145. return cmd - queue->cmds;
  146. }
  147. static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
  148. {
  149. return nvme_is_write(cmd->req.cmd) &&
  150. cmd->rbytes_done < cmd->req.transfer_len;
  151. }
  152. static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
  153. {
  154. return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
  155. }
  156. static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
  157. {
  158. return !nvme_is_write(cmd->req.cmd) &&
  159. cmd->req.transfer_len > 0 &&
  160. !cmd->req.cqe->status;
  161. }
  162. static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
  163. {
  164. return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
  165. !cmd->rbytes_done;
  166. }
  167. static inline struct nvmet_tcp_cmd *
  168. nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
  169. {
  170. struct nvmet_tcp_cmd *cmd;
  171. cmd = list_first_entry_or_null(&queue->free_list,
  172. struct nvmet_tcp_cmd, entry);
  173. if (!cmd)
  174. return NULL;
  175. list_del_init(&cmd->entry);
  176. cmd->rbytes_done = cmd->wbytes_done = 0;
  177. cmd->pdu_len = 0;
  178. cmd->pdu_recv = 0;
  179. cmd->iov = NULL;
  180. cmd->flags = 0;
  181. return cmd;
  182. }
  183. static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
  184. {
  185. if (unlikely(cmd == &cmd->queue->connect))
  186. return;
  187. list_add_tail(&cmd->entry, &cmd->queue->free_list);
  188. }
  189. static inline int queue_cpu(struct nvmet_tcp_queue *queue)
  190. {
  191. return queue->sock->sk->sk_incoming_cpu;
  192. }
  193. static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
  194. {
  195. return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
  196. }
  197. static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
  198. {
  199. return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
  200. }
  201. static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
  202. void *pdu, size_t len)
  203. {
  204. struct scatterlist sg;
  205. sg_init_one(&sg, pdu, len);
  206. ahash_request_set_crypt(hash, &sg, pdu + len, len);
  207. crypto_ahash_digest(hash);
  208. }
  209. static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
  210. void *pdu, size_t len)
  211. {
  212. struct nvme_tcp_hdr *hdr = pdu;
  213. __le32 recv_digest;
  214. __le32 exp_digest;
  215. if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
  216. pr_err("queue %d: header digest enabled but no header digest\n",
  217. queue->idx);
  218. return -EPROTO;
  219. }
  220. recv_digest = *(__le32 *)(pdu + hdr->hlen);
  221. nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
  222. exp_digest = *(__le32 *)(pdu + hdr->hlen);
  223. if (recv_digest != exp_digest) {
  224. pr_err("queue %d: header digest error: recv %#x expected %#x\n",
  225. queue->idx, le32_to_cpu(recv_digest),
  226. le32_to_cpu(exp_digest));
  227. return -EPROTO;
  228. }
  229. return 0;
  230. }
  231. static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
  232. {
  233. struct nvme_tcp_hdr *hdr = pdu;
  234. u8 digest_len = nvmet_tcp_hdgst_len(queue);
  235. u32 len;
  236. len = le32_to_cpu(hdr->plen) - hdr->hlen -
  237. (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
  238. if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
  239. pr_err("queue %d: data digest flag is cleared\n", queue->idx);
  240. return -EPROTO;
  241. }
  242. return 0;
  243. }
  244. static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
  245. {
  246. kfree(cmd->iov);
  247. sgl_free(cmd->req.sg);
  248. cmd->iov = NULL;
  249. cmd->req.sg = NULL;
  250. }
  251. static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
  252. {
  253. struct bio_vec *iov = cmd->iov;
  254. struct scatterlist *sg;
  255. u32 length, offset, sg_offset;
  256. int nr_pages;
  257. length = cmd->pdu_len;
  258. nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
  259. offset = cmd->rbytes_done;
  260. cmd->sg_idx = offset / PAGE_SIZE;
  261. sg_offset = offset % PAGE_SIZE;
  262. sg = &cmd->req.sg[cmd->sg_idx];
  263. while (length) {
  264. u32 iov_len = min_t(u32, length, sg->length - sg_offset);
  265. bvec_set_page(iov, sg_page(sg), iov_len,
  266. sg->offset + sg_offset);
  267. length -= iov_len;
  268. sg = sg_next(sg);
  269. iov++;
  270. sg_offset = 0;
  271. }
  272. iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
  273. nr_pages, cmd->pdu_len);
  274. }
  275. static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
  276. {
  277. queue->rcv_state = NVMET_TCP_RECV_ERR;
  278. if (queue->nvme_sq.ctrl)
  279. nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
  280. else
  281. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  282. }
  283. static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
  284. {
  285. queue->rcv_state = NVMET_TCP_RECV_ERR;
  286. if (status == -EPIPE || status == -ECONNRESET)
  287. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  288. else
  289. nvmet_tcp_fatal_error(queue);
  290. }
  291. static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
  292. {
  293. struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
  294. u32 len = le32_to_cpu(sgl->length);
  295. if (!len)
  296. return 0;
  297. if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
  298. NVME_SGL_FMT_OFFSET)) {
  299. if (!nvme_is_write(cmd->req.cmd))
  300. return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
  301. if (len > cmd->req.port->inline_data_size)
  302. return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
  303. cmd->pdu_len = len;
  304. }
  305. cmd->req.transfer_len += len;
  306. cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
  307. if (!cmd->req.sg)
  308. return NVME_SC_INTERNAL;
  309. cmd->cur_sg = cmd->req.sg;
  310. if (nvmet_tcp_has_data_in(cmd)) {
  311. cmd->iov = kmalloc_array(cmd->req.sg_cnt,
  312. sizeof(*cmd->iov), GFP_KERNEL);
  313. if (!cmd->iov)
  314. goto err;
  315. }
  316. return 0;
  317. err:
  318. nvmet_tcp_free_cmd_buffers(cmd);
  319. return NVME_SC_INTERNAL;
  320. }
  321. static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
  322. struct nvmet_tcp_cmd *cmd)
  323. {
  324. ahash_request_set_crypt(hash, cmd->req.sg,
  325. (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
  326. crypto_ahash_digest(hash);
  327. }
  328. static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
  329. {
  330. struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
  331. struct nvmet_tcp_queue *queue = cmd->queue;
  332. u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
  333. u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
  334. cmd->offset = 0;
  335. cmd->state = NVMET_TCP_SEND_DATA_PDU;
  336. pdu->hdr.type = nvme_tcp_c2h_data;
  337. pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
  338. NVME_TCP_F_DATA_SUCCESS : 0);
  339. pdu->hdr.hlen = sizeof(*pdu);
  340. pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
  341. pdu->hdr.plen =
  342. cpu_to_le32(pdu->hdr.hlen + hdgst +
  343. cmd->req.transfer_len + ddgst);
  344. pdu->command_id = cmd->req.cqe->command_id;
  345. pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
  346. pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
  347. if (queue->data_digest) {
  348. pdu->hdr.flags |= NVME_TCP_F_DDGST;
  349. nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
  350. }
  351. if (cmd->queue->hdr_digest) {
  352. pdu->hdr.flags |= NVME_TCP_F_HDGST;
  353. nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
  354. }
  355. }
  356. static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
  357. {
  358. struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
  359. struct nvmet_tcp_queue *queue = cmd->queue;
  360. u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
  361. cmd->offset = 0;
  362. cmd->state = NVMET_TCP_SEND_R2T;
  363. pdu->hdr.type = nvme_tcp_r2t;
  364. pdu->hdr.flags = 0;
  365. pdu->hdr.hlen = sizeof(*pdu);
  366. pdu->hdr.pdo = 0;
  367. pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
  368. pdu->command_id = cmd->req.cmd->common.command_id;
  369. pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
  370. pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
  371. pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
  372. if (cmd->queue->hdr_digest) {
  373. pdu->hdr.flags |= NVME_TCP_F_HDGST;
  374. nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
  375. }
  376. }
  377. static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
  378. {
  379. struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
  380. struct nvmet_tcp_queue *queue = cmd->queue;
  381. u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
  382. cmd->offset = 0;
  383. cmd->state = NVMET_TCP_SEND_RESPONSE;
  384. pdu->hdr.type = nvme_tcp_rsp;
  385. pdu->hdr.flags = 0;
  386. pdu->hdr.hlen = sizeof(*pdu);
  387. pdu->hdr.pdo = 0;
  388. pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
  389. if (cmd->queue->hdr_digest) {
  390. pdu->hdr.flags |= NVME_TCP_F_HDGST;
  391. nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
  392. }
  393. }
  394. static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
  395. {
  396. struct llist_node *node;
  397. struct nvmet_tcp_cmd *cmd;
  398. for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
  399. cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
  400. list_add(&cmd->entry, &queue->resp_send_list);
  401. queue->send_list_len++;
  402. }
  403. }
  404. static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
  405. {
  406. queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
  407. struct nvmet_tcp_cmd, entry);
  408. if (!queue->snd_cmd) {
  409. nvmet_tcp_process_resp_list(queue);
  410. queue->snd_cmd =
  411. list_first_entry_or_null(&queue->resp_send_list,
  412. struct nvmet_tcp_cmd, entry);
  413. if (unlikely(!queue->snd_cmd))
  414. return NULL;
  415. }
  416. list_del_init(&queue->snd_cmd->entry);
  417. queue->send_list_len--;
  418. if (nvmet_tcp_need_data_out(queue->snd_cmd))
  419. nvmet_setup_c2h_data_pdu(queue->snd_cmd);
  420. else if (nvmet_tcp_need_data_in(queue->snd_cmd))
  421. nvmet_setup_r2t_pdu(queue->snd_cmd);
  422. else
  423. nvmet_setup_response_pdu(queue->snd_cmd);
  424. return queue->snd_cmd;
  425. }
  426. static void nvmet_tcp_queue_response(struct nvmet_req *req)
  427. {
  428. struct nvmet_tcp_cmd *cmd =
  429. container_of(req, struct nvmet_tcp_cmd, req);
  430. struct nvmet_tcp_queue *queue = cmd->queue;
  431. struct nvme_sgl_desc *sgl;
  432. u32 len;
  433. if (unlikely(cmd == queue->cmd)) {
  434. sgl = &cmd->req.cmd->common.dptr.sgl;
  435. len = le32_to_cpu(sgl->length);
  436. /*
  437. * Wait for inline data before processing the response.
  438. * Avoid using helpers, this might happen before
  439. * nvmet_req_init is completed.
  440. */
  441. if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
  442. len && len <= cmd->req.port->inline_data_size &&
  443. nvme_is_write(cmd->req.cmd))
  444. return;
  445. }
  446. llist_add(&cmd->lentry, &queue->resp_list);
  447. queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
  448. }
  449. static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
  450. {
  451. if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
  452. nvmet_tcp_queue_response(&cmd->req);
  453. else
  454. cmd->req.execute(&cmd->req);
  455. }
  456. static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
  457. {
  458. u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
  459. int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
  460. int ret;
  461. ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
  462. offset_in_page(cmd->data_pdu) + cmd->offset,
  463. left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
  464. if (ret <= 0)
  465. return ret;
  466. cmd->offset += ret;
  467. left -= ret;
  468. if (left)
  469. return -EAGAIN;
  470. cmd->state = NVMET_TCP_SEND_DATA;
  471. cmd->offset = 0;
  472. return 1;
  473. }
  474. static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
  475. {
  476. struct nvmet_tcp_queue *queue = cmd->queue;
  477. int ret;
  478. while (cmd->cur_sg) {
  479. struct page *page = sg_page(cmd->cur_sg);
  480. u32 left = cmd->cur_sg->length - cmd->offset;
  481. int flags = MSG_DONTWAIT;
  482. if ((!last_in_batch && cmd->queue->send_list_len) ||
  483. cmd->wbytes_done + left < cmd->req.transfer_len ||
  484. queue->data_digest || !queue->nvme_sq.sqhd_disabled)
  485. flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
  486. ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
  487. left, flags);
  488. if (ret <= 0)
  489. return ret;
  490. cmd->offset += ret;
  491. cmd->wbytes_done += ret;
  492. /* Done with sg?*/
  493. if (cmd->offset == cmd->cur_sg->length) {
  494. cmd->cur_sg = sg_next(cmd->cur_sg);
  495. cmd->offset = 0;
  496. }
  497. }
  498. if (queue->data_digest) {
  499. cmd->state = NVMET_TCP_SEND_DDGST;
  500. cmd->offset = 0;
  501. } else {
  502. if (queue->nvme_sq.sqhd_disabled) {
  503. cmd->queue->snd_cmd = NULL;
  504. nvmet_tcp_put_cmd(cmd);
  505. } else {
  506. nvmet_setup_response_pdu(cmd);
  507. }
  508. }
  509. if (queue->nvme_sq.sqhd_disabled)
  510. nvmet_tcp_free_cmd_buffers(cmd);
  511. return 1;
  512. }
  513. static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
  514. bool last_in_batch)
  515. {
  516. u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
  517. int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
  518. int flags = MSG_DONTWAIT;
  519. int ret;
  520. if (!last_in_batch && cmd->queue->send_list_len)
  521. flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
  522. else
  523. flags |= MSG_EOR;
  524. ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
  525. offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
  526. if (ret <= 0)
  527. return ret;
  528. cmd->offset += ret;
  529. left -= ret;
  530. if (left)
  531. return -EAGAIN;
  532. nvmet_tcp_free_cmd_buffers(cmd);
  533. cmd->queue->snd_cmd = NULL;
  534. nvmet_tcp_put_cmd(cmd);
  535. return 1;
  536. }
  537. static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
  538. {
  539. u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
  540. int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
  541. int flags = MSG_DONTWAIT;
  542. int ret;
  543. if (!last_in_batch && cmd->queue->send_list_len)
  544. flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
  545. else
  546. flags |= MSG_EOR;
  547. ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
  548. offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
  549. if (ret <= 0)
  550. return ret;
  551. cmd->offset += ret;
  552. left -= ret;
  553. if (left)
  554. return -EAGAIN;
  555. cmd->queue->snd_cmd = NULL;
  556. return 1;
  557. }
  558. static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
  559. {
  560. struct nvmet_tcp_queue *queue = cmd->queue;
  561. int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
  562. struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
  563. struct kvec iov = {
  564. .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
  565. .iov_len = left
  566. };
  567. int ret;
  568. if (!last_in_batch && cmd->queue->send_list_len)
  569. msg.msg_flags |= MSG_MORE;
  570. else
  571. msg.msg_flags |= MSG_EOR;
  572. ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
  573. if (unlikely(ret <= 0))
  574. return ret;
  575. cmd->offset += ret;
  576. left -= ret;
  577. if (left)
  578. return -EAGAIN;
  579. if (queue->nvme_sq.sqhd_disabled) {
  580. cmd->queue->snd_cmd = NULL;
  581. nvmet_tcp_put_cmd(cmd);
  582. } else {
  583. nvmet_setup_response_pdu(cmd);
  584. }
  585. return 1;
  586. }
  587. static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
  588. bool last_in_batch)
  589. {
  590. struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
  591. int ret = 0;
  592. if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
  593. cmd = nvmet_tcp_fetch_cmd(queue);
  594. if (unlikely(!cmd))
  595. return 0;
  596. }
  597. if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
  598. ret = nvmet_try_send_data_pdu(cmd);
  599. if (ret <= 0)
  600. goto done_send;
  601. }
  602. if (cmd->state == NVMET_TCP_SEND_DATA) {
  603. ret = nvmet_try_send_data(cmd, last_in_batch);
  604. if (ret <= 0)
  605. goto done_send;
  606. }
  607. if (cmd->state == NVMET_TCP_SEND_DDGST) {
  608. ret = nvmet_try_send_ddgst(cmd, last_in_batch);
  609. if (ret <= 0)
  610. goto done_send;
  611. }
  612. if (cmd->state == NVMET_TCP_SEND_R2T) {
  613. ret = nvmet_try_send_r2t(cmd, last_in_batch);
  614. if (ret <= 0)
  615. goto done_send;
  616. }
  617. if (cmd->state == NVMET_TCP_SEND_RESPONSE)
  618. ret = nvmet_try_send_response(cmd, last_in_batch);
  619. done_send:
  620. if (ret < 0) {
  621. if (ret == -EAGAIN)
  622. return 0;
  623. return ret;
  624. }
  625. return 1;
  626. }
  627. static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
  628. int budget, int *sends)
  629. {
  630. int i, ret = 0;
  631. for (i = 0; i < budget; i++) {
  632. ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
  633. if (unlikely(ret < 0)) {
  634. nvmet_tcp_socket_error(queue, ret);
  635. goto done;
  636. } else if (ret == 0) {
  637. break;
  638. }
  639. (*sends)++;
  640. }
  641. done:
  642. return ret;
  643. }
  644. static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
  645. {
  646. queue->offset = 0;
  647. queue->left = sizeof(struct nvme_tcp_hdr);
  648. queue->cmd = NULL;
  649. queue->rcv_state = NVMET_TCP_RECV_PDU;
  650. }
  651. static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
  652. {
  653. struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
  654. ahash_request_free(queue->rcv_hash);
  655. ahash_request_free(queue->snd_hash);
  656. crypto_free_ahash(tfm);
  657. }
  658. static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
  659. {
  660. struct crypto_ahash *tfm;
  661. tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
  662. if (IS_ERR(tfm))
  663. return PTR_ERR(tfm);
  664. queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
  665. if (!queue->snd_hash)
  666. goto free_tfm;
  667. ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
  668. queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
  669. if (!queue->rcv_hash)
  670. goto free_snd_hash;
  671. ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
  672. return 0;
  673. free_snd_hash:
  674. ahash_request_free(queue->snd_hash);
  675. free_tfm:
  676. crypto_free_ahash(tfm);
  677. return -ENOMEM;
  678. }
  679. static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
  680. {
  681. struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
  682. struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
  683. struct msghdr msg = {};
  684. struct kvec iov;
  685. int ret;
  686. if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
  687. pr_err("bad nvme-tcp pdu length (%d)\n",
  688. le32_to_cpu(icreq->hdr.plen));
  689. nvmet_tcp_fatal_error(queue);
  690. }
  691. if (icreq->pfv != NVME_TCP_PFV_1_0) {
  692. pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
  693. return -EPROTO;
  694. }
  695. if (icreq->hpda != 0) {
  696. pr_err("queue %d: unsupported hpda %d\n", queue->idx,
  697. icreq->hpda);
  698. return -EPROTO;
  699. }
  700. queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
  701. queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
  702. if (queue->hdr_digest || queue->data_digest) {
  703. ret = nvmet_tcp_alloc_crypto(queue);
  704. if (ret)
  705. return ret;
  706. }
  707. memset(icresp, 0, sizeof(*icresp));
  708. icresp->hdr.type = nvme_tcp_icresp;
  709. icresp->hdr.hlen = sizeof(*icresp);
  710. icresp->hdr.pdo = 0;
  711. icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
  712. icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
  713. icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
  714. icresp->cpda = 0;
  715. if (queue->hdr_digest)
  716. icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
  717. if (queue->data_digest)
  718. icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
  719. iov.iov_base = icresp;
  720. iov.iov_len = sizeof(*icresp);
  721. ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
  722. if (ret < 0)
  723. return ret; /* queue removal will cleanup */
  724. queue->state = NVMET_TCP_Q_LIVE;
  725. nvmet_prepare_receive_pdu(queue);
  726. return 0;
  727. }
  728. static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
  729. struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
  730. {
  731. size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
  732. int ret;
  733. /*
  734. * This command has not been processed yet, hence we are trying to
  735. * figure out if there is still pending data left to receive. If
  736. * we don't, we can simply prepare for the next pdu and bail out,
  737. * otherwise we will need to prepare a buffer and receive the
  738. * stale data before continuing forward.
  739. */
  740. if (!nvme_is_write(cmd->req.cmd) || !data_len ||
  741. data_len > cmd->req.port->inline_data_size) {
  742. nvmet_prepare_receive_pdu(queue);
  743. return;
  744. }
  745. ret = nvmet_tcp_map_data(cmd);
  746. if (unlikely(ret)) {
  747. pr_err("queue %d: failed to map data\n", queue->idx);
  748. nvmet_tcp_fatal_error(queue);
  749. return;
  750. }
  751. queue->rcv_state = NVMET_TCP_RECV_DATA;
  752. nvmet_tcp_build_pdu_iovec(cmd);
  753. cmd->flags |= NVMET_TCP_F_INIT_FAILED;
  754. }
  755. static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
  756. {
  757. struct nvme_tcp_data_pdu *data = &queue->pdu.data;
  758. struct nvmet_tcp_cmd *cmd;
  759. if (likely(queue->nr_cmds)) {
  760. if (unlikely(data->ttag >= queue->nr_cmds)) {
  761. pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
  762. queue->idx, data->ttag, queue->nr_cmds);
  763. nvmet_tcp_fatal_error(queue);
  764. return -EPROTO;
  765. }
  766. cmd = &queue->cmds[data->ttag];
  767. } else {
  768. cmd = &queue->connect;
  769. }
  770. if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
  771. pr_err("ttag %u unexpected data offset %u (expected %u)\n",
  772. data->ttag, le32_to_cpu(data->data_offset),
  773. cmd->rbytes_done);
  774. /* FIXME: use path and transport errors */
  775. nvmet_req_complete(&cmd->req,
  776. NVME_SC_INVALID_FIELD | NVME_SC_DNR);
  777. return -EPROTO;
  778. }
  779. cmd->pdu_len = le32_to_cpu(data->data_length);
  780. cmd->pdu_recv = 0;
  781. nvmet_tcp_build_pdu_iovec(cmd);
  782. queue->cmd = cmd;
  783. queue->rcv_state = NVMET_TCP_RECV_DATA;
  784. return 0;
  785. }
  786. static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
  787. {
  788. struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
  789. struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
  790. struct nvmet_req *req;
  791. int ret;
  792. if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
  793. if (hdr->type != nvme_tcp_icreq) {
  794. pr_err("unexpected pdu type (%d) before icreq\n",
  795. hdr->type);
  796. nvmet_tcp_fatal_error(queue);
  797. return -EPROTO;
  798. }
  799. return nvmet_tcp_handle_icreq(queue);
  800. }
  801. if (unlikely(hdr->type == nvme_tcp_icreq)) {
  802. pr_err("queue %d: received icreq pdu in state %d\n",
  803. queue->idx, queue->state);
  804. nvmet_tcp_fatal_error(queue);
  805. return -EPROTO;
  806. }
  807. if (hdr->type == nvme_tcp_h2c_data) {
  808. ret = nvmet_tcp_handle_h2c_data_pdu(queue);
  809. if (unlikely(ret))
  810. return ret;
  811. return 0;
  812. }
  813. queue->cmd = nvmet_tcp_get_cmd(queue);
  814. if (unlikely(!queue->cmd)) {
  815. /* This should never happen */
  816. pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
  817. queue->idx, queue->nr_cmds, queue->send_list_len,
  818. nvme_cmd->common.opcode);
  819. nvmet_tcp_fatal_error(queue);
  820. return -ENOMEM;
  821. }
  822. req = &queue->cmd->req;
  823. memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
  824. if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
  825. &queue->nvme_sq, &nvmet_tcp_ops))) {
  826. pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
  827. req->cmd, req->cmd->common.command_id,
  828. req->cmd->common.opcode,
  829. le32_to_cpu(req->cmd->common.dptr.sgl.length));
  830. nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
  831. return 0;
  832. }
  833. ret = nvmet_tcp_map_data(queue->cmd);
  834. if (unlikely(ret)) {
  835. pr_err("queue %d: failed to map data\n", queue->idx);
  836. if (nvmet_tcp_has_inline_data(queue->cmd))
  837. nvmet_tcp_fatal_error(queue);
  838. else
  839. nvmet_req_complete(req, ret);
  840. ret = -EAGAIN;
  841. goto out;
  842. }
  843. if (nvmet_tcp_need_data_in(queue->cmd)) {
  844. if (nvmet_tcp_has_inline_data(queue->cmd)) {
  845. queue->rcv_state = NVMET_TCP_RECV_DATA;
  846. nvmet_tcp_build_pdu_iovec(queue->cmd);
  847. return 0;
  848. }
  849. /* send back R2T */
  850. nvmet_tcp_queue_response(&queue->cmd->req);
  851. goto out;
  852. }
  853. queue->cmd->req.execute(&queue->cmd->req);
  854. out:
  855. nvmet_prepare_receive_pdu(queue);
  856. return ret;
  857. }
  858. static const u8 nvme_tcp_pdu_sizes[] = {
  859. [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
  860. [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
  861. [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
  862. };
  863. static inline u8 nvmet_tcp_pdu_size(u8 type)
  864. {
  865. size_t idx = type;
  866. return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
  867. nvme_tcp_pdu_sizes[idx]) ?
  868. nvme_tcp_pdu_sizes[idx] : 0;
  869. }
  870. static inline bool nvmet_tcp_pdu_valid(u8 type)
  871. {
  872. switch (type) {
  873. case nvme_tcp_icreq:
  874. case nvme_tcp_cmd:
  875. case nvme_tcp_h2c_data:
  876. /* fallthru */
  877. return true;
  878. }
  879. return false;
  880. }
  881. static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
  882. {
  883. struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
  884. int len;
  885. struct kvec iov;
  886. struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
  887. recv:
  888. iov.iov_base = (void *)&queue->pdu + queue->offset;
  889. iov.iov_len = queue->left;
  890. len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
  891. iov.iov_len, msg.msg_flags);
  892. if (unlikely(len < 0))
  893. return len;
  894. queue->offset += len;
  895. queue->left -= len;
  896. if (queue->left)
  897. return -EAGAIN;
  898. if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
  899. u8 hdgst = nvmet_tcp_hdgst_len(queue);
  900. if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
  901. pr_err("unexpected pdu type %d\n", hdr->type);
  902. nvmet_tcp_fatal_error(queue);
  903. return -EIO;
  904. }
  905. if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
  906. pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
  907. return -EIO;
  908. }
  909. queue->left = hdr->hlen - queue->offset + hdgst;
  910. goto recv;
  911. }
  912. if (queue->hdr_digest &&
  913. nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
  914. nvmet_tcp_fatal_error(queue); /* fatal */
  915. return -EPROTO;
  916. }
  917. if (queue->data_digest &&
  918. nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
  919. nvmet_tcp_fatal_error(queue); /* fatal */
  920. return -EPROTO;
  921. }
  922. return nvmet_tcp_done_recv_pdu(queue);
  923. }
  924. static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
  925. {
  926. struct nvmet_tcp_queue *queue = cmd->queue;
  927. nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
  928. queue->offset = 0;
  929. queue->left = NVME_TCP_DIGEST_LENGTH;
  930. queue->rcv_state = NVMET_TCP_RECV_DDGST;
  931. }
  932. static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
  933. {
  934. struct nvmet_tcp_cmd *cmd = queue->cmd;
  935. int ret;
  936. while (msg_data_left(&cmd->recv_msg)) {
  937. ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
  938. cmd->recv_msg.msg_flags);
  939. if (ret <= 0)
  940. return ret;
  941. cmd->pdu_recv += ret;
  942. cmd->rbytes_done += ret;
  943. }
  944. if (queue->data_digest) {
  945. nvmet_tcp_prep_recv_ddgst(cmd);
  946. return 0;
  947. }
  948. if (cmd->rbytes_done == cmd->req.transfer_len)
  949. nvmet_tcp_execute_request(cmd);
  950. nvmet_prepare_receive_pdu(queue);
  951. return 0;
  952. }
  953. static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
  954. {
  955. struct nvmet_tcp_cmd *cmd = queue->cmd;
  956. int ret;
  957. struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
  958. struct kvec iov = {
  959. .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
  960. .iov_len = queue->left
  961. };
  962. ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
  963. iov.iov_len, msg.msg_flags);
  964. if (unlikely(ret < 0))
  965. return ret;
  966. queue->offset += ret;
  967. queue->left -= ret;
  968. if (queue->left)
  969. return -EAGAIN;
  970. if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
  971. pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
  972. queue->idx, cmd->req.cmd->common.command_id,
  973. queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
  974. le32_to_cpu(cmd->exp_ddgst));
  975. nvmet_req_uninit(&cmd->req);
  976. nvmet_tcp_free_cmd_buffers(cmd);
  977. nvmet_tcp_fatal_error(queue);
  978. ret = -EPROTO;
  979. goto out;
  980. }
  981. if (cmd->rbytes_done == cmd->req.transfer_len)
  982. nvmet_tcp_execute_request(cmd);
  983. ret = 0;
  984. out:
  985. nvmet_prepare_receive_pdu(queue);
  986. return ret;
  987. }
  988. static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
  989. {
  990. int result = 0;
  991. if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
  992. return 0;
  993. if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
  994. result = nvmet_tcp_try_recv_pdu(queue);
  995. if (result != 0)
  996. goto done_recv;
  997. }
  998. if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
  999. result = nvmet_tcp_try_recv_data(queue);
  1000. if (result != 0)
  1001. goto done_recv;
  1002. }
  1003. if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
  1004. result = nvmet_tcp_try_recv_ddgst(queue);
  1005. if (result != 0)
  1006. goto done_recv;
  1007. }
  1008. done_recv:
  1009. if (result < 0) {
  1010. if (result == -EAGAIN)
  1011. return 0;
  1012. return result;
  1013. }
  1014. return 1;
  1015. }
  1016. static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
  1017. int budget, int *recvs)
  1018. {
  1019. int i, ret = 0;
  1020. for (i = 0; i < budget; i++) {
  1021. ret = nvmet_tcp_try_recv_one(queue);
  1022. if (unlikely(ret < 0)) {
  1023. nvmet_tcp_socket_error(queue, ret);
  1024. goto done;
  1025. } else if (ret == 0) {
  1026. break;
  1027. }
  1028. (*recvs)++;
  1029. }
  1030. done:
  1031. return ret;
  1032. }
  1033. static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
  1034. {
  1035. spin_lock(&queue->state_lock);
  1036. if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
  1037. queue->state = NVMET_TCP_Q_DISCONNECTING;
  1038. queue_work(nvmet_wq, &queue->release_work);
  1039. }
  1040. spin_unlock(&queue->state_lock);
  1041. }
  1042. static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
  1043. {
  1044. queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
  1045. }
  1046. static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
  1047. int ops)
  1048. {
  1049. if (!idle_poll_period_usecs)
  1050. return false;
  1051. if (ops)
  1052. nvmet_tcp_arm_queue_deadline(queue);
  1053. return !time_after(jiffies, queue->poll_end);
  1054. }
  1055. static void nvmet_tcp_io_work(struct work_struct *w)
  1056. {
  1057. struct nvmet_tcp_queue *queue =
  1058. container_of(w, struct nvmet_tcp_queue, io_work);
  1059. bool pending;
  1060. int ret, ops = 0;
  1061. do {
  1062. pending = false;
  1063. ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
  1064. if (ret > 0)
  1065. pending = true;
  1066. else if (ret < 0)
  1067. return;
  1068. ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
  1069. if (ret > 0)
  1070. pending = true;
  1071. else if (ret < 0)
  1072. return;
  1073. } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
  1074. /*
  1075. * Requeue the worker if idle deadline period is in progress or any
  1076. * ops activity was recorded during the do-while loop above.
  1077. */
  1078. if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
  1079. queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
  1080. }
  1081. static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
  1082. struct nvmet_tcp_cmd *c)
  1083. {
  1084. u8 hdgst = nvmet_tcp_hdgst_len(queue);
  1085. c->queue = queue;
  1086. c->req.port = queue->port->nport;
  1087. c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
  1088. sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
  1089. if (!c->cmd_pdu)
  1090. return -ENOMEM;
  1091. c->req.cmd = &c->cmd_pdu->cmd;
  1092. c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
  1093. sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
  1094. if (!c->rsp_pdu)
  1095. goto out_free_cmd;
  1096. c->req.cqe = &c->rsp_pdu->cqe;
  1097. c->data_pdu = page_frag_alloc(&queue->pf_cache,
  1098. sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
  1099. if (!c->data_pdu)
  1100. goto out_free_rsp;
  1101. c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
  1102. sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
  1103. if (!c->r2t_pdu)
  1104. goto out_free_data;
  1105. c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
  1106. list_add_tail(&c->entry, &queue->free_list);
  1107. return 0;
  1108. out_free_data:
  1109. page_frag_free(c->data_pdu);
  1110. out_free_rsp:
  1111. page_frag_free(c->rsp_pdu);
  1112. out_free_cmd:
  1113. page_frag_free(c->cmd_pdu);
  1114. return -ENOMEM;
  1115. }
  1116. static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
  1117. {
  1118. page_frag_free(c->r2t_pdu);
  1119. page_frag_free(c->data_pdu);
  1120. page_frag_free(c->rsp_pdu);
  1121. page_frag_free(c->cmd_pdu);
  1122. }
  1123. static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
  1124. {
  1125. struct nvmet_tcp_cmd *cmds;
  1126. int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
  1127. cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
  1128. if (!cmds)
  1129. goto out;
  1130. for (i = 0; i < nr_cmds; i++) {
  1131. ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
  1132. if (ret)
  1133. goto out_free;
  1134. }
  1135. queue->cmds = cmds;
  1136. return 0;
  1137. out_free:
  1138. while (--i >= 0)
  1139. nvmet_tcp_free_cmd(cmds + i);
  1140. kfree(cmds);
  1141. out:
  1142. return ret;
  1143. }
  1144. static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
  1145. {
  1146. struct nvmet_tcp_cmd *cmds = queue->cmds;
  1147. int i;
  1148. for (i = 0; i < queue->nr_cmds; i++)
  1149. nvmet_tcp_free_cmd(cmds + i);
  1150. nvmet_tcp_free_cmd(&queue->connect);
  1151. kfree(cmds);
  1152. }
  1153. static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
  1154. {
  1155. struct socket *sock = queue->sock;
  1156. write_lock_bh(&sock->sk->sk_callback_lock);
  1157. sock->sk->sk_data_ready = queue->data_ready;
  1158. sock->sk->sk_state_change = queue->state_change;
  1159. sock->sk->sk_write_space = queue->write_space;
  1160. sock->sk->sk_user_data = NULL;
  1161. write_unlock_bh(&sock->sk->sk_callback_lock);
  1162. }
  1163. static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
  1164. {
  1165. struct nvmet_tcp_cmd *cmd = queue->cmds;
  1166. int i;
  1167. for (i = 0; i < queue->nr_cmds; i++, cmd++) {
  1168. if (nvmet_tcp_need_data_in(cmd))
  1169. nvmet_req_uninit(&cmd->req);
  1170. }
  1171. if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
  1172. /* failed in connect */
  1173. nvmet_req_uninit(&queue->connect.req);
  1174. }
  1175. }
  1176. static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
  1177. {
  1178. struct nvmet_tcp_cmd *cmd = queue->cmds;
  1179. int i;
  1180. for (i = 0; i < queue->nr_cmds; i++, cmd++) {
  1181. if (nvmet_tcp_need_data_in(cmd))
  1182. nvmet_tcp_free_cmd_buffers(cmd);
  1183. }
  1184. if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
  1185. nvmet_tcp_free_cmd_buffers(&queue->connect);
  1186. }
  1187. static void nvmet_tcp_release_queue_work(struct work_struct *w)
  1188. {
  1189. struct page *page;
  1190. struct nvmet_tcp_queue *queue =
  1191. container_of(w, struct nvmet_tcp_queue, release_work);
  1192. mutex_lock(&nvmet_tcp_queue_mutex);
  1193. list_del_init(&queue->queue_list);
  1194. mutex_unlock(&nvmet_tcp_queue_mutex);
  1195. nvmet_tcp_restore_socket_callbacks(queue);
  1196. cancel_work_sync(&queue->io_work);
  1197. /* stop accepting incoming data */
  1198. queue->rcv_state = NVMET_TCP_RECV_ERR;
  1199. nvmet_tcp_uninit_data_in_cmds(queue);
  1200. nvmet_sq_destroy(&queue->nvme_sq);
  1201. cancel_work_sync(&queue->io_work);
  1202. nvmet_tcp_free_cmd_data_in_buffers(queue);
  1203. sock_release(queue->sock);
  1204. nvmet_tcp_free_cmds(queue);
  1205. if (queue->hdr_digest || queue->data_digest)
  1206. nvmet_tcp_free_crypto(queue);
  1207. ida_free(&nvmet_tcp_queue_ida, queue->idx);
  1208. page = virt_to_head_page(queue->pf_cache.va);
  1209. __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
  1210. kfree(queue);
  1211. }
  1212. static void nvmet_tcp_data_ready(struct sock *sk)
  1213. {
  1214. struct nvmet_tcp_queue *queue;
  1215. read_lock_bh(&sk->sk_callback_lock);
  1216. queue = sk->sk_user_data;
  1217. if (likely(queue))
  1218. queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
  1219. read_unlock_bh(&sk->sk_callback_lock);
  1220. }
  1221. static void nvmet_tcp_write_space(struct sock *sk)
  1222. {
  1223. struct nvmet_tcp_queue *queue;
  1224. read_lock_bh(&sk->sk_callback_lock);
  1225. queue = sk->sk_user_data;
  1226. if (unlikely(!queue))
  1227. goto out;
  1228. if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
  1229. queue->write_space(sk);
  1230. goto out;
  1231. }
  1232. if (sk_stream_is_writeable(sk)) {
  1233. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1234. queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
  1235. }
  1236. out:
  1237. read_unlock_bh(&sk->sk_callback_lock);
  1238. }
  1239. static void nvmet_tcp_state_change(struct sock *sk)
  1240. {
  1241. struct nvmet_tcp_queue *queue;
  1242. read_lock_bh(&sk->sk_callback_lock);
  1243. queue = sk->sk_user_data;
  1244. if (!queue)
  1245. goto done;
  1246. switch (sk->sk_state) {
  1247. case TCP_FIN_WAIT2:
  1248. case TCP_LAST_ACK:
  1249. break;
  1250. case TCP_FIN_WAIT1:
  1251. case TCP_CLOSE_WAIT:
  1252. case TCP_CLOSE:
  1253. /* FALLTHRU */
  1254. nvmet_tcp_schedule_release_queue(queue);
  1255. break;
  1256. default:
  1257. pr_warn("queue %d unhandled state %d\n",
  1258. queue->idx, sk->sk_state);
  1259. }
  1260. done:
  1261. read_unlock_bh(&sk->sk_callback_lock);
  1262. }
  1263. static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
  1264. {
  1265. struct socket *sock = queue->sock;
  1266. struct inet_sock *inet = inet_sk(sock->sk);
  1267. int ret;
  1268. ret = kernel_getsockname(sock,
  1269. (struct sockaddr *)&queue->sockaddr);
  1270. if (ret < 0)
  1271. return ret;
  1272. ret = kernel_getpeername(sock,
  1273. (struct sockaddr *)&queue->sockaddr_peer);
  1274. if (ret < 0)
  1275. return ret;
  1276. /*
  1277. * Cleanup whatever is sitting in the TCP transmit queue on socket
  1278. * close. This is done to prevent stale data from being sent should
  1279. * the network connection be restored before TCP times out.
  1280. */
  1281. sock_no_linger(sock->sk);
  1282. if (so_priority > 0)
  1283. sock_set_priority(sock->sk, so_priority);
  1284. /* Set socket type of service */
  1285. if (inet->rcv_tos > 0)
  1286. ip_sock_set_tos(sock->sk, inet->rcv_tos);
  1287. ret = 0;
  1288. write_lock_bh(&sock->sk->sk_callback_lock);
  1289. if (sock->sk->sk_state != TCP_ESTABLISHED) {
  1290. /*
  1291. * If the socket is already closing, don't even start
  1292. * consuming it
  1293. */
  1294. ret = -ENOTCONN;
  1295. } else {
  1296. sock->sk->sk_user_data = queue;
  1297. queue->data_ready = sock->sk->sk_data_ready;
  1298. sock->sk->sk_data_ready = nvmet_tcp_data_ready;
  1299. queue->state_change = sock->sk->sk_state_change;
  1300. sock->sk->sk_state_change = nvmet_tcp_state_change;
  1301. queue->write_space = sock->sk->sk_write_space;
  1302. sock->sk->sk_write_space = nvmet_tcp_write_space;
  1303. if (idle_poll_period_usecs)
  1304. nvmet_tcp_arm_queue_deadline(queue);
  1305. queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
  1306. }
  1307. write_unlock_bh(&sock->sk->sk_callback_lock);
  1308. return ret;
  1309. }
  1310. static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
  1311. struct socket *newsock)
  1312. {
  1313. struct nvmet_tcp_queue *queue;
  1314. int ret;
  1315. queue = kzalloc(sizeof(*queue), GFP_KERNEL);
  1316. if (!queue)
  1317. return -ENOMEM;
  1318. INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
  1319. INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
  1320. queue->sock = newsock;
  1321. queue->port = port;
  1322. queue->nr_cmds = 0;
  1323. spin_lock_init(&queue->state_lock);
  1324. queue->state = NVMET_TCP_Q_CONNECTING;
  1325. INIT_LIST_HEAD(&queue->free_list);
  1326. init_llist_head(&queue->resp_list);
  1327. INIT_LIST_HEAD(&queue->resp_send_list);
  1328. queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
  1329. if (queue->idx < 0) {
  1330. ret = queue->idx;
  1331. goto out_free_queue;
  1332. }
  1333. ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
  1334. if (ret)
  1335. goto out_ida_remove;
  1336. ret = nvmet_sq_init(&queue->nvme_sq);
  1337. if (ret)
  1338. goto out_free_connect;
  1339. nvmet_prepare_receive_pdu(queue);
  1340. mutex_lock(&nvmet_tcp_queue_mutex);
  1341. list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
  1342. mutex_unlock(&nvmet_tcp_queue_mutex);
  1343. ret = nvmet_tcp_set_queue_sock(queue);
  1344. if (ret)
  1345. goto out_destroy_sq;
  1346. return 0;
  1347. out_destroy_sq:
  1348. mutex_lock(&nvmet_tcp_queue_mutex);
  1349. list_del_init(&queue->queue_list);
  1350. mutex_unlock(&nvmet_tcp_queue_mutex);
  1351. nvmet_sq_destroy(&queue->nvme_sq);
  1352. out_free_connect:
  1353. nvmet_tcp_free_cmd(&queue->connect);
  1354. out_ida_remove:
  1355. ida_free(&nvmet_tcp_queue_ida, queue->idx);
  1356. out_free_queue:
  1357. kfree(queue);
  1358. return ret;
  1359. }
  1360. static void nvmet_tcp_accept_work(struct work_struct *w)
  1361. {
  1362. struct nvmet_tcp_port *port =
  1363. container_of(w, struct nvmet_tcp_port, accept_work);
  1364. struct socket *newsock;
  1365. int ret;
  1366. while (true) {
  1367. ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
  1368. if (ret < 0) {
  1369. if (ret != -EAGAIN)
  1370. pr_warn("failed to accept err=%d\n", ret);
  1371. return;
  1372. }
  1373. ret = nvmet_tcp_alloc_queue(port, newsock);
  1374. if (ret) {
  1375. pr_err("failed to allocate queue\n");
  1376. sock_release(newsock);
  1377. }
  1378. }
  1379. }
  1380. static void nvmet_tcp_listen_data_ready(struct sock *sk)
  1381. {
  1382. struct nvmet_tcp_port *port;
  1383. read_lock_bh(&sk->sk_callback_lock);
  1384. port = sk->sk_user_data;
  1385. if (!port)
  1386. goto out;
  1387. if (sk->sk_state == TCP_LISTEN)
  1388. queue_work(nvmet_wq, &port->accept_work);
  1389. out:
  1390. read_unlock_bh(&sk->sk_callback_lock);
  1391. }
  1392. static int nvmet_tcp_add_port(struct nvmet_port *nport)
  1393. {
  1394. struct nvmet_tcp_port *port;
  1395. __kernel_sa_family_t af;
  1396. int ret;
  1397. port = kzalloc(sizeof(*port), GFP_KERNEL);
  1398. if (!port)
  1399. return -ENOMEM;
  1400. switch (nport->disc_addr.adrfam) {
  1401. case NVMF_ADDR_FAMILY_IP4:
  1402. af = AF_INET;
  1403. break;
  1404. case NVMF_ADDR_FAMILY_IP6:
  1405. af = AF_INET6;
  1406. break;
  1407. default:
  1408. pr_err("address family %d not supported\n",
  1409. nport->disc_addr.adrfam);
  1410. ret = -EINVAL;
  1411. goto err_port;
  1412. }
  1413. ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
  1414. nport->disc_addr.trsvcid, &port->addr);
  1415. if (ret) {
  1416. pr_err("malformed ip/port passed: %s:%s\n",
  1417. nport->disc_addr.traddr, nport->disc_addr.trsvcid);
  1418. goto err_port;
  1419. }
  1420. port->nport = nport;
  1421. INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
  1422. if (port->nport->inline_data_size < 0)
  1423. port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
  1424. ret = sock_create(port->addr.ss_family, SOCK_STREAM,
  1425. IPPROTO_TCP, &port->sock);
  1426. if (ret) {
  1427. pr_err("failed to create a socket\n");
  1428. goto err_port;
  1429. }
  1430. port->sock->sk->sk_user_data = port;
  1431. port->data_ready = port->sock->sk->sk_data_ready;
  1432. port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
  1433. sock_set_reuseaddr(port->sock->sk);
  1434. tcp_sock_set_nodelay(port->sock->sk);
  1435. if (so_priority > 0)
  1436. sock_set_priority(port->sock->sk, so_priority);
  1437. ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
  1438. sizeof(port->addr));
  1439. if (ret) {
  1440. pr_err("failed to bind port socket %d\n", ret);
  1441. goto err_sock;
  1442. }
  1443. ret = kernel_listen(port->sock, 128);
  1444. if (ret) {
  1445. pr_err("failed to listen %d on port sock\n", ret);
  1446. goto err_sock;
  1447. }
  1448. nport->priv = port;
  1449. pr_info("enabling port %d (%pISpc)\n",
  1450. le16_to_cpu(nport->disc_addr.portid), &port->addr);
  1451. return 0;
  1452. err_sock:
  1453. sock_release(port->sock);
  1454. err_port:
  1455. kfree(port);
  1456. return ret;
  1457. }
  1458. static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
  1459. {
  1460. struct nvmet_tcp_queue *queue;
  1461. mutex_lock(&nvmet_tcp_queue_mutex);
  1462. list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
  1463. if (queue->port == port)
  1464. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  1465. mutex_unlock(&nvmet_tcp_queue_mutex);
  1466. }
  1467. static void nvmet_tcp_remove_port(struct nvmet_port *nport)
  1468. {
  1469. struct nvmet_tcp_port *port = nport->priv;
  1470. write_lock_bh(&port->sock->sk->sk_callback_lock);
  1471. port->sock->sk->sk_data_ready = port->data_ready;
  1472. port->sock->sk->sk_user_data = NULL;
  1473. write_unlock_bh(&port->sock->sk->sk_callback_lock);
  1474. cancel_work_sync(&port->accept_work);
  1475. /*
  1476. * Destroy the remaining queues, which are not belong to any
  1477. * controller yet.
  1478. */
  1479. nvmet_tcp_destroy_port_queues(port);
  1480. sock_release(port->sock);
  1481. kfree(port);
  1482. }
  1483. static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
  1484. {
  1485. struct nvmet_tcp_queue *queue;
  1486. mutex_lock(&nvmet_tcp_queue_mutex);
  1487. list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
  1488. if (queue->nvme_sq.ctrl == ctrl)
  1489. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  1490. mutex_unlock(&nvmet_tcp_queue_mutex);
  1491. }
  1492. static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
  1493. {
  1494. struct nvmet_tcp_queue *queue =
  1495. container_of(sq, struct nvmet_tcp_queue, nvme_sq);
  1496. if (sq->qid == 0) {
  1497. /* Let inflight controller teardown complete */
  1498. flush_workqueue(nvmet_wq);
  1499. }
  1500. queue->nr_cmds = sq->size * 2;
  1501. if (nvmet_tcp_alloc_cmds(queue))
  1502. return NVME_SC_INTERNAL;
  1503. return 0;
  1504. }
  1505. static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
  1506. struct nvmet_port *nport, char *traddr)
  1507. {
  1508. struct nvmet_tcp_port *port = nport->priv;
  1509. if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
  1510. struct nvmet_tcp_cmd *cmd =
  1511. container_of(req, struct nvmet_tcp_cmd, req);
  1512. struct nvmet_tcp_queue *queue = cmd->queue;
  1513. sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
  1514. } else {
  1515. memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
  1516. }
  1517. }
  1518. static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
  1519. .owner = THIS_MODULE,
  1520. .type = NVMF_TRTYPE_TCP,
  1521. .msdbd = 1,
  1522. .add_port = nvmet_tcp_add_port,
  1523. .remove_port = nvmet_tcp_remove_port,
  1524. .queue_response = nvmet_tcp_queue_response,
  1525. .delete_ctrl = nvmet_tcp_delete_ctrl,
  1526. .install_queue = nvmet_tcp_install_queue,
  1527. .disc_traddr = nvmet_tcp_disc_port_addr,
  1528. };
  1529. static int __init nvmet_tcp_init(void)
  1530. {
  1531. int ret;
  1532. nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
  1533. WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
  1534. if (!nvmet_tcp_wq)
  1535. return -ENOMEM;
  1536. ret = nvmet_register_transport(&nvmet_tcp_ops);
  1537. if (ret)
  1538. goto err;
  1539. return 0;
  1540. err:
  1541. destroy_workqueue(nvmet_tcp_wq);
  1542. return ret;
  1543. }
  1544. static void __exit nvmet_tcp_exit(void)
  1545. {
  1546. struct nvmet_tcp_queue *queue;
  1547. nvmet_unregister_transport(&nvmet_tcp_ops);
  1548. flush_workqueue(nvmet_wq);
  1549. mutex_lock(&nvmet_tcp_queue_mutex);
  1550. list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
  1551. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  1552. mutex_unlock(&nvmet_tcp_queue_mutex);
  1553. flush_workqueue(nvmet_wq);
  1554. destroy_workqueue(nvmet_tcp_wq);
  1555. }
  1556. module_init(nvmet_tcp_init);
  1557. module_exit(nvmet_tcp_exit);
  1558. MODULE_LICENSE("GPL v2");
  1559. MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */