hwio.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Low-level device IO routines for ST-Ericsson CW1200 drivers
  4. *
  5. * Copyright (c) 2010, ST-Ericsson
  6. * Author: Dmitry Tarnyagin <[email protected]>
  7. *
  8. * Based on:
  9. * ST-Ericsson UMAC CW1200 driver, which is
  10. * Copyright (c) 2010, ST-Ericsson
  11. * Author: Ajitpal Singh <[email protected]>
  12. */
  13. #include <linux/types.h>
  14. #include "cw1200.h"
  15. #include "hwio.h"
  16. #include "hwbus.h"
  17. /* Sdio addr is 4*spi_addr */
  18. #define SPI_REG_ADDR_TO_SDIO(spi_reg_addr) ((spi_reg_addr) << 2)
  19. #define SDIO_ADDR17BIT(buf_id, mpf, rfu, reg_id_ofs) \
  20. ((((buf_id) & 0x1F) << 7) \
  21. | (((mpf) & 1) << 6) \
  22. | (((rfu) & 1) << 5) \
  23. | (((reg_id_ofs) & 0x1F) << 0))
  24. #define MAX_RETRY 3
  25. static int __cw1200_reg_read(struct cw1200_common *priv, u16 addr,
  26. void *buf, size_t buf_len, int buf_id)
  27. {
  28. u16 addr_sdio;
  29. u32 sdio_reg_addr_17bit;
  30. /* Check if buffer is aligned to 4 byte boundary */
  31. if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
  32. pr_err("buffer is not aligned.\n");
  33. return -EINVAL;
  34. }
  35. /* Convert to SDIO Register Address */
  36. addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
  37. sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
  38. return priv->hwbus_ops->hwbus_memcpy_fromio(priv->hwbus_priv,
  39. sdio_reg_addr_17bit,
  40. buf, buf_len);
  41. }
  42. static int __cw1200_reg_write(struct cw1200_common *priv, u16 addr,
  43. const void *buf, size_t buf_len, int buf_id)
  44. {
  45. u16 addr_sdio;
  46. u32 sdio_reg_addr_17bit;
  47. /* Convert to SDIO Register Address */
  48. addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
  49. sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
  50. return priv->hwbus_ops->hwbus_memcpy_toio(priv->hwbus_priv,
  51. sdio_reg_addr_17bit,
  52. buf, buf_len);
  53. }
  54. static inline int __cw1200_reg_read_32(struct cw1200_common *priv,
  55. u16 addr, u32 *val)
  56. {
  57. __le32 tmp;
  58. int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0);
  59. *val = le32_to_cpu(tmp);
  60. return i;
  61. }
  62. static inline int __cw1200_reg_write_32(struct cw1200_common *priv,
  63. u16 addr, u32 val)
  64. {
  65. __le32 tmp = cpu_to_le32(val);
  66. return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0);
  67. }
  68. static inline int __cw1200_reg_read_16(struct cw1200_common *priv,
  69. u16 addr, u16 *val)
  70. {
  71. __le16 tmp;
  72. int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0);
  73. *val = le16_to_cpu(tmp);
  74. return i;
  75. }
  76. static inline int __cw1200_reg_write_16(struct cw1200_common *priv,
  77. u16 addr, u16 val)
  78. {
  79. __le16 tmp = cpu_to_le16(val);
  80. return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0);
  81. }
  82. int cw1200_reg_read(struct cw1200_common *priv, u16 addr, void *buf,
  83. size_t buf_len)
  84. {
  85. int ret;
  86. priv->hwbus_ops->lock(priv->hwbus_priv);
  87. ret = __cw1200_reg_read(priv, addr, buf, buf_len, 0);
  88. priv->hwbus_ops->unlock(priv->hwbus_priv);
  89. return ret;
  90. }
  91. int cw1200_reg_write(struct cw1200_common *priv, u16 addr, const void *buf,
  92. size_t buf_len)
  93. {
  94. int ret;
  95. priv->hwbus_ops->lock(priv->hwbus_priv);
  96. ret = __cw1200_reg_write(priv, addr, buf, buf_len, 0);
  97. priv->hwbus_ops->unlock(priv->hwbus_priv);
  98. return ret;
  99. }
  100. int cw1200_data_read(struct cw1200_common *priv, void *buf, size_t buf_len)
  101. {
  102. int ret, retry = 1;
  103. int buf_id_rx = priv->buf_id_rx;
  104. priv->hwbus_ops->lock(priv->hwbus_priv);
  105. while (retry <= MAX_RETRY) {
  106. ret = __cw1200_reg_read(priv,
  107. ST90TDS_IN_OUT_QUEUE_REG_ID, buf,
  108. buf_len, buf_id_rx + 1);
  109. if (!ret) {
  110. buf_id_rx = (buf_id_rx + 1) & 3;
  111. priv->buf_id_rx = buf_id_rx;
  112. break;
  113. } else {
  114. retry++;
  115. mdelay(1);
  116. pr_err("error :[%d]\n", ret);
  117. }
  118. }
  119. priv->hwbus_ops->unlock(priv->hwbus_priv);
  120. return ret;
  121. }
  122. int cw1200_data_write(struct cw1200_common *priv, const void *buf,
  123. size_t buf_len)
  124. {
  125. int ret, retry = 1;
  126. int buf_id_tx = priv->buf_id_tx;
  127. priv->hwbus_ops->lock(priv->hwbus_priv);
  128. while (retry <= MAX_RETRY) {
  129. ret = __cw1200_reg_write(priv,
  130. ST90TDS_IN_OUT_QUEUE_REG_ID, buf,
  131. buf_len, buf_id_tx);
  132. if (!ret) {
  133. buf_id_tx = (buf_id_tx + 1) & 31;
  134. priv->buf_id_tx = buf_id_tx;
  135. break;
  136. } else {
  137. retry++;
  138. mdelay(1);
  139. pr_err("error :[%d]\n", ret);
  140. }
  141. }
  142. priv->hwbus_ops->unlock(priv->hwbus_priv);
  143. return ret;
  144. }
  145. int cw1200_indirect_read(struct cw1200_common *priv, u32 addr, void *buf,
  146. size_t buf_len, u32 prefetch, u16 port_addr)
  147. {
  148. u32 val32 = 0;
  149. int i, ret;
  150. if ((buf_len / 2) >= 0x1000) {
  151. pr_err("Can't read more than 0xfff words.\n");
  152. return -EINVAL;
  153. }
  154. priv->hwbus_ops->lock(priv->hwbus_priv);
  155. /* Write address */
  156. ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr);
  157. if (ret < 0) {
  158. pr_err("Can't write address register.\n");
  159. goto out;
  160. }
  161. /* Read CONFIG Register Value - We will read 32 bits */
  162. ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
  163. if (ret < 0) {
  164. pr_err("Can't read config register.\n");
  165. goto out;
  166. }
  167. /* Set PREFETCH bit */
  168. ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID,
  169. val32 | prefetch);
  170. if (ret < 0) {
  171. pr_err("Can't write prefetch bit.\n");
  172. goto out;
  173. }
  174. /* Check for PRE-FETCH bit to be cleared */
  175. for (i = 0; i < 20; i++) {
  176. ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
  177. if (ret < 0) {
  178. pr_err("Can't check prefetch bit.\n");
  179. goto out;
  180. }
  181. if (!(val32 & prefetch))
  182. break;
  183. mdelay(i);
  184. }
  185. if (val32 & prefetch) {
  186. pr_err("Prefetch bit is not cleared.\n");
  187. goto out;
  188. }
  189. /* Read data port */
  190. ret = __cw1200_reg_read(priv, port_addr, buf, buf_len, 0);
  191. if (ret < 0) {
  192. pr_err("Can't read data port.\n");
  193. goto out;
  194. }
  195. out:
  196. priv->hwbus_ops->unlock(priv->hwbus_priv);
  197. return ret;
  198. }
  199. int cw1200_apb_write(struct cw1200_common *priv, u32 addr, const void *buf,
  200. size_t buf_len)
  201. {
  202. int ret;
  203. if ((buf_len / 2) >= 0x1000) {
  204. pr_err("Can't write more than 0xfff words.\n");
  205. return -EINVAL;
  206. }
  207. priv->hwbus_ops->lock(priv->hwbus_priv);
  208. /* Write address */
  209. ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr);
  210. if (ret < 0) {
  211. pr_err("Can't write address register.\n");
  212. goto out;
  213. }
  214. /* Write data port */
  215. ret = __cw1200_reg_write(priv, ST90TDS_SRAM_DPORT_REG_ID,
  216. buf, buf_len, 0);
  217. if (ret < 0) {
  218. pr_err("Can't write data port.\n");
  219. goto out;
  220. }
  221. out:
  222. priv->hwbus_ops->unlock(priv->hwbus_priv);
  223. return ret;
  224. }
  225. int __cw1200_irq_enable(struct cw1200_common *priv, int enable)
  226. {
  227. u32 val32;
  228. u16 val16;
  229. int ret;
  230. if (HIF_8601_SILICON == priv->hw_type) {
  231. ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
  232. if (ret < 0) {
  233. pr_err("Can't read config register.\n");
  234. return ret;
  235. }
  236. if (enable)
  237. val32 |= ST90TDS_CONF_IRQ_RDY_ENABLE;
  238. else
  239. val32 &= ~ST90TDS_CONF_IRQ_RDY_ENABLE;
  240. ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID, val32);
  241. if (ret < 0) {
  242. pr_err("Can't write config register.\n");
  243. return ret;
  244. }
  245. } else {
  246. ret = __cw1200_reg_read_16(priv, ST90TDS_CONFIG_REG_ID, &val16);
  247. if (ret < 0) {
  248. pr_err("Can't read control register.\n");
  249. return ret;
  250. }
  251. if (enable)
  252. val16 |= ST90TDS_CONT_IRQ_RDY_ENABLE;
  253. else
  254. val16 &= ~ST90TDS_CONT_IRQ_RDY_ENABLE;
  255. ret = __cw1200_reg_write_16(priv, ST90TDS_CONFIG_REG_ID, val16);
  256. if (ret < 0) {
  257. pr_err("Can't write control register.\n");
  258. return ret;
  259. }
  260. }
  261. return 0;
  262. }