sar.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2. /* Copyright(c) 2019-2020 Realtek Corporation
  3. */
  4. #include "debug.h"
  5. #include "sar.h"
  6. static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
  7. u32 center_freq)
  8. {
  9. switch (center_freq) {
  10. default:
  11. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  12. "center freq: %u to SAR subband is unhandled\n",
  13. center_freq);
  14. fallthrough;
  15. case 2412 ... 2484:
  16. return RTW89_SAR_2GHZ_SUBBAND;
  17. case 5180 ... 5320:
  18. return RTW89_SAR_5GHZ_SUBBAND_1_2;
  19. case 5500 ... 5720:
  20. return RTW89_SAR_5GHZ_SUBBAND_2_E;
  21. case 5745 ... 5825:
  22. return RTW89_SAR_5GHZ_SUBBAND_3;
  23. case 5955 ... 6155:
  24. return RTW89_SAR_6GHZ_SUBBAND_5_L;
  25. case 6175 ... 6415:
  26. return RTW89_SAR_6GHZ_SUBBAND_5_H;
  27. case 6435 ... 6515:
  28. return RTW89_SAR_6GHZ_SUBBAND_6;
  29. case 6535 ... 6695:
  30. return RTW89_SAR_6GHZ_SUBBAND_7_L;
  31. case 6715 ... 6855:
  32. return RTW89_SAR_6GHZ_SUBBAND_7_H;
  33. /* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
  34. * and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
  35. * struct rtw89_sar_span in the following.
  36. */
  37. case 6895 ... 7115:
  38. return RTW89_SAR_6GHZ_SUBBAND_8;
  39. }
  40. }
  41. struct rtw89_sar_span {
  42. enum rtw89_sar_subband subband_low;
  43. enum rtw89_sar_subband subband_high;
  44. };
  45. #define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
  46. #define RTW89_SAR_6GHZ_SPAN_HEAD 6145
  47. #define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
  48. ((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
  49. #define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
  50. [RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
  51. .subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
  52. .subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
  53. }
  54. /* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
  55. * subbands. In the following, we describe each of them with rtw89_sar_span.
  56. */
  57. static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
  58. RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
  59. RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
  60. RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
  61. RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
  62. RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
  63. RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
  64. RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
  65. RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
  66. RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
  67. RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
  68. RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
  69. RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
  70. };
  71. static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev, s32 *cfg)
  72. {
  73. struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
  74. const struct rtw89_chan *chan = rtw89_chan_get(rtwdev, RTW89_SUB_ENTITY_0);
  75. enum rtw89_band band = chan->band_type;
  76. u32 center_freq = chan->freq;
  77. const struct rtw89_sar_span *span = NULL;
  78. enum rtw89_sar_subband subband_l, subband_h;
  79. int idx;
  80. if (band == RTW89_BAND_6G) {
  81. idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
  82. /* To decrease size of rtw89_sar_overlapping_6ghz[],
  83. * RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
  84. * to make first span as index 0 of the table. So, if center
  85. * frequency is less than the first one, it will get netative.
  86. */
  87. if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
  88. span = &rtw89_sar_overlapping_6ghz[idx];
  89. }
  90. if (span && RTW89_SAR_SPAN_VALID(span)) {
  91. subband_l = span->subband_low;
  92. subband_h = span->subband_high;
  93. } else {
  94. subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
  95. subband_h = subband_l;
  96. }
  97. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  98. "for {band %u, center_freq %u}, SAR subband: {%u, %u}\n",
  99. band, center_freq, subband_l, subband_h);
  100. if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
  101. return -ENODATA;
  102. if (!rtwsar->set[subband_l])
  103. *cfg = rtwsar->cfg[subband_h];
  104. else if (!rtwsar->set[subband_h])
  105. *cfg = rtwsar->cfg[subband_l];
  106. else
  107. *cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
  108. return 0;
  109. }
  110. static const
  111. struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
  112. [RTW89_SAR_SOURCE_COMMON] = {
  113. .descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
  114. .txpwr_factor_sar = 2,
  115. .query_sar_config = rtw89_query_sar_config_common,
  116. },
  117. };
  118. #define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \
  119. do { \
  120. typeof(_src) _s = (_src); \
  121. typeof(_dev) _d = (_dev); \
  122. BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \
  123. BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \
  124. lockdep_assert_held(&_d->mutex); \
  125. _d->sar._cfg_name = *(_cfg_data); \
  126. _d->sar.src = _s; \
  127. } while (0)
  128. static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
  129. {
  130. const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
  131. s32 cfg_mac;
  132. cfg_mac = fct > fct_mac ?
  133. cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
  134. return (s8)clamp_t(s32, cfg_mac,
  135. RTW89_SAR_TXPWR_MAC_MIN,
  136. RTW89_SAR_TXPWR_MAC_MAX);
  137. }
  138. s8 rtw89_query_sar(struct rtw89_dev *rtwdev)
  139. {
  140. const enum rtw89_sar_sources src = rtwdev->sar.src;
  141. /* its members are protected by rtw89_sar_set_src() */
  142. const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
  143. int ret;
  144. s32 cfg;
  145. u8 fct;
  146. lockdep_assert_held(&rtwdev->mutex);
  147. if (src == RTW89_SAR_SOURCE_NONE)
  148. return RTW89_SAR_TXPWR_MAC_MAX;
  149. ret = sar_hdl->query_sar_config(rtwdev, &cfg);
  150. if (ret)
  151. return RTW89_SAR_TXPWR_MAC_MAX;
  152. fct = sar_hdl->txpwr_factor_sar;
  153. return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
  154. }
  155. void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev)
  156. {
  157. const enum rtw89_sar_sources src = rtwdev->sar.src;
  158. /* its members are protected by rtw89_sar_set_src() */
  159. const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
  160. const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
  161. int ret;
  162. s32 cfg;
  163. u8 fct;
  164. lockdep_assert_held(&rtwdev->mutex);
  165. if (src == RTW89_SAR_SOURCE_NONE) {
  166. seq_puts(m, "no SAR is applied\n");
  167. return;
  168. }
  169. seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
  170. ret = sar_hdl->query_sar_config(rtwdev, &cfg);
  171. if (ret) {
  172. seq_printf(m, "config: return code: %d\n", ret);
  173. seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
  174. RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
  175. return;
  176. }
  177. fct = sar_hdl->txpwr_factor_sar;
  178. seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
  179. }
  180. static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
  181. const struct rtw89_sar_cfg_common *sar)
  182. {
  183. enum rtw89_sar_sources src;
  184. int ret = 0;
  185. mutex_lock(&rtwdev->mutex);
  186. src = rtwdev->sar.src;
  187. if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
  188. rtw89_warn(rtwdev, "SAR source: %d is in use", src);
  189. ret = -EBUSY;
  190. goto exit;
  191. }
  192. rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
  193. rtw89_core_set_chip_txpwr(rtwdev);
  194. exit:
  195. mutex_unlock(&rtwdev->mutex);
  196. return ret;
  197. }
  198. static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
  199. { .start_freq = 2412, .end_freq = 2484, },
  200. { .start_freq = 5180, .end_freq = 5320, },
  201. { .start_freq = 5500, .end_freq = 5720, },
  202. { .start_freq = 5745, .end_freq = 5825, },
  203. { .start_freq = 5955, .end_freq = 6155, },
  204. { .start_freq = 6175, .end_freq = 6415, },
  205. { .start_freq = 6435, .end_freq = 6515, },
  206. { .start_freq = 6535, .end_freq = 6695, },
  207. { .start_freq = 6715, .end_freq = 6875, },
  208. { .start_freq = 6875, .end_freq = 7115, },
  209. };
  210. static_assert(RTW89_SAR_SUBBAND_NR ==
  211. ARRAY_SIZE(rtw89_common_sar_freq_ranges));
  212. const struct cfg80211_sar_capa rtw89_sar_capa = {
  213. .type = NL80211_SAR_TYPE_POWER,
  214. .num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
  215. .freq_ranges = rtw89_common_sar_freq_ranges,
  216. };
  217. int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
  218. const struct cfg80211_sar_specs *sar)
  219. {
  220. struct rtw89_dev *rtwdev = hw->priv;
  221. struct rtw89_sar_cfg_common sar_common = {0};
  222. u8 fct;
  223. u32 freq_start;
  224. u32 freq_end;
  225. s32 power;
  226. u32 i, idx;
  227. if (sar->type != NL80211_SAR_TYPE_POWER)
  228. return -EINVAL;
  229. fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
  230. for (i = 0; i < sar->num_sub_specs; i++) {
  231. idx = sar->sub_specs[i].freq_range_index;
  232. if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
  233. return -EINVAL;
  234. freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
  235. freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
  236. power = sar->sub_specs[i].power;
  237. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  238. "On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
  239. freq_start, freq_end, power, BIT(fct));
  240. sar_common.set[idx] = true;
  241. sar_common.cfg[idx] = power;
  242. }
  243. return rtw89_apply_sar_common(rtwdev, &sar_common);
  244. }