phy.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543
  1. // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2. /* Copyright(c) 2018-2019 Realtek Corporation
  3. */
  4. #include <linux/bcd.h>
  5. #include "main.h"
  6. #include "reg.h"
  7. #include "fw.h"
  8. #include "phy.h"
  9. #include "debug.h"
  10. #include "regd.h"
  11. #include "sar.h"
  12. struct phy_cfg_pair {
  13. u32 addr;
  14. u32 data;
  15. };
  16. union phy_table_tile {
  17. struct rtw_phy_cond cond;
  18. struct phy_cfg_pair cfg;
  19. };
  20. static const u32 db_invert_table[12][8] = {
  21. {10, 13, 16, 20,
  22. 25, 32, 40, 50},
  23. {64, 80, 101, 128,
  24. 160, 201, 256, 318},
  25. {401, 505, 635, 800,
  26. 1007, 1268, 1596, 2010},
  27. {316, 398, 501, 631,
  28. 794, 1000, 1259, 1585},
  29. {1995, 2512, 3162, 3981,
  30. 5012, 6310, 7943, 10000},
  31. {12589, 15849, 19953, 25119,
  32. 31623, 39811, 50119, 63098},
  33. {79433, 100000, 125893, 158489,
  34. 199526, 251189, 316228, 398107},
  35. {501187, 630957, 794328, 1000000,
  36. 1258925, 1584893, 1995262, 2511886},
  37. {3162278, 3981072, 5011872, 6309573,
  38. 7943282, 1000000, 12589254, 15848932},
  39. {19952623, 25118864, 31622777, 39810717,
  40. 50118723, 63095734, 79432823, 100000000},
  41. {125892541, 158489319, 199526232, 251188643,
  42. 316227766, 398107171, 501187234, 630957345},
  43. {794328235, 1000000000, 1258925412, 1584893192,
  44. 1995262315, 2511886432U, 3162277660U, 3981071706U}
  45. };
  46. u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
  47. u8 rtw_ofdm_rates[] = {
  48. DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
  49. DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
  50. DESC_RATE48M, DESC_RATE54M
  51. };
  52. u8 rtw_ht_1s_rates[] = {
  53. DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
  54. DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
  55. DESC_RATEMCS6, DESC_RATEMCS7
  56. };
  57. u8 rtw_ht_2s_rates[] = {
  58. DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
  59. DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
  60. DESC_RATEMCS14, DESC_RATEMCS15
  61. };
  62. u8 rtw_vht_1s_rates[] = {
  63. DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
  64. DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
  65. DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
  66. DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
  67. DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
  68. };
  69. u8 rtw_vht_2s_rates[] = {
  70. DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
  71. DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
  72. DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
  73. DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
  74. DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
  75. };
  76. u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
  77. rtw_cck_rates, rtw_ofdm_rates,
  78. rtw_ht_1s_rates, rtw_ht_2s_rates,
  79. rtw_vht_1s_rates, rtw_vht_2s_rates
  80. };
  81. EXPORT_SYMBOL(rtw_rate_section);
  82. u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
  83. ARRAY_SIZE(rtw_cck_rates),
  84. ARRAY_SIZE(rtw_ofdm_rates),
  85. ARRAY_SIZE(rtw_ht_1s_rates),
  86. ARRAY_SIZE(rtw_ht_2s_rates),
  87. ARRAY_SIZE(rtw_vht_1s_rates),
  88. ARRAY_SIZE(rtw_vht_2s_rates)
  89. };
  90. EXPORT_SYMBOL(rtw_rate_size);
  91. static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
  92. static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
  93. static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
  94. static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
  95. static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
  96. static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
  97. enum rtw_phy_band_type {
  98. PHY_BAND_2G = 0,
  99. PHY_BAND_5G = 1,
  100. };
  101. static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
  102. {
  103. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  104. u8 i, j;
  105. for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
  106. for (j = 0; j < RTW_RF_PATH_MAX; j++)
  107. dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
  108. }
  109. dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
  110. }
  111. void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
  112. {
  113. struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
  114. rtw_write32_mask(rtwdev,
  115. edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
  116. edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
  117. l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
  118. rtw_write32_mask(rtwdev,
  119. edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
  120. edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
  121. h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
  122. }
  123. EXPORT_SYMBOL(rtw_phy_set_edcca_th);
  124. void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
  125. {
  126. const struct rtw_chip_info *chip = rtwdev->chip;
  127. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  128. /* turn off in debugfs for debug usage */
  129. if (!rtw_edcca_enabled) {
  130. dm_info->edcca_mode = RTW_EDCCA_NORMAL;
  131. rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
  132. return;
  133. }
  134. switch (rtwdev->regd.dfs_region) {
  135. case NL80211_DFS_ETSI:
  136. dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
  137. dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
  138. break;
  139. case NL80211_DFS_JP:
  140. dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
  141. dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
  142. break;
  143. default:
  144. dm_info->edcca_mode = RTW_EDCCA_NORMAL;
  145. break;
  146. }
  147. }
  148. static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
  149. {
  150. const struct rtw_chip_info *chip = rtwdev->chip;
  151. rtw_phy_adaptivity_set_mode(rtwdev);
  152. if (chip->ops->adaptivity_init)
  153. chip->ops->adaptivity_init(rtwdev);
  154. }
  155. static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
  156. {
  157. if (rtwdev->chip->ops->adaptivity)
  158. rtwdev->chip->ops->adaptivity(rtwdev);
  159. }
  160. static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
  161. {
  162. const struct rtw_chip_info *chip = rtwdev->chip;
  163. if (chip->ops->cfo_init)
  164. chip->ops->cfo_init(rtwdev);
  165. }
  166. static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
  167. {
  168. struct rtw_path_div *path_div = &rtwdev->dm_path_div;
  169. path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
  170. path_div->path_a_cnt = 0;
  171. path_div->path_a_sum = 0;
  172. path_div->path_b_cnt = 0;
  173. path_div->path_b_sum = 0;
  174. }
  175. void rtw_phy_init(struct rtw_dev *rtwdev)
  176. {
  177. const struct rtw_chip_info *chip = rtwdev->chip;
  178. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  179. u32 addr, mask;
  180. dm_info->fa_history[3] = 0;
  181. dm_info->fa_history[2] = 0;
  182. dm_info->fa_history[1] = 0;
  183. dm_info->fa_history[0] = 0;
  184. dm_info->igi_bitmap = 0;
  185. dm_info->igi_history[3] = 0;
  186. dm_info->igi_history[2] = 0;
  187. dm_info->igi_history[1] = 0;
  188. addr = chip->dig[0].addr;
  189. mask = chip->dig[0].mask;
  190. dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
  191. rtw_phy_cck_pd_init(rtwdev);
  192. dm_info->iqk.done = false;
  193. rtw_phy_adaptivity_init(rtwdev);
  194. rtw_phy_cfo_init(rtwdev);
  195. rtw_phy_tx_path_div_init(rtwdev);
  196. }
  197. EXPORT_SYMBOL(rtw_phy_init);
  198. void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
  199. {
  200. const struct rtw_chip_info *chip = rtwdev->chip;
  201. struct rtw_hal *hal = &rtwdev->hal;
  202. u32 addr, mask;
  203. u8 path;
  204. if (chip->dig_cck) {
  205. const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
  206. rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
  207. }
  208. for (path = 0; path < hal->rf_path_num; path++) {
  209. addr = chip->dig[path].addr;
  210. mask = chip->dig[path].mask;
  211. rtw_write32_mask(rtwdev, addr, mask, igi);
  212. }
  213. }
  214. static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
  215. {
  216. const struct rtw_chip_info *chip = rtwdev->chip;
  217. chip->ops->false_alarm_statistics(rtwdev);
  218. }
  219. #define RA_FLOOR_TABLE_SIZE 7
  220. #define RA_FLOOR_UP_GAP 3
  221. static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
  222. {
  223. u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
  224. u8 new_level = 0;
  225. int i;
  226. for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
  227. if (i >= old_level)
  228. table[i] += RA_FLOOR_UP_GAP;
  229. for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
  230. if (rssi < table[i]) {
  231. new_level = i;
  232. break;
  233. }
  234. }
  235. return new_level;
  236. }
  237. struct rtw_phy_stat_iter_data {
  238. struct rtw_dev *rtwdev;
  239. u8 min_rssi;
  240. };
  241. static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
  242. {
  243. struct rtw_phy_stat_iter_data *iter_data = data;
  244. struct rtw_dev *rtwdev = iter_data->rtwdev;
  245. struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
  246. u8 rssi;
  247. rssi = ewma_rssi_read(&si->avg_rssi);
  248. si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
  249. rtw_fw_send_rssi_info(rtwdev, si);
  250. iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
  251. }
  252. static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
  253. {
  254. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  255. struct rtw_phy_stat_iter_data data = {};
  256. data.rtwdev = rtwdev;
  257. data.min_rssi = U8_MAX;
  258. rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
  259. dm_info->pre_min_rssi = dm_info->min_rssi;
  260. dm_info->min_rssi = data.min_rssi;
  261. }
  262. static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
  263. {
  264. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  265. dm_info->last_pkt_count = dm_info->cur_pkt_count;
  266. memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
  267. }
  268. static void rtw_phy_statistics(struct rtw_dev *rtwdev)
  269. {
  270. rtw_phy_stat_rssi(rtwdev);
  271. rtw_phy_stat_false_alarm(rtwdev);
  272. rtw_phy_stat_rate_cnt(rtwdev);
  273. }
  274. #define DIG_PERF_FA_TH_LOW 250
  275. #define DIG_PERF_FA_TH_HIGH 500
  276. #define DIG_PERF_FA_TH_EXTRA_HIGH 750
  277. #define DIG_PERF_MAX 0x5a
  278. #define DIG_PERF_MID 0x40
  279. #define DIG_CVRG_FA_TH_LOW 2000
  280. #define DIG_CVRG_FA_TH_HIGH 4000
  281. #define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
  282. #define DIG_CVRG_MAX 0x2a
  283. #define DIG_CVRG_MID 0x26
  284. #define DIG_CVRG_MIN 0x1c
  285. #define DIG_RSSI_GAIN_OFFSET 15
  286. static bool
  287. rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
  288. {
  289. u16 fa_lo = DIG_PERF_FA_TH_LOW;
  290. u16 fa_hi = DIG_PERF_FA_TH_HIGH;
  291. u16 *fa_history;
  292. u8 *igi_history;
  293. u8 damping_rssi;
  294. u8 min_rssi;
  295. u8 diff;
  296. u8 igi_bitmap;
  297. bool damping = false;
  298. min_rssi = dm_info->min_rssi;
  299. if (dm_info->damping) {
  300. damping_rssi = dm_info->damping_rssi;
  301. diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
  302. damping_rssi - min_rssi;
  303. if (diff > 3 || dm_info->damping_cnt++ > 20) {
  304. dm_info->damping = false;
  305. return false;
  306. }
  307. return true;
  308. }
  309. igi_history = dm_info->igi_history;
  310. fa_history = dm_info->fa_history;
  311. igi_bitmap = dm_info->igi_bitmap & 0xf;
  312. switch (igi_bitmap) {
  313. case 5:
  314. /* down -> up -> down -> up */
  315. if (igi_history[0] > igi_history[1] &&
  316. igi_history[2] > igi_history[3] &&
  317. igi_history[0] - igi_history[1] >= 2 &&
  318. igi_history[2] - igi_history[3] >= 2 &&
  319. fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
  320. fa_history[2] > fa_hi && fa_history[3] < fa_lo)
  321. damping = true;
  322. break;
  323. case 9:
  324. /* up -> down -> down -> up */
  325. if (igi_history[0] > igi_history[1] &&
  326. igi_history[3] > igi_history[2] &&
  327. igi_history[0] - igi_history[1] >= 4 &&
  328. igi_history[3] - igi_history[2] >= 2 &&
  329. fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
  330. fa_history[2] < fa_lo && fa_history[3] > fa_hi)
  331. damping = true;
  332. break;
  333. default:
  334. return false;
  335. }
  336. if (damping) {
  337. dm_info->damping = true;
  338. dm_info->damping_cnt = 0;
  339. dm_info->damping_rssi = min_rssi;
  340. }
  341. return damping;
  342. }
  343. static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
  344. struct rtw_dm_info *dm_info,
  345. u8 *upper, u8 *lower, bool linked)
  346. {
  347. u8 dig_max, dig_min, dig_mid;
  348. u8 min_rssi;
  349. if (linked) {
  350. dig_max = DIG_PERF_MAX;
  351. dig_mid = DIG_PERF_MID;
  352. dig_min = rtwdev->chip->dig_min;
  353. min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
  354. } else {
  355. dig_max = DIG_CVRG_MAX;
  356. dig_mid = DIG_CVRG_MID;
  357. dig_min = DIG_CVRG_MIN;
  358. min_rssi = dig_min;
  359. }
  360. /* DIG MAX should be bounded by minimum RSSI with offset +15 */
  361. dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
  362. *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
  363. *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
  364. }
  365. static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
  366. u16 *fa_th, u8 *step, bool linked)
  367. {
  368. u8 min_rssi, pre_min_rssi;
  369. min_rssi = dm_info->min_rssi;
  370. pre_min_rssi = dm_info->pre_min_rssi;
  371. step[0] = 4;
  372. step[1] = 3;
  373. step[2] = 2;
  374. if (linked) {
  375. fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
  376. fa_th[1] = DIG_PERF_FA_TH_HIGH;
  377. fa_th[2] = DIG_PERF_FA_TH_LOW;
  378. if (pre_min_rssi > min_rssi) {
  379. step[0] = 6;
  380. step[1] = 4;
  381. step[2] = 2;
  382. }
  383. } else {
  384. fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
  385. fa_th[1] = DIG_CVRG_FA_TH_HIGH;
  386. fa_th[2] = DIG_CVRG_FA_TH_LOW;
  387. }
  388. }
  389. static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
  390. {
  391. u8 *igi_history;
  392. u16 *fa_history;
  393. u8 igi_bitmap;
  394. bool up;
  395. igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
  396. igi_history = dm_info->igi_history;
  397. fa_history = dm_info->fa_history;
  398. up = igi > igi_history[0];
  399. igi_bitmap |= up;
  400. igi_history[3] = igi_history[2];
  401. igi_history[2] = igi_history[1];
  402. igi_history[1] = igi_history[0];
  403. igi_history[0] = igi;
  404. fa_history[3] = fa_history[2];
  405. fa_history[2] = fa_history[1];
  406. fa_history[1] = fa_history[0];
  407. fa_history[0] = fa;
  408. dm_info->igi_bitmap = igi_bitmap;
  409. }
  410. static void rtw_phy_dig(struct rtw_dev *rtwdev)
  411. {
  412. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  413. u8 upper_bound, lower_bound;
  414. u8 pre_igi, cur_igi;
  415. u16 fa_th[3], fa_cnt;
  416. u8 level;
  417. u8 step[3];
  418. bool linked;
  419. if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
  420. return;
  421. if (rtw_phy_dig_check_damping(dm_info))
  422. return;
  423. linked = !!rtwdev->sta_cnt;
  424. fa_cnt = dm_info->total_fa_cnt;
  425. pre_igi = dm_info->igi_history[0];
  426. rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
  427. /* test the false alarm count from the highest threshold level first,
  428. * and increase it by corresponding step size
  429. *
  430. * note that the step size is offset by -2, compensate it afterall
  431. */
  432. cur_igi = pre_igi;
  433. for (level = 0; level < 3; level++) {
  434. if (fa_cnt > fa_th[level]) {
  435. cur_igi += step[level];
  436. break;
  437. }
  438. }
  439. cur_igi -= 2;
  440. /* calculate the upper/lower bound by the minimum rssi we have among
  441. * the peers connected with us, meanwhile make sure the igi value does
  442. * not beyond the hardware limitation
  443. */
  444. rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
  445. linked);
  446. cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
  447. /* record current igi value and false alarm statistics for further
  448. * damping checks, and record the trend of igi values
  449. */
  450. rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
  451. if (cur_igi != pre_igi)
  452. rtw_phy_dig_write(rtwdev, cur_igi);
  453. }
  454. static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
  455. {
  456. struct rtw_dev *rtwdev = data;
  457. struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
  458. rtw_update_sta_info(rtwdev, si, false);
  459. }
  460. static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
  461. {
  462. if (rtwdev->watch_dog_cnt & 0x3)
  463. return;
  464. rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
  465. }
  466. static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
  467. {
  468. u8 rate_order;
  469. rate_order = rate_idx;
  470. if (rate_idx >= DESC_RATEVHT4SS_MCS0)
  471. rate_order -= DESC_RATEVHT4SS_MCS0;
  472. else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
  473. rate_order -= DESC_RATEVHT3SS_MCS0;
  474. else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
  475. rate_order -= DESC_RATEVHT2SS_MCS0;
  476. else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
  477. rate_order -= DESC_RATEVHT1SS_MCS0;
  478. else if (rate_idx >= DESC_RATEMCS24)
  479. rate_order -= DESC_RATEMCS24;
  480. else if (rate_idx >= DESC_RATEMCS16)
  481. rate_order -= DESC_RATEMCS16;
  482. else if (rate_idx >= DESC_RATEMCS8)
  483. rate_order -= DESC_RATEMCS8;
  484. else if (rate_idx >= DESC_RATEMCS0)
  485. rate_order -= DESC_RATEMCS0;
  486. else if (rate_idx >= DESC_RATE6M)
  487. rate_order -= DESC_RATE6M;
  488. else
  489. rate_order -= DESC_RATE1M;
  490. if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
  491. rate_order++;
  492. return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
  493. }
  494. static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
  495. {
  496. struct rtw_dev *rtwdev = (struct rtw_dev *)data;
  497. struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
  498. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  499. u32 mask = 0;
  500. mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
  501. if (mask < dm_info->rrsr_mask_min)
  502. dm_info->rrsr_mask_min = mask;
  503. }
  504. static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
  505. {
  506. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  507. dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
  508. rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
  509. rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
  510. }
  511. static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
  512. {
  513. const struct rtw_chip_info *chip = rtwdev->chip;
  514. if (chip->ops->dpk_track)
  515. chip->ops->dpk_track(rtwdev);
  516. }
  517. struct rtw_rx_addr_match_data {
  518. struct rtw_dev *rtwdev;
  519. struct ieee80211_hdr *hdr;
  520. struct rtw_rx_pkt_stat *pkt_stat;
  521. u8 *bssid;
  522. };
  523. static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
  524. struct ieee80211_vif *vif)
  525. {
  526. struct rtw_rx_addr_match_data *iter_data = data;
  527. struct rtw_dev *rtwdev = iter_data->rtwdev;
  528. struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
  529. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  530. struct rtw_cfo_track *cfo = &dm_info->cfo_track;
  531. u8 *bssid = iter_data->bssid;
  532. u8 i;
  533. if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
  534. return;
  535. for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
  536. cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
  537. cfo->cfo_cnt[i]++;
  538. }
  539. cfo->packet_count++;
  540. }
  541. void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
  542. struct rtw_rx_pkt_stat *pkt_stat)
  543. {
  544. struct ieee80211_hdr *hdr = pkt_stat->hdr;
  545. struct rtw_rx_addr_match_data data = {};
  546. if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
  547. ieee80211_is_ctl(hdr->frame_control))
  548. return;
  549. data.rtwdev = rtwdev;
  550. data.hdr = hdr;
  551. data.pkt_stat = pkt_stat;
  552. data.bssid = get_hdr_bssid(hdr);
  553. rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
  554. }
  555. EXPORT_SYMBOL(rtw_phy_parsing_cfo);
  556. static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
  557. {
  558. const struct rtw_chip_info *chip = rtwdev->chip;
  559. if (chip->ops->cfo_track)
  560. chip->ops->cfo_track(rtwdev);
  561. }
  562. #define CCK_PD_FA_LV1_MIN 1000
  563. #define CCK_PD_FA_LV0_MAX 500
  564. static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
  565. {
  566. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  567. u32 cck_fa_avg = dm_info->cck_fa_avg;
  568. if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
  569. return CCK_PD_LV1;
  570. if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
  571. return CCK_PD_LV0;
  572. return CCK_PD_LV_MAX;
  573. }
  574. #define CCK_PD_IGI_LV4_VAL 0x38
  575. #define CCK_PD_IGI_LV3_VAL 0x2a
  576. #define CCK_PD_IGI_LV2_VAL 0x24
  577. #define CCK_PD_RSSI_LV4_VAL 32
  578. #define CCK_PD_RSSI_LV3_VAL 32
  579. #define CCK_PD_RSSI_LV2_VAL 24
  580. static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
  581. {
  582. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  583. u8 igi = dm_info->igi_history[0];
  584. u8 rssi = dm_info->min_rssi;
  585. u32 cck_fa_avg = dm_info->cck_fa_avg;
  586. if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
  587. return CCK_PD_LV4;
  588. if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
  589. return CCK_PD_LV3;
  590. if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
  591. return CCK_PD_LV2;
  592. if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
  593. return CCK_PD_LV1;
  594. if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
  595. return CCK_PD_LV0;
  596. return CCK_PD_LV_MAX;
  597. }
  598. static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
  599. {
  600. if (!rtw_is_assoc(rtwdev))
  601. return rtw_phy_cck_pd_lv_unlink(rtwdev);
  602. else
  603. return rtw_phy_cck_pd_lv_link(rtwdev);
  604. }
  605. static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
  606. {
  607. const struct rtw_chip_info *chip = rtwdev->chip;
  608. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  609. u32 cck_fa = dm_info->cck_fa_cnt;
  610. u8 level;
  611. if (rtwdev->hal.current_band_type != RTW_BAND_2G)
  612. return;
  613. if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
  614. dm_info->cck_fa_avg = cck_fa;
  615. else
  616. dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
  617. rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
  618. dm_info->igi_history[0], dm_info->min_rssi,
  619. dm_info->fa_history[0]);
  620. rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
  621. dm_info->cck_fa_avg, dm_info->cck_pd_default);
  622. level = rtw_phy_cck_pd_lv(rtwdev);
  623. if (level >= CCK_PD_LV_MAX)
  624. return;
  625. if (chip->ops->cck_pd_set)
  626. chip->ops->cck_pd_set(rtwdev, level);
  627. }
  628. static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
  629. {
  630. rtwdev->chip->ops->pwr_track(rtwdev);
  631. }
  632. static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
  633. {
  634. rtw_fw_update_wl_phy_info(rtwdev);
  635. rtw_phy_ra_info_update(rtwdev);
  636. rtw_phy_rrsr_update(rtwdev);
  637. }
  638. void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
  639. {
  640. /* for further calculation */
  641. rtw_phy_statistics(rtwdev);
  642. rtw_phy_dig(rtwdev);
  643. rtw_phy_cck_pd(rtwdev);
  644. rtw_phy_ra_track(rtwdev);
  645. rtw_phy_tx_path_diversity(rtwdev);
  646. rtw_phy_cfo_track(rtwdev);
  647. rtw_phy_dpk_track(rtwdev);
  648. rtw_phy_pwr_track(rtwdev);
  649. if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
  650. rtw_fw_adaptivity(rtwdev);
  651. else
  652. rtw_phy_adaptivity(rtwdev);
  653. }
  654. #define FRAC_BITS 3
  655. static u8 rtw_phy_power_2_db(s8 power)
  656. {
  657. if (power <= -100 || power >= 20)
  658. return 0;
  659. else if (power >= 0)
  660. return 100;
  661. else
  662. return 100 + power;
  663. }
  664. static u64 rtw_phy_db_2_linear(u8 power_db)
  665. {
  666. u8 i, j;
  667. u64 linear;
  668. if (power_db > 96)
  669. power_db = 96;
  670. else if (power_db < 1)
  671. return 1;
  672. /* 1dB ~ 96dB */
  673. i = (power_db - 1) >> 3;
  674. j = (power_db - 1) - (i << 3);
  675. linear = db_invert_table[i][j];
  676. linear = i > 2 ? linear << FRAC_BITS : linear;
  677. return linear;
  678. }
  679. static u8 rtw_phy_linear_2_db(u64 linear)
  680. {
  681. u8 i;
  682. u8 j;
  683. u32 dB;
  684. for (i = 0; i < 12; i++) {
  685. for (j = 0; j < 8; j++) {
  686. if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
  687. goto cnt;
  688. else if (i > 2 && linear <= db_invert_table[i][j])
  689. goto cnt;
  690. }
  691. }
  692. return 96; /* maximum 96 dB */
  693. cnt:
  694. if (j == 0 && i == 0)
  695. goto end;
  696. if (j == 0) {
  697. if (i != 3) {
  698. if (db_invert_table[i][0] - linear >
  699. linear - db_invert_table[i - 1][7]) {
  700. i = i - 1;
  701. j = 7;
  702. }
  703. } else {
  704. if (db_invert_table[3][0] - linear >
  705. linear - db_invert_table[2][7]) {
  706. i = 2;
  707. j = 7;
  708. }
  709. }
  710. } else {
  711. if (db_invert_table[i][j] - linear >
  712. linear - db_invert_table[i][j - 1]) {
  713. j = j - 1;
  714. }
  715. }
  716. end:
  717. dB = (i << 3) + j + 1;
  718. return dB;
  719. }
  720. u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
  721. {
  722. s8 power;
  723. u8 power_db;
  724. u64 linear;
  725. u64 sum = 0;
  726. u8 path;
  727. for (path = 0; path < path_num; path++) {
  728. power = rf_power[path];
  729. power_db = rtw_phy_power_2_db(power);
  730. linear = rtw_phy_db_2_linear(power_db);
  731. sum += linear;
  732. }
  733. sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
  734. switch (path_num) {
  735. case 2:
  736. sum >>= 1;
  737. break;
  738. case 3:
  739. sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
  740. break;
  741. case 4:
  742. sum >>= 2;
  743. break;
  744. default:
  745. break;
  746. }
  747. return rtw_phy_linear_2_db(sum);
  748. }
  749. EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
  750. u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  751. u32 addr, u32 mask)
  752. {
  753. struct rtw_hal *hal = &rtwdev->hal;
  754. const struct rtw_chip_info *chip = rtwdev->chip;
  755. const u32 *base_addr = chip->rf_base_addr;
  756. u32 val, direct_addr;
  757. if (rf_path >= hal->rf_phy_num) {
  758. rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  759. return INV_RF_DATA;
  760. }
  761. addr &= 0xff;
  762. direct_addr = base_addr[rf_path] + (addr << 2);
  763. mask &= RFREG_MASK;
  764. val = rtw_read32_mask(rtwdev, direct_addr, mask);
  765. return val;
  766. }
  767. EXPORT_SYMBOL(rtw_phy_read_rf);
  768. u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  769. u32 addr, u32 mask)
  770. {
  771. struct rtw_hal *hal = &rtwdev->hal;
  772. const struct rtw_chip_info *chip = rtwdev->chip;
  773. const struct rtw_rf_sipi_addr *rf_sipi_addr;
  774. const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
  775. u32 val32;
  776. u32 en_pi;
  777. u32 r_addr;
  778. u32 shift;
  779. if (rf_path >= hal->rf_phy_num) {
  780. rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  781. return INV_RF_DATA;
  782. }
  783. if (!chip->rf_sipi_read_addr) {
  784. rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
  785. return INV_RF_DATA;
  786. }
  787. rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
  788. rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
  789. addr &= 0xff;
  790. val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
  791. val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
  792. rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
  793. /* toggle read edge of path A */
  794. val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
  795. rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
  796. rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
  797. udelay(120);
  798. en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
  799. r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
  800. val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
  801. shift = __ffs(mask);
  802. return (val32 & mask) >> shift;
  803. }
  804. EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
  805. bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  806. u32 addr, u32 mask, u32 data)
  807. {
  808. struct rtw_hal *hal = &rtwdev->hal;
  809. const struct rtw_chip_info *chip = rtwdev->chip;
  810. const u32 *sipi_addr = chip->rf_sipi_addr;
  811. u32 data_and_addr;
  812. u32 old_data = 0;
  813. u32 shift;
  814. if (rf_path >= hal->rf_phy_num) {
  815. rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  816. return false;
  817. }
  818. addr &= 0xff;
  819. mask &= RFREG_MASK;
  820. if (mask != RFREG_MASK) {
  821. old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
  822. if (old_data == INV_RF_DATA) {
  823. rtw_err(rtwdev, "Write fail, rf is disabled\n");
  824. return false;
  825. }
  826. shift = __ffs(mask);
  827. data = ((old_data) & (~mask)) | (data << shift);
  828. }
  829. data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
  830. rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
  831. udelay(13);
  832. return true;
  833. }
  834. EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
  835. bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  836. u32 addr, u32 mask, u32 data)
  837. {
  838. struct rtw_hal *hal = &rtwdev->hal;
  839. const struct rtw_chip_info *chip = rtwdev->chip;
  840. const u32 *base_addr = chip->rf_base_addr;
  841. u32 direct_addr;
  842. if (rf_path >= hal->rf_phy_num) {
  843. rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  844. return false;
  845. }
  846. addr &= 0xff;
  847. direct_addr = base_addr[rf_path] + (addr << 2);
  848. mask &= RFREG_MASK;
  849. rtw_write32_mask(rtwdev, direct_addr, mask, data);
  850. udelay(1);
  851. return true;
  852. }
  853. bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  854. u32 addr, u32 mask, u32 data)
  855. {
  856. if (addr != 0x00)
  857. return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
  858. return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
  859. }
  860. EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
  861. void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
  862. {
  863. struct rtw_hal *hal = &rtwdev->hal;
  864. struct rtw_efuse *efuse = &rtwdev->efuse;
  865. struct rtw_phy_cond cond = {0};
  866. cond.cut = hal->cut_version ? hal->cut_version : 15;
  867. cond.pkg = pkg ? pkg : 15;
  868. cond.plat = 0x04;
  869. cond.rfe = efuse->rfe_option;
  870. switch (rtw_hci_type(rtwdev)) {
  871. case RTW_HCI_TYPE_USB:
  872. cond.intf = INTF_USB;
  873. break;
  874. case RTW_HCI_TYPE_SDIO:
  875. cond.intf = INTF_SDIO;
  876. break;
  877. case RTW_HCI_TYPE_PCIE:
  878. default:
  879. cond.intf = INTF_PCIE;
  880. break;
  881. }
  882. hal->phy_cond = cond;
  883. rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
  884. }
  885. static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
  886. {
  887. struct rtw_hal *hal = &rtwdev->hal;
  888. struct rtw_phy_cond drv_cond = hal->phy_cond;
  889. if (cond.cut && cond.cut != drv_cond.cut)
  890. return false;
  891. if (cond.pkg && cond.pkg != drv_cond.pkg)
  892. return false;
  893. if (cond.intf && cond.intf != drv_cond.intf)
  894. return false;
  895. if (cond.rfe != drv_cond.rfe)
  896. return false;
  897. return true;
  898. }
  899. void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
  900. {
  901. const union phy_table_tile *p = tbl->data;
  902. const union phy_table_tile *end = p + tbl->size / 2;
  903. struct rtw_phy_cond pos_cond = {0};
  904. bool is_matched = true, is_skipped = false;
  905. BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
  906. for (; p < end; p++) {
  907. if (p->cond.pos) {
  908. switch (p->cond.branch) {
  909. case BRANCH_ENDIF:
  910. is_matched = true;
  911. is_skipped = false;
  912. break;
  913. case BRANCH_ELSE:
  914. is_matched = is_skipped ? false : true;
  915. break;
  916. case BRANCH_IF:
  917. case BRANCH_ELIF:
  918. default:
  919. pos_cond = p->cond;
  920. break;
  921. }
  922. } else if (p->cond.neg) {
  923. if (!is_skipped) {
  924. if (check_positive(rtwdev, pos_cond)) {
  925. is_matched = true;
  926. is_skipped = true;
  927. } else {
  928. is_matched = false;
  929. is_skipped = false;
  930. }
  931. } else {
  932. is_matched = false;
  933. }
  934. } else if (is_matched) {
  935. (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
  936. }
  937. }
  938. }
  939. EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
  940. #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
  941. static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
  942. {
  943. if (rtwdev->chip->is_pwr_by_rate_dec)
  944. return bcd_to_dec_pwr_by_rate(hex, i);
  945. return (hex >> (i * 8)) & 0xFF;
  946. }
  947. static void
  948. rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
  949. u32 addr, u32 mask, u32 val, u8 *rate,
  950. u8 *pwr_by_rate, u8 *rate_num)
  951. {
  952. int i;
  953. switch (addr) {
  954. case 0xE00:
  955. case 0x830:
  956. rate[0] = DESC_RATE6M;
  957. rate[1] = DESC_RATE9M;
  958. rate[2] = DESC_RATE12M;
  959. rate[3] = DESC_RATE18M;
  960. for (i = 0; i < 4; ++i)
  961. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  962. *rate_num = 4;
  963. break;
  964. case 0xE04:
  965. case 0x834:
  966. rate[0] = DESC_RATE24M;
  967. rate[1] = DESC_RATE36M;
  968. rate[2] = DESC_RATE48M;
  969. rate[3] = DESC_RATE54M;
  970. for (i = 0; i < 4; ++i)
  971. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  972. *rate_num = 4;
  973. break;
  974. case 0xE08:
  975. rate[0] = DESC_RATE1M;
  976. pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
  977. *rate_num = 1;
  978. break;
  979. case 0x86C:
  980. if (mask == 0xffffff00) {
  981. rate[0] = DESC_RATE2M;
  982. rate[1] = DESC_RATE5_5M;
  983. rate[2] = DESC_RATE11M;
  984. for (i = 1; i < 4; ++i)
  985. pwr_by_rate[i - 1] =
  986. tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  987. *rate_num = 3;
  988. } else if (mask == 0x000000ff) {
  989. rate[0] = DESC_RATE11M;
  990. pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
  991. *rate_num = 1;
  992. }
  993. break;
  994. case 0xE10:
  995. case 0x83C:
  996. rate[0] = DESC_RATEMCS0;
  997. rate[1] = DESC_RATEMCS1;
  998. rate[2] = DESC_RATEMCS2;
  999. rate[3] = DESC_RATEMCS3;
  1000. for (i = 0; i < 4; ++i)
  1001. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1002. *rate_num = 4;
  1003. break;
  1004. case 0xE14:
  1005. case 0x848:
  1006. rate[0] = DESC_RATEMCS4;
  1007. rate[1] = DESC_RATEMCS5;
  1008. rate[2] = DESC_RATEMCS6;
  1009. rate[3] = DESC_RATEMCS7;
  1010. for (i = 0; i < 4; ++i)
  1011. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1012. *rate_num = 4;
  1013. break;
  1014. case 0xE18:
  1015. case 0x84C:
  1016. rate[0] = DESC_RATEMCS8;
  1017. rate[1] = DESC_RATEMCS9;
  1018. rate[2] = DESC_RATEMCS10;
  1019. rate[3] = DESC_RATEMCS11;
  1020. for (i = 0; i < 4; ++i)
  1021. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1022. *rate_num = 4;
  1023. break;
  1024. case 0xE1C:
  1025. case 0x868:
  1026. rate[0] = DESC_RATEMCS12;
  1027. rate[1] = DESC_RATEMCS13;
  1028. rate[2] = DESC_RATEMCS14;
  1029. rate[3] = DESC_RATEMCS15;
  1030. for (i = 0; i < 4; ++i)
  1031. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1032. *rate_num = 4;
  1033. break;
  1034. case 0x838:
  1035. rate[0] = DESC_RATE1M;
  1036. rate[1] = DESC_RATE2M;
  1037. rate[2] = DESC_RATE5_5M;
  1038. for (i = 1; i < 4; ++i)
  1039. pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
  1040. val, i);
  1041. *rate_num = 3;
  1042. break;
  1043. case 0xC20:
  1044. case 0xE20:
  1045. case 0x1820:
  1046. case 0x1A20:
  1047. rate[0] = DESC_RATE1M;
  1048. rate[1] = DESC_RATE2M;
  1049. rate[2] = DESC_RATE5_5M;
  1050. rate[3] = DESC_RATE11M;
  1051. for (i = 0; i < 4; ++i)
  1052. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1053. *rate_num = 4;
  1054. break;
  1055. case 0xC24:
  1056. case 0xE24:
  1057. case 0x1824:
  1058. case 0x1A24:
  1059. rate[0] = DESC_RATE6M;
  1060. rate[1] = DESC_RATE9M;
  1061. rate[2] = DESC_RATE12M;
  1062. rate[3] = DESC_RATE18M;
  1063. for (i = 0; i < 4; ++i)
  1064. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1065. *rate_num = 4;
  1066. break;
  1067. case 0xC28:
  1068. case 0xE28:
  1069. case 0x1828:
  1070. case 0x1A28:
  1071. rate[0] = DESC_RATE24M;
  1072. rate[1] = DESC_RATE36M;
  1073. rate[2] = DESC_RATE48M;
  1074. rate[3] = DESC_RATE54M;
  1075. for (i = 0; i < 4; ++i)
  1076. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1077. *rate_num = 4;
  1078. break;
  1079. case 0xC2C:
  1080. case 0xE2C:
  1081. case 0x182C:
  1082. case 0x1A2C:
  1083. rate[0] = DESC_RATEMCS0;
  1084. rate[1] = DESC_RATEMCS1;
  1085. rate[2] = DESC_RATEMCS2;
  1086. rate[3] = DESC_RATEMCS3;
  1087. for (i = 0; i < 4; ++i)
  1088. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1089. *rate_num = 4;
  1090. break;
  1091. case 0xC30:
  1092. case 0xE30:
  1093. case 0x1830:
  1094. case 0x1A30:
  1095. rate[0] = DESC_RATEMCS4;
  1096. rate[1] = DESC_RATEMCS5;
  1097. rate[2] = DESC_RATEMCS6;
  1098. rate[3] = DESC_RATEMCS7;
  1099. for (i = 0; i < 4; ++i)
  1100. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1101. *rate_num = 4;
  1102. break;
  1103. case 0xC34:
  1104. case 0xE34:
  1105. case 0x1834:
  1106. case 0x1A34:
  1107. rate[0] = DESC_RATEMCS8;
  1108. rate[1] = DESC_RATEMCS9;
  1109. rate[2] = DESC_RATEMCS10;
  1110. rate[3] = DESC_RATEMCS11;
  1111. for (i = 0; i < 4; ++i)
  1112. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1113. *rate_num = 4;
  1114. break;
  1115. case 0xC38:
  1116. case 0xE38:
  1117. case 0x1838:
  1118. case 0x1A38:
  1119. rate[0] = DESC_RATEMCS12;
  1120. rate[1] = DESC_RATEMCS13;
  1121. rate[2] = DESC_RATEMCS14;
  1122. rate[3] = DESC_RATEMCS15;
  1123. for (i = 0; i < 4; ++i)
  1124. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1125. *rate_num = 4;
  1126. break;
  1127. case 0xC3C:
  1128. case 0xE3C:
  1129. case 0x183C:
  1130. case 0x1A3C:
  1131. rate[0] = DESC_RATEVHT1SS_MCS0;
  1132. rate[1] = DESC_RATEVHT1SS_MCS1;
  1133. rate[2] = DESC_RATEVHT1SS_MCS2;
  1134. rate[3] = DESC_RATEVHT1SS_MCS3;
  1135. for (i = 0; i < 4; ++i)
  1136. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1137. *rate_num = 4;
  1138. break;
  1139. case 0xC40:
  1140. case 0xE40:
  1141. case 0x1840:
  1142. case 0x1A40:
  1143. rate[0] = DESC_RATEVHT1SS_MCS4;
  1144. rate[1] = DESC_RATEVHT1SS_MCS5;
  1145. rate[2] = DESC_RATEVHT1SS_MCS6;
  1146. rate[3] = DESC_RATEVHT1SS_MCS7;
  1147. for (i = 0; i < 4; ++i)
  1148. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1149. *rate_num = 4;
  1150. break;
  1151. case 0xC44:
  1152. case 0xE44:
  1153. case 0x1844:
  1154. case 0x1A44:
  1155. rate[0] = DESC_RATEVHT1SS_MCS8;
  1156. rate[1] = DESC_RATEVHT1SS_MCS9;
  1157. rate[2] = DESC_RATEVHT2SS_MCS0;
  1158. rate[3] = DESC_RATEVHT2SS_MCS1;
  1159. for (i = 0; i < 4; ++i)
  1160. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1161. *rate_num = 4;
  1162. break;
  1163. case 0xC48:
  1164. case 0xE48:
  1165. case 0x1848:
  1166. case 0x1A48:
  1167. rate[0] = DESC_RATEVHT2SS_MCS2;
  1168. rate[1] = DESC_RATEVHT2SS_MCS3;
  1169. rate[2] = DESC_RATEVHT2SS_MCS4;
  1170. rate[3] = DESC_RATEVHT2SS_MCS5;
  1171. for (i = 0; i < 4; ++i)
  1172. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1173. *rate_num = 4;
  1174. break;
  1175. case 0xC4C:
  1176. case 0xE4C:
  1177. case 0x184C:
  1178. case 0x1A4C:
  1179. rate[0] = DESC_RATEVHT2SS_MCS6;
  1180. rate[1] = DESC_RATEVHT2SS_MCS7;
  1181. rate[2] = DESC_RATEVHT2SS_MCS8;
  1182. rate[3] = DESC_RATEVHT2SS_MCS9;
  1183. for (i = 0; i < 4; ++i)
  1184. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1185. *rate_num = 4;
  1186. break;
  1187. case 0xCD8:
  1188. case 0xED8:
  1189. case 0x18D8:
  1190. case 0x1AD8:
  1191. rate[0] = DESC_RATEMCS16;
  1192. rate[1] = DESC_RATEMCS17;
  1193. rate[2] = DESC_RATEMCS18;
  1194. rate[3] = DESC_RATEMCS19;
  1195. for (i = 0; i < 4; ++i)
  1196. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1197. *rate_num = 4;
  1198. break;
  1199. case 0xCDC:
  1200. case 0xEDC:
  1201. case 0x18DC:
  1202. case 0x1ADC:
  1203. rate[0] = DESC_RATEMCS20;
  1204. rate[1] = DESC_RATEMCS21;
  1205. rate[2] = DESC_RATEMCS22;
  1206. rate[3] = DESC_RATEMCS23;
  1207. for (i = 0; i < 4; ++i)
  1208. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1209. *rate_num = 4;
  1210. break;
  1211. case 0xCE0:
  1212. case 0xEE0:
  1213. case 0x18E0:
  1214. case 0x1AE0:
  1215. rate[0] = DESC_RATEVHT3SS_MCS0;
  1216. rate[1] = DESC_RATEVHT3SS_MCS1;
  1217. rate[2] = DESC_RATEVHT3SS_MCS2;
  1218. rate[3] = DESC_RATEVHT3SS_MCS3;
  1219. for (i = 0; i < 4; ++i)
  1220. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1221. *rate_num = 4;
  1222. break;
  1223. case 0xCE4:
  1224. case 0xEE4:
  1225. case 0x18E4:
  1226. case 0x1AE4:
  1227. rate[0] = DESC_RATEVHT3SS_MCS4;
  1228. rate[1] = DESC_RATEVHT3SS_MCS5;
  1229. rate[2] = DESC_RATEVHT3SS_MCS6;
  1230. rate[3] = DESC_RATEVHT3SS_MCS7;
  1231. for (i = 0; i < 4; ++i)
  1232. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1233. *rate_num = 4;
  1234. break;
  1235. case 0xCE8:
  1236. case 0xEE8:
  1237. case 0x18E8:
  1238. case 0x1AE8:
  1239. rate[0] = DESC_RATEVHT3SS_MCS8;
  1240. rate[1] = DESC_RATEVHT3SS_MCS9;
  1241. for (i = 0; i < 2; ++i)
  1242. pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
  1243. *rate_num = 2;
  1244. break;
  1245. default:
  1246. rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
  1247. break;
  1248. }
  1249. }
  1250. static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
  1251. u32 band, u32 rfpath, u32 txnum,
  1252. u32 regaddr, u32 bitmask, u32 data)
  1253. {
  1254. struct rtw_hal *hal = &rtwdev->hal;
  1255. u8 rate_num = 0;
  1256. u8 rate;
  1257. u8 rates[RTW_RF_PATH_MAX] = {0};
  1258. s8 offset;
  1259. s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
  1260. int i;
  1261. rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
  1262. rates, pwr_by_rate, &rate_num);
  1263. if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
  1264. (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
  1265. rate_num > RTW_RF_PATH_MAX))
  1266. return;
  1267. for (i = 0; i < rate_num; i++) {
  1268. offset = pwr_by_rate[i];
  1269. rate = rates[i];
  1270. if (band == PHY_BAND_2G)
  1271. hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
  1272. else if (band == PHY_BAND_5G)
  1273. hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
  1274. else
  1275. continue;
  1276. }
  1277. }
  1278. void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
  1279. {
  1280. const struct rtw_phy_pg_cfg_pair *p = tbl->data;
  1281. const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
  1282. for (; p < end; p++) {
  1283. if (p->addr == 0xfe || p->addr == 0xffe) {
  1284. msleep(50);
  1285. continue;
  1286. }
  1287. rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
  1288. p->tx_num, p->addr, p->bitmask,
  1289. p->data);
  1290. }
  1291. }
  1292. EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
  1293. static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
  1294. 36, 38, 40, 42, 44, 46, 48, /* Band 1 */
  1295. 52, 54, 56, 58, 60, 62, 64, /* Band 2 */
  1296. 100, 102, 104, 106, 108, 110, 112, /* Band 3 */
  1297. 116, 118, 120, 122, 124, 126, 128, /* Band 3 */
  1298. 132, 134, 136, 138, 140, 142, 144, /* Band 3 */
  1299. 149, 151, 153, 155, 157, 159, 161, /* Band 4 */
  1300. 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
  1301. static int rtw_channel_to_idx(u8 band, u8 channel)
  1302. {
  1303. int ch_idx;
  1304. u8 n_channel;
  1305. if (band == PHY_BAND_2G) {
  1306. ch_idx = channel - 1;
  1307. n_channel = RTW_MAX_CHANNEL_NUM_2G;
  1308. } else if (band == PHY_BAND_5G) {
  1309. n_channel = RTW_MAX_CHANNEL_NUM_5G;
  1310. for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
  1311. if (rtw_channel_idx_5g[ch_idx] == channel)
  1312. break;
  1313. } else {
  1314. return -1;
  1315. }
  1316. if (ch_idx >= n_channel)
  1317. return -1;
  1318. return ch_idx;
  1319. }
  1320. static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
  1321. u8 bw, u8 rs, u8 ch, s8 pwr_limit)
  1322. {
  1323. struct rtw_hal *hal = &rtwdev->hal;
  1324. u8 max_power_index = rtwdev->chip->max_power_index;
  1325. s8 ww;
  1326. int ch_idx;
  1327. pwr_limit = clamp_t(s8, pwr_limit,
  1328. -max_power_index, max_power_index);
  1329. ch_idx = rtw_channel_to_idx(band, ch);
  1330. if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
  1331. rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
  1332. WARN(1,
  1333. "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
  1334. regd, band, bw, rs, ch_idx, pwr_limit);
  1335. return;
  1336. }
  1337. if (band == PHY_BAND_2G) {
  1338. hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
  1339. ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
  1340. ww = min_t(s8, ww, pwr_limit);
  1341. hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
  1342. } else if (band == PHY_BAND_5G) {
  1343. hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
  1344. ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
  1345. ww = min_t(s8, ww, pwr_limit);
  1346. hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
  1347. }
  1348. }
  1349. /* cross-reference 5G power limits if values are not assigned */
  1350. static void
  1351. rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
  1352. u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
  1353. {
  1354. struct rtw_hal *hal = &rtwdev->hal;
  1355. u8 max_power_index = rtwdev->chip->max_power_index;
  1356. s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
  1357. s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
  1358. if (lmt_ht == lmt_vht)
  1359. return;
  1360. if (lmt_ht == max_power_index)
  1361. hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
  1362. else if (lmt_vht == max_power_index)
  1363. hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
  1364. }
  1365. /* cross-reference power limits for ht and vht */
  1366. static void
  1367. rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
  1368. {
  1369. u8 rs_idx, rs_ht, rs_vht;
  1370. u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
  1371. {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
  1372. for (rs_idx = 0; rs_idx < 2; rs_idx++) {
  1373. rs_ht = rs_cmp[rs_idx][0];
  1374. rs_vht = rs_cmp[rs_idx][1];
  1375. rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
  1376. }
  1377. }
  1378. /* cross-reference power limits for 5G channels */
  1379. static void
  1380. rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
  1381. {
  1382. u8 ch_idx;
  1383. for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
  1384. rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
  1385. }
  1386. /* cross-reference power limits for 20/40M bandwidth */
  1387. static void
  1388. rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
  1389. {
  1390. u8 bw;
  1391. for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
  1392. rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
  1393. }
  1394. /* cross-reference power limits */
  1395. static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
  1396. {
  1397. u8 regd;
  1398. for (regd = 0; regd < RTW_REGD_MAX; regd++)
  1399. rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
  1400. }
  1401. static void
  1402. __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
  1403. {
  1404. u8 ch;
  1405. for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
  1406. hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
  1407. hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
  1408. for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
  1409. hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
  1410. hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
  1411. }
  1412. static void
  1413. rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
  1414. {
  1415. u8 bw, rs;
  1416. for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
  1417. for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
  1418. __cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
  1419. bw, rs);
  1420. }
  1421. void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
  1422. const struct rtw_table *tbl)
  1423. {
  1424. const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
  1425. const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
  1426. u32 regd_cfg_flag = 0;
  1427. u8 regd_alt;
  1428. u8 i;
  1429. for (; p < end; p++) {
  1430. regd_cfg_flag |= BIT(p->regd);
  1431. rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
  1432. p->bw, p->rs, p->ch, p->txpwr_lmt);
  1433. }
  1434. for (i = 0; i < RTW_REGD_MAX; i++) {
  1435. if (i == RTW_REGD_WW)
  1436. continue;
  1437. if (regd_cfg_flag & BIT(i))
  1438. continue;
  1439. rtw_dbg(rtwdev, RTW_DBG_REGD,
  1440. "txpwr regd %d does not be configured\n", i);
  1441. if (rtw_regd_has_alt(i, &regd_alt) &&
  1442. regd_cfg_flag & BIT(regd_alt)) {
  1443. rtw_dbg(rtwdev, RTW_DBG_REGD,
  1444. "cfg txpwr regd %d by regd %d as alternative\n",
  1445. i, regd_alt);
  1446. rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
  1447. continue;
  1448. }
  1449. rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
  1450. rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
  1451. }
  1452. rtw_xref_txpwr_lmt(rtwdev);
  1453. }
  1454. EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
  1455. void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
  1456. u32 addr, u32 data)
  1457. {
  1458. rtw_write8(rtwdev, addr, data);
  1459. }
  1460. EXPORT_SYMBOL(rtw_phy_cfg_mac);
  1461. void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
  1462. u32 addr, u32 data)
  1463. {
  1464. rtw_write32(rtwdev, addr, data);
  1465. }
  1466. EXPORT_SYMBOL(rtw_phy_cfg_agc);
  1467. void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
  1468. u32 addr, u32 data)
  1469. {
  1470. if (addr == 0xfe)
  1471. msleep(50);
  1472. else if (addr == 0xfd)
  1473. mdelay(5);
  1474. else if (addr == 0xfc)
  1475. mdelay(1);
  1476. else if (addr == 0xfb)
  1477. usleep_range(50, 60);
  1478. else if (addr == 0xfa)
  1479. udelay(5);
  1480. else if (addr == 0xf9)
  1481. udelay(1);
  1482. else
  1483. rtw_write32(rtwdev, addr, data);
  1484. }
  1485. EXPORT_SYMBOL(rtw_phy_cfg_bb);
  1486. void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
  1487. u32 addr, u32 data)
  1488. {
  1489. if (addr == 0xffe) {
  1490. msleep(50);
  1491. } else if (addr == 0xfe) {
  1492. usleep_range(100, 110);
  1493. } else {
  1494. rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
  1495. udelay(1);
  1496. }
  1497. }
  1498. EXPORT_SYMBOL(rtw_phy_cfg_rf);
  1499. static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
  1500. {
  1501. const struct rtw_chip_info *chip = rtwdev->chip;
  1502. struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
  1503. if (!chip->rfk_init_tbl)
  1504. return;
  1505. rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
  1506. rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
  1507. rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
  1508. rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
  1509. rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
  1510. rtw_load_table(rtwdev, chip->rfk_init_tbl);
  1511. dpk_info->is_dpk_pwr_on = true;
  1512. }
  1513. void rtw_phy_load_tables(struct rtw_dev *rtwdev)
  1514. {
  1515. const struct rtw_chip_info *chip = rtwdev->chip;
  1516. u8 rf_path;
  1517. rtw_load_table(rtwdev, chip->mac_tbl);
  1518. rtw_load_table(rtwdev, chip->bb_tbl);
  1519. rtw_load_table(rtwdev, chip->agc_tbl);
  1520. rtw_load_rfk_table(rtwdev);
  1521. for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
  1522. const struct rtw_table *tbl;
  1523. tbl = chip->rf_tbl[rf_path];
  1524. rtw_load_table(rtwdev, tbl);
  1525. }
  1526. }
  1527. EXPORT_SYMBOL(rtw_phy_load_tables);
  1528. static u8 rtw_get_channel_group(u8 channel, u8 rate)
  1529. {
  1530. switch (channel) {
  1531. default:
  1532. WARN_ON(1);
  1533. fallthrough;
  1534. case 1:
  1535. case 2:
  1536. case 36:
  1537. case 38:
  1538. case 40:
  1539. case 42:
  1540. return 0;
  1541. case 3:
  1542. case 4:
  1543. case 5:
  1544. case 44:
  1545. case 46:
  1546. case 48:
  1547. case 50:
  1548. return 1;
  1549. case 6:
  1550. case 7:
  1551. case 8:
  1552. case 52:
  1553. case 54:
  1554. case 56:
  1555. case 58:
  1556. return 2;
  1557. case 9:
  1558. case 10:
  1559. case 11:
  1560. case 60:
  1561. case 62:
  1562. case 64:
  1563. return 3;
  1564. case 12:
  1565. case 13:
  1566. case 100:
  1567. case 102:
  1568. case 104:
  1569. case 106:
  1570. return 4;
  1571. case 14:
  1572. return rate <= DESC_RATE11M ? 5 : 4;
  1573. case 108:
  1574. case 110:
  1575. case 112:
  1576. case 114:
  1577. return 5;
  1578. case 116:
  1579. case 118:
  1580. case 120:
  1581. case 122:
  1582. return 6;
  1583. case 124:
  1584. case 126:
  1585. case 128:
  1586. case 130:
  1587. return 7;
  1588. case 132:
  1589. case 134:
  1590. case 136:
  1591. case 138:
  1592. return 8;
  1593. case 140:
  1594. case 142:
  1595. case 144:
  1596. return 9;
  1597. case 149:
  1598. case 151:
  1599. case 153:
  1600. case 155:
  1601. return 10;
  1602. case 157:
  1603. case 159:
  1604. case 161:
  1605. return 11;
  1606. case 165:
  1607. case 167:
  1608. case 169:
  1609. case 171:
  1610. return 12;
  1611. case 173:
  1612. case 175:
  1613. case 177:
  1614. return 13;
  1615. }
  1616. }
  1617. static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
  1618. {
  1619. const struct rtw_chip_info *chip = rtwdev->chip;
  1620. s8 dpd_diff = 0;
  1621. if (!chip->en_dis_dpd)
  1622. return 0;
  1623. #define RTW_DPD_RATE_CHECK(_rate) \
  1624. case DESC_RATE ## _rate: \
  1625. if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
  1626. dpd_diff = -6 * chip->txgi_factor; \
  1627. break
  1628. switch (rate) {
  1629. RTW_DPD_RATE_CHECK(6M);
  1630. RTW_DPD_RATE_CHECK(9M);
  1631. RTW_DPD_RATE_CHECK(MCS0);
  1632. RTW_DPD_RATE_CHECK(MCS1);
  1633. RTW_DPD_RATE_CHECK(MCS8);
  1634. RTW_DPD_RATE_CHECK(MCS9);
  1635. RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
  1636. RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
  1637. RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
  1638. RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
  1639. }
  1640. #undef RTW_DPD_RATE_CHECK
  1641. return dpd_diff;
  1642. }
  1643. static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
  1644. struct rtw_2g_txpwr_idx *pwr_idx_2g,
  1645. enum rtw_bandwidth bandwidth,
  1646. u8 rate, u8 group)
  1647. {
  1648. const struct rtw_chip_info *chip = rtwdev->chip;
  1649. u8 tx_power;
  1650. bool mcs_rate;
  1651. bool above_2ss;
  1652. u8 factor = chip->txgi_factor;
  1653. if (rate <= DESC_RATE11M)
  1654. tx_power = pwr_idx_2g->cck_base[group];
  1655. else
  1656. tx_power = pwr_idx_2g->bw40_base[group];
  1657. if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
  1658. tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
  1659. mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
  1660. (rate >= DESC_RATEVHT1SS_MCS0 &&
  1661. rate <= DESC_RATEVHT2SS_MCS9);
  1662. above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
  1663. (rate >= DESC_RATEVHT2SS_MCS0);
  1664. if (!mcs_rate)
  1665. return tx_power;
  1666. switch (bandwidth) {
  1667. default:
  1668. WARN_ON(1);
  1669. fallthrough;
  1670. case RTW_CHANNEL_WIDTH_20:
  1671. tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
  1672. if (above_2ss)
  1673. tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
  1674. break;
  1675. case RTW_CHANNEL_WIDTH_40:
  1676. /* bw40 is the base power */
  1677. if (above_2ss)
  1678. tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
  1679. break;
  1680. }
  1681. return tx_power;
  1682. }
  1683. static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
  1684. struct rtw_5g_txpwr_idx *pwr_idx_5g,
  1685. enum rtw_bandwidth bandwidth,
  1686. u8 rate, u8 group)
  1687. {
  1688. const struct rtw_chip_info *chip = rtwdev->chip;
  1689. u8 tx_power;
  1690. u8 upper, lower;
  1691. bool mcs_rate;
  1692. bool above_2ss;
  1693. u8 factor = chip->txgi_factor;
  1694. tx_power = pwr_idx_5g->bw40_base[group];
  1695. mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
  1696. (rate >= DESC_RATEVHT1SS_MCS0 &&
  1697. rate <= DESC_RATEVHT2SS_MCS9);
  1698. above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
  1699. (rate >= DESC_RATEVHT2SS_MCS0);
  1700. if (!mcs_rate) {
  1701. tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
  1702. return tx_power;
  1703. }
  1704. switch (bandwidth) {
  1705. default:
  1706. WARN_ON(1);
  1707. fallthrough;
  1708. case RTW_CHANNEL_WIDTH_20:
  1709. tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
  1710. if (above_2ss)
  1711. tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
  1712. break;
  1713. case RTW_CHANNEL_WIDTH_40:
  1714. /* bw40 is the base power */
  1715. if (above_2ss)
  1716. tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
  1717. break;
  1718. case RTW_CHANNEL_WIDTH_80:
  1719. /* the base idx of bw80 is the average of bw40+/bw40- */
  1720. lower = pwr_idx_5g->bw40_base[group];
  1721. upper = pwr_idx_5g->bw40_base[group + 1];
  1722. tx_power = (lower + upper) / 2;
  1723. tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
  1724. if (above_2ss)
  1725. tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
  1726. break;
  1727. }
  1728. return tx_power;
  1729. }
  1730. /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
  1731. static u8 rtw_phy_rate_to_rate_section(u8 rate)
  1732. {
  1733. if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
  1734. return RTW_RATE_SECTION_CCK;
  1735. else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
  1736. return RTW_RATE_SECTION_OFDM;
  1737. else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
  1738. return RTW_RATE_SECTION_HT_1S;
  1739. else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
  1740. return RTW_RATE_SECTION_HT_2S;
  1741. else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
  1742. return RTW_RATE_SECTION_VHT_1S;
  1743. else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
  1744. return RTW_RATE_SECTION_VHT_2S;
  1745. else
  1746. return RTW_RATE_SECTION_MAX;
  1747. }
  1748. static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
  1749. enum rtw_bandwidth bw, u8 rf_path,
  1750. u8 rate, u8 channel, u8 regd)
  1751. {
  1752. struct rtw_hal *hal = &rtwdev->hal;
  1753. u8 *cch_by_bw = hal->cch_by_bw;
  1754. s8 power_limit = (s8)rtwdev->chip->max_power_index;
  1755. u8 rs = rtw_phy_rate_to_rate_section(rate);
  1756. int ch_idx;
  1757. u8 cur_bw, cur_ch;
  1758. s8 cur_lmt;
  1759. if (regd > RTW_REGD_WW)
  1760. return power_limit;
  1761. if (rs == RTW_RATE_SECTION_MAX)
  1762. goto err;
  1763. /* only 20M BW with cck and ofdm */
  1764. if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
  1765. bw = RTW_CHANNEL_WIDTH_20;
  1766. /* only 20/40M BW with ht */
  1767. if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
  1768. bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
  1769. /* select min power limit among [20M BW ~ current BW] */
  1770. for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
  1771. cur_ch = cch_by_bw[cur_bw];
  1772. ch_idx = rtw_channel_to_idx(band, cur_ch);
  1773. if (ch_idx < 0)
  1774. goto err;
  1775. cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
  1776. hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
  1777. hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
  1778. power_limit = min_t(s8, cur_lmt, power_limit);
  1779. }
  1780. return power_limit;
  1781. err:
  1782. WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
  1783. band, bw, rf_path, rate, channel);
  1784. return (s8)rtwdev->chip->max_power_index;
  1785. }
  1786. static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
  1787. u8 rf_path, u8 rate)
  1788. {
  1789. u8 rs = rtw_phy_rate_to_rate_section(rate);
  1790. struct rtw_sar_arg arg = {
  1791. .sar_band = sar_band,
  1792. .path = rf_path,
  1793. .rs = rs,
  1794. };
  1795. if (rs == RTW_RATE_SECTION_MAX)
  1796. goto err;
  1797. return rtw_query_sar(rtwdev, &arg);
  1798. err:
  1799. WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
  1800. sar_band, rf_path, rate);
  1801. return (s8)rtwdev->chip->max_power_index;
  1802. }
  1803. void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
  1804. u8 ch, u8 regd, struct rtw_power_params *pwr_param)
  1805. {
  1806. struct rtw_hal *hal = &rtwdev->hal;
  1807. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  1808. struct rtw_txpwr_idx *pwr_idx;
  1809. u8 group, band;
  1810. u8 *base = &pwr_param->pwr_base;
  1811. s8 *offset = &pwr_param->pwr_offset;
  1812. s8 *limit = &pwr_param->pwr_limit;
  1813. s8 *remnant = &pwr_param->pwr_remnant;
  1814. s8 *sar = &pwr_param->pwr_sar;
  1815. pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
  1816. group = rtw_get_channel_group(ch, rate);
  1817. /* base power index for 2.4G/5G */
  1818. if (IS_CH_2G_BAND(ch)) {
  1819. band = PHY_BAND_2G;
  1820. *base = rtw_phy_get_2g_tx_power_index(rtwdev,
  1821. &pwr_idx->pwr_idx_2g,
  1822. bw, rate, group);
  1823. *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
  1824. } else {
  1825. band = PHY_BAND_5G;
  1826. *base = rtw_phy_get_5g_tx_power_index(rtwdev,
  1827. &pwr_idx->pwr_idx_5g,
  1828. bw, rate, group);
  1829. *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
  1830. }
  1831. *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
  1832. rate, ch, regd);
  1833. *remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
  1834. dm_info->txagc_remnant_ofdm);
  1835. *sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
  1836. }
  1837. u8
  1838. rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
  1839. enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
  1840. {
  1841. struct rtw_power_params pwr_param = {0};
  1842. u8 tx_power;
  1843. s8 offset;
  1844. rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
  1845. channel, regd, &pwr_param);
  1846. tx_power = pwr_param.pwr_base;
  1847. offset = min3(pwr_param.pwr_offset,
  1848. pwr_param.pwr_limit,
  1849. pwr_param.pwr_sar);
  1850. if (rtwdev->chip->en_dis_dpd)
  1851. offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
  1852. tx_power += offset + pwr_param.pwr_remnant;
  1853. if (tx_power > rtwdev->chip->max_power_index)
  1854. tx_power = rtwdev->chip->max_power_index;
  1855. return tx_power;
  1856. }
  1857. EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
  1858. static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
  1859. u8 ch, u8 path, u8 rs)
  1860. {
  1861. struct rtw_hal *hal = &rtwdev->hal;
  1862. u8 regd = rtw_regd_get(rtwdev);
  1863. u8 *rates;
  1864. u8 size;
  1865. u8 rate;
  1866. u8 pwr_idx;
  1867. u8 bw;
  1868. int i;
  1869. if (rs >= RTW_RATE_SECTION_MAX)
  1870. return;
  1871. rates = rtw_rate_section[rs];
  1872. size = rtw_rate_size[rs];
  1873. bw = hal->current_band_width;
  1874. for (i = 0; i < size; i++) {
  1875. rate = rates[i];
  1876. pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
  1877. bw, ch, regd);
  1878. hal->tx_pwr_tbl[path][rate] = pwr_idx;
  1879. }
  1880. }
  1881. /* set tx power level by path for each rates, note that the order of the rates
  1882. * are *very* important, bacause 8822B/8821C combines every four bytes of tx
  1883. * power index into a four-byte power index register, and calls set_tx_agc to
  1884. * write these values into hardware
  1885. */
  1886. static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
  1887. u8 ch, u8 path)
  1888. {
  1889. struct rtw_hal *hal = &rtwdev->hal;
  1890. u8 rs;
  1891. /* do not need cck rates if we are not in 2.4G */
  1892. if (hal->current_band_type == RTW_BAND_2G)
  1893. rs = RTW_RATE_SECTION_CCK;
  1894. else
  1895. rs = RTW_RATE_SECTION_OFDM;
  1896. for (; rs < RTW_RATE_SECTION_MAX; rs++)
  1897. rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
  1898. }
  1899. void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
  1900. {
  1901. const struct rtw_chip_info *chip = rtwdev->chip;
  1902. struct rtw_hal *hal = &rtwdev->hal;
  1903. u8 path;
  1904. mutex_lock(&hal->tx_power_mutex);
  1905. for (path = 0; path < hal->rf_path_num; path++)
  1906. rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
  1907. chip->ops->set_tx_power_index(rtwdev);
  1908. mutex_unlock(&hal->tx_power_mutex);
  1909. }
  1910. EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
  1911. static void
  1912. rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
  1913. u8 rs, u8 size, u8 *rates)
  1914. {
  1915. u8 rate;
  1916. u8 base_idx, rate_idx;
  1917. s8 base_2g, base_5g;
  1918. if (rs >= RTW_RATE_SECTION_VHT_1S)
  1919. base_idx = rates[size - 3];
  1920. else
  1921. base_idx = rates[size - 1];
  1922. base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
  1923. base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
  1924. hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
  1925. hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
  1926. for (rate = 0; rate < size; rate++) {
  1927. rate_idx = rates[rate];
  1928. hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
  1929. hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
  1930. }
  1931. }
  1932. void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
  1933. {
  1934. u8 path;
  1935. for (path = 0; path < RTW_RF_PATH_MAX; path++) {
  1936. rtw_phy_tx_power_by_rate_config_by_path(hal, path,
  1937. RTW_RATE_SECTION_CCK,
  1938. rtw_cck_size, rtw_cck_rates);
  1939. rtw_phy_tx_power_by_rate_config_by_path(hal, path,
  1940. RTW_RATE_SECTION_OFDM,
  1941. rtw_ofdm_size, rtw_ofdm_rates);
  1942. rtw_phy_tx_power_by_rate_config_by_path(hal, path,
  1943. RTW_RATE_SECTION_HT_1S,
  1944. rtw_ht_1s_size, rtw_ht_1s_rates);
  1945. rtw_phy_tx_power_by_rate_config_by_path(hal, path,
  1946. RTW_RATE_SECTION_HT_2S,
  1947. rtw_ht_2s_size, rtw_ht_2s_rates);
  1948. rtw_phy_tx_power_by_rate_config_by_path(hal, path,
  1949. RTW_RATE_SECTION_VHT_1S,
  1950. rtw_vht_1s_size, rtw_vht_1s_rates);
  1951. rtw_phy_tx_power_by_rate_config_by_path(hal, path,
  1952. RTW_RATE_SECTION_VHT_2S,
  1953. rtw_vht_2s_size, rtw_vht_2s_rates);
  1954. }
  1955. }
  1956. static void
  1957. __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
  1958. {
  1959. s8 base;
  1960. u8 ch;
  1961. for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
  1962. base = hal->tx_pwr_by_rate_base_2g[0][rs];
  1963. hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
  1964. }
  1965. for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
  1966. base = hal->tx_pwr_by_rate_base_5g[0][rs];
  1967. hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
  1968. }
  1969. }
  1970. void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
  1971. {
  1972. u8 regd, bw, rs;
  1973. /* default at channel 1 */
  1974. hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
  1975. for (regd = 0; regd < RTW_REGD_MAX; regd++)
  1976. for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
  1977. for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
  1978. __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
  1979. }
  1980. static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
  1981. u8 regd, u8 bw, u8 rs)
  1982. {
  1983. struct rtw_hal *hal = &rtwdev->hal;
  1984. s8 max_power_index = (s8)rtwdev->chip->max_power_index;
  1985. u8 ch;
  1986. /* 2.4G channels */
  1987. for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
  1988. hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
  1989. /* 5G channels */
  1990. for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
  1991. hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
  1992. }
  1993. void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
  1994. {
  1995. struct rtw_hal *hal = &rtwdev->hal;
  1996. u8 regd, path, rate, rs, bw;
  1997. /* init tx power by rate offset */
  1998. for (path = 0; path < RTW_RF_PATH_MAX; path++) {
  1999. for (rate = 0; rate < DESC_RATE_MAX; rate++) {
  2000. hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
  2001. hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
  2002. }
  2003. }
  2004. /* init tx power limit */
  2005. for (regd = 0; regd < RTW_REGD_MAX; regd++)
  2006. for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
  2007. for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
  2008. rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
  2009. rs);
  2010. }
  2011. void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
  2012. struct rtw_swing_table *swing_table)
  2013. {
  2014. const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
  2015. u8 channel = rtwdev->hal.current_channel;
  2016. if (IS_CH_2G_BAND(channel)) {
  2017. if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
  2018. swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
  2019. swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
  2020. swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
  2021. swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
  2022. } else {
  2023. swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
  2024. swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
  2025. swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
  2026. swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
  2027. }
  2028. } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
  2029. swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
  2030. swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
  2031. swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
  2032. swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
  2033. } else if (IS_CH_5G_BAND_3(channel)) {
  2034. swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
  2035. swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
  2036. swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
  2037. swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
  2038. } else if (IS_CH_5G_BAND_4(channel)) {
  2039. swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
  2040. swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
  2041. swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
  2042. swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
  2043. } else {
  2044. swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
  2045. swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
  2046. swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
  2047. swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
  2048. }
  2049. }
  2050. EXPORT_SYMBOL(rtw_phy_config_swing_table);
  2051. void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
  2052. {
  2053. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  2054. ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
  2055. dm_info->thermal_avg[path] =
  2056. ewma_thermal_read(&dm_info->avg_thermal[path]);
  2057. }
  2058. EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
  2059. bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
  2060. u8 path)
  2061. {
  2062. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  2063. u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
  2064. if (avg == thermal)
  2065. return false;
  2066. return true;
  2067. }
  2068. EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
  2069. u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
  2070. {
  2071. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  2072. u8 therm_avg, therm_efuse, therm_delta;
  2073. therm_avg = dm_info->thermal_avg[path];
  2074. therm_efuse = rtwdev->efuse.thermal_meter[path];
  2075. therm_delta = abs(therm_avg - therm_efuse);
  2076. return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
  2077. }
  2078. EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
  2079. s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
  2080. struct rtw_swing_table *swing_table,
  2081. u8 tbl_path, u8 therm_path, u8 delta)
  2082. {
  2083. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  2084. const u8 *delta_swing_table_idx_pos;
  2085. const u8 *delta_swing_table_idx_neg;
  2086. if (delta >= RTW_PWR_TRK_TBL_SZ) {
  2087. rtw_warn(rtwdev, "power track table overflow\n");
  2088. return 0;
  2089. }
  2090. if (!swing_table) {
  2091. rtw_warn(rtwdev, "swing table not configured\n");
  2092. return 0;
  2093. }
  2094. delta_swing_table_idx_pos = swing_table->p[tbl_path];
  2095. delta_swing_table_idx_neg = swing_table->n[tbl_path];
  2096. if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
  2097. rtw_warn(rtwdev, "invalid swing table index\n");
  2098. return 0;
  2099. }
  2100. if (dm_info->thermal_avg[therm_path] >
  2101. rtwdev->efuse.thermal_meter[therm_path])
  2102. return delta_swing_table_idx_pos[delta];
  2103. else
  2104. return -delta_swing_table_idx_neg[delta];
  2105. }
  2106. EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
  2107. bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
  2108. {
  2109. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  2110. u8 delta_lck;
  2111. delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
  2112. if (delta_lck >= rtwdev->chip->lck_threshold) {
  2113. dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
  2114. return true;
  2115. }
  2116. return false;
  2117. }
  2118. EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
  2119. bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
  2120. {
  2121. struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  2122. u8 delta_iqk;
  2123. delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
  2124. if (delta_iqk >= rtwdev->chip->iqk_threshold) {
  2125. dm_info->thermal_meter_k = dm_info->thermal_avg[0];
  2126. return true;
  2127. }
  2128. return false;
  2129. }
  2130. EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
  2131. static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
  2132. enum rtw_bb_path tx_path_sel_1ss)
  2133. {
  2134. struct rtw_path_div *path_div = &rtwdev->dm_path_div;
  2135. enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
  2136. const struct rtw_chip_info *chip = rtwdev->chip;
  2137. if (tx_path_sel_1ss == path_div->current_tx_path)
  2138. return;
  2139. path_div->current_tx_path = tx_path_sel_1ss;
  2140. rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
  2141. tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
  2142. chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
  2143. tx_path_sel_1ss, tx_path_sel_cck, false);
  2144. }
  2145. static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
  2146. {
  2147. struct rtw_path_div *path_div = &rtwdev->dm_path_div;
  2148. enum rtw_bb_path path = path_div->current_tx_path;
  2149. s32 rssi_a = 0, rssi_b = 0;
  2150. if (path_div->path_a_cnt)
  2151. rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
  2152. else
  2153. rssi_a = 0;
  2154. if (path_div->path_b_cnt)
  2155. rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
  2156. else
  2157. rssi_b = 0;
  2158. if (rssi_a != rssi_b)
  2159. path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
  2160. path_div->path_a_cnt = 0;
  2161. path_div->path_a_sum = 0;
  2162. path_div->path_b_cnt = 0;
  2163. path_div->path_b_sum = 0;
  2164. rtw_phy_set_tx_path_by_reg(rtwdev, path);
  2165. }
  2166. static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
  2167. {
  2168. if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
  2169. rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
  2170. "[Return] tx_Path_en=%d, rx_Path_en=%d\n",
  2171. rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
  2172. return;
  2173. }
  2174. if (rtwdev->sta_cnt == 0) {
  2175. rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
  2176. return;
  2177. }
  2178. rtw_phy_tx_path_div_select(rtwdev);
  2179. }
  2180. void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
  2181. {
  2182. const struct rtw_chip_info *chip = rtwdev->chip;
  2183. if (!chip->path_div_supported)
  2184. return;
  2185. rtw_phy_tx_path_diversity_2ss(rtwdev);
  2186. }