rt2500pci.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. Copyright (C) 2004 - 2009 Ivo van Doorn <[email protected]>
  4. <http://rt2x00.serialmonkey.com>
  5. */
  6. /*
  7. Module: rt2500pci
  8. Abstract: rt2500pci device specific routines.
  9. Supported chipsets: RT2560.
  10. */
  11. #include <linux/delay.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/pci.h>
  16. #include <linux/eeprom_93cx6.h>
  17. #include <linux/slab.h>
  18. #include "rt2x00.h"
  19. #include "rt2x00mmio.h"
  20. #include "rt2x00pci.h"
  21. #include "rt2500pci.h"
  22. /*
  23. * Register access.
  24. * All access to the CSR registers will go through the methods
  25. * rt2x00mmio_register_read and rt2x00mmio_register_write.
  26. * BBP and RF register require indirect register access,
  27. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  28. * These indirect registers work with busy bits,
  29. * and we will try maximal REGISTER_BUSY_COUNT times to access
  30. * the register while taking a REGISTER_BUSY_DELAY us delay
  31. * between each attampt. When the busy bit is still set at that time,
  32. * the access attempt is considered to have failed,
  33. * and we will print an error.
  34. */
  35. #define WAIT_FOR_BBP(__dev, __reg) \
  36. rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  37. #define WAIT_FOR_RF(__dev, __reg) \
  38. rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  39. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  40. const unsigned int word, const u8 value)
  41. {
  42. u32 reg;
  43. mutex_lock(&rt2x00dev->csr_mutex);
  44. /*
  45. * Wait until the BBP becomes available, afterwards we
  46. * can safely write the new data into the register.
  47. */
  48. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  49. reg = 0;
  50. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  51. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  52. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  53. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  54. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  55. }
  56. mutex_unlock(&rt2x00dev->csr_mutex);
  57. }
  58. static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  59. const unsigned int word)
  60. {
  61. u32 reg;
  62. u8 value;
  63. mutex_lock(&rt2x00dev->csr_mutex);
  64. /*
  65. * Wait until the BBP becomes available, afterwards we
  66. * can safely write the read request into the register.
  67. * After the data has been written, we wait until hardware
  68. * returns the correct value, if at any time the register
  69. * doesn't become available in time, reg will be 0xffffffff
  70. * which means we return 0xff to the caller.
  71. */
  72. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  73. reg = 0;
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  77. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  78. WAIT_FOR_BBP(rt2x00dev, &reg);
  79. }
  80. value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  81. mutex_unlock(&rt2x00dev->csr_mutex);
  82. return value;
  83. }
  84. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  85. const unsigned int word, const u32 value)
  86. {
  87. u32 reg;
  88. mutex_lock(&rt2x00dev->csr_mutex);
  89. /*
  90. * Wait until the RF becomes available, afterwards we
  91. * can safely write the new data into the register.
  92. */
  93. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  94. reg = 0;
  95. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  96. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  97. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  98. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  99. rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
  100. rt2x00_rf_write(rt2x00dev, word, value);
  101. }
  102. mutex_unlock(&rt2x00dev->csr_mutex);
  103. }
  104. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  105. {
  106. struct rt2x00_dev *rt2x00dev = eeprom->data;
  107. u32 reg;
  108. reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
  109. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  110. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  111. eeprom->reg_data_clock =
  112. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  113. eeprom->reg_chip_select =
  114. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  115. }
  116. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  117. {
  118. struct rt2x00_dev *rt2x00dev = eeprom->data;
  119. u32 reg = 0;
  120. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  121. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  122. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  123. !!eeprom->reg_data_clock);
  124. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  125. !!eeprom->reg_chip_select);
  126. rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
  127. }
  128. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  129. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  130. .owner = THIS_MODULE,
  131. .csr = {
  132. .read = rt2x00mmio_register_read,
  133. .write = rt2x00mmio_register_write,
  134. .flags = RT2X00DEBUGFS_OFFSET,
  135. .word_base = CSR_REG_BASE,
  136. .word_size = sizeof(u32),
  137. .word_count = CSR_REG_SIZE / sizeof(u32),
  138. },
  139. .eeprom = {
  140. .read = rt2x00_eeprom_read,
  141. .write = rt2x00_eeprom_write,
  142. .word_base = EEPROM_BASE,
  143. .word_size = sizeof(u16),
  144. .word_count = EEPROM_SIZE / sizeof(u16),
  145. },
  146. .bbp = {
  147. .read = rt2500pci_bbp_read,
  148. .write = rt2500pci_bbp_write,
  149. .word_base = BBP_BASE,
  150. .word_size = sizeof(u8),
  151. .word_count = BBP_SIZE / sizeof(u8),
  152. },
  153. .rf = {
  154. .read = rt2x00_rf_read,
  155. .write = rt2500pci_rf_write,
  156. .word_base = RF_BASE,
  157. .word_size = sizeof(u32),
  158. .word_count = RF_SIZE / sizeof(u32),
  159. },
  160. };
  161. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  162. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  163. {
  164. u32 reg;
  165. reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
  166. return rt2x00_get_field32(reg, GPIOCSR_VAL0);
  167. }
  168. #ifdef CONFIG_RT2X00_LIB_LEDS
  169. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  170. enum led_brightness brightness)
  171. {
  172. struct rt2x00_led *led =
  173. container_of(led_cdev, struct rt2x00_led, led_dev);
  174. unsigned int enabled = brightness != LED_OFF;
  175. u32 reg;
  176. reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
  177. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  178. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  179. else if (led->type == LED_TYPE_ACTIVITY)
  180. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  181. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  182. }
  183. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  184. unsigned long *delay_on,
  185. unsigned long *delay_off)
  186. {
  187. struct rt2x00_led *led =
  188. container_of(led_cdev, struct rt2x00_led, led_dev);
  189. u32 reg;
  190. reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
  191. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  192. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  193. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  194. return 0;
  195. }
  196. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  197. struct rt2x00_led *led,
  198. enum led_type type)
  199. {
  200. led->rt2x00dev = rt2x00dev;
  201. led->type = type;
  202. led->led_dev.brightness_set = rt2500pci_brightness_set;
  203. led->led_dev.blink_set = rt2500pci_blink_set;
  204. led->flags = LED_INITIALIZED;
  205. }
  206. #endif /* CONFIG_RT2X00_LIB_LEDS */
  207. /*
  208. * Configuration handlers.
  209. */
  210. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  211. const unsigned int filter_flags)
  212. {
  213. u32 reg;
  214. /*
  215. * Start configuration steps.
  216. * Note that the version error will always be dropped
  217. * and broadcast frames will always be accepted since
  218. * there is no filter for it at this time.
  219. */
  220. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
  221. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  222. !(filter_flags & FIF_FCSFAIL));
  223. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  224. !(filter_flags & FIF_PLCPFAIL));
  225. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  226. !(filter_flags & FIF_CONTROL));
  227. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  228. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  230. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
  231. !rt2x00dev->intf_ap_count);
  232. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  234. !(filter_flags & FIF_ALLMULTI));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  236. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  237. }
  238. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  239. struct rt2x00_intf *intf,
  240. struct rt2x00intf_conf *conf,
  241. const unsigned int flags)
  242. {
  243. struct data_queue *queue = rt2x00dev->bcn;
  244. unsigned int bcn_preload;
  245. u32 reg;
  246. if (flags & CONFIG_UPDATE_TYPE) {
  247. /*
  248. * Enable beacon config
  249. */
  250. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  251. reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
  252. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  253. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  254. rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
  255. /*
  256. * Enable synchronisation.
  257. */
  258. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  259. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  260. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  261. }
  262. if (flags & CONFIG_UPDATE_MAC)
  263. rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
  264. conf->mac, sizeof(conf->mac));
  265. if (flags & CONFIG_UPDATE_BSSID)
  266. rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
  267. conf->bssid, sizeof(conf->bssid));
  268. }
  269. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  270. struct rt2x00lib_erp *erp,
  271. u32 changed)
  272. {
  273. int preamble_mask;
  274. u32 reg;
  275. /*
  276. * When short preamble is enabled, we should set bit 0x08
  277. */
  278. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  279. preamble_mask = erp->short_preamble << 3;
  280. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
  281. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
  282. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
  283. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  284. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  285. rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
  286. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
  287. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  288. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  289. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  290. GET_DURATION(ACK_SIZE, 10));
  291. rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
  292. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
  293. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  294. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  295. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  296. GET_DURATION(ACK_SIZE, 20));
  297. rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
  298. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
  299. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  300. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  301. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  302. GET_DURATION(ACK_SIZE, 55));
  303. rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
  304. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
  305. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  306. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  307. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  308. GET_DURATION(ACK_SIZE, 110));
  309. rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
  310. }
  311. if (changed & BSS_CHANGED_BASIC_RATES)
  312. rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  313. if (changed & BSS_CHANGED_ERP_SLOT) {
  314. reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
  315. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  316. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  317. reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
  318. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  319. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  320. rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
  321. reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
  322. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  323. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  324. rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
  325. }
  326. if (changed & BSS_CHANGED_BEACON_INT) {
  327. reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
  328. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  329. erp->beacon_int * 16);
  330. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  331. erp->beacon_int * 16);
  332. rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
  333. }
  334. }
  335. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  336. struct antenna_setup *ant)
  337. {
  338. u32 reg;
  339. u8 r14;
  340. u8 r2;
  341. /*
  342. * We should never come here because rt2x00lib is supposed
  343. * to catch this and send us the correct antenna explicitely.
  344. */
  345. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  346. ant->tx == ANTENNA_SW_DIVERSITY);
  347. reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
  348. r14 = rt2500pci_bbp_read(rt2x00dev, 14);
  349. r2 = rt2500pci_bbp_read(rt2x00dev, 2);
  350. /*
  351. * Configure the TX antenna.
  352. */
  353. switch (ant->tx) {
  354. case ANTENNA_A:
  355. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  356. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  357. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  358. break;
  359. case ANTENNA_B:
  360. default:
  361. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  362. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  363. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  364. break;
  365. }
  366. /*
  367. * Configure the RX antenna.
  368. */
  369. switch (ant->rx) {
  370. case ANTENNA_A:
  371. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  372. break;
  373. case ANTENNA_B:
  374. default:
  375. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  376. break;
  377. }
  378. /*
  379. * RT2525E and RT5222 need to flip TX I/Q
  380. */
  381. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  382. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  383. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  384. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  385. /*
  386. * RT2525E does not need RX I/Q Flip.
  387. */
  388. if (rt2x00_rf(rt2x00dev, RF2525E))
  389. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  390. } else {
  391. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  392. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  393. }
  394. rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
  395. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  396. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  397. }
  398. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  399. struct rf_channel *rf, const int txpower)
  400. {
  401. u8 r70;
  402. /*
  403. * Set TXpower.
  404. */
  405. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  406. /*
  407. * Switch on tuning bits.
  408. * For RT2523 devices we do not need to update the R1 register.
  409. */
  410. if (!rt2x00_rf(rt2x00dev, RF2523))
  411. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  412. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  413. /*
  414. * For RT2525 we should first set the channel to half band higher.
  415. */
  416. if (rt2x00_rf(rt2x00dev, RF2525)) {
  417. static const u32 vals[] = {
  418. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  419. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  420. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  421. 0x00080d2e, 0x00080d3a
  422. };
  423. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  424. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  425. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  426. if (rf->rf4)
  427. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  428. }
  429. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  430. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  431. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  432. if (rf->rf4)
  433. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  434. /*
  435. * Channel 14 requires the Japan filter bit to be set.
  436. */
  437. r70 = 0x46;
  438. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  439. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  440. msleep(1);
  441. /*
  442. * Switch off tuning bits.
  443. * For RT2523 devices we do not need to update the R1 register.
  444. */
  445. if (!rt2x00_rf(rt2x00dev, RF2523)) {
  446. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  447. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  448. }
  449. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  450. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  451. /*
  452. * Clear false CRC during channel switch.
  453. */
  454. rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
  455. }
  456. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  457. const int txpower)
  458. {
  459. u32 rf3;
  460. rf3 = rt2x00_rf_read(rt2x00dev, 3);
  461. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  462. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  463. }
  464. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  465. struct rt2x00lib_conf *libconf)
  466. {
  467. u32 reg;
  468. reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
  469. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  470. libconf->conf->long_frame_max_tx_count);
  471. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  472. libconf->conf->short_frame_max_tx_count);
  473. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  474. }
  475. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  476. struct rt2x00lib_conf *libconf)
  477. {
  478. enum dev_state state =
  479. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  480. STATE_SLEEP : STATE_AWAKE;
  481. u32 reg;
  482. if (state == STATE_SLEEP) {
  483. reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
  484. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  485. (rt2x00dev->beacon_int - 20) * 16);
  486. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  487. libconf->conf->listen_interval - 1);
  488. /* We must first disable autowake before it can be enabled */
  489. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  490. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  491. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  492. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  493. } else {
  494. reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
  495. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  496. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  497. }
  498. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  499. }
  500. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  501. struct rt2x00lib_conf *libconf,
  502. const unsigned int flags)
  503. {
  504. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  505. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  506. libconf->conf->power_level);
  507. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  508. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  509. rt2500pci_config_txpower(rt2x00dev,
  510. libconf->conf->power_level);
  511. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  512. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  513. if (flags & IEEE80211_CONF_CHANGE_PS)
  514. rt2500pci_config_ps(rt2x00dev, libconf);
  515. }
  516. /*
  517. * Link tuning
  518. */
  519. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  520. struct link_qual *qual)
  521. {
  522. u32 reg;
  523. /*
  524. * Update FCS error count from register.
  525. */
  526. reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
  527. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  528. /*
  529. * Update False CCA count from register.
  530. */
  531. reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
  532. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  533. }
  534. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  535. struct link_qual *qual, u8 vgc_level)
  536. {
  537. if (qual->vgc_level_reg != vgc_level) {
  538. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  539. qual->vgc_level = vgc_level;
  540. qual->vgc_level_reg = vgc_level;
  541. }
  542. }
  543. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  544. struct link_qual *qual)
  545. {
  546. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  547. }
  548. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  549. struct link_qual *qual, const u32 count)
  550. {
  551. /*
  552. * To prevent collisions with MAC ASIC on chipsets
  553. * up to version C the link tuning should halt after 20
  554. * seconds while being associated.
  555. */
  556. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
  557. rt2x00dev->intf_associated && count > 20)
  558. return;
  559. /*
  560. * Chipset versions C and lower should directly continue
  561. * to the dynamic CCA tuning. Chipset version D and higher
  562. * should go straight to dynamic CCA tuning when they
  563. * are not associated.
  564. */
  565. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
  566. !rt2x00dev->intf_associated)
  567. goto dynamic_cca_tune;
  568. /*
  569. * A too low RSSI will cause too much false CCA which will
  570. * then corrupt the R17 tuning. To remidy this the tuning should
  571. * be stopped (While making sure the R17 value will not exceed limits)
  572. */
  573. if (qual->rssi < -80 && count > 20) {
  574. if (qual->vgc_level_reg >= 0x41)
  575. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  576. return;
  577. }
  578. /*
  579. * Special big-R17 for short distance
  580. */
  581. if (qual->rssi >= -58) {
  582. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  583. return;
  584. }
  585. /*
  586. * Special mid-R17 for middle distance
  587. */
  588. if (qual->rssi >= -74) {
  589. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  590. return;
  591. }
  592. /*
  593. * Leave short or middle distance condition, restore r17
  594. * to the dynamic tuning range.
  595. */
  596. if (qual->vgc_level_reg >= 0x41) {
  597. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  598. return;
  599. }
  600. dynamic_cca_tune:
  601. /*
  602. * R17 is inside the dynamic tuning range,
  603. * start tuning the link based on the false cca counter.
  604. */
  605. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
  606. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  607. else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
  608. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  609. }
  610. /*
  611. * Queue handlers.
  612. */
  613. static void rt2500pci_start_queue(struct data_queue *queue)
  614. {
  615. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  616. u32 reg;
  617. switch (queue->qid) {
  618. case QID_RX:
  619. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
  620. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  621. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  622. break;
  623. case QID_BEACON:
  624. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  625. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  626. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  627. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  628. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  629. break;
  630. default:
  631. break;
  632. }
  633. }
  634. static void rt2500pci_kick_queue(struct data_queue *queue)
  635. {
  636. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  637. u32 reg;
  638. switch (queue->qid) {
  639. case QID_AC_VO:
  640. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  641. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  642. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  643. break;
  644. case QID_AC_VI:
  645. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  646. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  647. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  648. break;
  649. case QID_ATIM:
  650. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  651. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  652. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  653. break;
  654. default:
  655. break;
  656. }
  657. }
  658. static void rt2500pci_stop_queue(struct data_queue *queue)
  659. {
  660. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  661. u32 reg;
  662. switch (queue->qid) {
  663. case QID_AC_VO:
  664. case QID_AC_VI:
  665. case QID_ATIM:
  666. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  667. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  668. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  669. break;
  670. case QID_RX:
  671. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
  672. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  673. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  674. break;
  675. case QID_BEACON:
  676. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  677. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  678. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  679. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  680. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  681. /*
  682. * Wait for possibly running tbtt tasklets.
  683. */
  684. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  685. break;
  686. default:
  687. break;
  688. }
  689. }
  690. /*
  691. * Initialization functions.
  692. */
  693. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  694. {
  695. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  696. u32 word;
  697. if (entry->queue->qid == QID_RX) {
  698. word = rt2x00_desc_read(entry_priv->desc, 0);
  699. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  700. } else {
  701. word = rt2x00_desc_read(entry_priv->desc, 0);
  702. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  703. rt2x00_get_field32(word, TXD_W0_VALID));
  704. }
  705. }
  706. static void rt2500pci_clear_entry(struct queue_entry *entry)
  707. {
  708. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  709. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  710. u32 word;
  711. if (entry->queue->qid == QID_RX) {
  712. word = rt2x00_desc_read(entry_priv->desc, 1);
  713. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  714. rt2x00_desc_write(entry_priv->desc, 1, word);
  715. word = rt2x00_desc_read(entry_priv->desc, 0);
  716. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  717. rt2x00_desc_write(entry_priv->desc, 0, word);
  718. } else {
  719. word = rt2x00_desc_read(entry_priv->desc, 0);
  720. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  721. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  722. rt2x00_desc_write(entry_priv->desc, 0, word);
  723. }
  724. }
  725. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  726. {
  727. struct queue_entry_priv_mmio *entry_priv;
  728. u32 reg;
  729. /*
  730. * Initialize registers.
  731. */
  732. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
  733. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  734. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  735. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  736. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  737. rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
  738. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  739. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
  740. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  741. entry_priv->desc_dma);
  742. rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
  743. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  744. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
  745. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  746. entry_priv->desc_dma);
  747. rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
  748. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  749. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
  750. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  751. entry_priv->desc_dma);
  752. rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
  753. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  754. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
  755. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  756. entry_priv->desc_dma);
  757. rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
  758. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
  759. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  760. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  761. rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
  762. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  763. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
  764. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  765. entry_priv->desc_dma);
  766. rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
  767. return 0;
  768. }
  769. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  770. {
  771. u32 reg;
  772. rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
  773. rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
  774. rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
  775. rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
  776. reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
  777. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  778. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  779. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  780. rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
  781. reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
  782. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  783. rt2x00dev->rx->data_size / 128);
  784. rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
  785. /*
  786. * Always use CWmin and CWmax set in descriptor.
  787. */
  788. reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
  789. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  790. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  791. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  792. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  793. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  794. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  795. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  796. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  797. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  798. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  799. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  800. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  801. rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
  802. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
  803. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  804. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  805. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  806. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  807. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  808. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  809. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  810. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  811. rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
  812. reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
  813. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  814. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  815. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  816. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  817. rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
  818. reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
  819. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  820. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  821. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  822. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  823. rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
  824. reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
  825. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  826. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  827. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  828. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  829. rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
  830. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
  831. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  832. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  833. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  834. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  835. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  836. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  837. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  838. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  839. rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
  840. reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
  841. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  842. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  843. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  844. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  845. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  846. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  847. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  848. rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
  849. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  850. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  851. rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  852. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  853. return -EBUSY;
  854. rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
  855. rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
  856. reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
  857. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  858. rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
  859. reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
  860. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  861. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  862. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  863. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  864. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  865. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  866. rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
  867. rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  868. rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  869. reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
  870. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  871. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  872. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  873. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  874. reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
  875. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  876. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  877. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  878. /*
  879. * We must clear the FCS and FIFO error count.
  880. * These registers are cleared on read,
  881. * so we may pass a useless variable to store the value.
  882. */
  883. reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
  884. reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
  885. return 0;
  886. }
  887. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  888. {
  889. unsigned int i;
  890. u8 value;
  891. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  892. value = rt2500pci_bbp_read(rt2x00dev, 0);
  893. if ((value != 0xff) && (value != 0x00))
  894. return 0;
  895. udelay(REGISTER_BUSY_DELAY);
  896. }
  897. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  898. return -EACCES;
  899. }
  900. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  901. {
  902. unsigned int i;
  903. u16 eeprom;
  904. u8 reg_id;
  905. u8 value;
  906. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  907. return -EACCES;
  908. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  909. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  910. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  911. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  912. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  913. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  914. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  915. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  916. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  917. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  918. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  919. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  920. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  921. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  922. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  923. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  924. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  925. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  926. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  927. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  928. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  929. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  930. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  931. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  932. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  933. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  934. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  935. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  936. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  937. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  938. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  939. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
  940. if (eeprom != 0xffff && eeprom != 0x0000) {
  941. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  942. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  943. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  944. }
  945. }
  946. return 0;
  947. }
  948. /*
  949. * Device state switch handlers.
  950. */
  951. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  952. enum dev_state state)
  953. {
  954. int mask = (state == STATE_RADIO_IRQ_OFF);
  955. u32 reg;
  956. unsigned long flags;
  957. /*
  958. * When interrupts are being enabled, the interrupt registers
  959. * should clear the register to assure a clean state.
  960. */
  961. if (state == STATE_RADIO_IRQ_ON) {
  962. reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
  963. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  964. }
  965. /*
  966. * Only toggle the interrupts bits we are going to use.
  967. * Non-checked interrupt bits are disabled by default.
  968. */
  969. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  970. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  971. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  972. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  973. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  974. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  975. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  976. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  977. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  978. if (state == STATE_RADIO_IRQ_OFF) {
  979. /*
  980. * Ensure that all tasklets are finished.
  981. */
  982. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  983. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  984. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  985. }
  986. }
  987. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  988. {
  989. /*
  990. * Initialize all registers.
  991. */
  992. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  993. rt2500pci_init_registers(rt2x00dev) ||
  994. rt2500pci_init_bbp(rt2x00dev)))
  995. return -EIO;
  996. return 0;
  997. }
  998. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  999. {
  1000. /*
  1001. * Disable power
  1002. */
  1003. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
  1004. }
  1005. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  1006. enum dev_state state)
  1007. {
  1008. u32 reg, reg2;
  1009. unsigned int i;
  1010. bool put_to_sleep;
  1011. u8 bbp_state;
  1012. u8 rf_state;
  1013. put_to_sleep = (state != STATE_AWAKE);
  1014. reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
  1015. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  1016. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  1017. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  1018. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  1019. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  1020. /*
  1021. * Device is not guaranteed to be in the requested state yet.
  1022. * We must wait until the register indicates that the
  1023. * device has entered the correct state.
  1024. */
  1025. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1026. reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
  1027. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  1028. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  1029. if (bbp_state == state && rf_state == state)
  1030. return 0;
  1031. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  1032. msleep(10);
  1033. }
  1034. return -EBUSY;
  1035. }
  1036. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1037. enum dev_state state)
  1038. {
  1039. int retval = 0;
  1040. switch (state) {
  1041. case STATE_RADIO_ON:
  1042. retval = rt2500pci_enable_radio(rt2x00dev);
  1043. break;
  1044. case STATE_RADIO_OFF:
  1045. rt2500pci_disable_radio(rt2x00dev);
  1046. break;
  1047. case STATE_RADIO_IRQ_ON:
  1048. case STATE_RADIO_IRQ_OFF:
  1049. rt2500pci_toggle_irq(rt2x00dev, state);
  1050. break;
  1051. case STATE_DEEP_SLEEP:
  1052. case STATE_SLEEP:
  1053. case STATE_STANDBY:
  1054. case STATE_AWAKE:
  1055. retval = rt2500pci_set_state(rt2x00dev, state);
  1056. break;
  1057. default:
  1058. retval = -ENOTSUPP;
  1059. break;
  1060. }
  1061. if (unlikely(retval))
  1062. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  1063. state, retval);
  1064. return retval;
  1065. }
  1066. /*
  1067. * TX descriptor initialization
  1068. */
  1069. static void rt2500pci_write_tx_desc(struct queue_entry *entry,
  1070. struct txentry_desc *txdesc)
  1071. {
  1072. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1073. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1074. __le32 *txd = entry_priv->desc;
  1075. u32 word;
  1076. /*
  1077. * Start writing the descriptor words.
  1078. */
  1079. word = rt2x00_desc_read(txd, 1);
  1080. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1081. rt2x00_desc_write(txd, 1, word);
  1082. word = rt2x00_desc_read(txd, 2);
  1083. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1084. rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
  1085. rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
  1086. rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
  1087. rt2x00_desc_write(txd, 2, word);
  1088. word = rt2x00_desc_read(txd, 3);
  1089. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  1090. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  1091. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
  1092. txdesc->u.plcp.length_low);
  1093. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
  1094. txdesc->u.plcp.length_high);
  1095. rt2x00_desc_write(txd, 3, word);
  1096. word = rt2x00_desc_read(txd, 10);
  1097. rt2x00_set_field32(&word, TXD_W10_RTS,
  1098. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1099. rt2x00_desc_write(txd, 10, word);
  1100. /*
  1101. * Writing TXD word 0 must the last to prevent a race condition with
  1102. * the device, whereby the device may take hold of the TXD before we
  1103. * finished updating it.
  1104. */
  1105. word = rt2x00_desc_read(txd, 0);
  1106. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1107. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1108. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1109. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1110. rt2x00_set_field32(&word, TXD_W0_ACK,
  1111. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1112. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1113. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1114. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1115. (txdesc->rate_mode == RATE_MODE_OFDM));
  1116. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1117. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  1118. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1119. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1120. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  1121. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1122. rt2x00_desc_write(txd, 0, word);
  1123. /*
  1124. * Register descriptor details in skb frame descriptor.
  1125. */
  1126. skbdesc->desc = txd;
  1127. skbdesc->desc_len = TXD_DESC_SIZE;
  1128. }
  1129. /*
  1130. * TX data initialization
  1131. */
  1132. static void rt2500pci_write_beacon(struct queue_entry *entry,
  1133. struct txentry_desc *txdesc)
  1134. {
  1135. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1136. u32 reg;
  1137. /*
  1138. * Disable beaconing while we are reloading the beacon data,
  1139. * otherwise we might be sending out invalid data.
  1140. */
  1141. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  1142. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1143. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1144. if (rt2x00queue_map_txskb(entry)) {
  1145. rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
  1146. goto out;
  1147. }
  1148. /*
  1149. * Write the TX descriptor for the beacon.
  1150. */
  1151. rt2500pci_write_tx_desc(entry, txdesc);
  1152. /*
  1153. * Dump beacon to userspace through debugfs.
  1154. */
  1155. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
  1156. out:
  1157. /*
  1158. * Enable beaconing again.
  1159. */
  1160. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1161. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1162. }
  1163. /*
  1164. * RX control handlers
  1165. */
  1166. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1167. struct rxdone_entry_desc *rxdesc)
  1168. {
  1169. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1170. u32 word0;
  1171. u32 word2;
  1172. word0 = rt2x00_desc_read(entry_priv->desc, 0);
  1173. word2 = rt2x00_desc_read(entry_priv->desc, 2);
  1174. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1175. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1176. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1177. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1178. /*
  1179. * Obtain the status about this packet.
  1180. * When frame was received with an OFDM bitrate,
  1181. * the signal is the PLCP value. If it was received with
  1182. * a CCK bitrate the signal is the rate in 100kbit/s.
  1183. */
  1184. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1185. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1186. entry->queue->rt2x00dev->rssi_offset;
  1187. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1188. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1189. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1190. else
  1191. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1192. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1193. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1194. }
  1195. /*
  1196. * Interrupt functions.
  1197. */
  1198. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1199. const enum data_queue_qid queue_idx)
  1200. {
  1201. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1202. struct queue_entry_priv_mmio *entry_priv;
  1203. struct queue_entry *entry;
  1204. struct txdone_entry_desc txdesc;
  1205. u32 word;
  1206. while (!rt2x00queue_empty(queue)) {
  1207. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1208. entry_priv = entry->priv_data;
  1209. word = rt2x00_desc_read(entry_priv->desc, 0);
  1210. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1211. !rt2x00_get_field32(word, TXD_W0_VALID))
  1212. break;
  1213. /*
  1214. * Obtain the status about this packet.
  1215. */
  1216. txdesc.flags = 0;
  1217. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1218. case 0: /* Success */
  1219. case 1: /* Success with retry */
  1220. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1221. break;
  1222. case 2: /* Failure, excessive retries */
  1223. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1224. fallthrough; /* this is a failed frame! */
  1225. default: /* Failure */
  1226. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1227. }
  1228. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1229. rt2x00lib_txdone(entry, &txdesc);
  1230. }
  1231. }
  1232. static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1233. struct rt2x00_field32 irq_field)
  1234. {
  1235. u32 reg;
  1236. /*
  1237. * Enable a single interrupt. The interrupt mask register
  1238. * access needs locking.
  1239. */
  1240. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1241. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  1242. rt2x00_set_field32(&reg, irq_field, 0);
  1243. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1244. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1245. }
  1246. static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
  1247. {
  1248. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  1249. txstatus_tasklet);
  1250. u32 reg;
  1251. /*
  1252. * Handle all tx queues.
  1253. */
  1254. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1255. rt2500pci_txdone(rt2x00dev, QID_AC_VO);
  1256. rt2500pci_txdone(rt2x00dev, QID_AC_VI);
  1257. /*
  1258. * Enable all TXDONE interrupts again.
  1259. */
  1260. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1261. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1262. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  1263. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1264. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1265. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1266. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1267. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1268. }
  1269. }
  1270. static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
  1271. {
  1272. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
  1273. rt2x00lib_beacondone(rt2x00dev);
  1274. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1275. rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1276. }
  1277. static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
  1278. {
  1279. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  1280. rxdone_tasklet);
  1281. if (rt2x00mmio_rxdone(rt2x00dev))
  1282. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1283. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1284. rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1285. }
  1286. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1287. {
  1288. struct rt2x00_dev *rt2x00dev = dev_instance;
  1289. u32 reg, mask;
  1290. /*
  1291. * Get the interrupt sources & saved to local variable.
  1292. * Write register value back to clear pending interrupts.
  1293. */
  1294. reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
  1295. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  1296. if (!reg)
  1297. return IRQ_NONE;
  1298. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1299. return IRQ_HANDLED;
  1300. mask = reg;
  1301. /*
  1302. * Schedule tasklets for interrupt handling.
  1303. */
  1304. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1305. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1306. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1307. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1308. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1309. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1310. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1311. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1312. /*
  1313. * Mask out all txdone interrupts.
  1314. */
  1315. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1316. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1317. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1318. }
  1319. /*
  1320. * Disable all interrupts for which a tasklet was scheduled right now,
  1321. * the tasklet will reenable the appropriate interrupts.
  1322. */
  1323. spin_lock(&rt2x00dev->irqmask_lock);
  1324. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  1325. reg |= mask;
  1326. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1327. spin_unlock(&rt2x00dev->irqmask_lock);
  1328. return IRQ_HANDLED;
  1329. }
  1330. /*
  1331. * Device probe functions.
  1332. */
  1333. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1334. {
  1335. struct eeprom_93cx6 eeprom;
  1336. u32 reg;
  1337. u16 word;
  1338. u8 *mac;
  1339. reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
  1340. eeprom.data = rt2x00dev;
  1341. eeprom.register_read = rt2500pci_eepromregister_read;
  1342. eeprom.register_write = rt2500pci_eepromregister_write;
  1343. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1344. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1345. eeprom.reg_data_in = 0;
  1346. eeprom.reg_data_out = 0;
  1347. eeprom.reg_data_clock = 0;
  1348. eeprom.reg_chip_select = 0;
  1349. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1350. EEPROM_SIZE / sizeof(u16));
  1351. /*
  1352. * Start validation of the data that has been read.
  1353. */
  1354. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1355. rt2x00lib_set_mac_address(rt2x00dev, mac);
  1356. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
  1357. if (word == 0xffff) {
  1358. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1359. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1360. ANTENNA_SW_DIVERSITY);
  1361. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1362. ANTENNA_SW_DIVERSITY);
  1363. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1364. LED_MODE_DEFAULT);
  1365. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1366. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1367. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1368. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1369. rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
  1370. }
  1371. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
  1372. if (word == 0xffff) {
  1373. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1374. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1375. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1376. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1377. rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
  1378. }
  1379. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
  1380. if (word == 0xffff) {
  1381. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1382. DEFAULT_RSSI_OFFSET);
  1383. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1384. rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
  1385. word);
  1386. }
  1387. return 0;
  1388. }
  1389. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1390. {
  1391. u32 reg;
  1392. u16 value;
  1393. u16 eeprom;
  1394. /*
  1395. * Read EEPROM word for configuration.
  1396. */
  1397. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
  1398. /*
  1399. * Identify RF chipset.
  1400. */
  1401. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1402. reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
  1403. rt2x00_set_chip(rt2x00dev, RT2560, value,
  1404. rt2x00_get_field32(reg, CSR0_REVISION));
  1405. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1406. !rt2x00_rf(rt2x00dev, RF2523) &&
  1407. !rt2x00_rf(rt2x00dev, RF2524) &&
  1408. !rt2x00_rf(rt2x00dev, RF2525) &&
  1409. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1410. !rt2x00_rf(rt2x00dev, RF5222)) {
  1411. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  1412. return -ENODEV;
  1413. }
  1414. /*
  1415. * Identify default antenna configuration.
  1416. */
  1417. rt2x00dev->default_ant.tx =
  1418. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1419. rt2x00dev->default_ant.rx =
  1420. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1421. /*
  1422. * Store led mode, for correct led behaviour.
  1423. */
  1424. #ifdef CONFIG_RT2X00_LIB_LEDS
  1425. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1426. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1427. if (value == LED_MODE_TXRX_ACTIVITY ||
  1428. value == LED_MODE_DEFAULT ||
  1429. value == LED_MODE_ASUS)
  1430. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1431. LED_TYPE_ACTIVITY);
  1432. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1433. /*
  1434. * Detect if this device has an hardware controlled radio.
  1435. */
  1436. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
  1437. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1438. /*
  1439. * On this device RFKILL initialized during probe does not work.
  1440. */
  1441. __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
  1442. }
  1443. /*
  1444. * Check if the BBP tuning should be enabled.
  1445. */
  1446. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
  1447. if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1448. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1449. /*
  1450. * Read the RSSI <-> dBm offset information.
  1451. */
  1452. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
  1453. rt2x00dev->rssi_offset =
  1454. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1455. return 0;
  1456. }
  1457. /*
  1458. * RF value list for RF2522
  1459. * Supports: 2.4 GHz
  1460. */
  1461. static const struct rf_channel rf_vals_bg_2522[] = {
  1462. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1463. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1464. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1465. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1466. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1467. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1468. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1469. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1470. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1471. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1472. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1473. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1474. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1475. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1476. };
  1477. /*
  1478. * RF value list for RF2523
  1479. * Supports: 2.4 GHz
  1480. */
  1481. static const struct rf_channel rf_vals_bg_2523[] = {
  1482. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1483. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1484. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1485. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1486. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1487. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1488. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1489. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1490. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1491. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1492. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1493. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1494. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1495. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1496. };
  1497. /*
  1498. * RF value list for RF2524
  1499. * Supports: 2.4 GHz
  1500. */
  1501. static const struct rf_channel rf_vals_bg_2524[] = {
  1502. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1503. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1504. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1505. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1506. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1507. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1508. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1509. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1510. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1511. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1512. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1513. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1514. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1515. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1516. };
  1517. /*
  1518. * RF value list for RF2525
  1519. * Supports: 2.4 GHz
  1520. */
  1521. static const struct rf_channel rf_vals_bg_2525[] = {
  1522. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1523. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1524. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1525. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1526. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1527. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1528. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1529. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1530. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1531. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1532. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1533. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1534. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1535. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1536. };
  1537. /*
  1538. * RF value list for RF2525e
  1539. * Supports: 2.4 GHz
  1540. */
  1541. static const struct rf_channel rf_vals_bg_2525e[] = {
  1542. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1543. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1544. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1545. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1546. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1547. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1548. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1549. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1550. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1551. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1552. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1553. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1554. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1555. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1556. };
  1557. /*
  1558. * RF value list for RF5222
  1559. * Supports: 2.4 GHz & 5.2 GHz
  1560. */
  1561. static const struct rf_channel rf_vals_5222[] = {
  1562. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1563. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1564. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1565. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1566. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1567. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1568. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1569. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1570. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1571. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1572. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1573. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1574. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1575. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1576. /* 802.11 UNI / HyperLan 2 */
  1577. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1578. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1579. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1580. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1581. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1582. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1583. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1584. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1585. /* 802.11 HyperLan 2 */
  1586. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1587. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1588. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1589. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1590. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1591. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1592. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1593. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1594. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1595. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1596. /* 802.11 UNII */
  1597. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1598. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1599. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1600. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1601. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1602. };
  1603. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1604. {
  1605. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1606. struct channel_info *info;
  1607. u8 *tx_power;
  1608. unsigned int i;
  1609. /*
  1610. * Initialize all hw fields.
  1611. */
  1612. ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
  1613. ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
  1614. ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
  1615. ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
  1616. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1617. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1618. rt2x00_eeprom_addr(rt2x00dev,
  1619. EEPROM_MAC_ADDR_0));
  1620. /*
  1621. * Disable powersaving as default.
  1622. */
  1623. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  1624. /*
  1625. * Initialize hw_mode information.
  1626. */
  1627. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1628. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1629. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1630. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1631. spec->channels = rf_vals_bg_2522;
  1632. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1633. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1634. spec->channels = rf_vals_bg_2523;
  1635. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1636. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1637. spec->channels = rf_vals_bg_2524;
  1638. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1639. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1640. spec->channels = rf_vals_bg_2525;
  1641. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1642. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1643. spec->channels = rf_vals_bg_2525e;
  1644. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1645. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1646. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1647. spec->channels = rf_vals_5222;
  1648. }
  1649. /*
  1650. * Create channel information array
  1651. */
  1652. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1653. if (!info)
  1654. return -ENOMEM;
  1655. spec->channels_info = info;
  1656. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1657. for (i = 0; i < 14; i++) {
  1658. info[i].max_power = MAX_TXPOWER;
  1659. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1660. }
  1661. if (spec->num_channels > 14) {
  1662. for (i = 14; i < spec->num_channels; i++) {
  1663. info[i].max_power = MAX_TXPOWER;
  1664. info[i].default_power1 = DEFAULT_TXPOWER;
  1665. }
  1666. }
  1667. return 0;
  1668. }
  1669. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1670. {
  1671. int retval;
  1672. u32 reg;
  1673. /*
  1674. * Allocate eeprom data.
  1675. */
  1676. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1677. if (retval)
  1678. return retval;
  1679. retval = rt2500pci_init_eeprom(rt2x00dev);
  1680. if (retval)
  1681. return retval;
  1682. /*
  1683. * Enable rfkill polling by setting GPIO direction of the
  1684. * rfkill switch GPIO pin correctly.
  1685. */
  1686. reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
  1687. rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
  1688. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
  1689. /*
  1690. * Initialize hw specifications.
  1691. */
  1692. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1693. if (retval)
  1694. return retval;
  1695. /*
  1696. * This device requires the atim queue and DMA-mapped skbs.
  1697. */
  1698. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1699. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1700. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1701. /*
  1702. * Set the rssi offset.
  1703. */
  1704. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1705. return 0;
  1706. }
  1707. /*
  1708. * IEEE80211 stack callback functions.
  1709. */
  1710. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
  1711. struct ieee80211_vif *vif)
  1712. {
  1713. struct rt2x00_dev *rt2x00dev = hw->priv;
  1714. u64 tsf;
  1715. u32 reg;
  1716. reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
  1717. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1718. reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
  1719. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1720. return tsf;
  1721. }
  1722. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1723. {
  1724. struct rt2x00_dev *rt2x00dev = hw->priv;
  1725. u32 reg;
  1726. reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
  1727. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1728. }
  1729. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1730. .tx = rt2x00mac_tx,
  1731. .start = rt2x00mac_start,
  1732. .stop = rt2x00mac_stop,
  1733. .add_interface = rt2x00mac_add_interface,
  1734. .remove_interface = rt2x00mac_remove_interface,
  1735. .config = rt2x00mac_config,
  1736. .configure_filter = rt2x00mac_configure_filter,
  1737. .sw_scan_start = rt2x00mac_sw_scan_start,
  1738. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1739. .get_stats = rt2x00mac_get_stats,
  1740. .bss_info_changed = rt2x00mac_bss_info_changed,
  1741. .conf_tx = rt2x00mac_conf_tx,
  1742. .get_tsf = rt2500pci_get_tsf,
  1743. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1744. .rfkill_poll = rt2x00mac_rfkill_poll,
  1745. .flush = rt2x00mac_flush,
  1746. .set_antenna = rt2x00mac_set_antenna,
  1747. .get_antenna = rt2x00mac_get_antenna,
  1748. .get_ringparam = rt2x00mac_get_ringparam,
  1749. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1750. };
  1751. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1752. .irq_handler = rt2500pci_interrupt,
  1753. .txstatus_tasklet = rt2500pci_txstatus_tasklet,
  1754. .tbtt_tasklet = rt2500pci_tbtt_tasklet,
  1755. .rxdone_tasklet = rt2500pci_rxdone_tasklet,
  1756. .probe_hw = rt2500pci_probe_hw,
  1757. .initialize = rt2x00mmio_initialize,
  1758. .uninitialize = rt2x00mmio_uninitialize,
  1759. .get_entry_state = rt2500pci_get_entry_state,
  1760. .clear_entry = rt2500pci_clear_entry,
  1761. .set_device_state = rt2500pci_set_device_state,
  1762. .rfkill_poll = rt2500pci_rfkill_poll,
  1763. .link_stats = rt2500pci_link_stats,
  1764. .reset_tuner = rt2500pci_reset_tuner,
  1765. .link_tuner = rt2500pci_link_tuner,
  1766. .start_queue = rt2500pci_start_queue,
  1767. .kick_queue = rt2500pci_kick_queue,
  1768. .stop_queue = rt2500pci_stop_queue,
  1769. .flush_queue = rt2x00mmio_flush_queue,
  1770. .write_tx_desc = rt2500pci_write_tx_desc,
  1771. .write_beacon = rt2500pci_write_beacon,
  1772. .fill_rxdone = rt2500pci_fill_rxdone,
  1773. .config_filter = rt2500pci_config_filter,
  1774. .config_intf = rt2500pci_config_intf,
  1775. .config_erp = rt2500pci_config_erp,
  1776. .config_ant = rt2500pci_config_ant,
  1777. .config = rt2500pci_config,
  1778. };
  1779. static void rt2500pci_queue_init(struct data_queue *queue)
  1780. {
  1781. switch (queue->qid) {
  1782. case QID_RX:
  1783. queue->limit = 32;
  1784. queue->data_size = DATA_FRAME_SIZE;
  1785. queue->desc_size = RXD_DESC_SIZE;
  1786. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1787. break;
  1788. case QID_AC_VO:
  1789. case QID_AC_VI:
  1790. case QID_AC_BE:
  1791. case QID_AC_BK:
  1792. queue->limit = 32;
  1793. queue->data_size = DATA_FRAME_SIZE;
  1794. queue->desc_size = TXD_DESC_SIZE;
  1795. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1796. break;
  1797. case QID_BEACON:
  1798. queue->limit = 1;
  1799. queue->data_size = MGMT_FRAME_SIZE;
  1800. queue->desc_size = TXD_DESC_SIZE;
  1801. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1802. break;
  1803. case QID_ATIM:
  1804. queue->limit = 8;
  1805. queue->data_size = DATA_FRAME_SIZE;
  1806. queue->desc_size = TXD_DESC_SIZE;
  1807. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1808. break;
  1809. default:
  1810. BUG();
  1811. break;
  1812. }
  1813. }
  1814. static const struct rt2x00_ops rt2500pci_ops = {
  1815. .name = KBUILD_MODNAME,
  1816. .max_ap_intf = 1,
  1817. .eeprom_size = EEPROM_SIZE,
  1818. .rf_size = RF_SIZE,
  1819. .tx_queues = NUM_TX_QUEUES,
  1820. .queue_init = rt2500pci_queue_init,
  1821. .lib = &rt2500pci_rt2x00_ops,
  1822. .hw = &rt2500pci_mac80211_ops,
  1823. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1824. .debugfs = &rt2500pci_rt2x00debug,
  1825. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1826. };
  1827. /*
  1828. * RT2500pci module information.
  1829. */
  1830. static const struct pci_device_id rt2500pci_device_table[] = {
  1831. { PCI_DEVICE(0x1814, 0x0201) },
  1832. { 0, }
  1833. };
  1834. MODULE_AUTHOR(DRV_PROJECT);
  1835. MODULE_VERSION(DRV_VERSION);
  1836. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1837. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1838. MODULE_LICENSE("GPL");
  1839. static int rt2500pci_probe(struct pci_dev *pci_dev,
  1840. const struct pci_device_id *id)
  1841. {
  1842. return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
  1843. }
  1844. static struct pci_driver rt2500pci_driver = {
  1845. .name = KBUILD_MODNAME,
  1846. .id_table = rt2500pci_device_table,
  1847. .probe = rt2500pci_probe,
  1848. .remove = rt2x00pci_remove,
  1849. .driver.pm = &rt2x00pci_pm_ops,
  1850. };
  1851. module_pci_driver(rt2500pci_driver);