tc35815.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165
  1. /*
  2. * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
  3. *
  4. * Based on skelton.c by Donald Becker.
  5. *
  6. * This driver is a replacement of older and less maintained version.
  7. * This is a header of the older version:
  8. * -----<snip>-----
  9. * Copyright 2001 MontaVista Software Inc.
  10. * Author: MontaVista Software, Inc.
  11. * [email protected]
  12. * Copyright (C) 2000-2001 Toshiba Corporation
  13. * static const char *version =
  14. * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15. * -----<snip>-----
  16. *
  17. * This file is subject to the terms and conditions of the GNU General Public
  18. * License. See the file "COPYING" in the main directory of this archive
  19. * for more details.
  20. *
  21. * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22. * All Rights Reserved.
  23. */
  24. #define DRV_VERSION "1.39"
  25. static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
  26. #define MODNAME "tc35815"
  27. #include <linux/module.h>
  28. #include <linux/kernel.h>
  29. #include <linux/types.h>
  30. #include <linux/fcntl.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/ioport.h>
  33. #include <linux/in.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/slab.h>
  36. #include <linux/string.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/errno.h>
  39. #include <linux/netdevice.h>
  40. #include <linux/etherdevice.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/delay.h>
  43. #include <linux/pci.h>
  44. #include <linux/phy.h>
  45. #include <linux/workqueue.h>
  46. #include <linux/platform_device.h>
  47. #include <linux/prefetch.h>
  48. #include <asm/io.h>
  49. #include <asm/byteorder.h>
  50. enum tc35815_chiptype {
  51. TC35815CF = 0,
  52. TC35815_NWU,
  53. TC35815_TX4939,
  54. };
  55. /* indexed by tc35815_chiptype, above */
  56. static const struct {
  57. const char *name;
  58. } chip_info[] = {
  59. { "TOSHIBA TC35815CF 10/100BaseTX" },
  60. { "TOSHIBA TC35815 with Wake on LAN" },
  61. { "TOSHIBA TC35815/TX4939" },
  62. };
  63. static const struct pci_device_id tc35815_pci_tbl[] = {
  64. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  65. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  66. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  67. {0,}
  68. };
  69. MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  70. /* see MODULE_PARM_DESC */
  71. static struct tc35815_options {
  72. int speed;
  73. int duplex;
  74. } options;
  75. /*
  76. * Registers
  77. */
  78. struct tc35815_regs {
  79. __u32 DMA_Ctl; /* 0x00 */
  80. __u32 TxFrmPtr;
  81. __u32 TxThrsh;
  82. __u32 TxPollCtr;
  83. __u32 BLFrmPtr;
  84. __u32 RxFragSize;
  85. __u32 Int_En;
  86. __u32 FDA_Bas;
  87. __u32 FDA_Lim; /* 0x20 */
  88. __u32 Int_Src;
  89. __u32 unused0[2];
  90. __u32 PauseCnt;
  91. __u32 RemPauCnt;
  92. __u32 TxCtlFrmStat;
  93. __u32 unused1;
  94. __u32 MAC_Ctl; /* 0x40 */
  95. __u32 CAM_Ctl;
  96. __u32 Tx_Ctl;
  97. __u32 Tx_Stat;
  98. __u32 Rx_Ctl;
  99. __u32 Rx_Stat;
  100. __u32 MD_Data;
  101. __u32 MD_CA;
  102. __u32 CAM_Adr; /* 0x60 */
  103. __u32 CAM_Data;
  104. __u32 CAM_Ena;
  105. __u32 PROM_Ctl;
  106. __u32 PROM_Data;
  107. __u32 Algn_Cnt;
  108. __u32 CRC_Cnt;
  109. __u32 Miss_Cnt;
  110. };
  111. /*
  112. * Bit assignments
  113. */
  114. /* DMA_Ctl bit assign ------------------------------------------------------- */
  115. #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
  116. #define DMA_RxAlign_1 0x00400000
  117. #define DMA_RxAlign_2 0x00800000
  118. #define DMA_RxAlign_3 0x00c00000
  119. #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
  120. #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
  121. #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
  122. #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
  123. #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
  124. #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
  125. #define DMA_TestMode 0x00002000 /* 1:Test Mode */
  126. #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
  127. #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
  128. /* RxFragSize bit assign ---------------------------------------------------- */
  129. #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
  130. #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
  131. /* MAC_Ctl bit assign ------------------------------------------------------- */
  132. #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
  133. #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
  134. #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
  135. #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
  136. #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
  137. #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
  138. #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
  139. #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
  140. #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
  141. #define MAC_Reset 0x00000004 /* 1:Software Reset */
  142. #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
  143. #define MAC_HaltReq 0x00000001 /* 1:Halt request */
  144. /* PROM_Ctl bit assign ------------------------------------------------------ */
  145. #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
  146. #define PROM_Read 0x00004000 /*10:Read operation */
  147. #define PROM_Write 0x00002000 /*01:Write operation */
  148. #define PROM_Erase 0x00006000 /*11:Erase operation */
  149. /*00:Enable or Disable Writting, */
  150. /* as specified in PROM_Addr. */
  151. #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
  152. /*00xxxx: disable */
  153. /* CAM_Ctl bit assign ------------------------------------------------------- */
  154. #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
  155. #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
  156. /* accept other */
  157. #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
  158. #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
  159. #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
  160. /* CAM_Ena bit assign ------------------------------------------------------- */
  161. #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
  162. #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
  163. #define CAM_Ena_Bit(index) (1 << (index))
  164. #define CAM_ENTRY_DESTINATION 0
  165. #define CAM_ENTRY_SOURCE 1
  166. #define CAM_ENTRY_MACCTL 20
  167. /* Tx_Ctl bit assign -------------------------------------------------------- */
  168. #define Tx_En 0x00000001 /* 1:Transmit enable */
  169. #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
  170. #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
  171. #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
  172. #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
  173. #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
  174. #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
  175. #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
  176. #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
  177. #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
  178. #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
  179. #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
  180. /* Tx_Stat bit assign ------------------------------------------------------- */
  181. #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
  182. #define Tx_ExColl 0x00000010 /* Excessive Collision */
  183. #define Tx_TXDefer 0x00000020 /* Transmit Defered */
  184. #define Tx_Paused 0x00000040 /* Transmit Paused */
  185. #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
  186. #define Tx_Under 0x00000100 /* Underrun */
  187. #define Tx_Defer 0x00000200 /* Deferral */
  188. #define Tx_NCarr 0x00000400 /* No Carrier */
  189. #define Tx_10Stat 0x00000800 /* 10Mbps Status */
  190. #define Tx_LateColl 0x00001000 /* Late Collision */
  191. #define Tx_TxPar 0x00002000 /* Tx Parity Error */
  192. #define Tx_Comp 0x00004000 /* Completion */
  193. #define Tx_Halted 0x00008000 /* Tx Halted */
  194. #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
  195. /* Rx_Ctl bit assign -------------------------------------------------------- */
  196. #define Rx_EnGood 0x00004000 /* 1:Enable Good */
  197. #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
  198. #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
  199. #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
  200. #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
  201. #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
  202. #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
  203. #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
  204. #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
  205. #define Rx_LongEn 0x00000004 /* 1:Long Enable */
  206. #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
  207. #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
  208. /* Rx_Stat bit assign ------------------------------------------------------- */
  209. #define Rx_Halted 0x00008000 /* Rx Halted */
  210. #define Rx_Good 0x00004000 /* Rx Good */
  211. #define Rx_RxPar 0x00002000 /* Rx Parity Error */
  212. #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
  213. #define Rx_LongErr 0x00000800 /* Rx Long Error */
  214. #define Rx_Over 0x00000400 /* Rx Overflow */
  215. #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
  216. #define Rx_Align 0x00000100 /* Rx Alignment Error */
  217. #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
  218. #define Rx_IntRx 0x00000040 /* Rx Interrupt */
  219. #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
  220. #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
  221. #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
  222. /* Int_En bit assign -------------------------------------------------------- */
  223. #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
  224. #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
  225. #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
  226. #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
  227. #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
  228. #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
  229. #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
  230. #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
  231. #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
  232. #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
  233. #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
  234. #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
  235. /* Exhausted Enable */
  236. /* Int_Src bit assign ------------------------------------------------------- */
  237. #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
  238. #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
  239. #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
  240. #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
  241. #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
  242. #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
  243. #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
  244. #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
  245. #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
  246. #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
  247. #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
  248. #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
  249. #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
  250. #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
  251. #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
  252. /* MD_CA bit assign --------------------------------------------------------- */
  253. #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
  254. #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
  255. #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
  256. /*
  257. * Descriptors
  258. */
  259. /* Frame descriptor */
  260. struct FDesc {
  261. volatile __u32 FDNext;
  262. volatile __u32 FDSystem;
  263. volatile __u32 FDStat;
  264. volatile __u32 FDCtl;
  265. };
  266. /* Buffer descriptor */
  267. struct BDesc {
  268. volatile __u32 BuffData;
  269. volatile __u32 BDCtl;
  270. };
  271. #define FD_ALIGN 16
  272. /* Frame Descriptor bit assign ---------------------------------------------- */
  273. #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
  274. #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
  275. #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
  276. #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
  277. #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
  278. #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
  279. #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
  280. #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
  281. #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
  282. #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
  283. #define FD_BDCnt_SHIFT 16
  284. /* Buffer Descriptor bit assign --------------------------------------------- */
  285. #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
  286. #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
  287. #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
  288. #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
  289. #define BD_RxBDID_SHIFT 16
  290. #define BD_RxBDSeqN_SHIFT 24
  291. /* Some useful constants. */
  292. #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
  293. Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
  294. Tx_En) /* maybe 0x7b01 */
  295. /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
  296. #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
  297. | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
  298. #define INT_EN_CMD (Int_NRAbtEn | \
  299. Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
  300. Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
  301. Int_STargAbtEn | \
  302. Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
  303. #define DMA_CTL_CMD DMA_BURST_SIZE
  304. #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
  305. /* Tuning parameters */
  306. #define DMA_BURST_SIZE 32
  307. #define TX_THRESHOLD 1024
  308. /* used threshold with packet max byte for low pci transfer ability.*/
  309. #define TX_THRESHOLD_MAX 1536
  310. /* setting threshold max value when overrun error occurred this count. */
  311. #define TX_THRESHOLD_KEEP_LIMIT 10
  312. /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
  313. #define FD_PAGE_NUM 4
  314. #define RX_BUF_NUM 128 /* < 256 */
  315. #define RX_FD_NUM 256 /* >= 32 */
  316. #define TX_FD_NUM 128
  317. #if RX_CTL_CMD & Rx_LongEn
  318. #define RX_BUF_SIZE PAGE_SIZE
  319. #elif RX_CTL_CMD & Rx_StripCRC
  320. #define RX_BUF_SIZE \
  321. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
  322. #else
  323. #define RX_BUF_SIZE \
  324. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
  325. #endif
  326. #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
  327. #define NAPI_WEIGHT 16
  328. struct TxFD {
  329. struct FDesc fd;
  330. struct BDesc bd;
  331. struct BDesc unused;
  332. };
  333. struct RxFD {
  334. struct FDesc fd;
  335. struct BDesc bd[]; /* variable length */
  336. };
  337. struct FrFD {
  338. struct FDesc fd;
  339. struct BDesc bd[RX_BUF_NUM];
  340. };
  341. #define tc_readl(addr) ioread32(addr)
  342. #define tc_writel(d, addr) iowrite32(d, addr)
  343. #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
  344. /* Information that need to be kept for each controller. */
  345. struct tc35815_local {
  346. struct pci_dev *pci_dev;
  347. struct net_device *dev;
  348. struct napi_struct napi;
  349. /* statistics */
  350. struct {
  351. int max_tx_qlen;
  352. int tx_ints;
  353. int rx_ints;
  354. int tx_underrun;
  355. } lstats;
  356. /* Tx control lock. This protects the transmit buffer ring
  357. * state along with the "tx full" state of the driver. This
  358. * means all netif_queue flow control actions are protected
  359. * by this lock as well.
  360. */
  361. spinlock_t lock;
  362. spinlock_t rx_lock;
  363. struct mii_bus *mii_bus;
  364. int duplex;
  365. int speed;
  366. int link;
  367. struct work_struct restart_work;
  368. /*
  369. * Transmitting: Batch Mode.
  370. * 1 BD in 1 TxFD.
  371. * Receiving: Non-Packing Mode.
  372. * 1 circular FD for Free Buffer List.
  373. * RX_BUF_NUM BD in Free Buffer FD.
  374. * One Free Buffer BD has ETH_FRAME_LEN data buffer.
  375. */
  376. void *fd_buf; /* for TxFD, RxFD, FrFD */
  377. dma_addr_t fd_buf_dma;
  378. struct TxFD *tfd_base;
  379. unsigned int tfd_start;
  380. unsigned int tfd_end;
  381. struct RxFD *rfd_base;
  382. struct RxFD *rfd_limit;
  383. struct RxFD *rfd_cur;
  384. struct FrFD *fbl_ptr;
  385. unsigned int fbl_count;
  386. struct {
  387. struct sk_buff *skb;
  388. dma_addr_t skb_dma;
  389. } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
  390. u32 msg_enable;
  391. enum tc35815_chiptype chiptype;
  392. };
  393. static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
  394. {
  395. return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
  396. }
  397. #ifdef DEBUG
  398. static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
  399. {
  400. return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
  401. }
  402. #endif
  403. static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
  404. struct pci_dev *hwdev,
  405. dma_addr_t *dma_handle)
  406. {
  407. struct sk_buff *skb;
  408. skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
  409. if (!skb)
  410. return NULL;
  411. *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
  412. DMA_FROM_DEVICE);
  413. if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
  414. dev_kfree_skb_any(skb);
  415. return NULL;
  416. }
  417. skb_reserve(skb, 2); /* make IP header 4byte aligned */
  418. return skb;
  419. }
  420. static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
  421. {
  422. dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
  423. DMA_FROM_DEVICE);
  424. dev_kfree_skb_any(skb);
  425. }
  426. /* Index to functions, as function prototypes. */
  427. static int tc35815_open(struct net_device *dev);
  428. static netdev_tx_t tc35815_send_packet(struct sk_buff *skb,
  429. struct net_device *dev);
  430. static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
  431. static int tc35815_rx(struct net_device *dev, int limit);
  432. static int tc35815_poll(struct napi_struct *napi, int budget);
  433. static void tc35815_txdone(struct net_device *dev);
  434. static int tc35815_close(struct net_device *dev);
  435. static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
  436. static void tc35815_set_multicast_list(struct net_device *dev);
  437. static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
  438. #ifdef CONFIG_NET_POLL_CONTROLLER
  439. static void tc35815_poll_controller(struct net_device *dev);
  440. #endif
  441. static const struct ethtool_ops tc35815_ethtool_ops;
  442. /* Example routines you must write ;->. */
  443. static void tc35815_chip_reset(struct net_device *dev);
  444. static void tc35815_chip_init(struct net_device *dev);
  445. #ifdef DEBUG
  446. static void panic_queues(struct net_device *dev);
  447. #endif
  448. static void tc35815_restart_work(struct work_struct *work);
  449. static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  450. {
  451. struct net_device *dev = bus->priv;
  452. struct tc35815_regs __iomem *tr =
  453. (struct tc35815_regs __iomem *)dev->base_addr;
  454. unsigned long timeout = jiffies + HZ;
  455. tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
  456. udelay(12); /* it takes 32 x 400ns at least */
  457. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  458. if (time_after(jiffies, timeout))
  459. return -EIO;
  460. cpu_relax();
  461. }
  462. return tc_readl(&tr->MD_Data) & 0xffff;
  463. }
  464. static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
  465. {
  466. struct net_device *dev = bus->priv;
  467. struct tc35815_regs __iomem *tr =
  468. (struct tc35815_regs __iomem *)dev->base_addr;
  469. unsigned long timeout = jiffies + HZ;
  470. tc_writel(val, &tr->MD_Data);
  471. tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
  472. &tr->MD_CA);
  473. udelay(12); /* it takes 32 x 400ns at least */
  474. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  475. if (time_after(jiffies, timeout))
  476. return -EIO;
  477. cpu_relax();
  478. }
  479. return 0;
  480. }
  481. static void tc_handle_link_change(struct net_device *dev)
  482. {
  483. struct tc35815_local *lp = netdev_priv(dev);
  484. struct phy_device *phydev = dev->phydev;
  485. unsigned long flags;
  486. int status_change = 0;
  487. spin_lock_irqsave(&lp->lock, flags);
  488. if (phydev->link &&
  489. (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
  490. struct tc35815_regs __iomem *tr =
  491. (struct tc35815_regs __iomem *)dev->base_addr;
  492. u32 reg;
  493. reg = tc_readl(&tr->MAC_Ctl);
  494. reg |= MAC_HaltReq;
  495. tc_writel(reg, &tr->MAC_Ctl);
  496. if (phydev->duplex == DUPLEX_FULL)
  497. reg |= MAC_FullDup;
  498. else
  499. reg &= ~MAC_FullDup;
  500. tc_writel(reg, &tr->MAC_Ctl);
  501. reg &= ~MAC_HaltReq;
  502. tc_writel(reg, &tr->MAC_Ctl);
  503. /*
  504. * TX4939 PCFG.SPEEDn bit will be changed on
  505. * NETDEV_CHANGE event.
  506. */
  507. /*
  508. * WORKAROUND: enable LostCrS only if half duplex
  509. * operation.
  510. * (TX4939 does not have EnLCarr)
  511. */
  512. if (phydev->duplex == DUPLEX_HALF &&
  513. lp->chiptype != TC35815_TX4939)
  514. tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
  515. &tr->Tx_Ctl);
  516. lp->speed = phydev->speed;
  517. lp->duplex = phydev->duplex;
  518. status_change = 1;
  519. }
  520. if (phydev->link != lp->link) {
  521. if (phydev->link) {
  522. /* delayed promiscuous enabling */
  523. if (dev->flags & IFF_PROMISC)
  524. tc35815_set_multicast_list(dev);
  525. } else {
  526. lp->speed = 0;
  527. lp->duplex = -1;
  528. }
  529. lp->link = phydev->link;
  530. status_change = 1;
  531. }
  532. spin_unlock_irqrestore(&lp->lock, flags);
  533. if (status_change && netif_msg_link(lp)) {
  534. phy_print_status(phydev);
  535. pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
  536. dev->name,
  537. phy_read(phydev, MII_BMCR),
  538. phy_read(phydev, MII_BMSR),
  539. phy_read(phydev, MII_LPA));
  540. }
  541. }
  542. static int tc_mii_probe(struct net_device *dev)
  543. {
  544. __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
  545. struct tc35815_local *lp = netdev_priv(dev);
  546. struct phy_device *phydev;
  547. phydev = phy_find_first(lp->mii_bus);
  548. if (!phydev) {
  549. printk(KERN_ERR "%s: no PHY found\n", dev->name);
  550. return -ENODEV;
  551. }
  552. /* attach the mac to the phy */
  553. phydev = phy_connect(dev, phydev_name(phydev),
  554. &tc_handle_link_change,
  555. lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
  556. if (IS_ERR(phydev)) {
  557. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  558. return PTR_ERR(phydev);
  559. }
  560. phy_attached_info(phydev);
  561. /* mask with MAC supported features */
  562. phy_set_max_speed(phydev, SPEED_100);
  563. if (options.speed == 10) {
  564. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
  565. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
  566. } else if (options.speed == 100) {
  567. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
  568. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
  569. }
  570. if (options.duplex == 1) {
  571. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
  572. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
  573. } else if (options.duplex == 2) {
  574. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
  575. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
  576. }
  577. linkmode_andnot(phydev->supported, phydev->supported, mask);
  578. linkmode_copy(phydev->advertising, phydev->supported);
  579. lp->link = 0;
  580. lp->speed = 0;
  581. lp->duplex = -1;
  582. return 0;
  583. }
  584. static int tc_mii_init(struct net_device *dev)
  585. {
  586. struct tc35815_local *lp = netdev_priv(dev);
  587. int err;
  588. lp->mii_bus = mdiobus_alloc();
  589. if (lp->mii_bus == NULL) {
  590. err = -ENOMEM;
  591. goto err_out;
  592. }
  593. lp->mii_bus->name = "tc35815_mii_bus";
  594. lp->mii_bus->read = tc_mdio_read;
  595. lp->mii_bus->write = tc_mdio_write;
  596. snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  597. (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
  598. lp->mii_bus->priv = dev;
  599. lp->mii_bus->parent = &lp->pci_dev->dev;
  600. err = mdiobus_register(lp->mii_bus);
  601. if (err)
  602. goto err_out_free_mii_bus;
  603. err = tc_mii_probe(dev);
  604. if (err)
  605. goto err_out_unregister_bus;
  606. return 0;
  607. err_out_unregister_bus:
  608. mdiobus_unregister(lp->mii_bus);
  609. err_out_free_mii_bus:
  610. mdiobus_free(lp->mii_bus);
  611. err_out:
  612. return err;
  613. }
  614. #ifdef CONFIG_CPU_TX49XX
  615. /*
  616. * Find a platform_device providing a MAC address. The platform code
  617. * should provide a "tc35815-mac" device with a MAC address in its
  618. * platform_data.
  619. */
  620. static int tc35815_mac_match(struct device *dev, const void *data)
  621. {
  622. struct platform_device *plat_dev = to_platform_device(dev);
  623. const struct pci_dev *pci_dev = data;
  624. unsigned int id = pci_dev->irq;
  625. return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
  626. }
  627. static int tc35815_read_plat_dev_addr(struct net_device *dev)
  628. {
  629. struct tc35815_local *lp = netdev_priv(dev);
  630. struct device *pd = bus_find_device(&platform_bus_type, NULL,
  631. lp->pci_dev, tc35815_mac_match);
  632. if (pd) {
  633. if (pd->platform_data)
  634. eth_hw_addr_set(dev, pd->platform_data);
  635. put_device(pd);
  636. return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
  637. }
  638. return -ENODEV;
  639. }
  640. #else
  641. static int tc35815_read_plat_dev_addr(struct net_device *dev)
  642. {
  643. return -ENODEV;
  644. }
  645. #endif
  646. static int tc35815_init_dev_addr(struct net_device *dev)
  647. {
  648. struct tc35815_regs __iomem *tr =
  649. (struct tc35815_regs __iomem *)dev->base_addr;
  650. u8 addr[ETH_ALEN];
  651. int i;
  652. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  653. ;
  654. for (i = 0; i < 6; i += 2) {
  655. unsigned short data;
  656. tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
  657. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  658. ;
  659. data = tc_readl(&tr->PROM_Data);
  660. addr[i] = data & 0xff;
  661. addr[i+1] = data >> 8;
  662. }
  663. eth_hw_addr_set(dev, addr);
  664. if (!is_valid_ether_addr(dev->dev_addr))
  665. return tc35815_read_plat_dev_addr(dev);
  666. return 0;
  667. }
  668. static const struct net_device_ops tc35815_netdev_ops = {
  669. .ndo_open = tc35815_open,
  670. .ndo_stop = tc35815_close,
  671. .ndo_start_xmit = tc35815_send_packet,
  672. .ndo_get_stats = tc35815_get_stats,
  673. .ndo_set_rx_mode = tc35815_set_multicast_list,
  674. .ndo_tx_timeout = tc35815_tx_timeout,
  675. .ndo_eth_ioctl = phy_do_ioctl_running,
  676. .ndo_validate_addr = eth_validate_addr,
  677. .ndo_set_mac_address = eth_mac_addr,
  678. #ifdef CONFIG_NET_POLL_CONTROLLER
  679. .ndo_poll_controller = tc35815_poll_controller,
  680. #endif
  681. };
  682. static int tc35815_init_one(struct pci_dev *pdev,
  683. const struct pci_device_id *ent)
  684. {
  685. void __iomem *ioaddr = NULL;
  686. struct net_device *dev;
  687. struct tc35815_local *lp;
  688. int rc;
  689. static int printed_version;
  690. if (!printed_version++) {
  691. printk(version);
  692. dev_printk(KERN_DEBUG, &pdev->dev,
  693. "speed:%d duplex:%d\n",
  694. options.speed, options.duplex);
  695. }
  696. if (!pdev->irq) {
  697. dev_warn(&pdev->dev, "no IRQ assigned.\n");
  698. return -ENODEV;
  699. }
  700. /* dev zeroed in alloc_etherdev */
  701. dev = alloc_etherdev(sizeof(*lp));
  702. if (dev == NULL)
  703. return -ENOMEM;
  704. SET_NETDEV_DEV(dev, &pdev->dev);
  705. lp = netdev_priv(dev);
  706. lp->dev = dev;
  707. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  708. rc = pcim_enable_device(pdev);
  709. if (rc)
  710. goto err_out;
  711. rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
  712. if (rc)
  713. goto err_out;
  714. pci_set_master(pdev);
  715. ioaddr = pcim_iomap_table(pdev)[1];
  716. /* Initialize the device structure. */
  717. dev->netdev_ops = &tc35815_netdev_ops;
  718. dev->ethtool_ops = &tc35815_ethtool_ops;
  719. dev->watchdog_timeo = TC35815_TX_TIMEOUT;
  720. netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
  721. dev->irq = pdev->irq;
  722. dev->base_addr = (unsigned long)ioaddr;
  723. INIT_WORK(&lp->restart_work, tc35815_restart_work);
  724. spin_lock_init(&lp->lock);
  725. spin_lock_init(&lp->rx_lock);
  726. lp->pci_dev = pdev;
  727. lp->chiptype = ent->driver_data;
  728. lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
  729. pci_set_drvdata(pdev, dev);
  730. /* Soft reset the chip. */
  731. tc35815_chip_reset(dev);
  732. /* Retrieve the ethernet address. */
  733. if (tc35815_init_dev_addr(dev)) {
  734. dev_warn(&pdev->dev, "not valid ether addr\n");
  735. eth_hw_addr_random(dev);
  736. }
  737. rc = register_netdev(dev);
  738. if (rc)
  739. goto err_out;
  740. printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
  741. dev->name,
  742. chip_info[ent->driver_data].name,
  743. dev->base_addr,
  744. dev->dev_addr,
  745. dev->irq);
  746. rc = tc_mii_init(dev);
  747. if (rc)
  748. goto err_out_unregister;
  749. return 0;
  750. err_out_unregister:
  751. unregister_netdev(dev);
  752. err_out:
  753. free_netdev(dev);
  754. return rc;
  755. }
  756. static void tc35815_remove_one(struct pci_dev *pdev)
  757. {
  758. struct net_device *dev = pci_get_drvdata(pdev);
  759. struct tc35815_local *lp = netdev_priv(dev);
  760. phy_disconnect(dev->phydev);
  761. mdiobus_unregister(lp->mii_bus);
  762. mdiobus_free(lp->mii_bus);
  763. unregister_netdev(dev);
  764. free_netdev(dev);
  765. }
  766. static int
  767. tc35815_init_queues(struct net_device *dev)
  768. {
  769. struct tc35815_local *lp = netdev_priv(dev);
  770. int i;
  771. unsigned long fd_addr;
  772. if (!lp->fd_buf) {
  773. BUG_ON(sizeof(struct FDesc) +
  774. sizeof(struct BDesc) * RX_BUF_NUM +
  775. sizeof(struct FDesc) * RX_FD_NUM +
  776. sizeof(struct TxFD) * TX_FD_NUM >
  777. PAGE_SIZE * FD_PAGE_NUM);
  778. lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
  779. PAGE_SIZE * FD_PAGE_NUM,
  780. &lp->fd_buf_dma, GFP_ATOMIC);
  781. if (!lp->fd_buf)
  782. return -ENOMEM;
  783. for (i = 0; i < RX_BUF_NUM; i++) {
  784. lp->rx_skbs[i].skb =
  785. alloc_rxbuf_skb(dev, lp->pci_dev,
  786. &lp->rx_skbs[i].skb_dma);
  787. if (!lp->rx_skbs[i].skb) {
  788. while (--i >= 0) {
  789. free_rxbuf_skb(lp->pci_dev,
  790. lp->rx_skbs[i].skb,
  791. lp->rx_skbs[i].skb_dma);
  792. lp->rx_skbs[i].skb = NULL;
  793. }
  794. dma_free_coherent(&lp->pci_dev->dev,
  795. PAGE_SIZE * FD_PAGE_NUM,
  796. lp->fd_buf, lp->fd_buf_dma);
  797. lp->fd_buf = NULL;
  798. return -ENOMEM;
  799. }
  800. }
  801. printk(KERN_DEBUG "%s: FD buf %p DataBuf",
  802. dev->name, lp->fd_buf);
  803. printk("\n");
  804. } else {
  805. for (i = 0; i < FD_PAGE_NUM; i++)
  806. clear_page((void *)((unsigned long)lp->fd_buf +
  807. i * PAGE_SIZE));
  808. }
  809. fd_addr = (unsigned long)lp->fd_buf;
  810. /* Free Descriptors (for Receive) */
  811. lp->rfd_base = (struct RxFD *)fd_addr;
  812. fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
  813. for (i = 0; i < RX_FD_NUM; i++)
  814. lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
  815. lp->rfd_cur = lp->rfd_base;
  816. lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
  817. /* Transmit Descriptors */
  818. lp->tfd_base = (struct TxFD *)fd_addr;
  819. fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
  820. for (i = 0; i < TX_FD_NUM; i++) {
  821. lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
  822. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  823. lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
  824. }
  825. lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
  826. lp->tfd_start = 0;
  827. lp->tfd_end = 0;
  828. /* Buffer List (for Receive) */
  829. lp->fbl_ptr = (struct FrFD *)fd_addr;
  830. lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
  831. lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
  832. /*
  833. * move all allocated skbs to head of rx_skbs[] array.
  834. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
  835. * tc35815_rx() had failed.
  836. */
  837. lp->fbl_count = 0;
  838. for (i = 0; i < RX_BUF_NUM; i++) {
  839. if (lp->rx_skbs[i].skb) {
  840. if (i != lp->fbl_count) {
  841. lp->rx_skbs[lp->fbl_count].skb =
  842. lp->rx_skbs[i].skb;
  843. lp->rx_skbs[lp->fbl_count].skb_dma =
  844. lp->rx_skbs[i].skb_dma;
  845. }
  846. lp->fbl_count++;
  847. }
  848. }
  849. for (i = 0; i < RX_BUF_NUM; i++) {
  850. if (i >= lp->fbl_count) {
  851. lp->fbl_ptr->bd[i].BuffData = 0;
  852. lp->fbl_ptr->bd[i].BDCtl = 0;
  853. continue;
  854. }
  855. lp->fbl_ptr->bd[i].BuffData =
  856. cpu_to_le32(lp->rx_skbs[i].skb_dma);
  857. /* BDID is index of FrFD.bd[] */
  858. lp->fbl_ptr->bd[i].BDCtl =
  859. cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
  860. RX_BUF_SIZE);
  861. }
  862. printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
  863. dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
  864. return 0;
  865. }
  866. static void
  867. tc35815_clear_queues(struct net_device *dev)
  868. {
  869. struct tc35815_local *lp = netdev_priv(dev);
  870. int i;
  871. for (i = 0; i < TX_FD_NUM; i++) {
  872. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  873. struct sk_buff *skb =
  874. fdsystem != 0xffffffff ?
  875. lp->tx_skbs[fdsystem].skb : NULL;
  876. #ifdef DEBUG
  877. if (lp->tx_skbs[i].skb != skb) {
  878. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  879. panic_queues(dev);
  880. }
  881. #else
  882. BUG_ON(lp->tx_skbs[i].skb != skb);
  883. #endif
  884. if (skb) {
  885. dma_unmap_single(&lp->pci_dev->dev,
  886. lp->tx_skbs[i].skb_dma, skb->len,
  887. DMA_TO_DEVICE);
  888. lp->tx_skbs[i].skb = NULL;
  889. lp->tx_skbs[i].skb_dma = 0;
  890. dev_kfree_skb_any(skb);
  891. }
  892. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  893. }
  894. tc35815_init_queues(dev);
  895. }
  896. static void
  897. tc35815_free_queues(struct net_device *dev)
  898. {
  899. struct tc35815_local *lp = netdev_priv(dev);
  900. int i;
  901. if (lp->tfd_base) {
  902. for (i = 0; i < TX_FD_NUM; i++) {
  903. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  904. struct sk_buff *skb =
  905. fdsystem != 0xffffffff ?
  906. lp->tx_skbs[fdsystem].skb : NULL;
  907. #ifdef DEBUG
  908. if (lp->tx_skbs[i].skb != skb) {
  909. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  910. panic_queues(dev);
  911. }
  912. #else
  913. BUG_ON(lp->tx_skbs[i].skb != skb);
  914. #endif
  915. if (skb) {
  916. dma_unmap_single(&lp->pci_dev->dev,
  917. lp->tx_skbs[i].skb_dma,
  918. skb->len, DMA_TO_DEVICE);
  919. dev_kfree_skb(skb);
  920. lp->tx_skbs[i].skb = NULL;
  921. lp->tx_skbs[i].skb_dma = 0;
  922. }
  923. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  924. }
  925. }
  926. lp->rfd_base = NULL;
  927. lp->rfd_limit = NULL;
  928. lp->rfd_cur = NULL;
  929. lp->fbl_ptr = NULL;
  930. for (i = 0; i < RX_BUF_NUM; i++) {
  931. if (lp->rx_skbs[i].skb) {
  932. free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
  933. lp->rx_skbs[i].skb_dma);
  934. lp->rx_skbs[i].skb = NULL;
  935. }
  936. }
  937. if (lp->fd_buf) {
  938. dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
  939. lp->fd_buf, lp->fd_buf_dma);
  940. lp->fd_buf = NULL;
  941. }
  942. }
  943. static void
  944. dump_txfd(struct TxFD *fd)
  945. {
  946. printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
  947. le32_to_cpu(fd->fd.FDNext),
  948. le32_to_cpu(fd->fd.FDSystem),
  949. le32_to_cpu(fd->fd.FDStat),
  950. le32_to_cpu(fd->fd.FDCtl));
  951. printk("BD: ");
  952. printk(" %08x %08x",
  953. le32_to_cpu(fd->bd.BuffData),
  954. le32_to_cpu(fd->bd.BDCtl));
  955. printk("\n");
  956. }
  957. static int
  958. dump_rxfd(struct RxFD *fd)
  959. {
  960. int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  961. if (bd_count > 8)
  962. bd_count = 8;
  963. printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
  964. le32_to_cpu(fd->fd.FDNext),
  965. le32_to_cpu(fd->fd.FDSystem),
  966. le32_to_cpu(fd->fd.FDStat),
  967. le32_to_cpu(fd->fd.FDCtl));
  968. if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
  969. return 0;
  970. printk("BD: ");
  971. for (i = 0; i < bd_count; i++)
  972. printk(" %08x %08x",
  973. le32_to_cpu(fd->bd[i].BuffData),
  974. le32_to_cpu(fd->bd[i].BDCtl));
  975. printk("\n");
  976. return bd_count;
  977. }
  978. #ifdef DEBUG
  979. static void
  980. dump_frfd(struct FrFD *fd)
  981. {
  982. int i;
  983. printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
  984. le32_to_cpu(fd->fd.FDNext),
  985. le32_to_cpu(fd->fd.FDSystem),
  986. le32_to_cpu(fd->fd.FDStat),
  987. le32_to_cpu(fd->fd.FDCtl));
  988. printk("BD: ");
  989. for (i = 0; i < RX_BUF_NUM; i++)
  990. printk(" %08x %08x",
  991. le32_to_cpu(fd->bd[i].BuffData),
  992. le32_to_cpu(fd->bd[i].BDCtl));
  993. printk("\n");
  994. }
  995. static void
  996. panic_queues(struct net_device *dev)
  997. {
  998. struct tc35815_local *lp = netdev_priv(dev);
  999. int i;
  1000. printk("TxFD base %p, start %u, end %u\n",
  1001. lp->tfd_base, lp->tfd_start, lp->tfd_end);
  1002. printk("RxFD base %p limit %p cur %p\n",
  1003. lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
  1004. printk("FrFD %p\n", lp->fbl_ptr);
  1005. for (i = 0; i < TX_FD_NUM; i++)
  1006. dump_txfd(&lp->tfd_base[i]);
  1007. for (i = 0; i < RX_FD_NUM; i++) {
  1008. int bd_count = dump_rxfd(&lp->rfd_base[i]);
  1009. i += (bd_count + 1) / 2; /* skip BDs */
  1010. }
  1011. dump_frfd(lp->fbl_ptr);
  1012. panic("%s: Illegal queue state.", dev->name);
  1013. }
  1014. #endif
  1015. static void print_eth(const u8 *add)
  1016. {
  1017. printk(KERN_DEBUG "print_eth(%p)\n", add);
  1018. printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
  1019. add + 6, add, add[12], add[13]);
  1020. }
  1021. static int tc35815_tx_full(struct net_device *dev)
  1022. {
  1023. struct tc35815_local *lp = netdev_priv(dev);
  1024. return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
  1025. }
  1026. static void tc35815_restart(struct net_device *dev)
  1027. {
  1028. struct tc35815_local *lp = netdev_priv(dev);
  1029. int ret;
  1030. if (dev->phydev) {
  1031. ret = phy_init_hw(dev->phydev);
  1032. if (ret)
  1033. printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
  1034. }
  1035. spin_lock_bh(&lp->rx_lock);
  1036. spin_lock_irq(&lp->lock);
  1037. tc35815_chip_reset(dev);
  1038. tc35815_clear_queues(dev);
  1039. tc35815_chip_init(dev);
  1040. /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
  1041. tc35815_set_multicast_list(dev);
  1042. spin_unlock_irq(&lp->lock);
  1043. spin_unlock_bh(&lp->rx_lock);
  1044. netif_wake_queue(dev);
  1045. }
  1046. static void tc35815_restart_work(struct work_struct *work)
  1047. {
  1048. struct tc35815_local *lp =
  1049. container_of(work, struct tc35815_local, restart_work);
  1050. struct net_device *dev = lp->dev;
  1051. tc35815_restart(dev);
  1052. }
  1053. static void tc35815_schedule_restart(struct net_device *dev)
  1054. {
  1055. struct tc35815_local *lp = netdev_priv(dev);
  1056. struct tc35815_regs __iomem *tr =
  1057. (struct tc35815_regs __iomem *)dev->base_addr;
  1058. unsigned long flags;
  1059. /* disable interrupts */
  1060. spin_lock_irqsave(&lp->lock, flags);
  1061. tc_writel(0, &tr->Int_En);
  1062. tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
  1063. schedule_work(&lp->restart_work);
  1064. spin_unlock_irqrestore(&lp->lock, flags);
  1065. }
  1066. static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
  1067. {
  1068. struct tc35815_regs __iomem *tr =
  1069. (struct tc35815_regs __iomem *)dev->base_addr;
  1070. printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
  1071. dev->name, tc_readl(&tr->Tx_Stat));
  1072. /* Try to restart the adaptor. */
  1073. tc35815_schedule_restart(dev);
  1074. dev->stats.tx_errors++;
  1075. }
  1076. /*
  1077. * Open/initialize the controller. This is called (in the current kernel)
  1078. * sometime after booting when the 'ifconfig' program is run.
  1079. *
  1080. * This routine should set everything up anew at each open, even
  1081. * registers that "should" only need to be set once at boot, so that
  1082. * there is non-reboot way to recover if something goes wrong.
  1083. */
  1084. static int
  1085. tc35815_open(struct net_device *dev)
  1086. {
  1087. struct tc35815_local *lp = netdev_priv(dev);
  1088. /*
  1089. * This is used if the interrupt line can turned off (shared).
  1090. * See 3c503.c for an example of selecting the IRQ at config-time.
  1091. */
  1092. if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
  1093. dev->name, dev))
  1094. return -EAGAIN;
  1095. tc35815_chip_reset(dev);
  1096. if (tc35815_init_queues(dev) != 0) {
  1097. free_irq(dev->irq, dev);
  1098. return -EAGAIN;
  1099. }
  1100. napi_enable(&lp->napi);
  1101. /* Reset the hardware here. Don't forget to set the station address. */
  1102. spin_lock_irq(&lp->lock);
  1103. tc35815_chip_init(dev);
  1104. spin_unlock_irq(&lp->lock);
  1105. netif_carrier_off(dev);
  1106. /* schedule a link state check */
  1107. phy_start(dev->phydev);
  1108. /* We are now ready to accept transmit requeusts from
  1109. * the queueing layer of the networking.
  1110. */
  1111. netif_start_queue(dev);
  1112. return 0;
  1113. }
  1114. /* This will only be invoked if your driver is _not_ in XOFF state.
  1115. * What this means is that you need not check it, and that this
  1116. * invariant will hold if you make sure that the netif_*_queue()
  1117. * calls are done at the proper times.
  1118. */
  1119. static netdev_tx_t
  1120. tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
  1121. {
  1122. struct tc35815_local *lp = netdev_priv(dev);
  1123. struct TxFD *txfd;
  1124. unsigned long flags;
  1125. /* If some error occurs while trying to transmit this
  1126. * packet, you should return '1' from this function.
  1127. * In such a case you _may not_ do anything to the
  1128. * SKB, it is still owned by the network queueing
  1129. * layer when an error is returned. This means you
  1130. * may not modify any SKB fields, you may not free
  1131. * the SKB, etc.
  1132. */
  1133. /* This is the most common case for modern hardware.
  1134. * The spinlock protects this code from the TX complete
  1135. * hardware interrupt handler. Queue flow control is
  1136. * thus managed under this lock as well.
  1137. */
  1138. spin_lock_irqsave(&lp->lock, flags);
  1139. /* failsafe... (handle txdone now if half of FDs are used) */
  1140. if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
  1141. TX_FD_NUM / 2)
  1142. tc35815_txdone(dev);
  1143. if (netif_msg_pktdata(lp))
  1144. print_eth(skb->data);
  1145. #ifdef DEBUG
  1146. if (lp->tx_skbs[lp->tfd_start].skb) {
  1147. printk("%s: tx_skbs conflict.\n", dev->name);
  1148. panic_queues(dev);
  1149. }
  1150. #else
  1151. BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
  1152. #endif
  1153. lp->tx_skbs[lp->tfd_start].skb = skb;
  1154. lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
  1155. skb->data,
  1156. skb->len,
  1157. DMA_TO_DEVICE);
  1158. /*add to ring */
  1159. txfd = &lp->tfd_base[lp->tfd_start];
  1160. txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
  1161. txfd->bd.BDCtl = cpu_to_le32(skb->len);
  1162. txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
  1163. txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
  1164. if (lp->tfd_start == lp->tfd_end) {
  1165. struct tc35815_regs __iomem *tr =
  1166. (struct tc35815_regs __iomem *)dev->base_addr;
  1167. /* Start DMA Transmitter. */
  1168. txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1169. txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1170. if (netif_msg_tx_queued(lp)) {
  1171. printk("%s: starting TxFD.\n", dev->name);
  1172. dump_txfd(txfd);
  1173. }
  1174. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1175. } else {
  1176. txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
  1177. if (netif_msg_tx_queued(lp)) {
  1178. printk("%s: queueing TxFD.\n", dev->name);
  1179. dump_txfd(txfd);
  1180. }
  1181. }
  1182. lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
  1183. /* If we just used up the very last entry in the
  1184. * TX ring on this device, tell the queueing
  1185. * layer to send no more.
  1186. */
  1187. if (tc35815_tx_full(dev)) {
  1188. if (netif_msg_tx_queued(lp))
  1189. printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
  1190. netif_stop_queue(dev);
  1191. }
  1192. /* When the TX completion hw interrupt arrives, this
  1193. * is when the transmit statistics are updated.
  1194. */
  1195. spin_unlock_irqrestore(&lp->lock, flags);
  1196. return NETDEV_TX_OK;
  1197. }
  1198. #define FATAL_ERROR_INT \
  1199. (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
  1200. static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
  1201. {
  1202. static int count;
  1203. printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
  1204. dev->name, status);
  1205. if (status & Int_IntPCI)
  1206. printk(" IntPCI");
  1207. if (status & Int_DmParErr)
  1208. printk(" DmParErr");
  1209. if (status & Int_IntNRAbt)
  1210. printk(" IntNRAbt");
  1211. printk("\n");
  1212. if (count++ > 100)
  1213. panic("%s: Too many fatal errors.", dev->name);
  1214. printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
  1215. /* Try to restart the adaptor. */
  1216. tc35815_schedule_restart(dev);
  1217. }
  1218. static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
  1219. {
  1220. struct tc35815_local *lp = netdev_priv(dev);
  1221. int ret = -1;
  1222. /* Fatal errors... */
  1223. if (status & FATAL_ERROR_INT) {
  1224. tc35815_fatal_error_interrupt(dev, status);
  1225. return 0;
  1226. }
  1227. /* recoverable errors */
  1228. if (status & Int_IntFDAEx) {
  1229. if (netif_msg_rx_err(lp))
  1230. dev_warn(&dev->dev,
  1231. "Free Descriptor Area Exhausted (%#x).\n",
  1232. status);
  1233. dev->stats.rx_dropped++;
  1234. ret = 0;
  1235. }
  1236. if (status & Int_IntBLEx) {
  1237. if (netif_msg_rx_err(lp))
  1238. dev_warn(&dev->dev,
  1239. "Buffer List Exhausted (%#x).\n",
  1240. status);
  1241. dev->stats.rx_dropped++;
  1242. ret = 0;
  1243. }
  1244. if (status & Int_IntExBD) {
  1245. if (netif_msg_rx_err(lp))
  1246. dev_warn(&dev->dev,
  1247. "Excessive Buffer Descriptors (%#x).\n",
  1248. status);
  1249. dev->stats.rx_length_errors++;
  1250. ret = 0;
  1251. }
  1252. /* normal notification */
  1253. if (status & Int_IntMacRx) {
  1254. /* Got a packet(s). */
  1255. ret = tc35815_rx(dev, limit);
  1256. lp->lstats.rx_ints++;
  1257. }
  1258. if (status & Int_IntMacTx) {
  1259. /* Transmit complete. */
  1260. lp->lstats.tx_ints++;
  1261. spin_lock_irq(&lp->lock);
  1262. tc35815_txdone(dev);
  1263. spin_unlock_irq(&lp->lock);
  1264. if (ret < 0)
  1265. ret = 0;
  1266. }
  1267. return ret;
  1268. }
  1269. /*
  1270. * The typical workload of the driver:
  1271. * Handle the network interface interrupts.
  1272. */
  1273. static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
  1274. {
  1275. struct net_device *dev = dev_id;
  1276. struct tc35815_local *lp = netdev_priv(dev);
  1277. struct tc35815_regs __iomem *tr =
  1278. (struct tc35815_regs __iomem *)dev->base_addr;
  1279. u32 dmactl = tc_readl(&tr->DMA_Ctl);
  1280. if (!(dmactl & DMA_IntMask)) {
  1281. /* disable interrupts */
  1282. tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
  1283. if (napi_schedule_prep(&lp->napi))
  1284. __napi_schedule(&lp->napi);
  1285. else {
  1286. printk(KERN_ERR "%s: interrupt taken in poll\n",
  1287. dev->name);
  1288. BUG();
  1289. }
  1290. (void)tc_readl(&tr->Int_Src); /* flush */
  1291. return IRQ_HANDLED;
  1292. }
  1293. return IRQ_NONE;
  1294. }
  1295. #ifdef CONFIG_NET_POLL_CONTROLLER
  1296. static void tc35815_poll_controller(struct net_device *dev)
  1297. {
  1298. disable_irq(dev->irq);
  1299. tc35815_interrupt(dev->irq, dev);
  1300. enable_irq(dev->irq);
  1301. }
  1302. #endif
  1303. /* We have a good packet(s), get it/them out of the buffers. */
  1304. static int
  1305. tc35815_rx(struct net_device *dev, int limit)
  1306. {
  1307. struct tc35815_local *lp = netdev_priv(dev);
  1308. unsigned int fdctl;
  1309. int i;
  1310. int received = 0;
  1311. while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
  1312. int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
  1313. int pkt_len = fdctl & FD_FDLength_MASK;
  1314. int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  1315. #ifdef DEBUG
  1316. struct RxFD *next_rfd;
  1317. #endif
  1318. #if (RX_CTL_CMD & Rx_StripCRC) == 0
  1319. pkt_len -= ETH_FCS_LEN;
  1320. #endif
  1321. if (netif_msg_rx_status(lp))
  1322. dump_rxfd(lp->rfd_cur);
  1323. if (status & Rx_Good) {
  1324. struct sk_buff *skb;
  1325. unsigned char *data;
  1326. int cur_bd;
  1327. if (--limit < 0)
  1328. break;
  1329. BUG_ON(bd_count > 1);
  1330. cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
  1331. & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1332. #ifdef DEBUG
  1333. if (cur_bd >= RX_BUF_NUM) {
  1334. printk("%s: invalid BDID.\n", dev->name);
  1335. panic_queues(dev);
  1336. }
  1337. BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
  1338. (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
  1339. if (!lp->rx_skbs[cur_bd].skb) {
  1340. printk("%s: NULL skb.\n", dev->name);
  1341. panic_queues(dev);
  1342. }
  1343. #else
  1344. BUG_ON(cur_bd >= RX_BUF_NUM);
  1345. #endif
  1346. skb = lp->rx_skbs[cur_bd].skb;
  1347. prefetch(skb->data);
  1348. lp->rx_skbs[cur_bd].skb = NULL;
  1349. dma_unmap_single(&lp->pci_dev->dev,
  1350. lp->rx_skbs[cur_bd].skb_dma,
  1351. RX_BUF_SIZE, DMA_FROM_DEVICE);
  1352. if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
  1353. memmove(skb->data, skb->data - NET_IP_ALIGN,
  1354. pkt_len);
  1355. data = skb_put(skb, pkt_len);
  1356. if (netif_msg_pktdata(lp))
  1357. print_eth(data);
  1358. skb->protocol = eth_type_trans(skb, dev);
  1359. netif_receive_skb(skb);
  1360. received++;
  1361. dev->stats.rx_packets++;
  1362. dev->stats.rx_bytes += pkt_len;
  1363. } else {
  1364. dev->stats.rx_errors++;
  1365. if (netif_msg_rx_err(lp))
  1366. dev_info(&dev->dev, "Rx error (status %x)\n",
  1367. status & Rx_Stat_Mask);
  1368. /* WORKAROUND: LongErr and CRCErr means Overflow. */
  1369. if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
  1370. status &= ~(Rx_LongErr|Rx_CRCErr);
  1371. status |= Rx_Over;
  1372. }
  1373. if (status & Rx_LongErr)
  1374. dev->stats.rx_length_errors++;
  1375. if (status & Rx_Over)
  1376. dev->stats.rx_fifo_errors++;
  1377. if (status & Rx_CRCErr)
  1378. dev->stats.rx_crc_errors++;
  1379. if (status & Rx_Align)
  1380. dev->stats.rx_frame_errors++;
  1381. }
  1382. if (bd_count > 0) {
  1383. /* put Free Buffer back to controller */
  1384. int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
  1385. unsigned char id =
  1386. (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1387. #ifdef DEBUG
  1388. if (id >= RX_BUF_NUM) {
  1389. printk("%s: invalid BDID.\n", dev->name);
  1390. panic_queues(dev);
  1391. }
  1392. #else
  1393. BUG_ON(id >= RX_BUF_NUM);
  1394. #endif
  1395. /* free old buffers */
  1396. lp->fbl_count--;
  1397. while (lp->fbl_count < RX_BUF_NUM)
  1398. {
  1399. unsigned char curid =
  1400. (id + 1 + lp->fbl_count) % RX_BUF_NUM;
  1401. struct BDesc *bd = &lp->fbl_ptr->bd[curid];
  1402. #ifdef DEBUG
  1403. bdctl = le32_to_cpu(bd->BDCtl);
  1404. if (bdctl & BD_CownsBD) {
  1405. printk("%s: Freeing invalid BD.\n",
  1406. dev->name);
  1407. panic_queues(dev);
  1408. }
  1409. #endif
  1410. /* pass BD to controller */
  1411. if (!lp->rx_skbs[curid].skb) {
  1412. lp->rx_skbs[curid].skb =
  1413. alloc_rxbuf_skb(dev,
  1414. lp->pci_dev,
  1415. &lp->rx_skbs[curid].skb_dma);
  1416. if (!lp->rx_skbs[curid].skb)
  1417. break; /* try on next reception */
  1418. bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
  1419. }
  1420. /* Note: BDLength was modified by chip. */
  1421. bd->BDCtl = cpu_to_le32(BD_CownsBD |
  1422. (curid << BD_RxBDID_SHIFT) |
  1423. RX_BUF_SIZE);
  1424. lp->fbl_count++;
  1425. }
  1426. }
  1427. /* put RxFD back to controller */
  1428. #ifdef DEBUG
  1429. next_rfd = fd_bus_to_virt(lp,
  1430. le32_to_cpu(lp->rfd_cur->fd.FDNext));
  1431. if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
  1432. printk("%s: RxFD FDNext invalid.\n", dev->name);
  1433. panic_queues(dev);
  1434. }
  1435. #endif
  1436. for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
  1437. /* pass FD to controller */
  1438. #ifdef DEBUG
  1439. lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
  1440. #else
  1441. lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
  1442. #endif
  1443. lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
  1444. lp->rfd_cur++;
  1445. }
  1446. if (lp->rfd_cur > lp->rfd_limit)
  1447. lp->rfd_cur = lp->rfd_base;
  1448. #ifdef DEBUG
  1449. if (lp->rfd_cur != next_rfd)
  1450. printk("rfd_cur = %p, next_rfd %p\n",
  1451. lp->rfd_cur, next_rfd);
  1452. #endif
  1453. }
  1454. return received;
  1455. }
  1456. static int tc35815_poll(struct napi_struct *napi, int budget)
  1457. {
  1458. struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
  1459. struct net_device *dev = lp->dev;
  1460. struct tc35815_regs __iomem *tr =
  1461. (struct tc35815_regs __iomem *)dev->base_addr;
  1462. int received = 0, handled;
  1463. u32 status;
  1464. if (budget <= 0)
  1465. return received;
  1466. spin_lock(&lp->rx_lock);
  1467. status = tc_readl(&tr->Int_Src);
  1468. do {
  1469. /* BLEx, FDAEx will be cleared later */
  1470. tc_writel(status & ~(Int_BLEx | Int_FDAEx),
  1471. &tr->Int_Src); /* write to clear */
  1472. handled = tc35815_do_interrupt(dev, status, budget - received);
  1473. if (status & (Int_BLEx | Int_FDAEx))
  1474. tc_writel(status & (Int_BLEx | Int_FDAEx),
  1475. &tr->Int_Src);
  1476. if (handled >= 0) {
  1477. received += handled;
  1478. if (received >= budget)
  1479. break;
  1480. }
  1481. status = tc_readl(&tr->Int_Src);
  1482. } while (status);
  1483. spin_unlock(&lp->rx_lock);
  1484. if (received < budget) {
  1485. napi_complete_done(napi, received);
  1486. /* enable interrupts */
  1487. tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
  1488. }
  1489. return received;
  1490. }
  1491. #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
  1492. static void
  1493. tc35815_check_tx_stat(struct net_device *dev, int status)
  1494. {
  1495. struct tc35815_local *lp = netdev_priv(dev);
  1496. const char *msg = NULL;
  1497. /* count collisions */
  1498. if (status & Tx_ExColl)
  1499. dev->stats.collisions += 16;
  1500. if (status & Tx_TxColl_MASK)
  1501. dev->stats.collisions += status & Tx_TxColl_MASK;
  1502. /* TX4939 does not have NCarr */
  1503. if (lp->chiptype == TC35815_TX4939)
  1504. status &= ~Tx_NCarr;
  1505. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1506. if (!lp->link || lp->duplex == DUPLEX_FULL)
  1507. status &= ~Tx_NCarr;
  1508. if (!(status & TX_STA_ERR)) {
  1509. /* no error. */
  1510. dev->stats.tx_packets++;
  1511. return;
  1512. }
  1513. dev->stats.tx_errors++;
  1514. if (status & Tx_ExColl) {
  1515. dev->stats.tx_aborted_errors++;
  1516. msg = "Excessive Collision.";
  1517. }
  1518. if (status & Tx_Under) {
  1519. dev->stats.tx_fifo_errors++;
  1520. msg = "Tx FIFO Underrun.";
  1521. if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
  1522. lp->lstats.tx_underrun++;
  1523. if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
  1524. struct tc35815_regs __iomem *tr =
  1525. (struct tc35815_regs __iomem *)dev->base_addr;
  1526. tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
  1527. msg = "Tx FIFO Underrun.Change Tx threshold to max.";
  1528. }
  1529. }
  1530. }
  1531. if (status & Tx_Defer) {
  1532. dev->stats.tx_fifo_errors++;
  1533. msg = "Excessive Deferral.";
  1534. }
  1535. if (status & Tx_NCarr) {
  1536. dev->stats.tx_carrier_errors++;
  1537. msg = "Lost Carrier Sense.";
  1538. }
  1539. if (status & Tx_LateColl) {
  1540. dev->stats.tx_aborted_errors++;
  1541. msg = "Late Collision.";
  1542. }
  1543. if (status & Tx_TxPar) {
  1544. dev->stats.tx_fifo_errors++;
  1545. msg = "Transmit Parity Error.";
  1546. }
  1547. if (status & Tx_SQErr) {
  1548. dev->stats.tx_heartbeat_errors++;
  1549. msg = "Signal Quality Error.";
  1550. }
  1551. if (msg && netif_msg_tx_err(lp))
  1552. printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
  1553. }
  1554. /* This handles TX complete events posted by the device
  1555. * via interrupts.
  1556. */
  1557. static void
  1558. tc35815_txdone(struct net_device *dev)
  1559. {
  1560. struct tc35815_local *lp = netdev_priv(dev);
  1561. struct TxFD *txfd;
  1562. unsigned int fdctl;
  1563. txfd = &lp->tfd_base[lp->tfd_end];
  1564. while (lp->tfd_start != lp->tfd_end &&
  1565. !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
  1566. int status = le32_to_cpu(txfd->fd.FDStat);
  1567. struct sk_buff *skb;
  1568. unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
  1569. u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
  1570. if (netif_msg_tx_done(lp)) {
  1571. printk("%s: complete TxFD.\n", dev->name);
  1572. dump_txfd(txfd);
  1573. }
  1574. tc35815_check_tx_stat(dev, status);
  1575. skb = fdsystem != 0xffffffff ?
  1576. lp->tx_skbs[fdsystem].skb : NULL;
  1577. #ifdef DEBUG
  1578. if (lp->tx_skbs[lp->tfd_end].skb != skb) {
  1579. printk("%s: tx_skbs mismatch.\n", dev->name);
  1580. panic_queues(dev);
  1581. }
  1582. #else
  1583. BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
  1584. #endif
  1585. if (skb) {
  1586. dev->stats.tx_bytes += skb->len;
  1587. dma_unmap_single(&lp->pci_dev->dev,
  1588. lp->tx_skbs[lp->tfd_end].skb_dma,
  1589. skb->len, DMA_TO_DEVICE);
  1590. lp->tx_skbs[lp->tfd_end].skb = NULL;
  1591. lp->tx_skbs[lp->tfd_end].skb_dma = 0;
  1592. dev_kfree_skb_any(skb);
  1593. }
  1594. txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
  1595. lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
  1596. txfd = &lp->tfd_base[lp->tfd_end];
  1597. #ifdef DEBUG
  1598. if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
  1599. printk("%s: TxFD FDNext invalid.\n", dev->name);
  1600. panic_queues(dev);
  1601. }
  1602. #endif
  1603. if (fdnext & FD_Next_EOL) {
  1604. /* DMA Transmitter has been stopping... */
  1605. if (lp->tfd_end != lp->tfd_start) {
  1606. struct tc35815_regs __iomem *tr =
  1607. (struct tc35815_regs __iomem *)dev->base_addr;
  1608. int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
  1609. struct TxFD *txhead = &lp->tfd_base[head];
  1610. int qlen = (lp->tfd_start + TX_FD_NUM
  1611. - lp->tfd_end) % TX_FD_NUM;
  1612. #ifdef DEBUG
  1613. if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
  1614. printk("%s: TxFD FDCtl invalid.\n", dev->name);
  1615. panic_queues(dev);
  1616. }
  1617. #endif
  1618. /* log max queue length */
  1619. if (lp->lstats.max_tx_qlen < qlen)
  1620. lp->lstats.max_tx_qlen = qlen;
  1621. /* start DMA Transmitter again */
  1622. txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1623. txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1624. if (netif_msg_tx_queued(lp)) {
  1625. printk("%s: start TxFD on queue.\n",
  1626. dev->name);
  1627. dump_txfd(txfd);
  1628. }
  1629. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1630. }
  1631. break;
  1632. }
  1633. }
  1634. /* If we had stopped the queue due to a "tx full"
  1635. * condition, and space has now been made available,
  1636. * wake up the queue.
  1637. */
  1638. if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
  1639. netif_wake_queue(dev);
  1640. }
  1641. /* The inverse routine to tc35815_open(). */
  1642. static int
  1643. tc35815_close(struct net_device *dev)
  1644. {
  1645. struct tc35815_local *lp = netdev_priv(dev);
  1646. netif_stop_queue(dev);
  1647. napi_disable(&lp->napi);
  1648. if (dev->phydev)
  1649. phy_stop(dev->phydev);
  1650. cancel_work_sync(&lp->restart_work);
  1651. /* Flush the Tx and disable Rx here. */
  1652. tc35815_chip_reset(dev);
  1653. free_irq(dev->irq, dev);
  1654. tc35815_free_queues(dev);
  1655. return 0;
  1656. }
  1657. /*
  1658. * Get the current statistics.
  1659. * This may be called with the card open or closed.
  1660. */
  1661. static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
  1662. {
  1663. struct tc35815_regs __iomem *tr =
  1664. (struct tc35815_regs __iomem *)dev->base_addr;
  1665. if (netif_running(dev))
  1666. /* Update the statistics from the device registers. */
  1667. dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
  1668. return &dev->stats;
  1669. }
  1670. static void tc35815_set_cam_entry(struct net_device *dev, int index,
  1671. const unsigned char *addr)
  1672. {
  1673. struct tc35815_local *lp = netdev_priv(dev);
  1674. struct tc35815_regs __iomem *tr =
  1675. (struct tc35815_regs __iomem *)dev->base_addr;
  1676. int cam_index = index * 6;
  1677. u32 cam_data;
  1678. u32 saved_addr;
  1679. saved_addr = tc_readl(&tr->CAM_Adr);
  1680. if (netif_msg_hw(lp))
  1681. printk(KERN_DEBUG "%s: CAM %d: %pM\n",
  1682. dev->name, index, addr);
  1683. if (index & 1) {
  1684. /* read modify write */
  1685. tc_writel(cam_index - 2, &tr->CAM_Adr);
  1686. cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
  1687. cam_data |= addr[0] << 8 | addr[1];
  1688. tc_writel(cam_data, &tr->CAM_Data);
  1689. /* write whole word */
  1690. tc_writel(cam_index + 2, &tr->CAM_Adr);
  1691. cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
  1692. tc_writel(cam_data, &tr->CAM_Data);
  1693. } else {
  1694. /* write whole word */
  1695. tc_writel(cam_index, &tr->CAM_Adr);
  1696. cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
  1697. tc_writel(cam_data, &tr->CAM_Data);
  1698. /* read modify write */
  1699. tc_writel(cam_index + 4, &tr->CAM_Adr);
  1700. cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
  1701. cam_data |= addr[4] << 24 | (addr[5] << 16);
  1702. tc_writel(cam_data, &tr->CAM_Data);
  1703. }
  1704. tc_writel(saved_addr, &tr->CAM_Adr);
  1705. }
  1706. /*
  1707. * Set or clear the multicast filter for this adaptor.
  1708. * num_addrs == -1 Promiscuous mode, receive all packets
  1709. * num_addrs == 0 Normal mode, clear multicast list
  1710. * num_addrs > 0 Multicast mode, receive normal and MC packets,
  1711. * and do best-effort filtering.
  1712. */
  1713. static void
  1714. tc35815_set_multicast_list(struct net_device *dev)
  1715. {
  1716. struct tc35815_regs __iomem *tr =
  1717. (struct tc35815_regs __iomem *)dev->base_addr;
  1718. if (dev->flags & IFF_PROMISC) {
  1719. /* With some (all?) 100MHalf HUB, controller will hang
  1720. * if we enabled promiscuous mode before linkup...
  1721. */
  1722. struct tc35815_local *lp = netdev_priv(dev);
  1723. if (!lp->link)
  1724. return;
  1725. /* Enable promiscuous mode */
  1726. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
  1727. } else if ((dev->flags & IFF_ALLMULTI) ||
  1728. netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
  1729. /* CAM 0, 1, 20 are reserved. */
  1730. /* Disable promiscuous mode, use normal mode. */
  1731. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
  1732. } else if (!netdev_mc_empty(dev)) {
  1733. struct netdev_hw_addr *ha;
  1734. int i;
  1735. int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
  1736. tc_writel(0, &tr->CAM_Ctl);
  1737. /* Walk the address list, and load the filter */
  1738. i = 0;
  1739. netdev_for_each_mc_addr(ha, dev) {
  1740. /* entry 0,1 is reserved. */
  1741. tc35815_set_cam_entry(dev, i + 2, ha->addr);
  1742. ena_bits |= CAM_Ena_Bit(i + 2);
  1743. i++;
  1744. }
  1745. tc_writel(ena_bits, &tr->CAM_Ena);
  1746. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1747. } else {
  1748. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1749. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1750. }
  1751. }
  1752. static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1753. {
  1754. struct tc35815_local *lp = netdev_priv(dev);
  1755. strscpy(info->driver, MODNAME, sizeof(info->driver));
  1756. strscpy(info->version, DRV_VERSION, sizeof(info->version));
  1757. strscpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
  1758. }
  1759. static u32 tc35815_get_msglevel(struct net_device *dev)
  1760. {
  1761. struct tc35815_local *lp = netdev_priv(dev);
  1762. return lp->msg_enable;
  1763. }
  1764. static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
  1765. {
  1766. struct tc35815_local *lp = netdev_priv(dev);
  1767. lp->msg_enable = datum;
  1768. }
  1769. static int tc35815_get_sset_count(struct net_device *dev, int sset)
  1770. {
  1771. struct tc35815_local *lp = netdev_priv(dev);
  1772. switch (sset) {
  1773. case ETH_SS_STATS:
  1774. return sizeof(lp->lstats) / sizeof(int);
  1775. default:
  1776. return -EOPNOTSUPP;
  1777. }
  1778. }
  1779. static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
  1780. {
  1781. struct tc35815_local *lp = netdev_priv(dev);
  1782. data[0] = lp->lstats.max_tx_qlen;
  1783. data[1] = lp->lstats.tx_ints;
  1784. data[2] = lp->lstats.rx_ints;
  1785. data[3] = lp->lstats.tx_underrun;
  1786. }
  1787. static struct {
  1788. const char str[ETH_GSTRING_LEN];
  1789. } ethtool_stats_keys[] = {
  1790. { "max_tx_qlen" },
  1791. { "tx_ints" },
  1792. { "rx_ints" },
  1793. { "tx_underrun" },
  1794. };
  1795. static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  1796. {
  1797. memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
  1798. }
  1799. static const struct ethtool_ops tc35815_ethtool_ops = {
  1800. .get_drvinfo = tc35815_get_drvinfo,
  1801. .get_link = ethtool_op_get_link,
  1802. .get_msglevel = tc35815_get_msglevel,
  1803. .set_msglevel = tc35815_set_msglevel,
  1804. .get_strings = tc35815_get_strings,
  1805. .get_sset_count = tc35815_get_sset_count,
  1806. .get_ethtool_stats = tc35815_get_ethtool_stats,
  1807. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  1808. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  1809. };
  1810. static void tc35815_chip_reset(struct net_device *dev)
  1811. {
  1812. struct tc35815_regs __iomem *tr =
  1813. (struct tc35815_regs __iomem *)dev->base_addr;
  1814. int i;
  1815. /* reset the controller */
  1816. tc_writel(MAC_Reset, &tr->MAC_Ctl);
  1817. udelay(4); /* 3200ns */
  1818. i = 0;
  1819. while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
  1820. if (i++ > 100) {
  1821. printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
  1822. break;
  1823. }
  1824. mdelay(1);
  1825. }
  1826. tc_writel(0, &tr->MAC_Ctl);
  1827. /* initialize registers to default value */
  1828. tc_writel(0, &tr->DMA_Ctl);
  1829. tc_writel(0, &tr->TxThrsh);
  1830. tc_writel(0, &tr->TxPollCtr);
  1831. tc_writel(0, &tr->RxFragSize);
  1832. tc_writel(0, &tr->Int_En);
  1833. tc_writel(0, &tr->FDA_Bas);
  1834. tc_writel(0, &tr->FDA_Lim);
  1835. tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
  1836. tc_writel(0, &tr->CAM_Ctl);
  1837. tc_writel(0, &tr->Tx_Ctl);
  1838. tc_writel(0, &tr->Rx_Ctl);
  1839. tc_writel(0, &tr->CAM_Ena);
  1840. (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
  1841. /* initialize internal SRAM */
  1842. tc_writel(DMA_TestMode, &tr->DMA_Ctl);
  1843. for (i = 0; i < 0x1000; i += 4) {
  1844. tc_writel(i, &tr->CAM_Adr);
  1845. tc_writel(0, &tr->CAM_Data);
  1846. }
  1847. tc_writel(0, &tr->DMA_Ctl);
  1848. }
  1849. static void tc35815_chip_init(struct net_device *dev)
  1850. {
  1851. struct tc35815_local *lp = netdev_priv(dev);
  1852. struct tc35815_regs __iomem *tr =
  1853. (struct tc35815_regs __iomem *)dev->base_addr;
  1854. unsigned long txctl = TX_CTL_CMD;
  1855. /* load station address to CAM */
  1856. tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
  1857. /* Enable CAM (broadcast and unicast) */
  1858. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1859. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1860. /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
  1861. if (HAVE_DMA_RXALIGN(lp))
  1862. tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
  1863. else
  1864. tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
  1865. tc_writel(0, &tr->TxPollCtr); /* Batch mode */
  1866. tc_writel(TX_THRESHOLD, &tr->TxThrsh);
  1867. tc_writel(INT_EN_CMD, &tr->Int_En);
  1868. /* set queues */
  1869. tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
  1870. tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
  1871. &tr->FDA_Lim);
  1872. /*
  1873. * Activation method:
  1874. * First, enable the MAC Transmitter and the DMA Receive circuits.
  1875. * Then enable the DMA Transmitter and the MAC Receive circuits.
  1876. */
  1877. tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
  1878. tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
  1879. /* start MAC transmitter */
  1880. /* TX4939 does not have EnLCarr */
  1881. if (lp->chiptype == TC35815_TX4939)
  1882. txctl &= ~Tx_EnLCarr;
  1883. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1884. if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
  1885. txctl &= ~Tx_EnLCarr;
  1886. tc_writel(txctl, &tr->Tx_Ctl);
  1887. }
  1888. #ifdef CONFIG_PM
  1889. static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
  1890. {
  1891. struct net_device *dev = pci_get_drvdata(pdev);
  1892. struct tc35815_local *lp = netdev_priv(dev);
  1893. unsigned long flags;
  1894. pci_save_state(pdev);
  1895. if (!netif_running(dev))
  1896. return 0;
  1897. netif_device_detach(dev);
  1898. if (dev->phydev)
  1899. phy_stop(dev->phydev);
  1900. spin_lock_irqsave(&lp->lock, flags);
  1901. tc35815_chip_reset(dev);
  1902. spin_unlock_irqrestore(&lp->lock, flags);
  1903. pci_set_power_state(pdev, PCI_D3hot);
  1904. return 0;
  1905. }
  1906. static int tc35815_resume(struct pci_dev *pdev)
  1907. {
  1908. struct net_device *dev = pci_get_drvdata(pdev);
  1909. pci_restore_state(pdev);
  1910. if (!netif_running(dev))
  1911. return 0;
  1912. pci_set_power_state(pdev, PCI_D0);
  1913. tc35815_restart(dev);
  1914. netif_carrier_off(dev);
  1915. if (dev->phydev)
  1916. phy_start(dev->phydev);
  1917. netif_device_attach(dev);
  1918. return 0;
  1919. }
  1920. #endif /* CONFIG_PM */
  1921. static struct pci_driver tc35815_pci_driver = {
  1922. .name = MODNAME,
  1923. .id_table = tc35815_pci_tbl,
  1924. .probe = tc35815_init_one,
  1925. .remove = tc35815_remove_one,
  1926. #ifdef CONFIG_PM
  1927. .suspend = tc35815_suspend,
  1928. .resume = tc35815_resume,
  1929. #endif
  1930. };
  1931. module_param_named(speed, options.speed, int, 0);
  1932. MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
  1933. module_param_named(duplex, options.duplex, int, 0);
  1934. MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
  1935. module_pci_driver(tc35815_pci_driver);
  1936. MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
  1937. MODULE_LICENSE("GPL");