tehuti.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Tehuti Networks(R) Network Driver
  4. * ethtool interface implementation
  5. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  6. */
  7. /*
  8. * RX HW/SW interaction overview
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. * There are 2 types of RX communication channels between driver and NIC.
  11. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  12. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  13. * info about buffer's location, size and ID. An ID field is used to identify a
  14. * buffer when it's returned with data via RXD Fifo (see below)
  15. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  16. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  17. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  18. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  19. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  20. *
  21. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  22. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  23. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  24. * filled with data, HW builds new RXD descriptor for it and push it into single
  25. * RXD Fifo.
  26. *
  27. * RX SW Data Structures
  28. * ~~~~~~~~~~~~~~~~~~~~~
  29. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  30. * For RX case, ownership lasts from allocating new empty skb for RXF until
  31. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  32. * skb db. Implemented as array with bitmask.
  33. * fifo - keeps info about fifo's size and location, relevant HW registers,
  34. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  35. * Implemented as simple struct.
  36. *
  37. * RX SW Execution Flow
  38. * ~~~~~~~~~~~~~~~~~~~~
  39. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  40. * relevant registers. At the end of init phase, driver enables interrupts.
  41. * NIC sees that there is no RXF buffers and raises
  42. * RD_INTR interrupt, isr fills skbs and Rx begins.
  43. * Driver has two receive operation modes:
  44. * NAPI - interrupt-driven mixed with polling
  45. * interrupt-driven only
  46. *
  47. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  48. * interrupt and isr is called. isr collects all available packets
  49. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  50. * Rx buffer allocation note
  51. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  52. * Driver cares to feed such amount of RxF descriptors that respective amount of
  53. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  54. * overflow check in Bordeaux for RxD fifo free/used size.
  55. * FIXME: this is NOT fully implemented, more work should be done
  56. *
  57. */
  58. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  59. #include "tehuti.h"
  60. static const struct pci_device_id bdx_pci_tbl[] = {
  61. { PCI_VDEVICE(TEHUTI, 0x3009), },
  62. { PCI_VDEVICE(TEHUTI, 0x3010), },
  63. { PCI_VDEVICE(TEHUTI, 0x3014), },
  64. { 0 }
  65. };
  66. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  67. /* Definitions needed by ISR or NAPI functions */
  68. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  69. static void bdx_tx_cleanup(struct bdx_priv *priv);
  70. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  71. /* Definitions needed by FW loading */
  72. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  73. /* Definitions needed by hw_start */
  74. static int bdx_tx_init(struct bdx_priv *priv);
  75. static int bdx_rx_init(struct bdx_priv *priv);
  76. /* Definitions needed by bdx_close */
  77. static void bdx_rx_free(struct bdx_priv *priv);
  78. static void bdx_tx_free(struct bdx_priv *priv);
  79. /* Definitions needed by bdx_probe */
  80. static void bdx_set_ethtool_ops(struct net_device *netdev);
  81. /*************************************************************************
  82. * Print Info *
  83. *************************************************************************/
  84. static void print_hw_id(struct pci_dev *pdev)
  85. {
  86. struct pci_nic *nic = pci_get_drvdata(pdev);
  87. u16 pci_link_status = 0;
  88. u16 pci_ctrl = 0;
  89. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  90. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  91. pr_info("%s%s\n", BDX_NIC_NAME,
  92. nic->port_num == 1 ? "" : ", 2-Port");
  93. pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
  94. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  95. readl(nic->regs + FPGA_SEED),
  96. GET_LINK_STATUS_LANES(pci_link_status),
  97. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  98. }
  99. static void print_fw_id(struct pci_nic *nic)
  100. {
  101. pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
  102. }
  103. static void print_eth_id(struct net_device *ndev)
  104. {
  105. netdev_info(ndev, "%s, Port %c\n",
  106. BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
  107. }
  108. /*************************************************************************
  109. * Code *
  110. *************************************************************************/
  111. #define bdx_enable_interrupts(priv) \
  112. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  113. #define bdx_disable_interrupts(priv) \
  114. do { WRITE_REG(priv, regIMR, 0); } while (0)
  115. /**
  116. * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
  117. * @priv: NIC private structure
  118. * @f: fifo to initialize
  119. * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  120. * @reg_CFG0: offsets of registers relative to base address
  121. * @reg_CFG1: offsets of registers relative to base address
  122. * @reg_RPTR: offsets of registers relative to base address
  123. * @reg_WPTR: offsets of registers relative to base address
  124. *
  125. * 1K extra space is allocated at the end of the fifo to simplify
  126. * processing of descriptors that wraps around fifo's end
  127. *
  128. * Returns 0 on success, negative value on failure
  129. *
  130. */
  131. static int
  132. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  133. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  134. {
  135. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  136. memset(f, 0, sizeof(struct fifo));
  137. /* dma_alloc_coherent gives us 4k-aligned memory */
  138. f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE,
  139. &f->da, GFP_ATOMIC);
  140. if (!f->va) {
  141. pr_err("dma_alloc_coherent failed\n");
  142. RET(-ENOMEM);
  143. }
  144. f->reg_CFG0 = reg_CFG0;
  145. f->reg_CFG1 = reg_CFG1;
  146. f->reg_RPTR = reg_RPTR;
  147. f->reg_WPTR = reg_WPTR;
  148. f->rptr = 0;
  149. f->wptr = 0;
  150. f->memsz = memsz;
  151. f->size_mask = memsz - 1;
  152. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  153. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  154. RET(0);
  155. }
  156. /**
  157. * bdx_fifo_free - free all resources used by fifo
  158. * @priv: NIC private structure
  159. * @f: fifo to release
  160. */
  161. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  162. {
  163. ENTER;
  164. if (f->va) {
  165. dma_free_coherent(&priv->pdev->dev,
  166. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  167. f->va = NULL;
  168. }
  169. RET();
  170. }
  171. /**
  172. * bdx_link_changed - notifies OS about hw link state.
  173. * @priv: hw adapter structure
  174. */
  175. static void bdx_link_changed(struct bdx_priv *priv)
  176. {
  177. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  178. if (!link) {
  179. if (netif_carrier_ok(priv->ndev)) {
  180. netif_stop_queue(priv->ndev);
  181. netif_carrier_off(priv->ndev);
  182. netdev_err(priv->ndev, "Link Down\n");
  183. }
  184. } else {
  185. if (!netif_carrier_ok(priv->ndev)) {
  186. netif_wake_queue(priv->ndev);
  187. netif_carrier_on(priv->ndev);
  188. netdev_err(priv->ndev, "Link Up\n");
  189. }
  190. }
  191. }
  192. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  193. {
  194. if (isr & IR_RX_FREE_0) {
  195. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  196. DBG("RX_FREE_0\n");
  197. }
  198. if (isr & IR_LNKCHG0)
  199. bdx_link_changed(priv);
  200. if (isr & IR_PCIE_LINK)
  201. netdev_err(priv->ndev, "PCI-E Link Fault\n");
  202. if (isr & IR_PCIE_TOUT)
  203. netdev_err(priv->ndev, "PCI-E Time Out\n");
  204. }
  205. /**
  206. * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
  207. * @irq: interrupt number
  208. * @dev: network device
  209. *
  210. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  211. *
  212. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  213. * Reasons of interest are:
  214. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  215. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  216. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  217. */
  218. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  219. {
  220. struct net_device *ndev = dev;
  221. struct bdx_priv *priv = netdev_priv(ndev);
  222. u32 isr;
  223. ENTER;
  224. isr = (READ_REG(priv, regISR) & IR_RUN);
  225. if (unlikely(!isr)) {
  226. bdx_enable_interrupts(priv);
  227. return IRQ_NONE; /* Not our interrupt */
  228. }
  229. if (isr & IR_EXTRA)
  230. bdx_isr_extra(priv, isr);
  231. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  232. if (likely(napi_schedule_prep(&priv->napi))) {
  233. __napi_schedule(&priv->napi);
  234. RET(IRQ_HANDLED);
  235. } else {
  236. /* NOTE: we get here if intr has slipped into window
  237. * between these lines in bdx_poll:
  238. * bdx_enable_interrupts(priv);
  239. * return 0;
  240. * currently intrs are disabled (since we read ISR),
  241. * and we have failed to register next poll.
  242. * so we read the regs to trigger chip
  243. * and allow further interupts. */
  244. READ_REG(priv, regTXF_WPTR_0);
  245. READ_REG(priv, regRXD_WPTR_0);
  246. }
  247. }
  248. bdx_enable_interrupts(priv);
  249. RET(IRQ_HANDLED);
  250. }
  251. static int bdx_poll(struct napi_struct *napi, int budget)
  252. {
  253. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  254. int work_done;
  255. ENTER;
  256. bdx_tx_cleanup(priv);
  257. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  258. if ((work_done < budget) ||
  259. (priv->napi_stop++ >= 30)) {
  260. DBG("rx poll is done. backing to isr-driven\n");
  261. /* from time to time we exit to let NAPI layer release
  262. * device lock and allow waiting tasks (eg rmmod) to advance) */
  263. priv->napi_stop = 0;
  264. napi_complete_done(napi, work_done);
  265. bdx_enable_interrupts(priv);
  266. }
  267. return work_done;
  268. }
  269. /**
  270. * bdx_fw_load - loads firmware to NIC
  271. * @priv: NIC private structure
  272. *
  273. * Firmware is loaded via TXD fifo, so it must be initialized first.
  274. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  275. * can have few of them). So all drivers use semaphore register to choose one
  276. * that will actually load FW to NIC.
  277. */
  278. static int bdx_fw_load(struct bdx_priv *priv)
  279. {
  280. const struct firmware *fw = NULL;
  281. int master, i;
  282. int rc;
  283. ENTER;
  284. master = READ_REG(priv, regINIT_SEMAPHORE);
  285. if (!READ_REG(priv, regINIT_STATUS) && master) {
  286. rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
  287. if (rc)
  288. goto out;
  289. bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
  290. mdelay(100);
  291. }
  292. for (i = 0; i < 200; i++) {
  293. if (READ_REG(priv, regINIT_STATUS)) {
  294. rc = 0;
  295. goto out;
  296. }
  297. mdelay(2);
  298. }
  299. rc = -EIO;
  300. out:
  301. if (master)
  302. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  303. release_firmware(fw);
  304. if (rc) {
  305. netdev_err(priv->ndev, "firmware loading failed\n");
  306. if (rc == -EIO)
  307. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  308. READ_REG(priv, regVPC),
  309. READ_REG(priv, regVIC),
  310. READ_REG(priv, regINIT_STATUS), i);
  311. RET(rc);
  312. } else {
  313. DBG("%s: firmware loading success\n", priv->ndev->name);
  314. RET(0);
  315. }
  316. }
  317. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  318. {
  319. u32 val;
  320. ENTER;
  321. DBG("mac0=%x mac1=%x mac2=%x\n",
  322. READ_REG(priv, regUNC_MAC0_A),
  323. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  324. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  325. WRITE_REG(priv, regUNC_MAC2_A, val);
  326. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  327. WRITE_REG(priv, regUNC_MAC1_A, val);
  328. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  329. WRITE_REG(priv, regUNC_MAC0_A, val);
  330. DBG("mac0=%x mac1=%x mac2=%x\n",
  331. READ_REG(priv, regUNC_MAC0_A),
  332. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  333. RET();
  334. }
  335. /**
  336. * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  337. * @priv: NIC private structure
  338. */
  339. static int bdx_hw_start(struct bdx_priv *priv)
  340. {
  341. int rc = -EIO;
  342. struct net_device *ndev = priv->ndev;
  343. ENTER;
  344. bdx_link_changed(priv);
  345. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  346. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  347. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  348. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  349. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  350. WRITE_REG(priv, regRX_FULLNESS, 0);
  351. WRITE_REG(priv, regTX_FULLNESS, 0);
  352. WRITE_REG(priv, regCTRLST,
  353. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  354. WRITE_REG(priv, regVGLB, 0);
  355. WRITE_REG(priv, regMAX_FRAME_A,
  356. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  357. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  358. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  359. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  360. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  361. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  362. /* Enable timer interrupt once in 2 secs. */
  363. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  364. bdx_restore_mac(priv->ndev, priv);
  365. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  366. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  367. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
  368. rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
  369. ndev->name, ndev);
  370. if (rc)
  371. goto err_irq;
  372. bdx_enable_interrupts(priv);
  373. RET(0);
  374. err_irq:
  375. RET(rc);
  376. }
  377. static void bdx_hw_stop(struct bdx_priv *priv)
  378. {
  379. ENTER;
  380. bdx_disable_interrupts(priv);
  381. free_irq(priv->pdev->irq, priv->ndev);
  382. netif_carrier_off(priv->ndev);
  383. netif_stop_queue(priv->ndev);
  384. RET();
  385. }
  386. static int bdx_hw_reset_direct(void __iomem *regs)
  387. {
  388. u32 val, i;
  389. ENTER;
  390. /* reset sequences: read, write 1, read, write 0 */
  391. val = readl(regs + regCLKPLL);
  392. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  393. udelay(50);
  394. val = readl(regs + regCLKPLL);
  395. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  396. /* check that the PLLs are locked and reset ended */
  397. for (i = 0; i < 70; i++, mdelay(10))
  398. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  399. /* do any PCI-E read transaction */
  400. readl(regs + regRXD_CFG0_0);
  401. return 0;
  402. }
  403. pr_err("HW reset failed\n");
  404. return 1; /* failure */
  405. }
  406. static int bdx_hw_reset(struct bdx_priv *priv)
  407. {
  408. u32 val, i;
  409. ENTER;
  410. if (priv->port == 0) {
  411. /* reset sequences: read, write 1, read, write 0 */
  412. val = READ_REG(priv, regCLKPLL);
  413. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  414. udelay(50);
  415. val = READ_REG(priv, regCLKPLL);
  416. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  417. }
  418. /* check that the PLLs are locked and reset ended */
  419. for (i = 0; i < 70; i++, mdelay(10))
  420. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  421. /* do any PCI-E read transaction */
  422. READ_REG(priv, regRXD_CFG0_0);
  423. return 0;
  424. }
  425. pr_err("HW reset failed\n");
  426. return 1; /* failure */
  427. }
  428. static int bdx_sw_reset(struct bdx_priv *priv)
  429. {
  430. int i;
  431. ENTER;
  432. /* 1. load MAC (obsolete) */
  433. /* 2. disable Rx (and Tx) */
  434. WRITE_REG(priv, regGMAC_RXF_A, 0);
  435. mdelay(100);
  436. /* 3. disable port */
  437. WRITE_REG(priv, regDIS_PORT, 1);
  438. /* 4. disable queue */
  439. WRITE_REG(priv, regDIS_QU, 1);
  440. /* 5. wait until hw is disabled */
  441. for (i = 0; i < 50; i++) {
  442. if (READ_REG(priv, regRST_PORT) & 1)
  443. break;
  444. mdelay(10);
  445. }
  446. if (i == 50)
  447. netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
  448. /* 6. disable intrs */
  449. WRITE_REG(priv, regRDINTCM0, 0);
  450. WRITE_REG(priv, regTDINTCM0, 0);
  451. WRITE_REG(priv, regIMR, 0);
  452. READ_REG(priv, regISR);
  453. /* 7. reset queue */
  454. WRITE_REG(priv, regRST_QU, 1);
  455. /* 8. reset port */
  456. WRITE_REG(priv, regRST_PORT, 1);
  457. /* 9. zero all read and write pointers */
  458. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  459. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  460. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  461. WRITE_REG(priv, i, 0);
  462. /* 10. unseet port disable */
  463. WRITE_REG(priv, regDIS_PORT, 0);
  464. /* 11. unset queue disable */
  465. WRITE_REG(priv, regDIS_QU, 0);
  466. /* 12. unset queue reset */
  467. WRITE_REG(priv, regRST_QU, 0);
  468. /* 13. unset port reset */
  469. WRITE_REG(priv, regRST_PORT, 0);
  470. /* 14. enable Rx */
  471. /* skiped. will be done later */
  472. /* 15. save MAC (obsolete) */
  473. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  474. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  475. RET(0);
  476. }
  477. /* bdx_reset - performs right type of reset depending on hw type */
  478. static int bdx_reset(struct bdx_priv *priv)
  479. {
  480. ENTER;
  481. RET((priv->pdev->device == 0x3009)
  482. ? bdx_hw_reset(priv)
  483. : bdx_sw_reset(priv));
  484. }
  485. /**
  486. * bdx_close - Disables a network interface
  487. * @ndev: network interface device structure
  488. *
  489. * Returns 0, this is not allowed to fail
  490. *
  491. * The close entry point is called when an interface is de-activated
  492. * by the OS. The hardware is still under the drivers control, but
  493. * needs to be disabled. A global MAC reset is issued to stop the
  494. * hardware, and all transmit and receive resources are freed.
  495. **/
  496. static int bdx_close(struct net_device *ndev)
  497. {
  498. struct bdx_priv *priv = NULL;
  499. ENTER;
  500. priv = netdev_priv(ndev);
  501. napi_disable(&priv->napi);
  502. bdx_reset(priv);
  503. bdx_hw_stop(priv);
  504. bdx_rx_free(priv);
  505. bdx_tx_free(priv);
  506. RET(0);
  507. }
  508. /**
  509. * bdx_open - Called when a network interface is made active
  510. * @ndev: network interface device structure
  511. *
  512. * Returns 0 on success, negative value on failure
  513. *
  514. * The open entry point is called when a network interface is made
  515. * active by the system (IFF_UP). At this point all resources needed
  516. * for transmit and receive operations are allocated, the interrupt
  517. * handler is registered with the OS, the watchdog timer is started,
  518. * and the stack is notified that the interface is ready.
  519. **/
  520. static int bdx_open(struct net_device *ndev)
  521. {
  522. struct bdx_priv *priv;
  523. int rc;
  524. ENTER;
  525. priv = netdev_priv(ndev);
  526. bdx_reset(priv);
  527. if (netif_running(ndev))
  528. netif_stop_queue(priv->ndev);
  529. if ((rc = bdx_tx_init(priv)) ||
  530. (rc = bdx_rx_init(priv)) ||
  531. (rc = bdx_fw_load(priv)))
  532. goto err;
  533. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  534. rc = bdx_hw_start(priv);
  535. if (rc)
  536. goto err;
  537. napi_enable(&priv->napi);
  538. print_fw_id(priv->nic);
  539. RET(0);
  540. err:
  541. bdx_close(ndev);
  542. RET(rc);
  543. }
  544. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  545. {
  546. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  547. -EINVAL : 0;
  548. }
  549. static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr,
  550. void __user *udata, int cmd)
  551. {
  552. struct bdx_priv *priv = netdev_priv(ndev);
  553. u32 data[3];
  554. int error;
  555. ENTER;
  556. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  557. if (cmd != SIOCDEVPRIVATE) {
  558. error = copy_from_user(data, udata, sizeof(data));
  559. if (error) {
  560. pr_err("can't copy from user\n");
  561. RET(-EFAULT);
  562. }
  563. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  564. } else {
  565. return -EOPNOTSUPP;
  566. }
  567. if (!capable(CAP_SYS_RAWIO))
  568. return -EPERM;
  569. switch (data[0]) {
  570. case BDX_OP_READ:
  571. error = bdx_range_check(priv, data[1]);
  572. if (error < 0)
  573. return error;
  574. data[2] = READ_REG(priv, data[1]);
  575. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  576. data[2]);
  577. error = copy_to_user(udata, data, sizeof(data));
  578. if (error)
  579. RET(-EFAULT);
  580. break;
  581. case BDX_OP_WRITE:
  582. error = bdx_range_check(priv, data[1]);
  583. if (error < 0)
  584. return error;
  585. WRITE_REG(priv, data[1], data[2]);
  586. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  587. break;
  588. default:
  589. RET(-EOPNOTSUPP);
  590. }
  591. return 0;
  592. }
  593. /**
  594. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  595. * @ndev: network device
  596. * @vid: VLAN vid
  597. * @enable: enable or disable vlan
  598. *
  599. * Passes VLAN filter table to hardware
  600. */
  601. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  602. {
  603. struct bdx_priv *priv = netdev_priv(ndev);
  604. u32 reg, bit, val;
  605. ENTER;
  606. DBG2("vid=%d value=%d\n", (int)vid, enable);
  607. if (unlikely(vid >= 4096)) {
  608. pr_err("invalid VID: %u (> 4096)\n", vid);
  609. RET();
  610. }
  611. reg = regVLAN_0 + (vid / 32) * 4;
  612. bit = 1 << vid % 32;
  613. val = READ_REG(priv, reg);
  614. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  615. if (enable)
  616. val |= bit;
  617. else
  618. val &= ~bit;
  619. DBG2("new val %x\n", val);
  620. WRITE_REG(priv, reg, val);
  621. RET();
  622. }
  623. /**
  624. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  625. * @ndev: network device
  626. * @proto: unused
  627. * @vid: VLAN vid to add
  628. */
  629. static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  630. {
  631. __bdx_vlan_rx_vid(ndev, vid, 1);
  632. return 0;
  633. }
  634. /**
  635. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  636. * @ndev: network device
  637. * @proto: unused
  638. * @vid: VLAN vid to kill
  639. */
  640. static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  641. {
  642. __bdx_vlan_rx_vid(ndev, vid, 0);
  643. return 0;
  644. }
  645. /**
  646. * bdx_change_mtu - Change the Maximum Transfer Unit
  647. * @ndev: network interface device structure
  648. * @new_mtu: new value for maximum frame size
  649. *
  650. * Returns 0 on success, negative on failure
  651. */
  652. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  653. {
  654. ENTER;
  655. ndev->mtu = new_mtu;
  656. if (netif_running(ndev)) {
  657. bdx_close(ndev);
  658. bdx_open(ndev);
  659. }
  660. RET(0);
  661. }
  662. static void bdx_setmulti(struct net_device *ndev)
  663. {
  664. struct bdx_priv *priv = netdev_priv(ndev);
  665. u32 rxf_val =
  666. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  667. int i;
  668. ENTER;
  669. /* IMF - imperfect (hash) rx multicat filter */
  670. /* PMF - perfect rx multicat filter */
  671. /* FIXME: RXE(OFF) */
  672. if (ndev->flags & IFF_PROMISC) {
  673. rxf_val |= GMAC_RX_FILTER_PRM;
  674. } else if (ndev->flags & IFF_ALLMULTI) {
  675. /* set IMF to accept all multicast frmaes */
  676. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  677. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  678. } else if (!netdev_mc_empty(ndev)) {
  679. u8 hash;
  680. struct netdev_hw_addr *ha;
  681. u32 reg, val;
  682. /* set IMF to deny all multicast frames */
  683. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  684. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  685. /* set PMF to deny all multicast frames */
  686. for (i = 0; i < MAC_MCST_NUM; i++) {
  687. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  688. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  689. }
  690. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  691. /* TBD: sort addresses and write them in ascending order
  692. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  693. * multicast frames throu IMF */
  694. /* accept the rest of addresses throu IMF */
  695. netdev_for_each_mc_addr(ha, ndev) {
  696. hash = 0;
  697. for (i = 0; i < ETH_ALEN; i++)
  698. hash ^= ha->addr[i];
  699. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  700. val = READ_REG(priv, reg);
  701. val |= (1 << (hash % 32));
  702. WRITE_REG(priv, reg, val);
  703. }
  704. } else {
  705. DBG("only own mac %d\n", netdev_mc_count(ndev));
  706. rxf_val |= GMAC_RX_FILTER_AB;
  707. }
  708. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  709. /* enable RX */
  710. /* FIXME: RXE(ON) */
  711. RET();
  712. }
  713. static int bdx_set_mac(struct net_device *ndev, void *p)
  714. {
  715. struct bdx_priv *priv = netdev_priv(ndev);
  716. struct sockaddr *addr = p;
  717. ENTER;
  718. /*
  719. if (netif_running(dev))
  720. return -EBUSY
  721. */
  722. eth_hw_addr_set(ndev, addr->sa_data);
  723. bdx_restore_mac(ndev, priv);
  724. RET(0);
  725. }
  726. static int bdx_read_mac(struct bdx_priv *priv)
  727. {
  728. u16 macAddress[3], i;
  729. u8 addr[ETH_ALEN];
  730. ENTER;
  731. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  732. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  733. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  734. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  735. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  736. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  737. for (i = 0; i < 3; i++) {
  738. addr[i * 2 + 1] = macAddress[i];
  739. addr[i * 2] = macAddress[i] >> 8;
  740. }
  741. eth_hw_addr_set(priv->ndev, addr);
  742. RET(0);
  743. }
  744. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  745. {
  746. u64 val;
  747. val = READ_REG(priv, reg);
  748. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  749. return val;
  750. }
  751. /*Do the statistics-update work*/
  752. static void bdx_update_stats(struct bdx_priv *priv)
  753. {
  754. struct bdx_stats *stats = &priv->hw_stats;
  755. u64 *stats_vector = (u64 *) stats;
  756. int i;
  757. int addr;
  758. /*Fill HW structure */
  759. addr = 0x7200;
  760. /*First 12 statistics - 0x7200 - 0x72B0 */
  761. for (i = 0; i < 12; i++) {
  762. stats_vector[i] = bdx_read_l2stat(priv, addr);
  763. addr += 0x10;
  764. }
  765. BDX_ASSERT(addr != 0x72C0);
  766. /* 0x72C0-0x72E0 RSRV */
  767. addr = 0x72F0;
  768. for (; i < 16; i++) {
  769. stats_vector[i] = bdx_read_l2stat(priv, addr);
  770. addr += 0x10;
  771. }
  772. BDX_ASSERT(addr != 0x7330);
  773. /* 0x7330-0x7360 RSRV */
  774. addr = 0x7370;
  775. for (; i < 19; i++) {
  776. stats_vector[i] = bdx_read_l2stat(priv, addr);
  777. addr += 0x10;
  778. }
  779. BDX_ASSERT(addr != 0x73A0);
  780. /* 0x73A0-0x73B0 RSRV */
  781. addr = 0x73C0;
  782. for (; i < 23; i++) {
  783. stats_vector[i] = bdx_read_l2stat(priv, addr);
  784. addr += 0x10;
  785. }
  786. BDX_ASSERT(addr != 0x7400);
  787. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  788. }
  789. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  790. u16 rxd_vlan);
  791. static void print_rxfd(struct rxf_desc *rxfd);
  792. /*************************************************************************
  793. * Rx DB *
  794. *************************************************************************/
  795. static void bdx_rxdb_destroy(struct rxdb *db)
  796. {
  797. vfree(db);
  798. }
  799. static struct rxdb *bdx_rxdb_create(int nelem)
  800. {
  801. struct rxdb *db;
  802. int i;
  803. db = vmalloc(sizeof(struct rxdb)
  804. + (nelem * sizeof(int))
  805. + (nelem * sizeof(struct rx_map)));
  806. if (likely(db != NULL)) {
  807. db->stack = (int *)(db + 1);
  808. db->elems = (void *)(db->stack + nelem);
  809. db->nelem = nelem;
  810. db->top = nelem;
  811. for (i = 0; i < nelem; i++)
  812. db->stack[i] = nelem - i - 1; /* to make first allocs
  813. close to db struct*/
  814. }
  815. return db;
  816. }
  817. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  818. {
  819. BDX_ASSERT(db->top <= 0);
  820. return db->stack[--(db->top)];
  821. }
  822. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  823. {
  824. BDX_ASSERT((n < 0) || (n >= db->nelem));
  825. return db->elems + n;
  826. }
  827. static inline int bdx_rxdb_available(struct rxdb *db)
  828. {
  829. return db->top;
  830. }
  831. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  832. {
  833. BDX_ASSERT((n >= db->nelem) || (n < 0));
  834. db->stack[(db->top)++] = n;
  835. }
  836. /*************************************************************************
  837. * Rx Init *
  838. *************************************************************************/
  839. /**
  840. * bdx_rx_init - initialize RX all related HW and SW resources
  841. * @priv: NIC private structure
  842. *
  843. * Returns 0 on success, negative value on failure
  844. *
  845. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  846. * skb for rx. It assumes that Rx is desabled in HW
  847. * funcs are grouped for better cache usage
  848. *
  849. * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
  850. * filled and packets will be dropped by nic without getting into host or
  851. * cousing interrupt. Anyway, in that condition, host has no chance to process
  852. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  853. */
  854. /* TBD: ensure proper packet size */
  855. static int bdx_rx_init(struct bdx_priv *priv)
  856. {
  857. ENTER;
  858. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  859. regRXD_CFG0_0, regRXD_CFG1_0,
  860. regRXD_RPTR_0, regRXD_WPTR_0))
  861. goto err_mem;
  862. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  863. regRXF_CFG0_0, regRXF_CFG1_0,
  864. regRXF_RPTR_0, regRXF_WPTR_0))
  865. goto err_mem;
  866. priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  867. sizeof(struct rxf_desc));
  868. if (!priv->rxdb)
  869. goto err_mem;
  870. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  871. return 0;
  872. err_mem:
  873. netdev_err(priv->ndev, "Rx init failed\n");
  874. return -ENOMEM;
  875. }
  876. /**
  877. * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  878. * @priv: NIC private structure
  879. * @f: RXF fifo
  880. */
  881. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  882. {
  883. struct rx_map *dm;
  884. struct rxdb *db = priv->rxdb;
  885. u16 i;
  886. ENTER;
  887. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  888. db->nelem - bdx_rxdb_available(db));
  889. while (bdx_rxdb_available(db) > 0) {
  890. i = bdx_rxdb_alloc_elem(db);
  891. dm = bdx_rxdb_addr_elem(db, i);
  892. dm->dma = 0;
  893. }
  894. for (i = 0; i < db->nelem; i++) {
  895. dm = bdx_rxdb_addr_elem(db, i);
  896. if (dm->dma) {
  897. dma_unmap_single(&priv->pdev->dev, dm->dma,
  898. f->m.pktsz, DMA_FROM_DEVICE);
  899. dev_kfree_skb(dm->skb);
  900. }
  901. }
  902. }
  903. /**
  904. * bdx_rx_free - release all Rx resources
  905. * @priv: NIC private structure
  906. *
  907. * It assumes that Rx is desabled in HW
  908. */
  909. static void bdx_rx_free(struct bdx_priv *priv)
  910. {
  911. ENTER;
  912. if (priv->rxdb) {
  913. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  914. bdx_rxdb_destroy(priv->rxdb);
  915. priv->rxdb = NULL;
  916. }
  917. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  918. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  919. RET();
  920. }
  921. /*************************************************************************
  922. * Rx Engine *
  923. *************************************************************************/
  924. /**
  925. * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  926. * @priv: nic's private structure
  927. * @f: RXF fifo that needs skbs
  928. *
  929. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  930. * skb's virtual and physical addresses are stored in skb db.
  931. * To calculate free space, func uses cached values of RPTR and WPTR
  932. * When needed, it also updates RPTR and WPTR.
  933. */
  934. /* TBD: do not update WPTR if no desc were written */
  935. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  936. {
  937. struct sk_buff *skb;
  938. struct rxf_desc *rxfd;
  939. struct rx_map *dm;
  940. int dno, delta, idx;
  941. struct rxdb *db = priv->rxdb;
  942. ENTER;
  943. dno = bdx_rxdb_available(db) - 1;
  944. while (dno > 0) {
  945. skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
  946. if (!skb)
  947. break;
  948. skb_reserve(skb, NET_IP_ALIGN);
  949. idx = bdx_rxdb_alloc_elem(db);
  950. dm = bdx_rxdb_addr_elem(db, idx);
  951. dm->dma = dma_map_single(&priv->pdev->dev, skb->data,
  952. f->m.pktsz, DMA_FROM_DEVICE);
  953. dm->skb = skb;
  954. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  955. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  956. rxfd->va_lo = idx;
  957. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  958. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  959. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  960. print_rxfd(rxfd);
  961. f->m.wptr += sizeof(struct rxf_desc);
  962. delta = f->m.wptr - f->m.memsz;
  963. if (unlikely(delta >= 0)) {
  964. f->m.wptr = delta;
  965. if (delta > 0) {
  966. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  967. DBG("wrapped descriptor\n");
  968. }
  969. }
  970. dno--;
  971. }
  972. /*TBD: to do - delayed rxf wptr like in txd */
  973. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  974. RET();
  975. }
  976. static inline void
  977. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  978. struct sk_buff *skb)
  979. {
  980. ENTER;
  981. DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
  982. if (GET_RXD_VTAG(rxd_val1)) {
  983. DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
  984. priv->ndev->name,
  985. GET_RXD_VLAN_ID(rxd_vlan),
  986. GET_RXD_VTAG(rxd_val1));
  987. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
  988. }
  989. netif_receive_skb(skb);
  990. }
  991. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  992. {
  993. struct rxf_desc *rxfd;
  994. struct rx_map *dm;
  995. struct rxf_fifo *f;
  996. struct rxdb *db;
  997. int delta;
  998. ENTER;
  999. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1000. f = &priv->rxf_fifo0;
  1001. db = priv->rxdb;
  1002. DBG("db=%p f=%p\n", db, f);
  1003. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1004. DBG("dm=%p\n", dm);
  1005. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1006. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1007. rxfd->va_lo = rxdd->va_lo;
  1008. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1009. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1010. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1011. print_rxfd(rxfd);
  1012. f->m.wptr += sizeof(struct rxf_desc);
  1013. delta = f->m.wptr - f->m.memsz;
  1014. if (unlikely(delta >= 0)) {
  1015. f->m.wptr = delta;
  1016. if (delta > 0) {
  1017. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1018. DBG("wrapped descriptor\n");
  1019. }
  1020. }
  1021. RET();
  1022. }
  1023. /**
  1024. * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
  1025. * NOTE: a special treatment is given to non-continuous descriptors
  1026. * that start near the end, wraps around and continue at the beginning. a second
  1027. * part is copied right after the first, and then descriptor is interpreted as
  1028. * normal. fifo has an extra space to allow such operations
  1029. * @priv: nic's private structure
  1030. * @f: RXF fifo that needs skbs
  1031. * @budget: maximum number of packets to receive
  1032. */
  1033. /* TBD: replace memcpy func call by explicite inline asm */
  1034. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1035. {
  1036. struct net_device *ndev = priv->ndev;
  1037. struct sk_buff *skb, *skb2;
  1038. struct rxd_desc *rxdd;
  1039. struct rx_map *dm;
  1040. struct rxf_fifo *rxf_fifo;
  1041. int tmp_len, size;
  1042. int done = 0;
  1043. int max_done = BDX_MAX_RX_DONE;
  1044. struct rxdb *db = NULL;
  1045. /* Unmarshalled descriptor - copy of descriptor in host order */
  1046. u32 rxd_val1;
  1047. u16 len;
  1048. u16 rxd_vlan;
  1049. ENTER;
  1050. max_done = budget;
  1051. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1052. size = f->m.wptr - f->m.rptr;
  1053. if (size < 0)
  1054. size = f->m.memsz + size; /* size is negative :-) */
  1055. while (size > 0) {
  1056. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1057. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1058. len = CPU_CHIP_SWAP16(rxdd->len);
  1059. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1060. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1061. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1062. BDX_ASSERT(tmp_len <= 0);
  1063. size -= tmp_len;
  1064. if (size < 0) /* test for partially arrived descriptor */
  1065. break;
  1066. f->m.rptr += tmp_len;
  1067. tmp_len = f->m.rptr - f->m.memsz;
  1068. if (unlikely(tmp_len >= 0)) {
  1069. f->m.rptr = tmp_len;
  1070. if (tmp_len > 0) {
  1071. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1072. f->m.rptr, tmp_len);
  1073. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1074. }
  1075. }
  1076. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1077. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1078. ndev->stats.rx_errors++;
  1079. bdx_recycle_skb(priv, rxdd);
  1080. continue;
  1081. }
  1082. rxf_fifo = &priv->rxf_fifo0;
  1083. db = priv->rxdb;
  1084. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1085. skb = dm->skb;
  1086. if (len < BDX_COPYBREAK &&
  1087. (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
  1088. skb_reserve(skb2, NET_IP_ALIGN);
  1089. /*skb_put(skb2, len); */
  1090. dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma,
  1091. rxf_fifo->m.pktsz,
  1092. DMA_FROM_DEVICE);
  1093. memcpy(skb2->data, skb->data, len);
  1094. bdx_recycle_skb(priv, rxdd);
  1095. skb = skb2;
  1096. } else {
  1097. dma_unmap_single(&priv->pdev->dev, dm->dma,
  1098. rxf_fifo->m.pktsz, DMA_FROM_DEVICE);
  1099. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1100. }
  1101. ndev->stats.rx_bytes += len;
  1102. skb_put(skb, len);
  1103. skb->protocol = eth_type_trans(skb, ndev);
  1104. /* Non-IP packets aren't checksum-offloaded */
  1105. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1106. skb_checksum_none_assert(skb);
  1107. else
  1108. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1109. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1110. if (++done >= max_done)
  1111. break;
  1112. }
  1113. ndev->stats.rx_packets += done;
  1114. /* FIXME: do smth to minimize pci accesses */
  1115. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1116. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1117. RET(done);
  1118. }
  1119. /*************************************************************************
  1120. * Debug / Temprorary Code *
  1121. *************************************************************************/
  1122. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1123. u16 rxd_vlan)
  1124. {
  1125. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
  1126. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1127. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1128. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1129. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1130. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1131. rxdd->va_hi);
  1132. }
  1133. static void print_rxfd(struct rxf_desc *rxfd)
  1134. {
  1135. DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
  1136. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1137. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1138. }
  1139. /*
  1140. * TX HW/SW interaction overview
  1141. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1142. * There are 2 types of TX communication channels between driver and NIC.
  1143. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1144. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1145. *
  1146. * Currently NIC supports TSO, checksuming and gather DMA
  1147. * UFO and IP fragmentation is on the way
  1148. *
  1149. * RX SW Data Structures
  1150. * ~~~~~~~~~~~~~~~~~~~~~
  1151. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1152. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1153. * acknowledges sent by TXF descriptors.
  1154. * Implemented as cyclic buffer.
  1155. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1156. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1157. * Implemented as simple struct.
  1158. *
  1159. * TX SW Execution Flow
  1160. * ~~~~~~~~~~~~~~~~~~~~
  1161. * OS calls driver's hard_xmit method with packet to sent.
  1162. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1163. * by updating TXD WPTR.
  1164. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1165. * To prevent TXD fifo overflow without reading HW registers every time,
  1166. * SW deploys "tx level" technique.
  1167. * Upon strart up, tx level is initialized to TXD fifo length.
  1168. * For every sent packet, SW gets its TXD descriptor sizei
  1169. * (from precalculated array) and substructs it from tx level.
  1170. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1171. * original TXD descriptor from txdb and adds it to tx level.
  1172. * When Tx level drops under some predefined treshhold, the driver
  1173. * stops the TX queue. When TX level rises above that level,
  1174. * the tx queue is enabled again.
  1175. *
  1176. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1177. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1178. */
  1179. /**
  1180. * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
  1181. * @db: tx data base
  1182. * @pptr: read or write pointer
  1183. */
  1184. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1185. {
  1186. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1187. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1188. *pptr != db->wptr); /* or write pointer */
  1189. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1190. *pptr >= db->end); /* in range */
  1191. ++*pptr;
  1192. if (unlikely(*pptr == db->end))
  1193. *pptr = db->start;
  1194. }
  1195. /**
  1196. * bdx_tx_db_inc_rptr - increment read pointer
  1197. * @db: tx data base
  1198. */
  1199. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1200. {
  1201. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1202. __bdx_tx_db_ptr_next(db, &db->rptr);
  1203. }
  1204. /**
  1205. * bdx_tx_db_inc_wptr - increment write pointer
  1206. * @db: tx data base
  1207. */
  1208. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1209. {
  1210. __bdx_tx_db_ptr_next(db, &db->wptr);
  1211. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1212. a result of write */
  1213. }
  1214. /**
  1215. * bdx_tx_db_init - creates and initializes tx db
  1216. * @d: tx data base
  1217. * @sz_type: size of tx fifo
  1218. *
  1219. * Returns 0 on success, error code otherwise
  1220. */
  1221. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1222. {
  1223. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1224. d->start = vmalloc(memsz);
  1225. if (!d->start)
  1226. return -ENOMEM;
  1227. /*
  1228. * In order to differentiate between db is empty and db is full
  1229. * states at least one element should always be empty in order to
  1230. * avoid rptr == wptr which means db is empty
  1231. */
  1232. d->size = memsz / sizeof(struct tx_map) - 1;
  1233. d->end = d->start + d->size + 1; /* just after last element */
  1234. /* all dbs are created equally empty */
  1235. d->rptr = d->start;
  1236. d->wptr = d->start;
  1237. return 0;
  1238. }
  1239. /**
  1240. * bdx_tx_db_close - closes tx db and frees all memory
  1241. * @d: tx data base
  1242. */
  1243. static void bdx_tx_db_close(struct txdb *d)
  1244. {
  1245. BDX_ASSERT(d == NULL);
  1246. vfree(d->start);
  1247. d->start = NULL;
  1248. }
  1249. /*************************************************************************
  1250. * Tx Engine *
  1251. *************************************************************************/
  1252. /* sizes of tx desc (including padding if needed) as function
  1253. * of skb's frag number */
  1254. static struct {
  1255. u16 bytes;
  1256. u16 qwords; /* qword = 64 bit */
  1257. } txd_sizes[MAX_SKB_FRAGS + 1];
  1258. /**
  1259. * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
  1260. * @priv: NIC private structure
  1261. * @skb: socket buffer to map
  1262. * @txdd: TX descriptor to use
  1263. *
  1264. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1265. * new tx descriptor. It also stores them in the tx db, so they could be
  1266. * unmaped after data was sent. It is reponsibility of a caller to make
  1267. * sure that there is enough space in the tx db. Last element holds pointer
  1268. * to skb itself and marked with zero length
  1269. */
  1270. static inline void
  1271. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1272. struct txd_desc *txdd)
  1273. {
  1274. struct txdb *db = &priv->txdb;
  1275. struct pbl *pbl = &txdd->pbl[0];
  1276. int nr_frags = skb_shinfo(skb)->nr_frags;
  1277. int i;
  1278. db->wptr->len = skb_headlen(skb);
  1279. db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data,
  1280. db->wptr->len, DMA_TO_DEVICE);
  1281. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1282. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1283. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1284. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1285. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1286. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1287. bdx_tx_db_inc_wptr(db);
  1288. for (i = 0; i < nr_frags; i++) {
  1289. const skb_frag_t *frag;
  1290. frag = &skb_shinfo(skb)->frags[i];
  1291. db->wptr->len = skb_frag_size(frag);
  1292. db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
  1293. 0, skb_frag_size(frag),
  1294. DMA_TO_DEVICE);
  1295. pbl++;
  1296. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1297. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1298. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1299. bdx_tx_db_inc_wptr(db);
  1300. }
  1301. /* add skb clean up info. */
  1302. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1303. db->wptr->addr.skb = skb;
  1304. bdx_tx_db_inc_wptr(db);
  1305. }
  1306. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1307. * number of frags is used as index to fetch correct descriptors size,
  1308. * instead of calculating it each time */
  1309. static void __init init_txd_sizes(void)
  1310. {
  1311. int i, lwords;
  1312. /* 7 - is number of lwords in txd with one phys buffer
  1313. * 3 - is number of lwords used for every additional phys buffer */
  1314. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1315. lwords = 7 + (i * 3);
  1316. if (lwords & 1)
  1317. lwords++; /* pad it with 1 lword */
  1318. txd_sizes[i].qwords = lwords >> 1;
  1319. txd_sizes[i].bytes = lwords << 2;
  1320. }
  1321. }
  1322. /* bdx_tx_init - initialize all Tx related stuff.
  1323. * Namely, TXD and TXF fifos, database etc */
  1324. static int bdx_tx_init(struct bdx_priv *priv)
  1325. {
  1326. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1327. regTXD_CFG0_0,
  1328. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1329. goto err_mem;
  1330. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1331. regTXF_CFG0_0,
  1332. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1333. goto err_mem;
  1334. /* The TX db has to keep mappings for all packets sent (on TxD)
  1335. * and not yet reclaimed (on TxF) */
  1336. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1337. goto err_mem;
  1338. priv->tx_level = BDX_MAX_TX_LEVEL;
  1339. #ifdef BDX_DELAY_WPTR
  1340. priv->tx_update_mark = priv->tx_level - 1024;
  1341. #endif
  1342. return 0;
  1343. err_mem:
  1344. netdev_err(priv->ndev, "Tx init failed\n");
  1345. return -ENOMEM;
  1346. }
  1347. /**
  1348. * bdx_tx_space - calculates available space in TX fifo
  1349. * @priv: NIC private structure
  1350. *
  1351. * Returns available space in TX fifo in bytes
  1352. */
  1353. static inline int bdx_tx_space(struct bdx_priv *priv)
  1354. {
  1355. struct txd_fifo *f = &priv->txd_fifo0;
  1356. int fsize;
  1357. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1358. fsize = f->m.rptr - f->m.wptr;
  1359. if (fsize <= 0)
  1360. fsize = f->m.memsz + fsize;
  1361. return fsize;
  1362. }
  1363. /**
  1364. * bdx_tx_transmit - send packet to NIC
  1365. * @skb: packet to send
  1366. * @ndev: network device assigned to NIC
  1367. * Return codes:
  1368. * o NETDEV_TX_OK everything ok.
  1369. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1370. * Usually a bug, means queue start/stop flow control is broken in
  1371. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1372. */
  1373. static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
  1374. struct net_device *ndev)
  1375. {
  1376. struct bdx_priv *priv = netdev_priv(ndev);
  1377. struct txd_fifo *f = &priv->txd_fifo0;
  1378. int txd_checksum = 7; /* full checksum */
  1379. int txd_lgsnd = 0;
  1380. int txd_vlan_id = 0;
  1381. int txd_vtag = 0;
  1382. int txd_mss = 0;
  1383. int nr_frags = skb_shinfo(skb)->nr_frags;
  1384. struct txd_desc *txdd;
  1385. int len;
  1386. unsigned long flags;
  1387. ENTER;
  1388. local_irq_save(flags);
  1389. spin_lock(&priv->tx_lock);
  1390. /* build tx descriptor */
  1391. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1392. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1393. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1394. txd_checksum = 0;
  1395. if (skb_shinfo(skb)->gso_size) {
  1396. txd_mss = skb_shinfo(skb)->gso_size;
  1397. txd_lgsnd = 1;
  1398. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1399. txd_mss);
  1400. }
  1401. if (skb_vlan_tag_present(skb)) {
  1402. /*Cut VLAN ID to 12 bits */
  1403. txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
  1404. txd_vtag = 1;
  1405. }
  1406. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1407. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1408. txdd->txd_val1 =
  1409. CPU_CHIP_SWAP32(TXD_W1_VAL
  1410. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1411. txd_lgsnd, txd_vlan_id));
  1412. DBG("=== TxD desc =====================\n");
  1413. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1414. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1415. bdx_tx_map_skb(priv, skb, txdd);
  1416. /* increment TXD write pointer. In case of
  1417. fifo wrapping copy reminder of the descriptor
  1418. to the beginning */
  1419. f->m.wptr += txd_sizes[nr_frags].bytes;
  1420. len = f->m.wptr - f->m.memsz;
  1421. if (unlikely(len >= 0)) {
  1422. f->m.wptr = len;
  1423. if (len > 0) {
  1424. BDX_ASSERT(len > f->m.memsz);
  1425. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1426. }
  1427. }
  1428. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1429. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1430. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1431. #ifdef BDX_DELAY_WPTR
  1432. if (priv->tx_level > priv->tx_update_mark) {
  1433. /* Force memory writes to complete before letting h/w
  1434. know there are new descriptors to fetch.
  1435. (might be needed on platforms like IA64)
  1436. wmb(); */
  1437. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1438. } else {
  1439. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1440. priv->tx_noupd = 0;
  1441. WRITE_REG(priv, f->m.reg_WPTR,
  1442. f->m.wptr & TXF_WPTR_WR_PTR);
  1443. }
  1444. }
  1445. #else
  1446. /* Force memory writes to complete before letting h/w
  1447. know there are new descriptors to fetch.
  1448. (might be needed on platforms like IA64)
  1449. wmb(); */
  1450. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1451. #endif
  1452. #ifdef BDX_LLTX
  1453. netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
  1454. #endif
  1455. ndev->stats.tx_packets++;
  1456. ndev->stats.tx_bytes += skb->len;
  1457. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1458. DBG("%s: %s: TX Q STOP level %d\n",
  1459. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1460. netif_stop_queue(ndev);
  1461. }
  1462. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1463. return NETDEV_TX_OK;
  1464. }
  1465. /**
  1466. * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1467. * @priv: bdx adapter
  1468. *
  1469. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1470. * that those packets were sent
  1471. */
  1472. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1473. {
  1474. struct txf_fifo *f = &priv->txf_fifo0;
  1475. struct txdb *db = &priv->txdb;
  1476. int tx_level = 0;
  1477. ENTER;
  1478. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1479. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1480. while (f->m.wptr != f->m.rptr) {
  1481. f->m.rptr += BDX_TXF_DESC_SZ;
  1482. f->m.rptr &= f->m.size_mask;
  1483. /* unmap all the fragments */
  1484. /* first has to come tx_maps containing dma */
  1485. BDX_ASSERT(db->rptr->len == 0);
  1486. do {
  1487. BDX_ASSERT(db->rptr->addr.dma == 0);
  1488. dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
  1489. db->rptr->len, DMA_TO_DEVICE);
  1490. bdx_tx_db_inc_rptr(db);
  1491. } while (db->rptr->len > 0);
  1492. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1493. /* now should come skb pointer - free it */
  1494. dev_consume_skb_irq(db->rptr->addr.skb);
  1495. bdx_tx_db_inc_rptr(db);
  1496. }
  1497. /* let h/w know which TXF descriptors were cleaned */
  1498. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1499. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1500. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1501. * we resume the transmission and use tx_lock to synchronize with xmit.*/
  1502. spin_lock(&priv->tx_lock);
  1503. priv->tx_level += tx_level;
  1504. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1505. #ifdef BDX_DELAY_WPTR
  1506. if (priv->tx_noupd) {
  1507. priv->tx_noupd = 0;
  1508. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1509. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1510. }
  1511. #endif
  1512. if (unlikely(netif_queue_stopped(priv->ndev) &&
  1513. netif_carrier_ok(priv->ndev) &&
  1514. (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1515. DBG("%s: %s: TX Q WAKE level %d\n",
  1516. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1517. netif_wake_queue(priv->ndev);
  1518. }
  1519. spin_unlock(&priv->tx_lock);
  1520. }
  1521. /**
  1522. * bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1523. * @priv: NIC private structure
  1524. *
  1525. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1526. */
  1527. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1528. {
  1529. struct txdb *db = &priv->txdb;
  1530. ENTER;
  1531. while (db->rptr != db->wptr) {
  1532. if (likely(db->rptr->len))
  1533. dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
  1534. db->rptr->len, DMA_TO_DEVICE);
  1535. else
  1536. dev_kfree_skb(db->rptr->addr.skb);
  1537. bdx_tx_db_inc_rptr(db);
  1538. }
  1539. RET();
  1540. }
  1541. /* bdx_tx_free - frees all Tx resources */
  1542. static void bdx_tx_free(struct bdx_priv *priv)
  1543. {
  1544. ENTER;
  1545. bdx_tx_free_skbs(priv);
  1546. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1547. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1548. bdx_tx_db_close(&priv->txdb);
  1549. }
  1550. /**
  1551. * bdx_tx_push_desc - push descriptor to TxD fifo
  1552. * @priv: NIC private structure
  1553. * @data: desc's data
  1554. * @size: desc's size
  1555. *
  1556. * Pushes desc to TxD fifo and overlaps it if needed.
  1557. * NOTE: this func does not check for available space. this is responsibility
  1558. * of the caller. Neither does it check that data size is smaller than
  1559. * fifo size.
  1560. */
  1561. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1562. {
  1563. struct txd_fifo *f = &priv->txd_fifo0;
  1564. int i = f->m.memsz - f->m.wptr;
  1565. if (size == 0)
  1566. return;
  1567. if (i > size) {
  1568. memcpy(f->m.va + f->m.wptr, data, size);
  1569. f->m.wptr += size;
  1570. } else {
  1571. memcpy(f->m.va + f->m.wptr, data, i);
  1572. f->m.wptr = size - i;
  1573. memcpy(f->m.va, data + i, f->m.wptr);
  1574. }
  1575. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1576. }
  1577. /**
  1578. * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1579. * @priv: NIC private structure
  1580. * @data: desc's data
  1581. * @size: desc's size
  1582. *
  1583. * NOTE: this func does check for available space and, if necessary, waits for
  1584. * NIC to read existing data before writing new one.
  1585. */
  1586. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1587. {
  1588. int timer = 0;
  1589. ENTER;
  1590. while (size > 0) {
  1591. /* we substruct 8 because when fifo is full rptr == wptr
  1592. which also means that fifo is empty, we can understand
  1593. the difference, but could hw do the same ??? :) */
  1594. int avail = bdx_tx_space(priv) - 8;
  1595. if (avail <= 0) {
  1596. if (timer++ > 300) { /* prevent endless loop */
  1597. DBG("timeout while writing desc to TxD fifo\n");
  1598. break;
  1599. }
  1600. udelay(50); /* give hw a chance to clean fifo */
  1601. continue;
  1602. }
  1603. avail = min(avail, size);
  1604. DBG("about to push %d bytes starting %p size %d\n", avail,
  1605. data, size);
  1606. bdx_tx_push_desc(priv, data, avail);
  1607. size -= avail;
  1608. data += avail;
  1609. }
  1610. RET();
  1611. }
  1612. static const struct net_device_ops bdx_netdev_ops = {
  1613. .ndo_open = bdx_open,
  1614. .ndo_stop = bdx_close,
  1615. .ndo_start_xmit = bdx_tx_transmit,
  1616. .ndo_validate_addr = eth_validate_addr,
  1617. .ndo_siocdevprivate = bdx_siocdevprivate,
  1618. .ndo_set_rx_mode = bdx_setmulti,
  1619. .ndo_change_mtu = bdx_change_mtu,
  1620. .ndo_set_mac_address = bdx_set_mac,
  1621. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1622. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1623. };
  1624. /**
  1625. * bdx_probe - Device Initialization Routine
  1626. * @pdev: PCI device information struct
  1627. * @ent: entry in bdx_pci_tbl
  1628. *
  1629. * Returns 0 on success, negative on failure
  1630. *
  1631. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1632. * The OS initialization, configuring of the adapter private structure,
  1633. * and a hardware reset occur.
  1634. *
  1635. * functions and their order used as explained in
  1636. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1637. *
  1638. */
  1639. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1640. static int
  1641. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1642. {
  1643. struct net_device *ndev;
  1644. struct bdx_priv *priv;
  1645. unsigned long pciaddr;
  1646. u32 regionSize;
  1647. struct pci_nic *nic;
  1648. int err, port;
  1649. ENTER;
  1650. nic = vmalloc(sizeof(*nic));
  1651. if (!nic)
  1652. RET(-ENOMEM);
  1653. /************** pci *****************/
  1654. err = pci_enable_device(pdev);
  1655. if (err) /* it triggers interrupt, dunno why. */
  1656. goto err_pci; /* it's not a problem though */
  1657. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  1658. if (err) {
  1659. pr_err("No usable DMA configuration, aborting\n");
  1660. goto err_dma;
  1661. }
  1662. err = pci_request_regions(pdev, BDX_DRV_NAME);
  1663. if (err)
  1664. goto err_dma;
  1665. pci_set_master(pdev);
  1666. pciaddr = pci_resource_start(pdev, 0);
  1667. if (!pciaddr) {
  1668. err = -EIO;
  1669. pr_err("no MMIO resource\n");
  1670. goto err_out_res;
  1671. }
  1672. regionSize = pci_resource_len(pdev, 0);
  1673. if (regionSize < BDX_REGS_SIZE) {
  1674. err = -EIO;
  1675. pr_err("MMIO resource (%x) too small\n", regionSize);
  1676. goto err_out_res;
  1677. }
  1678. nic->regs = ioremap(pciaddr, regionSize);
  1679. if (!nic->regs) {
  1680. err = -EIO;
  1681. pr_err("ioremap failed\n");
  1682. goto err_out_res;
  1683. }
  1684. if (pdev->irq < 2) {
  1685. err = -EIO;
  1686. pr_err("invalid irq (%d)\n", pdev->irq);
  1687. goto err_out_iomap;
  1688. }
  1689. pci_set_drvdata(pdev, nic);
  1690. if (pdev->device == 0x3014)
  1691. nic->port_num = 2;
  1692. else
  1693. nic->port_num = 1;
  1694. print_hw_id(pdev);
  1695. bdx_hw_reset_direct(nic->regs);
  1696. nic->irq_type = IRQ_INTX;
  1697. #ifdef BDX_MSI
  1698. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1699. err = pci_enable_msi(pdev);
  1700. if (err)
  1701. pr_err("Can't enable msi. error is %d\n", err);
  1702. else
  1703. nic->irq_type = IRQ_MSI;
  1704. } else
  1705. DBG("HW does not support MSI\n");
  1706. #endif
  1707. /************** netdev **************/
  1708. for (port = 0; port < nic->port_num; port++) {
  1709. ndev = alloc_etherdev(sizeof(struct bdx_priv));
  1710. if (!ndev) {
  1711. err = -ENOMEM;
  1712. goto err_out_iomap;
  1713. }
  1714. ndev->netdev_ops = &bdx_netdev_ops;
  1715. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1716. bdx_set_ethtool_ops(ndev); /* ethtool interface */
  1717. /* these fields are used for info purposes only
  1718. * so we can have them same for all ports of the board */
  1719. ndev->if_port = port;
  1720. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO |
  1721. NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
  1722. NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM |
  1723. NETIF_F_HIGHDMA;
  1724. ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  1725. NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
  1726. /************** priv ****************/
  1727. priv = nic->priv[port] = netdev_priv(ndev);
  1728. priv->pBdxRegs = nic->regs + port * 0x8000;
  1729. priv->port = port;
  1730. priv->pdev = pdev;
  1731. priv->ndev = ndev;
  1732. priv->nic = nic;
  1733. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1734. netif_napi_add(ndev, &priv->napi, bdx_poll);
  1735. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1736. DBG("HW statistics not supported\n");
  1737. priv->stats_flag = 0;
  1738. } else {
  1739. priv->stats_flag = 1;
  1740. }
  1741. /* Initialize fifo sizes. */
  1742. priv->txd_size = 2;
  1743. priv->txf_size = 2;
  1744. priv->rxd_size = 2;
  1745. priv->rxf_size = 3;
  1746. /* Initialize the initial coalescing registers. */
  1747. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1748. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1749. /* ndev->xmit_lock spinlock is not used.
  1750. * Private priv->tx_lock is used for synchronization
  1751. * between transmit and TX irq cleanup. In addition
  1752. * set multicast list callback has to use priv->tx_lock.
  1753. */
  1754. #ifdef BDX_LLTX
  1755. ndev->features |= NETIF_F_LLTX;
  1756. #endif
  1757. /* MTU range: 60 - 16384 */
  1758. ndev->min_mtu = ETH_ZLEN;
  1759. ndev->max_mtu = BDX_MAX_MTU;
  1760. spin_lock_init(&priv->tx_lock);
  1761. /*bdx_hw_reset(priv); */
  1762. if (bdx_read_mac(priv)) {
  1763. pr_err("load MAC address failed\n");
  1764. err = -EFAULT;
  1765. goto err_out_iomap;
  1766. }
  1767. SET_NETDEV_DEV(ndev, &pdev->dev);
  1768. err = register_netdev(ndev);
  1769. if (err) {
  1770. pr_err("register_netdev failed\n");
  1771. goto err_out_free;
  1772. }
  1773. netif_carrier_off(ndev);
  1774. netif_stop_queue(ndev);
  1775. print_eth_id(ndev);
  1776. }
  1777. RET(0);
  1778. err_out_free:
  1779. free_netdev(ndev);
  1780. err_out_iomap:
  1781. iounmap(nic->regs);
  1782. err_out_res:
  1783. pci_release_regions(pdev);
  1784. err_dma:
  1785. pci_disable_device(pdev);
  1786. err_pci:
  1787. vfree(nic);
  1788. RET(err);
  1789. }
  1790. /****************** Ethtool interface *********************/
  1791. /* get strings for statistics counters */
  1792. static const char
  1793. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1794. "InUCast", /* 0x7200 */
  1795. "InMCast", /* 0x7210 */
  1796. "InBCast", /* 0x7220 */
  1797. "InPkts", /* 0x7230 */
  1798. "InErrors", /* 0x7240 */
  1799. "InDropped", /* 0x7250 */
  1800. "FrameTooLong", /* 0x7260 */
  1801. "FrameSequenceErrors", /* 0x7270 */
  1802. "InVLAN", /* 0x7280 */
  1803. "InDroppedDFE", /* 0x7290 */
  1804. "InDroppedIntFull", /* 0x72A0 */
  1805. "InFrameAlignErrors", /* 0x72B0 */
  1806. /* 0x72C0-0x72E0 RSRV */
  1807. "OutUCast", /* 0x72F0 */
  1808. "OutMCast", /* 0x7300 */
  1809. "OutBCast", /* 0x7310 */
  1810. "OutPkts", /* 0x7320 */
  1811. /* 0x7330-0x7360 RSRV */
  1812. "OutVLAN", /* 0x7370 */
  1813. "InUCastOctects", /* 0x7380 */
  1814. "OutUCastOctects", /* 0x7390 */
  1815. /* 0x73A0-0x73B0 RSRV */
  1816. "InBCastOctects", /* 0x73C0 */
  1817. "OutBCastOctects", /* 0x73D0 */
  1818. "InOctects", /* 0x73E0 */
  1819. "OutOctects", /* 0x73F0 */
  1820. };
  1821. /*
  1822. * bdx_get_link_ksettings - get device-specific settings
  1823. * @netdev
  1824. * @ecmd
  1825. */
  1826. static int bdx_get_link_ksettings(struct net_device *netdev,
  1827. struct ethtool_link_ksettings *ecmd)
  1828. {
  1829. ethtool_link_ksettings_zero_link_mode(ecmd, supported);
  1830. ethtool_link_ksettings_add_link_mode(ecmd, supported,
  1831. 10000baseT_Full);
  1832. ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
  1833. ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
  1834. ethtool_link_ksettings_add_link_mode(ecmd, advertising,
  1835. 10000baseT_Full);
  1836. ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
  1837. ecmd->base.speed = SPEED_10000;
  1838. ecmd->base.duplex = DUPLEX_FULL;
  1839. ecmd->base.port = PORT_FIBRE;
  1840. ecmd->base.autoneg = AUTONEG_DISABLE;
  1841. return 0;
  1842. }
  1843. /*
  1844. * bdx_get_drvinfo - report driver information
  1845. * @netdev
  1846. * @drvinfo
  1847. */
  1848. static void
  1849. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1850. {
  1851. struct bdx_priv *priv = netdev_priv(netdev);
  1852. strscpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1853. strscpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1854. strscpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1855. strscpy(drvinfo->bus_info, pci_name(priv->pdev),
  1856. sizeof(drvinfo->bus_info));
  1857. }
  1858. /*
  1859. * bdx_get_coalesce - get interrupt coalescing parameters
  1860. * @netdev
  1861. * @ecoal
  1862. */
  1863. static int bdx_get_coalesce(struct net_device *netdev,
  1864. struct ethtool_coalesce *ecoal,
  1865. struct kernel_ethtool_coalesce *kernel_coal,
  1866. struct netlink_ext_ack *extack)
  1867. {
  1868. u32 rdintcm;
  1869. u32 tdintcm;
  1870. struct bdx_priv *priv = netdev_priv(netdev);
  1871. rdintcm = priv->rdintcm;
  1872. tdintcm = priv->tdintcm;
  1873. /* PCK_TH measures in multiples of FIFO bytes
  1874. We translate to packets */
  1875. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1876. ecoal->rx_max_coalesced_frames =
  1877. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1878. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1879. ecoal->tx_max_coalesced_frames =
  1880. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1881. /* adaptive parameters ignored */
  1882. return 0;
  1883. }
  1884. /*
  1885. * bdx_set_coalesce - set interrupt coalescing parameters
  1886. * @netdev
  1887. * @ecoal
  1888. */
  1889. static int bdx_set_coalesce(struct net_device *netdev,
  1890. struct ethtool_coalesce *ecoal,
  1891. struct kernel_ethtool_coalesce *kernel_coal,
  1892. struct netlink_ext_ack *extack)
  1893. {
  1894. u32 rdintcm;
  1895. u32 tdintcm;
  1896. struct bdx_priv *priv = netdev_priv(netdev);
  1897. int rx_coal;
  1898. int tx_coal;
  1899. int rx_max_coal;
  1900. int tx_max_coal;
  1901. /* Check for valid input */
  1902. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1903. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1904. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1905. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1906. /* Translate from packets to multiples of FIFO bytes */
  1907. rx_max_coal =
  1908. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1909. / PCK_TH_MULT);
  1910. tx_max_coal =
  1911. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1912. / PCK_TH_MULT);
  1913. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
  1914. (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1915. return -EINVAL;
  1916. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1917. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1918. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1919. tx_max_coal);
  1920. priv->rdintcm = rdintcm;
  1921. priv->tdintcm = tdintcm;
  1922. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1923. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1924. return 0;
  1925. }
  1926. /* Convert RX fifo size to number of pending packets */
  1927. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1928. {
  1929. return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
  1930. }
  1931. /* Convert TX fifo size to number of pending packets */
  1932. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1933. {
  1934. return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
  1935. }
  1936. /*
  1937. * bdx_get_ringparam - report ring sizes
  1938. * @netdev
  1939. * @ring
  1940. * @kernel_ring
  1941. * @extack
  1942. */
  1943. static void
  1944. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
  1945. struct kernel_ethtool_ringparam *kernel_ring,
  1946. struct netlink_ext_ack *extack)
  1947. {
  1948. struct bdx_priv *priv = netdev_priv(netdev);
  1949. /*max_pending - the maximum-sized FIFO we allow */
  1950. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  1951. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  1952. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  1953. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  1954. }
  1955. /*
  1956. * bdx_set_ringparam - set ring sizes
  1957. * @netdev
  1958. * @ring
  1959. * @kernel_ring
  1960. * @extack
  1961. */
  1962. static int
  1963. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
  1964. struct kernel_ethtool_ringparam *kernel_ring,
  1965. struct netlink_ext_ack *extack)
  1966. {
  1967. struct bdx_priv *priv = netdev_priv(netdev);
  1968. int rx_size = 0;
  1969. int tx_size = 0;
  1970. for (; rx_size < 4; rx_size++) {
  1971. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  1972. break;
  1973. }
  1974. if (rx_size == 4)
  1975. rx_size = 3;
  1976. for (; tx_size < 4; tx_size++) {
  1977. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  1978. break;
  1979. }
  1980. if (tx_size == 4)
  1981. tx_size = 3;
  1982. /*Is there anything to do? */
  1983. if ((rx_size == priv->rxf_size) &&
  1984. (tx_size == priv->txd_size))
  1985. return 0;
  1986. priv->rxf_size = rx_size;
  1987. if (rx_size > 1)
  1988. priv->rxd_size = rx_size - 1;
  1989. else
  1990. priv->rxd_size = rx_size;
  1991. priv->txf_size = priv->txd_size = tx_size;
  1992. if (netif_running(netdev)) {
  1993. bdx_close(netdev);
  1994. bdx_open(netdev);
  1995. }
  1996. return 0;
  1997. }
  1998. /*
  1999. * bdx_get_strings - return a set of strings that describe the requested objects
  2000. * @netdev
  2001. * @data
  2002. */
  2003. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2004. {
  2005. switch (stringset) {
  2006. case ETH_SS_STATS:
  2007. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2008. break;
  2009. }
  2010. }
  2011. /*
  2012. * bdx_get_sset_count - return number of statistics or tests
  2013. * @netdev
  2014. */
  2015. static int bdx_get_sset_count(struct net_device *netdev, int stringset)
  2016. {
  2017. struct bdx_priv *priv = netdev_priv(netdev);
  2018. switch (stringset) {
  2019. case ETH_SS_STATS:
  2020. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2021. != sizeof(struct bdx_stats) / sizeof(u64));
  2022. return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
  2023. }
  2024. return -EINVAL;
  2025. }
  2026. /*
  2027. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2028. * @netdev
  2029. * @stats
  2030. * @data
  2031. */
  2032. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2033. struct ethtool_stats *stats, u64 *data)
  2034. {
  2035. struct bdx_priv *priv = netdev_priv(netdev);
  2036. if (priv->stats_flag) {
  2037. /* Update stats from HW */
  2038. bdx_update_stats(priv);
  2039. /* Copy data to user buffer */
  2040. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2041. }
  2042. }
  2043. /*
  2044. * bdx_set_ethtool_ops - ethtool interface implementation
  2045. * @netdev
  2046. */
  2047. static void bdx_set_ethtool_ops(struct net_device *netdev)
  2048. {
  2049. static const struct ethtool_ops bdx_ethtool_ops = {
  2050. .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
  2051. ETHTOOL_COALESCE_MAX_FRAMES,
  2052. .get_drvinfo = bdx_get_drvinfo,
  2053. .get_link = ethtool_op_get_link,
  2054. .get_coalesce = bdx_get_coalesce,
  2055. .set_coalesce = bdx_set_coalesce,
  2056. .get_ringparam = bdx_get_ringparam,
  2057. .set_ringparam = bdx_set_ringparam,
  2058. .get_strings = bdx_get_strings,
  2059. .get_sset_count = bdx_get_sset_count,
  2060. .get_ethtool_stats = bdx_get_ethtool_stats,
  2061. .get_link_ksettings = bdx_get_link_ksettings,
  2062. };
  2063. netdev->ethtool_ops = &bdx_ethtool_ops;
  2064. }
  2065. /**
  2066. * bdx_remove - Device Removal Routine
  2067. * @pdev: PCI device information struct
  2068. *
  2069. * bdx_remove is called by the PCI subsystem to alert the driver
  2070. * that it should release a PCI device. The could be caused by a
  2071. * Hot-Plug event, or because the driver is going to be removed from
  2072. * memory.
  2073. **/
  2074. static void bdx_remove(struct pci_dev *pdev)
  2075. {
  2076. struct pci_nic *nic = pci_get_drvdata(pdev);
  2077. struct net_device *ndev;
  2078. int port;
  2079. for (port = 0; port < nic->port_num; port++) {
  2080. ndev = nic->priv[port]->ndev;
  2081. unregister_netdev(ndev);
  2082. free_netdev(ndev);
  2083. }
  2084. /*bdx_hw_reset_direct(nic->regs); */
  2085. #ifdef BDX_MSI
  2086. if (nic->irq_type == IRQ_MSI)
  2087. pci_disable_msi(pdev);
  2088. #endif
  2089. iounmap(nic->regs);
  2090. pci_release_regions(pdev);
  2091. pci_disable_device(pdev);
  2092. vfree(nic);
  2093. RET();
  2094. }
  2095. static struct pci_driver bdx_pci_driver = {
  2096. .name = BDX_DRV_NAME,
  2097. .id_table = bdx_pci_tbl,
  2098. .probe = bdx_probe,
  2099. .remove = bdx_remove,
  2100. };
  2101. /*
  2102. * print_driver_id - print parameters of the driver build
  2103. */
  2104. static void __init print_driver_id(void)
  2105. {
  2106. pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
  2107. pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
  2108. }
  2109. static int __init bdx_module_init(void)
  2110. {
  2111. ENTER;
  2112. init_txd_sizes();
  2113. print_driver_id();
  2114. RET(pci_register_driver(&bdx_pci_driver));
  2115. }
  2116. module_init(bdx_module_init);
  2117. static void __exit bdx_module_exit(void)
  2118. {
  2119. ENTER;
  2120. pci_unregister_driver(&bdx_pci_driver);
  2121. RET();
  2122. }
  2123. module_exit(bdx_module_exit);
  2124. MODULE_LICENSE("GPL");
  2125. MODULE_AUTHOR(DRIVER_AUTHOR);
  2126. MODULE_DESCRIPTION(BDX_DRV_DESC);
  2127. MODULE_FIRMWARE("tehuti/bdx.bin");