niu.c 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* niu.c: Neptune ethernet driver.
  3. *
  4. * Copyright (C) 2007, 2008 David S. Miller ([email protected])
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/pci.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/ethtool.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/mii.h>
  19. #include <linux/if.h>
  20. #include <linux/if_ether.h>
  21. #include <linux/if_vlan.h>
  22. #include <linux/ip.h>
  23. #include <linux/in.h>
  24. #include <linux/ipv6.h>
  25. #include <linux/log2.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/crc32.h>
  28. #include <linux/list.h>
  29. #include <linux/slab.h>
  30. #include <linux/io.h>
  31. #include <linux/of_device.h>
  32. #include "niu.h"
  33. /* This driver wants to store a link to a "next page" within the
  34. * page struct itself by overloading the content of the "mapping"
  35. * member. This is not expected by the page API, but does currently
  36. * work. However, the randstruct plugin gets very bothered by this
  37. * case because "mapping" (struct address_space) is randomized, so
  38. * casts to/from it trigger warnings. Hide this by way of a union,
  39. * to create a typed alias of "mapping", since that's how it is
  40. * actually being used here.
  41. */
  42. union niu_page {
  43. struct page page;
  44. struct {
  45. unsigned long __flags; /* unused alias of "flags" */
  46. struct list_head __lru; /* unused alias of "lru" */
  47. struct page *next; /* alias of "mapping" */
  48. };
  49. };
  50. #define niu_next_page(p) container_of(p, union niu_page, page)->next
  51. #define DRV_MODULE_NAME "niu"
  52. #define DRV_MODULE_VERSION "1.1"
  53. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  54. static char version[] =
  55. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  56. MODULE_AUTHOR("David S. Miller ([email protected])");
  57. MODULE_DESCRIPTION("NIU ethernet driver");
  58. MODULE_LICENSE("GPL");
  59. MODULE_VERSION(DRV_MODULE_VERSION);
  60. #ifndef readq
  61. static u64 readq(void __iomem *reg)
  62. {
  63. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  64. }
  65. static void writeq(u64 val, void __iomem *reg)
  66. {
  67. writel(val & 0xffffffff, reg);
  68. writel(val >> 32, reg + 0x4UL);
  69. }
  70. #endif
  71. static const struct pci_device_id niu_pci_tbl[] = {
  72. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  73. {}
  74. };
  75. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  76. #define NIU_TX_TIMEOUT (5 * HZ)
  77. #define nr64(reg) readq(np->regs + (reg))
  78. #define nw64(reg, val) writeq((val), np->regs + (reg))
  79. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  80. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  81. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  82. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  83. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  84. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  85. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  86. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  87. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  88. static int niu_debug;
  89. static int debug = -1;
  90. module_param(debug, int, 0);
  91. MODULE_PARM_DESC(debug, "NIU debug level");
  92. #define niu_lock_parent(np, flags) \
  93. spin_lock_irqsave(&np->parent->lock, flags)
  94. #define niu_unlock_parent(np, flags) \
  95. spin_unlock_irqrestore(&np->parent->lock, flags)
  96. static int serdes_init_10g_serdes(struct niu *np);
  97. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  98. u64 bits, int limit, int delay)
  99. {
  100. while (--limit >= 0) {
  101. u64 val = nr64_mac(reg);
  102. if (!(val & bits))
  103. break;
  104. udelay(delay);
  105. }
  106. if (limit < 0)
  107. return -ENODEV;
  108. return 0;
  109. }
  110. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  111. u64 bits, int limit, int delay,
  112. const char *reg_name)
  113. {
  114. int err;
  115. nw64_mac(reg, bits);
  116. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  117. if (err)
  118. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  119. (unsigned long long)bits, reg_name,
  120. (unsigned long long)nr64_mac(reg));
  121. return err;
  122. }
  123. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  124. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  125. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  126. })
  127. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  128. u64 bits, int limit, int delay)
  129. {
  130. while (--limit >= 0) {
  131. u64 val = nr64_ipp(reg);
  132. if (!(val & bits))
  133. break;
  134. udelay(delay);
  135. }
  136. if (limit < 0)
  137. return -ENODEV;
  138. return 0;
  139. }
  140. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  141. u64 bits, int limit, int delay,
  142. const char *reg_name)
  143. {
  144. int err;
  145. u64 val;
  146. val = nr64_ipp(reg);
  147. val |= bits;
  148. nw64_ipp(reg, val);
  149. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  150. if (err)
  151. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  152. (unsigned long long)bits, reg_name,
  153. (unsigned long long)nr64_ipp(reg));
  154. return err;
  155. }
  156. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  157. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  158. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  159. })
  160. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  161. u64 bits, int limit, int delay)
  162. {
  163. while (--limit >= 0) {
  164. u64 val = nr64(reg);
  165. if (!(val & bits))
  166. break;
  167. udelay(delay);
  168. }
  169. if (limit < 0)
  170. return -ENODEV;
  171. return 0;
  172. }
  173. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  174. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  175. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  176. })
  177. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  178. u64 bits, int limit, int delay,
  179. const char *reg_name)
  180. {
  181. int err;
  182. nw64(reg, bits);
  183. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  184. if (err)
  185. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  186. (unsigned long long)bits, reg_name,
  187. (unsigned long long)nr64(reg));
  188. return err;
  189. }
  190. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  191. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  192. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  193. })
  194. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  195. {
  196. u64 val = (u64) lp->timer;
  197. if (on)
  198. val |= LDG_IMGMT_ARM;
  199. nw64(LDG_IMGMT(lp->ldg_num), val);
  200. }
  201. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  202. {
  203. unsigned long mask_reg, bits;
  204. u64 val;
  205. if (ldn < 0 || ldn > LDN_MAX)
  206. return -EINVAL;
  207. if (ldn < 64) {
  208. mask_reg = LD_IM0(ldn);
  209. bits = LD_IM0_MASK;
  210. } else {
  211. mask_reg = LD_IM1(ldn - 64);
  212. bits = LD_IM1_MASK;
  213. }
  214. val = nr64(mask_reg);
  215. if (on)
  216. val &= ~bits;
  217. else
  218. val |= bits;
  219. nw64(mask_reg, val);
  220. return 0;
  221. }
  222. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  223. {
  224. struct niu_parent *parent = np->parent;
  225. int i;
  226. for (i = 0; i <= LDN_MAX; i++) {
  227. int err;
  228. if (parent->ldg_map[i] != lp->ldg_num)
  229. continue;
  230. err = niu_ldn_irq_enable(np, i, on);
  231. if (err)
  232. return err;
  233. }
  234. return 0;
  235. }
  236. static int niu_enable_interrupts(struct niu *np, int on)
  237. {
  238. int i;
  239. for (i = 0; i < np->num_ldg; i++) {
  240. struct niu_ldg *lp = &np->ldg[i];
  241. int err;
  242. err = niu_enable_ldn_in_ldg(np, lp, on);
  243. if (err)
  244. return err;
  245. }
  246. for (i = 0; i < np->num_ldg; i++)
  247. niu_ldg_rearm(np, &np->ldg[i], on);
  248. return 0;
  249. }
  250. static u32 phy_encode(u32 type, int port)
  251. {
  252. return type << (port * 2);
  253. }
  254. static u32 phy_decode(u32 val, int port)
  255. {
  256. return (val >> (port * 2)) & PORT_TYPE_MASK;
  257. }
  258. static int mdio_wait(struct niu *np)
  259. {
  260. int limit = 1000;
  261. u64 val;
  262. while (--limit > 0) {
  263. val = nr64(MIF_FRAME_OUTPUT);
  264. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  265. return val & MIF_FRAME_OUTPUT_DATA;
  266. udelay(10);
  267. }
  268. return -ENODEV;
  269. }
  270. static int mdio_read(struct niu *np, int port, int dev, int reg)
  271. {
  272. int err;
  273. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  274. err = mdio_wait(np);
  275. if (err < 0)
  276. return err;
  277. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  278. return mdio_wait(np);
  279. }
  280. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  281. {
  282. int err;
  283. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  284. err = mdio_wait(np);
  285. if (err < 0)
  286. return err;
  287. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  288. err = mdio_wait(np);
  289. if (err < 0)
  290. return err;
  291. return 0;
  292. }
  293. static int mii_read(struct niu *np, int port, int reg)
  294. {
  295. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  296. return mdio_wait(np);
  297. }
  298. static int mii_write(struct niu *np, int port, int reg, int data)
  299. {
  300. int err;
  301. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  302. err = mdio_wait(np);
  303. if (err < 0)
  304. return err;
  305. return 0;
  306. }
  307. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  308. {
  309. int err;
  310. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  311. ESR2_TI_PLL_TX_CFG_L(channel),
  312. val & 0xffff);
  313. if (!err)
  314. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  315. ESR2_TI_PLL_TX_CFG_H(channel),
  316. val >> 16);
  317. return err;
  318. }
  319. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  320. {
  321. int err;
  322. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  323. ESR2_TI_PLL_RX_CFG_L(channel),
  324. val & 0xffff);
  325. if (!err)
  326. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  327. ESR2_TI_PLL_RX_CFG_H(channel),
  328. val >> 16);
  329. return err;
  330. }
  331. /* Mode is always 10G fiber. */
  332. static int serdes_init_niu_10g_fiber(struct niu *np)
  333. {
  334. struct niu_link_config *lp = &np->link_config;
  335. u32 tx_cfg, rx_cfg;
  336. unsigned long i;
  337. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  338. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  339. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  340. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  341. if (lp->loopback_mode == LOOPBACK_PHY) {
  342. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  343. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  344. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  345. tx_cfg |= PLL_TX_CFG_ENTEST;
  346. rx_cfg |= PLL_RX_CFG_ENTEST;
  347. }
  348. /* Initialize all 4 lanes of the SERDES. */
  349. for (i = 0; i < 4; i++) {
  350. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  351. if (err)
  352. return err;
  353. }
  354. for (i = 0; i < 4; i++) {
  355. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  356. if (err)
  357. return err;
  358. }
  359. return 0;
  360. }
  361. static int serdes_init_niu_1g_serdes(struct niu *np)
  362. {
  363. struct niu_link_config *lp = &np->link_config;
  364. u16 pll_cfg, pll_sts;
  365. int max_retry = 100;
  366. u64 sig, mask, val;
  367. u32 tx_cfg, rx_cfg;
  368. unsigned long i;
  369. int err;
  370. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  371. PLL_TX_CFG_RATE_HALF);
  372. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  373. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  374. PLL_RX_CFG_RATE_HALF);
  375. if (np->port == 0)
  376. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  377. if (lp->loopback_mode == LOOPBACK_PHY) {
  378. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  379. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  380. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  381. tx_cfg |= PLL_TX_CFG_ENTEST;
  382. rx_cfg |= PLL_RX_CFG_ENTEST;
  383. }
  384. /* Initialize PLL for 1G */
  385. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  386. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  387. ESR2_TI_PLL_CFG_L, pll_cfg);
  388. if (err) {
  389. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  390. np->port, __func__);
  391. return err;
  392. }
  393. pll_sts = PLL_CFG_ENPLL;
  394. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  395. ESR2_TI_PLL_STS_L, pll_sts);
  396. if (err) {
  397. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  398. np->port, __func__);
  399. return err;
  400. }
  401. udelay(200);
  402. /* Initialize all 4 lanes of the SERDES. */
  403. for (i = 0; i < 4; i++) {
  404. err = esr2_set_tx_cfg(np, i, tx_cfg);
  405. if (err)
  406. return err;
  407. }
  408. for (i = 0; i < 4; i++) {
  409. err = esr2_set_rx_cfg(np, i, rx_cfg);
  410. if (err)
  411. return err;
  412. }
  413. switch (np->port) {
  414. case 0:
  415. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  416. mask = val;
  417. break;
  418. case 1:
  419. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  420. mask = val;
  421. break;
  422. default:
  423. return -EINVAL;
  424. }
  425. while (max_retry--) {
  426. sig = nr64(ESR_INT_SIGNALS);
  427. if ((sig & mask) == val)
  428. break;
  429. mdelay(500);
  430. }
  431. if ((sig & mask) != val) {
  432. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  433. np->port, (int)(sig & mask), (int)val);
  434. return -ENODEV;
  435. }
  436. return 0;
  437. }
  438. static int serdes_init_niu_10g_serdes(struct niu *np)
  439. {
  440. struct niu_link_config *lp = &np->link_config;
  441. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  442. int max_retry = 100;
  443. u64 sig, mask, val;
  444. unsigned long i;
  445. int err;
  446. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  447. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  448. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  449. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  450. if (lp->loopback_mode == LOOPBACK_PHY) {
  451. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  452. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  453. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  454. tx_cfg |= PLL_TX_CFG_ENTEST;
  455. rx_cfg |= PLL_RX_CFG_ENTEST;
  456. }
  457. /* Initialize PLL for 10G */
  458. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  459. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  460. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  461. if (err) {
  462. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  463. np->port, __func__);
  464. return err;
  465. }
  466. pll_sts = PLL_CFG_ENPLL;
  467. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  468. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  469. if (err) {
  470. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  471. np->port, __func__);
  472. return err;
  473. }
  474. udelay(200);
  475. /* Initialize all 4 lanes of the SERDES. */
  476. for (i = 0; i < 4; i++) {
  477. err = esr2_set_tx_cfg(np, i, tx_cfg);
  478. if (err)
  479. return err;
  480. }
  481. for (i = 0; i < 4; i++) {
  482. err = esr2_set_rx_cfg(np, i, rx_cfg);
  483. if (err)
  484. return err;
  485. }
  486. /* check if serdes is ready */
  487. switch (np->port) {
  488. case 0:
  489. mask = ESR_INT_SIGNALS_P0_BITS;
  490. val = (ESR_INT_SRDY0_P0 |
  491. ESR_INT_DET0_P0 |
  492. ESR_INT_XSRDY_P0 |
  493. ESR_INT_XDP_P0_CH3 |
  494. ESR_INT_XDP_P0_CH2 |
  495. ESR_INT_XDP_P0_CH1 |
  496. ESR_INT_XDP_P0_CH0);
  497. break;
  498. case 1:
  499. mask = ESR_INT_SIGNALS_P1_BITS;
  500. val = (ESR_INT_SRDY0_P1 |
  501. ESR_INT_DET0_P1 |
  502. ESR_INT_XSRDY_P1 |
  503. ESR_INT_XDP_P1_CH3 |
  504. ESR_INT_XDP_P1_CH2 |
  505. ESR_INT_XDP_P1_CH1 |
  506. ESR_INT_XDP_P1_CH0);
  507. break;
  508. default:
  509. return -EINVAL;
  510. }
  511. while (max_retry--) {
  512. sig = nr64(ESR_INT_SIGNALS);
  513. if ((sig & mask) == val)
  514. break;
  515. mdelay(500);
  516. }
  517. if ((sig & mask) != val) {
  518. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  519. np->port, (int)(sig & mask), (int)val);
  520. /* 10G failed, try initializing at 1G */
  521. err = serdes_init_niu_1g_serdes(np);
  522. if (!err) {
  523. np->flags &= ~NIU_FLAGS_10G;
  524. np->mac_xcvr = MAC_XCVR_PCS;
  525. } else {
  526. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  527. np->port);
  528. return -ENODEV;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  534. {
  535. int err;
  536. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  537. if (err >= 0) {
  538. *val = (err & 0xffff);
  539. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  540. ESR_RXTX_CTRL_H(chan));
  541. if (err >= 0)
  542. *val |= ((err & 0xffff) << 16);
  543. err = 0;
  544. }
  545. return err;
  546. }
  547. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  548. {
  549. int err;
  550. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  551. ESR_GLUE_CTRL0_L(chan));
  552. if (err >= 0) {
  553. *val = (err & 0xffff);
  554. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  555. ESR_GLUE_CTRL0_H(chan));
  556. if (err >= 0) {
  557. *val |= ((err & 0xffff) << 16);
  558. err = 0;
  559. }
  560. }
  561. return err;
  562. }
  563. static int esr_read_reset(struct niu *np, u32 *val)
  564. {
  565. int err;
  566. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  567. ESR_RXTX_RESET_CTRL_L);
  568. if (err >= 0) {
  569. *val = (err & 0xffff);
  570. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  571. ESR_RXTX_RESET_CTRL_H);
  572. if (err >= 0) {
  573. *val |= ((err & 0xffff) << 16);
  574. err = 0;
  575. }
  576. }
  577. return err;
  578. }
  579. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  580. {
  581. int err;
  582. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  583. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  584. if (!err)
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_CTRL_H(chan), (val >> 16));
  587. return err;
  588. }
  589. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  590. {
  591. int err;
  592. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  593. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  594. if (!err)
  595. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  596. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  597. return err;
  598. }
  599. static int esr_reset(struct niu *np)
  600. {
  601. u32 reset;
  602. int err;
  603. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  604. ESR_RXTX_RESET_CTRL_L, 0x0000);
  605. if (err)
  606. return err;
  607. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  608. ESR_RXTX_RESET_CTRL_H, 0xffff);
  609. if (err)
  610. return err;
  611. udelay(200);
  612. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  613. ESR_RXTX_RESET_CTRL_L, 0xffff);
  614. if (err)
  615. return err;
  616. udelay(200);
  617. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  618. ESR_RXTX_RESET_CTRL_H, 0x0000);
  619. if (err)
  620. return err;
  621. udelay(200);
  622. err = esr_read_reset(np, &reset);
  623. if (err)
  624. return err;
  625. if (reset != 0) {
  626. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  627. np->port, reset);
  628. return -ENODEV;
  629. }
  630. return 0;
  631. }
  632. static int serdes_init_10g(struct niu *np)
  633. {
  634. struct niu_link_config *lp = &np->link_config;
  635. unsigned long ctrl_reg, test_cfg_reg, i;
  636. u64 ctrl_val, test_cfg_val, sig, mask, val;
  637. int err;
  638. switch (np->port) {
  639. case 0:
  640. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  641. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  642. break;
  643. case 1:
  644. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  645. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  646. break;
  647. default:
  648. return -EINVAL;
  649. }
  650. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  651. ENET_SERDES_CTRL_SDET_1 |
  652. ENET_SERDES_CTRL_SDET_2 |
  653. ENET_SERDES_CTRL_SDET_3 |
  654. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  655. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  656. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  658. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  659. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  660. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  662. test_cfg_val = 0;
  663. if (lp->loopback_mode == LOOPBACK_PHY) {
  664. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  665. ENET_SERDES_TEST_MD_0_SHIFT) |
  666. (ENET_TEST_MD_PAD_LOOPBACK <<
  667. ENET_SERDES_TEST_MD_1_SHIFT) |
  668. (ENET_TEST_MD_PAD_LOOPBACK <<
  669. ENET_SERDES_TEST_MD_2_SHIFT) |
  670. (ENET_TEST_MD_PAD_LOOPBACK <<
  671. ENET_SERDES_TEST_MD_3_SHIFT));
  672. }
  673. nw64(ctrl_reg, ctrl_val);
  674. nw64(test_cfg_reg, test_cfg_val);
  675. /* Initialize all 4 lanes of the SERDES. */
  676. for (i = 0; i < 4; i++) {
  677. u32 rxtx_ctrl, glue0;
  678. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  679. if (err)
  680. return err;
  681. err = esr_read_glue0(np, i, &glue0);
  682. if (err)
  683. return err;
  684. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  685. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  686. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  687. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  688. ESR_GLUE_CTRL0_THCNT |
  689. ESR_GLUE_CTRL0_BLTIME);
  690. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  691. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  692. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  693. (BLTIME_300_CYCLES <<
  694. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  695. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  696. if (err)
  697. return err;
  698. err = esr_write_glue0(np, i, glue0);
  699. if (err)
  700. return err;
  701. }
  702. err = esr_reset(np);
  703. if (err)
  704. return err;
  705. sig = nr64(ESR_INT_SIGNALS);
  706. switch (np->port) {
  707. case 0:
  708. mask = ESR_INT_SIGNALS_P0_BITS;
  709. val = (ESR_INT_SRDY0_P0 |
  710. ESR_INT_DET0_P0 |
  711. ESR_INT_XSRDY_P0 |
  712. ESR_INT_XDP_P0_CH3 |
  713. ESR_INT_XDP_P0_CH2 |
  714. ESR_INT_XDP_P0_CH1 |
  715. ESR_INT_XDP_P0_CH0);
  716. break;
  717. case 1:
  718. mask = ESR_INT_SIGNALS_P1_BITS;
  719. val = (ESR_INT_SRDY0_P1 |
  720. ESR_INT_DET0_P1 |
  721. ESR_INT_XSRDY_P1 |
  722. ESR_INT_XDP_P1_CH3 |
  723. ESR_INT_XDP_P1_CH2 |
  724. ESR_INT_XDP_P1_CH1 |
  725. ESR_INT_XDP_P1_CH0);
  726. break;
  727. default:
  728. return -EINVAL;
  729. }
  730. if ((sig & mask) != val) {
  731. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  732. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  733. return 0;
  734. }
  735. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  736. np->port, (int)(sig & mask), (int)val);
  737. return -ENODEV;
  738. }
  739. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  740. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  741. return 0;
  742. }
  743. static int serdes_init_1g(struct niu *np)
  744. {
  745. u64 val;
  746. val = nr64(ENET_SERDES_1_PLL_CFG);
  747. val &= ~ENET_SERDES_PLL_FBDIV2;
  748. switch (np->port) {
  749. case 0:
  750. val |= ENET_SERDES_PLL_HRATE0;
  751. break;
  752. case 1:
  753. val |= ENET_SERDES_PLL_HRATE1;
  754. break;
  755. case 2:
  756. val |= ENET_SERDES_PLL_HRATE2;
  757. break;
  758. case 3:
  759. val |= ENET_SERDES_PLL_HRATE3;
  760. break;
  761. default:
  762. return -EINVAL;
  763. }
  764. nw64(ENET_SERDES_1_PLL_CFG, val);
  765. return 0;
  766. }
  767. static int serdes_init_1g_serdes(struct niu *np)
  768. {
  769. struct niu_link_config *lp = &np->link_config;
  770. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  771. u64 ctrl_val, test_cfg_val, sig, mask, val;
  772. int err;
  773. u64 reset_val, val_rd;
  774. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  775. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  776. ENET_SERDES_PLL_FBDIV0;
  777. switch (np->port) {
  778. case 0:
  779. reset_val = ENET_SERDES_RESET_0;
  780. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  781. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  782. pll_cfg = ENET_SERDES_0_PLL_CFG;
  783. break;
  784. case 1:
  785. reset_val = ENET_SERDES_RESET_1;
  786. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  787. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  788. pll_cfg = ENET_SERDES_1_PLL_CFG;
  789. break;
  790. default:
  791. return -EINVAL;
  792. }
  793. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  794. ENET_SERDES_CTRL_SDET_1 |
  795. ENET_SERDES_CTRL_SDET_2 |
  796. ENET_SERDES_CTRL_SDET_3 |
  797. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  798. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  799. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  801. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  802. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  803. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  805. test_cfg_val = 0;
  806. if (lp->loopback_mode == LOOPBACK_PHY) {
  807. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  808. ENET_SERDES_TEST_MD_0_SHIFT) |
  809. (ENET_TEST_MD_PAD_LOOPBACK <<
  810. ENET_SERDES_TEST_MD_1_SHIFT) |
  811. (ENET_TEST_MD_PAD_LOOPBACK <<
  812. ENET_SERDES_TEST_MD_2_SHIFT) |
  813. (ENET_TEST_MD_PAD_LOOPBACK <<
  814. ENET_SERDES_TEST_MD_3_SHIFT));
  815. }
  816. nw64(ENET_SERDES_RESET, reset_val);
  817. mdelay(20);
  818. val_rd = nr64(ENET_SERDES_RESET);
  819. val_rd &= ~reset_val;
  820. nw64(pll_cfg, val);
  821. nw64(ctrl_reg, ctrl_val);
  822. nw64(test_cfg_reg, test_cfg_val);
  823. nw64(ENET_SERDES_RESET, val_rd);
  824. mdelay(2000);
  825. /* Initialize all 4 lanes of the SERDES. */
  826. for (i = 0; i < 4; i++) {
  827. u32 rxtx_ctrl, glue0;
  828. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  829. if (err)
  830. return err;
  831. err = esr_read_glue0(np, i, &glue0);
  832. if (err)
  833. return err;
  834. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  835. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  836. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  837. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  838. ESR_GLUE_CTRL0_THCNT |
  839. ESR_GLUE_CTRL0_BLTIME);
  840. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  841. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  842. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  843. (BLTIME_300_CYCLES <<
  844. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  845. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  846. if (err)
  847. return err;
  848. err = esr_write_glue0(np, i, glue0);
  849. if (err)
  850. return err;
  851. }
  852. sig = nr64(ESR_INT_SIGNALS);
  853. switch (np->port) {
  854. case 0:
  855. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  856. mask = val;
  857. break;
  858. case 1:
  859. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  860. mask = val;
  861. break;
  862. default:
  863. return -EINVAL;
  864. }
  865. if ((sig & mask) != val) {
  866. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  867. np->port, (int)(sig & mask), (int)val);
  868. return -ENODEV;
  869. }
  870. return 0;
  871. }
  872. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  873. {
  874. struct niu_link_config *lp = &np->link_config;
  875. int link_up;
  876. u64 val;
  877. u16 current_speed;
  878. unsigned long flags;
  879. u8 current_duplex;
  880. link_up = 0;
  881. current_speed = SPEED_INVALID;
  882. current_duplex = DUPLEX_INVALID;
  883. spin_lock_irqsave(&np->lock, flags);
  884. val = nr64_pcs(PCS_MII_STAT);
  885. if (val & PCS_MII_STAT_LINK_STATUS) {
  886. link_up = 1;
  887. current_speed = SPEED_1000;
  888. current_duplex = DUPLEX_FULL;
  889. }
  890. lp->active_speed = current_speed;
  891. lp->active_duplex = current_duplex;
  892. spin_unlock_irqrestore(&np->lock, flags);
  893. *link_up_p = link_up;
  894. return 0;
  895. }
  896. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  897. {
  898. unsigned long flags;
  899. struct niu_link_config *lp = &np->link_config;
  900. int link_up = 0;
  901. int link_ok = 1;
  902. u64 val, val2;
  903. u16 current_speed;
  904. u8 current_duplex;
  905. if (!(np->flags & NIU_FLAGS_10G))
  906. return link_status_1g_serdes(np, link_up_p);
  907. current_speed = SPEED_INVALID;
  908. current_duplex = DUPLEX_INVALID;
  909. spin_lock_irqsave(&np->lock, flags);
  910. val = nr64_xpcs(XPCS_STATUS(0));
  911. val2 = nr64_mac(XMAC_INTER2);
  912. if (val2 & 0x01000000)
  913. link_ok = 0;
  914. if ((val & 0x1000ULL) && link_ok) {
  915. link_up = 1;
  916. current_speed = SPEED_10000;
  917. current_duplex = DUPLEX_FULL;
  918. }
  919. lp->active_speed = current_speed;
  920. lp->active_duplex = current_duplex;
  921. spin_unlock_irqrestore(&np->lock, flags);
  922. *link_up_p = link_up;
  923. return 0;
  924. }
  925. static int link_status_mii(struct niu *np, int *link_up_p)
  926. {
  927. struct niu_link_config *lp = &np->link_config;
  928. int err;
  929. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  930. int supported, advertising, active_speed, active_duplex;
  931. err = mii_read(np, np->phy_addr, MII_BMCR);
  932. if (unlikely(err < 0))
  933. return err;
  934. bmcr = err;
  935. err = mii_read(np, np->phy_addr, MII_BMSR);
  936. if (unlikely(err < 0))
  937. return err;
  938. bmsr = err;
  939. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  940. if (unlikely(err < 0))
  941. return err;
  942. advert = err;
  943. err = mii_read(np, np->phy_addr, MII_LPA);
  944. if (unlikely(err < 0))
  945. return err;
  946. lpa = err;
  947. if (likely(bmsr & BMSR_ESTATEN)) {
  948. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  949. if (unlikely(err < 0))
  950. return err;
  951. estatus = err;
  952. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  953. if (unlikely(err < 0))
  954. return err;
  955. ctrl1000 = err;
  956. err = mii_read(np, np->phy_addr, MII_STAT1000);
  957. if (unlikely(err < 0))
  958. return err;
  959. stat1000 = err;
  960. } else
  961. estatus = ctrl1000 = stat1000 = 0;
  962. supported = 0;
  963. if (bmsr & BMSR_ANEGCAPABLE)
  964. supported |= SUPPORTED_Autoneg;
  965. if (bmsr & BMSR_10HALF)
  966. supported |= SUPPORTED_10baseT_Half;
  967. if (bmsr & BMSR_10FULL)
  968. supported |= SUPPORTED_10baseT_Full;
  969. if (bmsr & BMSR_100HALF)
  970. supported |= SUPPORTED_100baseT_Half;
  971. if (bmsr & BMSR_100FULL)
  972. supported |= SUPPORTED_100baseT_Full;
  973. if (estatus & ESTATUS_1000_THALF)
  974. supported |= SUPPORTED_1000baseT_Half;
  975. if (estatus & ESTATUS_1000_TFULL)
  976. supported |= SUPPORTED_1000baseT_Full;
  977. lp->supported = supported;
  978. advertising = mii_adv_to_ethtool_adv_t(advert);
  979. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  980. if (bmcr & BMCR_ANENABLE) {
  981. int neg, neg1000;
  982. lp->active_autoneg = 1;
  983. advertising |= ADVERTISED_Autoneg;
  984. neg = advert & lpa;
  985. neg1000 = (ctrl1000 << 2) & stat1000;
  986. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  987. active_speed = SPEED_1000;
  988. else if (neg & LPA_100)
  989. active_speed = SPEED_100;
  990. else if (neg & (LPA_10HALF | LPA_10FULL))
  991. active_speed = SPEED_10;
  992. else
  993. active_speed = SPEED_INVALID;
  994. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  995. active_duplex = DUPLEX_FULL;
  996. else if (active_speed != SPEED_INVALID)
  997. active_duplex = DUPLEX_HALF;
  998. else
  999. active_duplex = DUPLEX_INVALID;
  1000. } else {
  1001. lp->active_autoneg = 0;
  1002. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1003. active_speed = SPEED_1000;
  1004. else if (bmcr & BMCR_SPEED100)
  1005. active_speed = SPEED_100;
  1006. else
  1007. active_speed = SPEED_10;
  1008. if (bmcr & BMCR_FULLDPLX)
  1009. active_duplex = DUPLEX_FULL;
  1010. else
  1011. active_duplex = DUPLEX_HALF;
  1012. }
  1013. lp->active_advertising = advertising;
  1014. lp->active_speed = active_speed;
  1015. lp->active_duplex = active_duplex;
  1016. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1017. return 0;
  1018. }
  1019. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1020. {
  1021. struct niu_link_config *lp = &np->link_config;
  1022. u16 current_speed, bmsr;
  1023. unsigned long flags;
  1024. u8 current_duplex;
  1025. int err, link_up;
  1026. link_up = 0;
  1027. current_speed = SPEED_INVALID;
  1028. current_duplex = DUPLEX_INVALID;
  1029. spin_lock_irqsave(&np->lock, flags);
  1030. err = mii_read(np, np->phy_addr, MII_BMSR);
  1031. if (err < 0)
  1032. goto out;
  1033. bmsr = err;
  1034. if (bmsr & BMSR_LSTATUS) {
  1035. link_up = 1;
  1036. current_speed = SPEED_1000;
  1037. current_duplex = DUPLEX_FULL;
  1038. }
  1039. lp->active_speed = current_speed;
  1040. lp->active_duplex = current_duplex;
  1041. err = 0;
  1042. out:
  1043. spin_unlock_irqrestore(&np->lock, flags);
  1044. *link_up_p = link_up;
  1045. return err;
  1046. }
  1047. static int link_status_1g(struct niu *np, int *link_up_p)
  1048. {
  1049. struct niu_link_config *lp = &np->link_config;
  1050. unsigned long flags;
  1051. int err;
  1052. spin_lock_irqsave(&np->lock, flags);
  1053. err = link_status_mii(np, link_up_p);
  1054. lp->supported |= SUPPORTED_TP;
  1055. lp->active_advertising |= ADVERTISED_TP;
  1056. spin_unlock_irqrestore(&np->lock, flags);
  1057. return err;
  1058. }
  1059. static int bcm8704_reset(struct niu *np)
  1060. {
  1061. int err, limit;
  1062. err = mdio_read(np, np->phy_addr,
  1063. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1064. if (err < 0 || err == 0xffff)
  1065. return err;
  1066. err |= BMCR_RESET;
  1067. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1068. MII_BMCR, err);
  1069. if (err)
  1070. return err;
  1071. limit = 1000;
  1072. while (--limit >= 0) {
  1073. err = mdio_read(np, np->phy_addr,
  1074. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1075. if (err < 0)
  1076. return err;
  1077. if (!(err & BMCR_RESET))
  1078. break;
  1079. }
  1080. if (limit < 0) {
  1081. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1082. np->port, (err & 0xffff));
  1083. return -ENODEV;
  1084. }
  1085. return 0;
  1086. }
  1087. /* When written, certain PHY registers need to be read back twice
  1088. * in order for the bits to settle properly.
  1089. */
  1090. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1091. {
  1092. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1093. if (err < 0)
  1094. return err;
  1095. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1096. if (err < 0)
  1097. return err;
  1098. return 0;
  1099. }
  1100. static int bcm8706_init_user_dev3(struct niu *np)
  1101. {
  1102. int err;
  1103. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1104. BCM8704_USER_OPT_DIGITAL_CTRL);
  1105. if (err < 0)
  1106. return err;
  1107. err &= ~USER_ODIG_CTRL_GPIOS;
  1108. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1109. err |= USER_ODIG_CTRL_RESV2;
  1110. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1111. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1112. if (err)
  1113. return err;
  1114. mdelay(1000);
  1115. return 0;
  1116. }
  1117. static int bcm8704_init_user_dev3(struct niu *np)
  1118. {
  1119. int err;
  1120. err = mdio_write(np, np->phy_addr,
  1121. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1122. (USER_CONTROL_OPTXRST_LVL |
  1123. USER_CONTROL_OPBIASFLT_LVL |
  1124. USER_CONTROL_OBTMPFLT_LVL |
  1125. USER_CONTROL_OPPRFLT_LVL |
  1126. USER_CONTROL_OPTXFLT_LVL |
  1127. USER_CONTROL_OPRXLOS_LVL |
  1128. USER_CONTROL_OPRXFLT_LVL |
  1129. USER_CONTROL_OPTXON_LVL |
  1130. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1131. if (err)
  1132. return err;
  1133. err = mdio_write(np, np->phy_addr,
  1134. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1135. (USER_PMD_TX_CTL_XFP_CLKEN |
  1136. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1137. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1138. USER_PMD_TX_CTL_TSCK_LPWREN));
  1139. if (err)
  1140. return err;
  1141. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1142. if (err)
  1143. return err;
  1144. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1145. if (err)
  1146. return err;
  1147. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1148. BCM8704_USER_OPT_DIGITAL_CTRL);
  1149. if (err < 0)
  1150. return err;
  1151. err &= ~USER_ODIG_CTRL_GPIOS;
  1152. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1153. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1154. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1155. if (err)
  1156. return err;
  1157. mdelay(1000);
  1158. return 0;
  1159. }
  1160. static int mrvl88x2011_act_led(struct niu *np, int val)
  1161. {
  1162. int err;
  1163. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1164. MRVL88X2011_LED_8_TO_11_CTL);
  1165. if (err < 0)
  1166. return err;
  1167. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1168. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1169. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1170. MRVL88X2011_LED_8_TO_11_CTL, err);
  1171. }
  1172. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1173. {
  1174. int err;
  1175. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1176. MRVL88X2011_LED_BLINK_CTL);
  1177. if (err >= 0) {
  1178. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1179. err |= (rate << 4);
  1180. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1181. MRVL88X2011_LED_BLINK_CTL, err);
  1182. }
  1183. return err;
  1184. }
  1185. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1186. {
  1187. int err;
  1188. /* Set LED functions */
  1189. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1190. if (err)
  1191. return err;
  1192. /* led activity */
  1193. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1194. if (err)
  1195. return err;
  1196. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1197. MRVL88X2011_GENERAL_CTL);
  1198. if (err < 0)
  1199. return err;
  1200. err |= MRVL88X2011_ENA_XFPREFCLK;
  1201. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1202. MRVL88X2011_GENERAL_CTL, err);
  1203. if (err < 0)
  1204. return err;
  1205. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1206. MRVL88X2011_PMA_PMD_CTL_1);
  1207. if (err < 0)
  1208. return err;
  1209. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1210. err |= MRVL88X2011_LOOPBACK;
  1211. else
  1212. err &= ~MRVL88X2011_LOOPBACK;
  1213. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1214. MRVL88X2011_PMA_PMD_CTL_1, err);
  1215. if (err < 0)
  1216. return err;
  1217. /* Enable PMD */
  1218. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1219. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1220. }
  1221. static int xcvr_diag_bcm870x(struct niu *np)
  1222. {
  1223. u16 analog_stat0, tx_alarm_status;
  1224. int err = 0;
  1225. #if 1
  1226. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1227. MII_STAT1000);
  1228. if (err < 0)
  1229. return err;
  1230. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1231. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1232. if (err < 0)
  1233. return err;
  1234. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1235. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1236. MII_NWAYTEST);
  1237. if (err < 0)
  1238. return err;
  1239. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1240. #endif
  1241. /* XXX dig this out it might not be so useful XXX */
  1242. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1243. BCM8704_USER_ANALOG_STATUS0);
  1244. if (err < 0)
  1245. return err;
  1246. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1247. BCM8704_USER_ANALOG_STATUS0);
  1248. if (err < 0)
  1249. return err;
  1250. analog_stat0 = err;
  1251. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1252. BCM8704_USER_TX_ALARM_STATUS);
  1253. if (err < 0)
  1254. return err;
  1255. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1256. BCM8704_USER_TX_ALARM_STATUS);
  1257. if (err < 0)
  1258. return err;
  1259. tx_alarm_status = err;
  1260. if (analog_stat0 != 0x03fc) {
  1261. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1262. pr_info("Port %u cable not connected or bad cable\n",
  1263. np->port);
  1264. } else if (analog_stat0 == 0x639c) {
  1265. pr_info("Port %u optical module is bad or missing\n",
  1266. np->port);
  1267. }
  1268. }
  1269. return 0;
  1270. }
  1271. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1272. {
  1273. struct niu_link_config *lp = &np->link_config;
  1274. int err;
  1275. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1276. MII_BMCR);
  1277. if (err < 0)
  1278. return err;
  1279. err &= ~BMCR_LOOPBACK;
  1280. if (lp->loopback_mode == LOOPBACK_MAC)
  1281. err |= BMCR_LOOPBACK;
  1282. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1283. MII_BMCR, err);
  1284. if (err)
  1285. return err;
  1286. return 0;
  1287. }
  1288. static int xcvr_init_10g_bcm8706(struct niu *np)
  1289. {
  1290. int err = 0;
  1291. u64 val;
  1292. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1293. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1294. return err;
  1295. val = nr64_mac(XMAC_CONFIG);
  1296. val &= ~XMAC_CONFIG_LED_POLARITY;
  1297. val |= XMAC_CONFIG_FORCE_LED_ON;
  1298. nw64_mac(XMAC_CONFIG, val);
  1299. val = nr64(MIF_CONFIG);
  1300. val |= MIF_CONFIG_INDIRECT_MODE;
  1301. nw64(MIF_CONFIG, val);
  1302. err = bcm8704_reset(np);
  1303. if (err)
  1304. return err;
  1305. err = xcvr_10g_set_lb_bcm870x(np);
  1306. if (err)
  1307. return err;
  1308. err = bcm8706_init_user_dev3(np);
  1309. if (err)
  1310. return err;
  1311. err = xcvr_diag_bcm870x(np);
  1312. if (err)
  1313. return err;
  1314. return 0;
  1315. }
  1316. static int xcvr_init_10g_bcm8704(struct niu *np)
  1317. {
  1318. int err;
  1319. err = bcm8704_reset(np);
  1320. if (err)
  1321. return err;
  1322. err = bcm8704_init_user_dev3(np);
  1323. if (err)
  1324. return err;
  1325. err = xcvr_10g_set_lb_bcm870x(np);
  1326. if (err)
  1327. return err;
  1328. err = xcvr_diag_bcm870x(np);
  1329. if (err)
  1330. return err;
  1331. return 0;
  1332. }
  1333. static int xcvr_init_10g(struct niu *np)
  1334. {
  1335. int phy_id, err;
  1336. u64 val;
  1337. val = nr64_mac(XMAC_CONFIG);
  1338. val &= ~XMAC_CONFIG_LED_POLARITY;
  1339. val |= XMAC_CONFIG_FORCE_LED_ON;
  1340. nw64_mac(XMAC_CONFIG, val);
  1341. /* XXX shared resource, lock parent XXX */
  1342. val = nr64(MIF_CONFIG);
  1343. val |= MIF_CONFIG_INDIRECT_MODE;
  1344. nw64(MIF_CONFIG, val);
  1345. phy_id = phy_decode(np->parent->port_phy, np->port);
  1346. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1347. /* handle different phy types */
  1348. switch (phy_id & NIU_PHY_ID_MASK) {
  1349. case NIU_PHY_ID_MRVL88X2011:
  1350. err = xcvr_init_10g_mrvl88x2011(np);
  1351. break;
  1352. default: /* bcom 8704 */
  1353. err = xcvr_init_10g_bcm8704(np);
  1354. break;
  1355. }
  1356. return err;
  1357. }
  1358. static int mii_reset(struct niu *np)
  1359. {
  1360. int limit, err;
  1361. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1362. if (err)
  1363. return err;
  1364. limit = 1000;
  1365. while (--limit >= 0) {
  1366. udelay(500);
  1367. err = mii_read(np, np->phy_addr, MII_BMCR);
  1368. if (err < 0)
  1369. return err;
  1370. if (!(err & BMCR_RESET))
  1371. break;
  1372. }
  1373. if (limit < 0) {
  1374. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1375. np->port, err);
  1376. return -ENODEV;
  1377. }
  1378. return 0;
  1379. }
  1380. static int xcvr_init_1g_rgmii(struct niu *np)
  1381. {
  1382. int err;
  1383. u64 val;
  1384. u16 bmcr, bmsr, estat;
  1385. val = nr64(MIF_CONFIG);
  1386. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1387. nw64(MIF_CONFIG, val);
  1388. err = mii_reset(np);
  1389. if (err)
  1390. return err;
  1391. err = mii_read(np, np->phy_addr, MII_BMSR);
  1392. if (err < 0)
  1393. return err;
  1394. bmsr = err;
  1395. estat = 0;
  1396. if (bmsr & BMSR_ESTATEN) {
  1397. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1398. if (err < 0)
  1399. return err;
  1400. estat = err;
  1401. }
  1402. bmcr = 0;
  1403. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1404. if (err)
  1405. return err;
  1406. if (bmsr & BMSR_ESTATEN) {
  1407. u16 ctrl1000 = 0;
  1408. if (estat & ESTATUS_1000_TFULL)
  1409. ctrl1000 |= ADVERTISE_1000FULL;
  1410. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1411. if (err)
  1412. return err;
  1413. }
  1414. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1415. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1416. if (err)
  1417. return err;
  1418. err = mii_read(np, np->phy_addr, MII_BMCR);
  1419. if (err < 0)
  1420. return err;
  1421. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1422. err = mii_read(np, np->phy_addr, MII_BMSR);
  1423. if (err < 0)
  1424. return err;
  1425. return 0;
  1426. }
  1427. static int mii_init_common(struct niu *np)
  1428. {
  1429. struct niu_link_config *lp = &np->link_config;
  1430. u16 bmcr, bmsr, adv, estat;
  1431. int err;
  1432. err = mii_reset(np);
  1433. if (err)
  1434. return err;
  1435. err = mii_read(np, np->phy_addr, MII_BMSR);
  1436. if (err < 0)
  1437. return err;
  1438. bmsr = err;
  1439. estat = 0;
  1440. if (bmsr & BMSR_ESTATEN) {
  1441. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1442. if (err < 0)
  1443. return err;
  1444. estat = err;
  1445. }
  1446. bmcr = 0;
  1447. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1448. if (err)
  1449. return err;
  1450. if (lp->loopback_mode == LOOPBACK_MAC) {
  1451. bmcr |= BMCR_LOOPBACK;
  1452. if (lp->active_speed == SPEED_1000)
  1453. bmcr |= BMCR_SPEED1000;
  1454. if (lp->active_duplex == DUPLEX_FULL)
  1455. bmcr |= BMCR_FULLDPLX;
  1456. }
  1457. if (lp->loopback_mode == LOOPBACK_PHY) {
  1458. u16 aux;
  1459. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1460. BCM5464R_AUX_CTL_WRITE_1);
  1461. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1462. if (err)
  1463. return err;
  1464. }
  1465. if (lp->autoneg) {
  1466. u16 ctrl1000;
  1467. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1468. if ((bmsr & BMSR_10HALF) &&
  1469. (lp->advertising & ADVERTISED_10baseT_Half))
  1470. adv |= ADVERTISE_10HALF;
  1471. if ((bmsr & BMSR_10FULL) &&
  1472. (lp->advertising & ADVERTISED_10baseT_Full))
  1473. adv |= ADVERTISE_10FULL;
  1474. if ((bmsr & BMSR_100HALF) &&
  1475. (lp->advertising & ADVERTISED_100baseT_Half))
  1476. adv |= ADVERTISE_100HALF;
  1477. if ((bmsr & BMSR_100FULL) &&
  1478. (lp->advertising & ADVERTISED_100baseT_Full))
  1479. adv |= ADVERTISE_100FULL;
  1480. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1481. if (err)
  1482. return err;
  1483. if (likely(bmsr & BMSR_ESTATEN)) {
  1484. ctrl1000 = 0;
  1485. if ((estat & ESTATUS_1000_THALF) &&
  1486. (lp->advertising & ADVERTISED_1000baseT_Half))
  1487. ctrl1000 |= ADVERTISE_1000HALF;
  1488. if ((estat & ESTATUS_1000_TFULL) &&
  1489. (lp->advertising & ADVERTISED_1000baseT_Full))
  1490. ctrl1000 |= ADVERTISE_1000FULL;
  1491. err = mii_write(np, np->phy_addr,
  1492. MII_CTRL1000, ctrl1000);
  1493. if (err)
  1494. return err;
  1495. }
  1496. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1497. } else {
  1498. /* !lp->autoneg */
  1499. int fulldpx;
  1500. if (lp->duplex == DUPLEX_FULL) {
  1501. bmcr |= BMCR_FULLDPLX;
  1502. fulldpx = 1;
  1503. } else if (lp->duplex == DUPLEX_HALF)
  1504. fulldpx = 0;
  1505. else
  1506. return -EINVAL;
  1507. if (lp->speed == SPEED_1000) {
  1508. /* if X-full requested while not supported, or
  1509. X-half requested while not supported... */
  1510. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1511. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1512. return -EINVAL;
  1513. bmcr |= BMCR_SPEED1000;
  1514. } else if (lp->speed == SPEED_100) {
  1515. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1516. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1517. return -EINVAL;
  1518. bmcr |= BMCR_SPEED100;
  1519. } else if (lp->speed == SPEED_10) {
  1520. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1521. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1522. return -EINVAL;
  1523. } else
  1524. return -EINVAL;
  1525. }
  1526. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1527. if (err)
  1528. return err;
  1529. #if 0
  1530. err = mii_read(np, np->phy_addr, MII_BMCR);
  1531. if (err < 0)
  1532. return err;
  1533. bmcr = err;
  1534. err = mii_read(np, np->phy_addr, MII_BMSR);
  1535. if (err < 0)
  1536. return err;
  1537. bmsr = err;
  1538. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1539. np->port, bmcr, bmsr);
  1540. #endif
  1541. return 0;
  1542. }
  1543. static int xcvr_init_1g(struct niu *np)
  1544. {
  1545. u64 val;
  1546. /* XXX shared resource, lock parent XXX */
  1547. val = nr64(MIF_CONFIG);
  1548. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1549. nw64(MIF_CONFIG, val);
  1550. return mii_init_common(np);
  1551. }
  1552. static int niu_xcvr_init(struct niu *np)
  1553. {
  1554. const struct niu_phy_ops *ops = np->phy_ops;
  1555. int err;
  1556. err = 0;
  1557. if (ops->xcvr_init)
  1558. err = ops->xcvr_init(np);
  1559. return err;
  1560. }
  1561. static int niu_serdes_init(struct niu *np)
  1562. {
  1563. const struct niu_phy_ops *ops = np->phy_ops;
  1564. int err;
  1565. err = 0;
  1566. if (ops->serdes_init)
  1567. err = ops->serdes_init(np);
  1568. return err;
  1569. }
  1570. static void niu_init_xif(struct niu *);
  1571. static void niu_handle_led(struct niu *, int status);
  1572. static int niu_link_status_common(struct niu *np, int link_up)
  1573. {
  1574. struct niu_link_config *lp = &np->link_config;
  1575. struct net_device *dev = np->dev;
  1576. unsigned long flags;
  1577. if (!netif_carrier_ok(dev) && link_up) {
  1578. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1579. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1580. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1581. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1582. "10Mbit/sec",
  1583. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1584. spin_lock_irqsave(&np->lock, flags);
  1585. niu_init_xif(np);
  1586. niu_handle_led(np, 1);
  1587. spin_unlock_irqrestore(&np->lock, flags);
  1588. netif_carrier_on(dev);
  1589. } else if (netif_carrier_ok(dev) && !link_up) {
  1590. netif_warn(np, link, dev, "Link is down\n");
  1591. spin_lock_irqsave(&np->lock, flags);
  1592. niu_handle_led(np, 0);
  1593. spin_unlock_irqrestore(&np->lock, flags);
  1594. netif_carrier_off(dev);
  1595. }
  1596. return 0;
  1597. }
  1598. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1599. {
  1600. int err, link_up, pma_status, pcs_status;
  1601. link_up = 0;
  1602. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1603. MRVL88X2011_10G_PMD_STATUS_2);
  1604. if (err < 0)
  1605. goto out;
  1606. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1608. MRVL88X2011_PMA_PMD_STATUS_1);
  1609. if (err < 0)
  1610. goto out;
  1611. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1612. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1613. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1614. MRVL88X2011_PMA_PMD_STATUS_1);
  1615. if (err < 0)
  1616. goto out;
  1617. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1618. MRVL88X2011_PMA_PMD_STATUS_1);
  1619. if (err < 0)
  1620. goto out;
  1621. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1622. /* Check XGXS Register : 4.0018.[0-3,12] */
  1623. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1624. MRVL88X2011_10G_XGXS_LANE_STAT);
  1625. if (err < 0)
  1626. goto out;
  1627. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1628. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1629. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1630. 0x800))
  1631. link_up = (pma_status && pcs_status) ? 1 : 0;
  1632. np->link_config.active_speed = SPEED_10000;
  1633. np->link_config.active_duplex = DUPLEX_FULL;
  1634. err = 0;
  1635. out:
  1636. mrvl88x2011_act_led(np, (link_up ?
  1637. MRVL88X2011_LED_CTL_PCS_ACT :
  1638. MRVL88X2011_LED_CTL_OFF));
  1639. *link_up_p = link_up;
  1640. return err;
  1641. }
  1642. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1643. {
  1644. int err, link_up;
  1645. link_up = 0;
  1646. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1647. BCM8704_PMD_RCV_SIGDET);
  1648. if (err < 0 || err == 0xffff)
  1649. goto out;
  1650. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1651. err = 0;
  1652. goto out;
  1653. }
  1654. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1655. BCM8704_PCS_10G_R_STATUS);
  1656. if (err < 0)
  1657. goto out;
  1658. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1659. err = 0;
  1660. goto out;
  1661. }
  1662. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1663. BCM8704_PHYXS_XGXS_LANE_STAT);
  1664. if (err < 0)
  1665. goto out;
  1666. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1667. PHYXS_XGXS_LANE_STAT_MAGIC |
  1668. PHYXS_XGXS_LANE_STAT_PATTEST |
  1669. PHYXS_XGXS_LANE_STAT_LANE3 |
  1670. PHYXS_XGXS_LANE_STAT_LANE2 |
  1671. PHYXS_XGXS_LANE_STAT_LANE1 |
  1672. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1673. err = 0;
  1674. np->link_config.active_speed = SPEED_INVALID;
  1675. np->link_config.active_duplex = DUPLEX_INVALID;
  1676. goto out;
  1677. }
  1678. link_up = 1;
  1679. np->link_config.active_speed = SPEED_10000;
  1680. np->link_config.active_duplex = DUPLEX_FULL;
  1681. err = 0;
  1682. out:
  1683. *link_up_p = link_up;
  1684. return err;
  1685. }
  1686. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1687. {
  1688. int err, link_up;
  1689. link_up = 0;
  1690. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1691. BCM8704_PMD_RCV_SIGDET);
  1692. if (err < 0)
  1693. goto out;
  1694. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1695. err = 0;
  1696. goto out;
  1697. }
  1698. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1699. BCM8704_PCS_10G_R_STATUS);
  1700. if (err < 0)
  1701. goto out;
  1702. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1703. err = 0;
  1704. goto out;
  1705. }
  1706. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1707. BCM8704_PHYXS_XGXS_LANE_STAT);
  1708. if (err < 0)
  1709. goto out;
  1710. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1711. PHYXS_XGXS_LANE_STAT_MAGIC |
  1712. PHYXS_XGXS_LANE_STAT_LANE3 |
  1713. PHYXS_XGXS_LANE_STAT_LANE2 |
  1714. PHYXS_XGXS_LANE_STAT_LANE1 |
  1715. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1716. err = 0;
  1717. goto out;
  1718. }
  1719. link_up = 1;
  1720. np->link_config.active_speed = SPEED_10000;
  1721. np->link_config.active_duplex = DUPLEX_FULL;
  1722. err = 0;
  1723. out:
  1724. *link_up_p = link_up;
  1725. return err;
  1726. }
  1727. static int link_status_10g(struct niu *np, int *link_up_p)
  1728. {
  1729. unsigned long flags;
  1730. int err = -EINVAL;
  1731. spin_lock_irqsave(&np->lock, flags);
  1732. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1733. int phy_id;
  1734. phy_id = phy_decode(np->parent->port_phy, np->port);
  1735. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1736. /* handle different phy types */
  1737. switch (phy_id & NIU_PHY_ID_MASK) {
  1738. case NIU_PHY_ID_MRVL88X2011:
  1739. err = link_status_10g_mrvl(np, link_up_p);
  1740. break;
  1741. default: /* bcom 8704 */
  1742. err = link_status_10g_bcom(np, link_up_p);
  1743. break;
  1744. }
  1745. }
  1746. spin_unlock_irqrestore(&np->lock, flags);
  1747. return err;
  1748. }
  1749. static int niu_10g_phy_present(struct niu *np)
  1750. {
  1751. u64 sig, mask, val;
  1752. sig = nr64(ESR_INT_SIGNALS);
  1753. switch (np->port) {
  1754. case 0:
  1755. mask = ESR_INT_SIGNALS_P0_BITS;
  1756. val = (ESR_INT_SRDY0_P0 |
  1757. ESR_INT_DET0_P0 |
  1758. ESR_INT_XSRDY_P0 |
  1759. ESR_INT_XDP_P0_CH3 |
  1760. ESR_INT_XDP_P0_CH2 |
  1761. ESR_INT_XDP_P0_CH1 |
  1762. ESR_INT_XDP_P0_CH0);
  1763. break;
  1764. case 1:
  1765. mask = ESR_INT_SIGNALS_P1_BITS;
  1766. val = (ESR_INT_SRDY0_P1 |
  1767. ESR_INT_DET0_P1 |
  1768. ESR_INT_XSRDY_P1 |
  1769. ESR_INT_XDP_P1_CH3 |
  1770. ESR_INT_XDP_P1_CH2 |
  1771. ESR_INT_XDP_P1_CH1 |
  1772. ESR_INT_XDP_P1_CH0);
  1773. break;
  1774. default:
  1775. return 0;
  1776. }
  1777. if ((sig & mask) != val)
  1778. return 0;
  1779. return 1;
  1780. }
  1781. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1782. {
  1783. unsigned long flags;
  1784. int err = 0;
  1785. int phy_present;
  1786. int phy_present_prev;
  1787. spin_lock_irqsave(&np->lock, flags);
  1788. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1789. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1790. 1 : 0;
  1791. phy_present = niu_10g_phy_present(np);
  1792. if (phy_present != phy_present_prev) {
  1793. /* state change */
  1794. if (phy_present) {
  1795. /* A NEM was just plugged in */
  1796. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1797. if (np->phy_ops->xcvr_init)
  1798. err = np->phy_ops->xcvr_init(np);
  1799. if (err) {
  1800. err = mdio_read(np, np->phy_addr,
  1801. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1802. if (err == 0xffff) {
  1803. /* No mdio, back-to-back XAUI */
  1804. goto out;
  1805. }
  1806. /* debounce */
  1807. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1808. }
  1809. } else {
  1810. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1811. *link_up_p = 0;
  1812. netif_warn(np, link, np->dev,
  1813. "Hotplug PHY Removed\n");
  1814. }
  1815. }
  1816. out:
  1817. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1818. err = link_status_10g_bcm8706(np, link_up_p);
  1819. if (err == 0xffff) {
  1820. /* No mdio, back-to-back XAUI: it is C10NEM */
  1821. *link_up_p = 1;
  1822. np->link_config.active_speed = SPEED_10000;
  1823. np->link_config.active_duplex = DUPLEX_FULL;
  1824. }
  1825. }
  1826. }
  1827. spin_unlock_irqrestore(&np->lock, flags);
  1828. return 0;
  1829. }
  1830. static int niu_link_status(struct niu *np, int *link_up_p)
  1831. {
  1832. const struct niu_phy_ops *ops = np->phy_ops;
  1833. int err;
  1834. err = 0;
  1835. if (ops->link_status)
  1836. err = ops->link_status(np, link_up_p);
  1837. return err;
  1838. }
  1839. static void niu_timer(struct timer_list *t)
  1840. {
  1841. struct niu *np = from_timer(np, t, timer);
  1842. unsigned long off;
  1843. int err, link_up;
  1844. err = niu_link_status(np, &link_up);
  1845. if (!err)
  1846. niu_link_status_common(np, link_up);
  1847. if (netif_carrier_ok(np->dev))
  1848. off = 5 * HZ;
  1849. else
  1850. off = 1 * HZ;
  1851. np->timer.expires = jiffies + off;
  1852. add_timer(&np->timer);
  1853. }
  1854. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1855. .serdes_init = serdes_init_10g_serdes,
  1856. .link_status = link_status_10g_serdes,
  1857. };
  1858. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1859. .serdes_init = serdes_init_niu_10g_serdes,
  1860. .link_status = link_status_10g_serdes,
  1861. };
  1862. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1863. .serdes_init = serdes_init_niu_1g_serdes,
  1864. .link_status = link_status_1g_serdes,
  1865. };
  1866. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1867. .xcvr_init = xcvr_init_1g_rgmii,
  1868. .link_status = link_status_1g_rgmii,
  1869. };
  1870. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1871. .serdes_init = serdes_init_niu_10g_fiber,
  1872. .xcvr_init = xcvr_init_10g,
  1873. .link_status = link_status_10g,
  1874. };
  1875. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1876. .serdes_init = serdes_init_10g,
  1877. .xcvr_init = xcvr_init_10g,
  1878. .link_status = link_status_10g,
  1879. };
  1880. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1881. .serdes_init = serdes_init_10g,
  1882. .xcvr_init = xcvr_init_10g_bcm8706,
  1883. .link_status = link_status_10g_hotplug,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1886. .serdes_init = serdes_init_niu_10g_fiber,
  1887. .xcvr_init = xcvr_init_10g_bcm8706,
  1888. .link_status = link_status_10g_hotplug,
  1889. };
  1890. static const struct niu_phy_ops phy_ops_10g_copper = {
  1891. .serdes_init = serdes_init_10g,
  1892. .link_status = link_status_10g, /* XXX */
  1893. };
  1894. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1895. .serdes_init = serdes_init_1g,
  1896. .xcvr_init = xcvr_init_1g,
  1897. .link_status = link_status_1g,
  1898. };
  1899. static const struct niu_phy_ops phy_ops_1g_copper = {
  1900. .xcvr_init = xcvr_init_1g,
  1901. .link_status = link_status_1g,
  1902. };
  1903. struct niu_phy_template {
  1904. const struct niu_phy_ops *ops;
  1905. u32 phy_addr_base;
  1906. };
  1907. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1908. .ops = &phy_ops_10g_fiber_niu,
  1909. .phy_addr_base = 16,
  1910. };
  1911. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1912. .ops = &phy_ops_10g_serdes_niu,
  1913. .phy_addr_base = 0,
  1914. };
  1915. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1916. .ops = &phy_ops_1g_serdes_niu,
  1917. .phy_addr_base = 0,
  1918. };
  1919. static const struct niu_phy_template phy_template_10g_fiber = {
  1920. .ops = &phy_ops_10g_fiber,
  1921. .phy_addr_base = 8,
  1922. };
  1923. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1924. .ops = &phy_ops_10g_fiber_hotplug,
  1925. .phy_addr_base = 8,
  1926. };
  1927. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1928. .ops = &phy_ops_niu_10g_hotplug,
  1929. .phy_addr_base = 8,
  1930. };
  1931. static const struct niu_phy_template phy_template_10g_copper = {
  1932. .ops = &phy_ops_10g_copper,
  1933. .phy_addr_base = 10,
  1934. };
  1935. static const struct niu_phy_template phy_template_1g_fiber = {
  1936. .ops = &phy_ops_1g_fiber,
  1937. .phy_addr_base = 0,
  1938. };
  1939. static const struct niu_phy_template phy_template_1g_copper = {
  1940. .ops = &phy_ops_1g_copper,
  1941. .phy_addr_base = 0,
  1942. };
  1943. static const struct niu_phy_template phy_template_1g_rgmii = {
  1944. .ops = &phy_ops_1g_rgmii,
  1945. .phy_addr_base = 0,
  1946. };
  1947. static const struct niu_phy_template phy_template_10g_serdes = {
  1948. .ops = &phy_ops_10g_serdes,
  1949. .phy_addr_base = 0,
  1950. };
  1951. static int niu_atca_port_num[4] = {
  1952. 0, 0, 11, 10
  1953. };
  1954. static int serdes_init_10g_serdes(struct niu *np)
  1955. {
  1956. struct niu_link_config *lp = &np->link_config;
  1957. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1958. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1959. switch (np->port) {
  1960. case 0:
  1961. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1962. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1963. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1964. break;
  1965. case 1:
  1966. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1967. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1968. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1969. break;
  1970. default:
  1971. return -EINVAL;
  1972. }
  1973. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1974. ENET_SERDES_CTRL_SDET_1 |
  1975. ENET_SERDES_CTRL_SDET_2 |
  1976. ENET_SERDES_CTRL_SDET_3 |
  1977. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1978. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1979. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1980. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1981. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1982. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1983. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1984. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1985. test_cfg_val = 0;
  1986. if (lp->loopback_mode == LOOPBACK_PHY) {
  1987. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1988. ENET_SERDES_TEST_MD_0_SHIFT) |
  1989. (ENET_TEST_MD_PAD_LOOPBACK <<
  1990. ENET_SERDES_TEST_MD_1_SHIFT) |
  1991. (ENET_TEST_MD_PAD_LOOPBACK <<
  1992. ENET_SERDES_TEST_MD_2_SHIFT) |
  1993. (ENET_TEST_MD_PAD_LOOPBACK <<
  1994. ENET_SERDES_TEST_MD_3_SHIFT));
  1995. }
  1996. esr_reset(np);
  1997. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1998. nw64(ctrl_reg, ctrl_val);
  1999. nw64(test_cfg_reg, test_cfg_val);
  2000. /* Initialize all 4 lanes of the SERDES. */
  2001. for (i = 0; i < 4; i++) {
  2002. u32 rxtx_ctrl, glue0;
  2003. int err;
  2004. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2005. if (err)
  2006. return err;
  2007. err = esr_read_glue0(np, i, &glue0);
  2008. if (err)
  2009. return err;
  2010. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2011. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2012. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2013. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2014. ESR_GLUE_CTRL0_THCNT |
  2015. ESR_GLUE_CTRL0_BLTIME);
  2016. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2017. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2018. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2019. (BLTIME_300_CYCLES <<
  2020. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2021. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2022. if (err)
  2023. return err;
  2024. err = esr_write_glue0(np, i, glue0);
  2025. if (err)
  2026. return err;
  2027. }
  2028. sig = nr64(ESR_INT_SIGNALS);
  2029. switch (np->port) {
  2030. case 0:
  2031. mask = ESR_INT_SIGNALS_P0_BITS;
  2032. val = (ESR_INT_SRDY0_P0 |
  2033. ESR_INT_DET0_P0 |
  2034. ESR_INT_XSRDY_P0 |
  2035. ESR_INT_XDP_P0_CH3 |
  2036. ESR_INT_XDP_P0_CH2 |
  2037. ESR_INT_XDP_P0_CH1 |
  2038. ESR_INT_XDP_P0_CH0);
  2039. break;
  2040. case 1:
  2041. mask = ESR_INT_SIGNALS_P1_BITS;
  2042. val = (ESR_INT_SRDY0_P1 |
  2043. ESR_INT_DET0_P1 |
  2044. ESR_INT_XSRDY_P1 |
  2045. ESR_INT_XDP_P1_CH3 |
  2046. ESR_INT_XDP_P1_CH2 |
  2047. ESR_INT_XDP_P1_CH1 |
  2048. ESR_INT_XDP_P1_CH0);
  2049. break;
  2050. default:
  2051. return -EINVAL;
  2052. }
  2053. if ((sig & mask) != val) {
  2054. int err;
  2055. err = serdes_init_1g_serdes(np);
  2056. if (!err) {
  2057. np->flags &= ~NIU_FLAGS_10G;
  2058. np->mac_xcvr = MAC_XCVR_PCS;
  2059. } else {
  2060. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2061. np->port);
  2062. return -ENODEV;
  2063. }
  2064. }
  2065. return 0;
  2066. }
  2067. static int niu_determine_phy_disposition(struct niu *np)
  2068. {
  2069. struct niu_parent *parent = np->parent;
  2070. u8 plat_type = parent->plat_type;
  2071. const struct niu_phy_template *tp;
  2072. u32 phy_addr_off = 0;
  2073. if (plat_type == PLAT_TYPE_NIU) {
  2074. switch (np->flags &
  2075. (NIU_FLAGS_10G |
  2076. NIU_FLAGS_FIBER |
  2077. NIU_FLAGS_XCVR_SERDES)) {
  2078. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2079. /* 10G Serdes */
  2080. tp = &phy_template_niu_10g_serdes;
  2081. break;
  2082. case NIU_FLAGS_XCVR_SERDES:
  2083. /* 1G Serdes */
  2084. tp = &phy_template_niu_1g_serdes;
  2085. break;
  2086. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2087. /* 10G Fiber */
  2088. default:
  2089. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2090. tp = &phy_template_niu_10g_hotplug;
  2091. if (np->port == 0)
  2092. phy_addr_off = 8;
  2093. if (np->port == 1)
  2094. phy_addr_off = 12;
  2095. } else {
  2096. tp = &phy_template_niu_10g_fiber;
  2097. phy_addr_off += np->port;
  2098. }
  2099. break;
  2100. }
  2101. } else {
  2102. switch (np->flags &
  2103. (NIU_FLAGS_10G |
  2104. NIU_FLAGS_FIBER |
  2105. NIU_FLAGS_XCVR_SERDES)) {
  2106. case 0:
  2107. /* 1G copper */
  2108. tp = &phy_template_1g_copper;
  2109. if (plat_type == PLAT_TYPE_VF_P0)
  2110. phy_addr_off = 10;
  2111. else if (plat_type == PLAT_TYPE_VF_P1)
  2112. phy_addr_off = 26;
  2113. phy_addr_off += (np->port ^ 0x3);
  2114. break;
  2115. case NIU_FLAGS_10G:
  2116. /* 10G copper */
  2117. tp = &phy_template_10g_copper;
  2118. break;
  2119. case NIU_FLAGS_FIBER:
  2120. /* 1G fiber */
  2121. tp = &phy_template_1g_fiber;
  2122. break;
  2123. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2124. /* 10G fiber */
  2125. tp = &phy_template_10g_fiber;
  2126. if (plat_type == PLAT_TYPE_VF_P0 ||
  2127. plat_type == PLAT_TYPE_VF_P1)
  2128. phy_addr_off = 8;
  2129. phy_addr_off += np->port;
  2130. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2131. tp = &phy_template_10g_fiber_hotplug;
  2132. if (np->port == 0)
  2133. phy_addr_off = 8;
  2134. if (np->port == 1)
  2135. phy_addr_off = 12;
  2136. }
  2137. break;
  2138. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2139. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2140. case NIU_FLAGS_XCVR_SERDES:
  2141. switch(np->port) {
  2142. case 0:
  2143. case 1:
  2144. tp = &phy_template_10g_serdes;
  2145. break;
  2146. case 2:
  2147. case 3:
  2148. tp = &phy_template_1g_rgmii;
  2149. break;
  2150. default:
  2151. return -EINVAL;
  2152. }
  2153. phy_addr_off = niu_atca_port_num[np->port];
  2154. break;
  2155. default:
  2156. return -EINVAL;
  2157. }
  2158. }
  2159. np->phy_ops = tp->ops;
  2160. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2161. return 0;
  2162. }
  2163. static int niu_init_link(struct niu *np)
  2164. {
  2165. struct niu_parent *parent = np->parent;
  2166. int err, ignore;
  2167. if (parent->plat_type == PLAT_TYPE_NIU) {
  2168. err = niu_xcvr_init(np);
  2169. if (err)
  2170. return err;
  2171. msleep(200);
  2172. }
  2173. err = niu_serdes_init(np);
  2174. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2175. return err;
  2176. msleep(200);
  2177. err = niu_xcvr_init(np);
  2178. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2179. niu_link_status(np, &ignore);
  2180. return 0;
  2181. }
  2182. static void niu_set_primary_mac(struct niu *np, const unsigned char *addr)
  2183. {
  2184. u16 reg0 = addr[4] << 8 | addr[5];
  2185. u16 reg1 = addr[2] << 8 | addr[3];
  2186. u16 reg2 = addr[0] << 8 | addr[1];
  2187. if (np->flags & NIU_FLAGS_XMAC) {
  2188. nw64_mac(XMAC_ADDR0, reg0);
  2189. nw64_mac(XMAC_ADDR1, reg1);
  2190. nw64_mac(XMAC_ADDR2, reg2);
  2191. } else {
  2192. nw64_mac(BMAC_ADDR0, reg0);
  2193. nw64_mac(BMAC_ADDR1, reg1);
  2194. nw64_mac(BMAC_ADDR2, reg2);
  2195. }
  2196. }
  2197. static int niu_num_alt_addr(struct niu *np)
  2198. {
  2199. if (np->flags & NIU_FLAGS_XMAC)
  2200. return XMAC_NUM_ALT_ADDR;
  2201. else
  2202. return BMAC_NUM_ALT_ADDR;
  2203. }
  2204. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2205. {
  2206. u16 reg0 = addr[4] << 8 | addr[5];
  2207. u16 reg1 = addr[2] << 8 | addr[3];
  2208. u16 reg2 = addr[0] << 8 | addr[1];
  2209. if (index >= niu_num_alt_addr(np))
  2210. return -EINVAL;
  2211. if (np->flags & NIU_FLAGS_XMAC) {
  2212. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2213. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2214. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2215. } else {
  2216. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2217. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2218. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2219. }
  2220. return 0;
  2221. }
  2222. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2223. {
  2224. unsigned long reg;
  2225. u64 val, mask;
  2226. if (index >= niu_num_alt_addr(np))
  2227. return -EINVAL;
  2228. if (np->flags & NIU_FLAGS_XMAC) {
  2229. reg = XMAC_ADDR_CMPEN;
  2230. mask = 1 << index;
  2231. } else {
  2232. reg = BMAC_ADDR_CMPEN;
  2233. mask = 1 << (index + 1);
  2234. }
  2235. val = nr64_mac(reg);
  2236. if (on)
  2237. val |= mask;
  2238. else
  2239. val &= ~mask;
  2240. nw64_mac(reg, val);
  2241. return 0;
  2242. }
  2243. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2244. int num, int mac_pref)
  2245. {
  2246. u64 val = nr64_mac(reg);
  2247. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2248. val |= num;
  2249. if (mac_pref)
  2250. val |= HOST_INFO_MPR;
  2251. nw64_mac(reg, val);
  2252. }
  2253. static int __set_rdc_table_num(struct niu *np,
  2254. int xmac_index, int bmac_index,
  2255. int rdc_table_num, int mac_pref)
  2256. {
  2257. unsigned long reg;
  2258. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2259. return -EINVAL;
  2260. if (np->flags & NIU_FLAGS_XMAC)
  2261. reg = XMAC_HOST_INFO(xmac_index);
  2262. else
  2263. reg = BMAC_HOST_INFO(bmac_index);
  2264. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2265. return 0;
  2266. }
  2267. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2268. int mac_pref)
  2269. {
  2270. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2271. }
  2272. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2273. int mac_pref)
  2274. {
  2275. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2276. }
  2277. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2278. int table_num, int mac_pref)
  2279. {
  2280. if (idx >= niu_num_alt_addr(np))
  2281. return -EINVAL;
  2282. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2283. }
  2284. static u64 vlan_entry_set_parity(u64 reg_val)
  2285. {
  2286. u64 port01_mask;
  2287. u64 port23_mask;
  2288. port01_mask = 0x00ff;
  2289. port23_mask = 0xff00;
  2290. if (hweight64(reg_val & port01_mask) & 1)
  2291. reg_val |= ENET_VLAN_TBL_PARITY0;
  2292. else
  2293. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2294. if (hweight64(reg_val & port23_mask) & 1)
  2295. reg_val |= ENET_VLAN_TBL_PARITY1;
  2296. else
  2297. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2298. return reg_val;
  2299. }
  2300. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2301. int port, int vpr, int rdc_table)
  2302. {
  2303. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2304. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2305. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2306. ENET_VLAN_TBL_SHIFT(port));
  2307. if (vpr)
  2308. reg_val |= (ENET_VLAN_TBL_VPR <<
  2309. ENET_VLAN_TBL_SHIFT(port));
  2310. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2311. reg_val = vlan_entry_set_parity(reg_val);
  2312. nw64(ENET_VLAN_TBL(index), reg_val);
  2313. }
  2314. static void vlan_tbl_clear(struct niu *np)
  2315. {
  2316. int i;
  2317. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2318. nw64(ENET_VLAN_TBL(i), 0);
  2319. }
  2320. static int tcam_wait_bit(struct niu *np, u64 bit)
  2321. {
  2322. int limit = 1000;
  2323. while (--limit > 0) {
  2324. if (nr64(TCAM_CTL) & bit)
  2325. break;
  2326. udelay(1);
  2327. }
  2328. if (limit <= 0)
  2329. return -ENODEV;
  2330. return 0;
  2331. }
  2332. static int tcam_flush(struct niu *np, int index)
  2333. {
  2334. nw64(TCAM_KEY_0, 0x00);
  2335. nw64(TCAM_KEY_MASK_0, 0xff);
  2336. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2337. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2338. }
  2339. #if 0
  2340. static int tcam_read(struct niu *np, int index,
  2341. u64 *key, u64 *mask)
  2342. {
  2343. int err;
  2344. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2345. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2346. if (!err) {
  2347. key[0] = nr64(TCAM_KEY_0);
  2348. key[1] = nr64(TCAM_KEY_1);
  2349. key[2] = nr64(TCAM_KEY_2);
  2350. key[3] = nr64(TCAM_KEY_3);
  2351. mask[0] = nr64(TCAM_KEY_MASK_0);
  2352. mask[1] = nr64(TCAM_KEY_MASK_1);
  2353. mask[2] = nr64(TCAM_KEY_MASK_2);
  2354. mask[3] = nr64(TCAM_KEY_MASK_3);
  2355. }
  2356. return err;
  2357. }
  2358. #endif
  2359. static int tcam_write(struct niu *np, int index,
  2360. u64 *key, u64 *mask)
  2361. {
  2362. nw64(TCAM_KEY_0, key[0]);
  2363. nw64(TCAM_KEY_1, key[1]);
  2364. nw64(TCAM_KEY_2, key[2]);
  2365. nw64(TCAM_KEY_3, key[3]);
  2366. nw64(TCAM_KEY_MASK_0, mask[0]);
  2367. nw64(TCAM_KEY_MASK_1, mask[1]);
  2368. nw64(TCAM_KEY_MASK_2, mask[2]);
  2369. nw64(TCAM_KEY_MASK_3, mask[3]);
  2370. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2371. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2372. }
  2373. #if 0
  2374. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2375. {
  2376. int err;
  2377. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2378. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2379. if (!err)
  2380. *data = nr64(TCAM_KEY_1);
  2381. return err;
  2382. }
  2383. #endif
  2384. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2385. {
  2386. nw64(TCAM_KEY_1, assoc_data);
  2387. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2388. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2389. }
  2390. static void tcam_enable(struct niu *np, int on)
  2391. {
  2392. u64 val = nr64(FFLP_CFG_1);
  2393. if (on)
  2394. val &= ~FFLP_CFG_1_TCAM_DIS;
  2395. else
  2396. val |= FFLP_CFG_1_TCAM_DIS;
  2397. nw64(FFLP_CFG_1, val);
  2398. }
  2399. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2400. {
  2401. u64 val = nr64(FFLP_CFG_1);
  2402. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2403. FFLP_CFG_1_CAMLAT |
  2404. FFLP_CFG_1_CAMRATIO);
  2405. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2406. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2407. nw64(FFLP_CFG_1, val);
  2408. val = nr64(FFLP_CFG_1);
  2409. val |= FFLP_CFG_1_FFLPINITDONE;
  2410. nw64(FFLP_CFG_1, val);
  2411. }
  2412. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2413. int on)
  2414. {
  2415. unsigned long reg;
  2416. u64 val;
  2417. if (class < CLASS_CODE_ETHERTYPE1 ||
  2418. class > CLASS_CODE_ETHERTYPE2)
  2419. return -EINVAL;
  2420. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2421. val = nr64(reg);
  2422. if (on)
  2423. val |= L2_CLS_VLD;
  2424. else
  2425. val &= ~L2_CLS_VLD;
  2426. nw64(reg, val);
  2427. return 0;
  2428. }
  2429. #if 0
  2430. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2431. u64 ether_type)
  2432. {
  2433. unsigned long reg;
  2434. u64 val;
  2435. if (class < CLASS_CODE_ETHERTYPE1 ||
  2436. class > CLASS_CODE_ETHERTYPE2 ||
  2437. (ether_type & ~(u64)0xffff) != 0)
  2438. return -EINVAL;
  2439. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2440. val = nr64(reg);
  2441. val &= ~L2_CLS_ETYPE;
  2442. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2443. nw64(reg, val);
  2444. return 0;
  2445. }
  2446. #endif
  2447. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2448. int on)
  2449. {
  2450. unsigned long reg;
  2451. u64 val;
  2452. if (class < CLASS_CODE_USER_PROG1 ||
  2453. class > CLASS_CODE_USER_PROG4)
  2454. return -EINVAL;
  2455. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2456. val = nr64(reg);
  2457. if (on)
  2458. val |= L3_CLS_VALID;
  2459. else
  2460. val &= ~L3_CLS_VALID;
  2461. nw64(reg, val);
  2462. return 0;
  2463. }
  2464. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2465. int ipv6, u64 protocol_id,
  2466. u64 tos_mask, u64 tos_val)
  2467. {
  2468. unsigned long reg;
  2469. u64 val;
  2470. if (class < CLASS_CODE_USER_PROG1 ||
  2471. class > CLASS_CODE_USER_PROG4 ||
  2472. (protocol_id & ~(u64)0xff) != 0 ||
  2473. (tos_mask & ~(u64)0xff) != 0 ||
  2474. (tos_val & ~(u64)0xff) != 0)
  2475. return -EINVAL;
  2476. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2477. val = nr64(reg);
  2478. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2479. L3_CLS_TOSMASK | L3_CLS_TOS);
  2480. if (ipv6)
  2481. val |= L3_CLS_IPVER;
  2482. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2483. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2484. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2485. nw64(reg, val);
  2486. return 0;
  2487. }
  2488. static int tcam_early_init(struct niu *np)
  2489. {
  2490. unsigned long i;
  2491. int err;
  2492. tcam_enable(np, 0);
  2493. tcam_set_lat_and_ratio(np,
  2494. DEFAULT_TCAM_LATENCY,
  2495. DEFAULT_TCAM_ACCESS_RATIO);
  2496. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2497. err = tcam_user_eth_class_enable(np, i, 0);
  2498. if (err)
  2499. return err;
  2500. }
  2501. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2502. err = tcam_user_ip_class_enable(np, i, 0);
  2503. if (err)
  2504. return err;
  2505. }
  2506. return 0;
  2507. }
  2508. static int tcam_flush_all(struct niu *np)
  2509. {
  2510. unsigned long i;
  2511. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2512. int err = tcam_flush(np, i);
  2513. if (err)
  2514. return err;
  2515. }
  2516. return 0;
  2517. }
  2518. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2519. {
  2520. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2521. }
  2522. #if 0
  2523. static int hash_read(struct niu *np, unsigned long partition,
  2524. unsigned long index, unsigned long num_entries,
  2525. u64 *data)
  2526. {
  2527. u64 val = hash_addr_regval(index, num_entries);
  2528. unsigned long i;
  2529. if (partition >= FCRAM_NUM_PARTITIONS ||
  2530. index + num_entries > FCRAM_SIZE)
  2531. return -EINVAL;
  2532. nw64(HASH_TBL_ADDR(partition), val);
  2533. for (i = 0; i < num_entries; i++)
  2534. data[i] = nr64(HASH_TBL_DATA(partition));
  2535. return 0;
  2536. }
  2537. #endif
  2538. static int hash_write(struct niu *np, unsigned long partition,
  2539. unsigned long index, unsigned long num_entries,
  2540. u64 *data)
  2541. {
  2542. u64 val = hash_addr_regval(index, num_entries);
  2543. unsigned long i;
  2544. if (partition >= FCRAM_NUM_PARTITIONS ||
  2545. index + (num_entries * 8) > FCRAM_SIZE)
  2546. return -EINVAL;
  2547. nw64(HASH_TBL_ADDR(partition), val);
  2548. for (i = 0; i < num_entries; i++)
  2549. nw64(HASH_TBL_DATA(partition), data[i]);
  2550. return 0;
  2551. }
  2552. static void fflp_reset(struct niu *np)
  2553. {
  2554. u64 val;
  2555. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2556. udelay(10);
  2557. nw64(FFLP_CFG_1, 0);
  2558. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2559. nw64(FFLP_CFG_1, val);
  2560. }
  2561. static void fflp_set_timings(struct niu *np)
  2562. {
  2563. u64 val = nr64(FFLP_CFG_1);
  2564. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2565. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2566. nw64(FFLP_CFG_1, val);
  2567. val = nr64(FFLP_CFG_1);
  2568. val |= FFLP_CFG_1_FFLPINITDONE;
  2569. nw64(FFLP_CFG_1, val);
  2570. val = nr64(FCRAM_REF_TMR);
  2571. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2572. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2573. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2574. nw64(FCRAM_REF_TMR, val);
  2575. }
  2576. static int fflp_set_partition(struct niu *np, u64 partition,
  2577. u64 mask, u64 base, int enable)
  2578. {
  2579. unsigned long reg;
  2580. u64 val;
  2581. if (partition >= FCRAM_NUM_PARTITIONS ||
  2582. (mask & ~(u64)0x1f) != 0 ||
  2583. (base & ~(u64)0x1f) != 0)
  2584. return -EINVAL;
  2585. reg = FLW_PRT_SEL(partition);
  2586. val = nr64(reg);
  2587. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2588. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2589. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2590. if (enable)
  2591. val |= FLW_PRT_SEL_EXT;
  2592. nw64(reg, val);
  2593. return 0;
  2594. }
  2595. static int fflp_disable_all_partitions(struct niu *np)
  2596. {
  2597. unsigned long i;
  2598. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2599. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2600. if (err)
  2601. return err;
  2602. }
  2603. return 0;
  2604. }
  2605. static void fflp_llcsnap_enable(struct niu *np, int on)
  2606. {
  2607. u64 val = nr64(FFLP_CFG_1);
  2608. if (on)
  2609. val |= FFLP_CFG_1_LLCSNAP;
  2610. else
  2611. val &= ~FFLP_CFG_1_LLCSNAP;
  2612. nw64(FFLP_CFG_1, val);
  2613. }
  2614. static void fflp_errors_enable(struct niu *np, int on)
  2615. {
  2616. u64 val = nr64(FFLP_CFG_1);
  2617. if (on)
  2618. val &= ~FFLP_CFG_1_ERRORDIS;
  2619. else
  2620. val |= FFLP_CFG_1_ERRORDIS;
  2621. nw64(FFLP_CFG_1, val);
  2622. }
  2623. static int fflp_hash_clear(struct niu *np)
  2624. {
  2625. struct fcram_hash_ipv4 ent;
  2626. unsigned long i;
  2627. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2628. memset(&ent, 0, sizeof(ent));
  2629. ent.header = HASH_HEADER_EXT;
  2630. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2631. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2632. if (err)
  2633. return err;
  2634. }
  2635. return 0;
  2636. }
  2637. static int fflp_early_init(struct niu *np)
  2638. {
  2639. struct niu_parent *parent;
  2640. unsigned long flags;
  2641. int err;
  2642. niu_lock_parent(np, flags);
  2643. parent = np->parent;
  2644. err = 0;
  2645. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2646. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2647. fflp_reset(np);
  2648. fflp_set_timings(np);
  2649. err = fflp_disable_all_partitions(np);
  2650. if (err) {
  2651. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2652. "fflp_disable_all_partitions failed, err=%d\n",
  2653. err);
  2654. goto out;
  2655. }
  2656. }
  2657. err = tcam_early_init(np);
  2658. if (err) {
  2659. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2660. "tcam_early_init failed, err=%d\n", err);
  2661. goto out;
  2662. }
  2663. fflp_llcsnap_enable(np, 1);
  2664. fflp_errors_enable(np, 0);
  2665. nw64(H1POLY, 0);
  2666. nw64(H2POLY, 0);
  2667. err = tcam_flush_all(np);
  2668. if (err) {
  2669. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2670. "tcam_flush_all failed, err=%d\n", err);
  2671. goto out;
  2672. }
  2673. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2674. err = fflp_hash_clear(np);
  2675. if (err) {
  2676. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2677. "fflp_hash_clear failed, err=%d\n",
  2678. err);
  2679. goto out;
  2680. }
  2681. }
  2682. vlan_tbl_clear(np);
  2683. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2684. }
  2685. out:
  2686. niu_unlock_parent(np, flags);
  2687. return err;
  2688. }
  2689. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2690. {
  2691. if (class_code < CLASS_CODE_USER_PROG1 ||
  2692. class_code > CLASS_CODE_SCTP_IPV6)
  2693. return -EINVAL;
  2694. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2695. return 0;
  2696. }
  2697. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2698. {
  2699. if (class_code < CLASS_CODE_USER_PROG1 ||
  2700. class_code > CLASS_CODE_SCTP_IPV6)
  2701. return -EINVAL;
  2702. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2703. return 0;
  2704. }
  2705. /* Entries for the ports are interleaved in the TCAM */
  2706. static u16 tcam_get_index(struct niu *np, u16 idx)
  2707. {
  2708. /* One entry reserved for IP fragment rule */
  2709. if (idx >= (np->clas.tcam_sz - 1))
  2710. idx = 0;
  2711. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2712. }
  2713. static u16 tcam_get_size(struct niu *np)
  2714. {
  2715. /* One entry reserved for IP fragment rule */
  2716. return np->clas.tcam_sz - 1;
  2717. }
  2718. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2719. {
  2720. /* One entry reserved for IP fragment rule */
  2721. return np->clas.tcam_valid_entries - 1;
  2722. }
  2723. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2724. u32 offset, u32 size, u32 truesize)
  2725. {
  2726. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2727. skb->len += size;
  2728. skb->data_len += size;
  2729. skb->truesize += truesize;
  2730. }
  2731. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2732. {
  2733. a >>= PAGE_SHIFT;
  2734. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2735. return a & (MAX_RBR_RING_SIZE - 1);
  2736. }
  2737. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2738. struct page ***link)
  2739. {
  2740. unsigned int h = niu_hash_rxaddr(rp, addr);
  2741. struct page *p, **pp;
  2742. addr &= PAGE_MASK;
  2743. pp = &rp->rxhash[h];
  2744. for (; (p = *pp) != NULL; pp = &niu_next_page(p)) {
  2745. if (p->index == addr) {
  2746. *link = pp;
  2747. goto found;
  2748. }
  2749. }
  2750. BUG();
  2751. found:
  2752. return p;
  2753. }
  2754. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2755. {
  2756. unsigned int h = niu_hash_rxaddr(rp, base);
  2757. page->index = base;
  2758. niu_next_page(page) = rp->rxhash[h];
  2759. rp->rxhash[h] = page;
  2760. }
  2761. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2762. gfp_t mask, int start_index)
  2763. {
  2764. struct page *page;
  2765. u64 addr;
  2766. int i;
  2767. page = alloc_page(mask);
  2768. if (!page)
  2769. return -ENOMEM;
  2770. addr = np->ops->map_page(np->device, page, 0,
  2771. PAGE_SIZE, DMA_FROM_DEVICE);
  2772. if (!addr) {
  2773. __free_page(page);
  2774. return -ENOMEM;
  2775. }
  2776. niu_hash_page(rp, page, addr);
  2777. if (rp->rbr_blocks_per_page > 1)
  2778. page_ref_add(page, rp->rbr_blocks_per_page - 1);
  2779. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2780. __le32 *rbr = &rp->rbr[start_index + i];
  2781. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2782. addr += rp->rbr_block_size;
  2783. }
  2784. return 0;
  2785. }
  2786. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2787. {
  2788. int index = rp->rbr_index;
  2789. rp->rbr_pending++;
  2790. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2791. int err = niu_rbr_add_page(np, rp, mask, index);
  2792. if (unlikely(err)) {
  2793. rp->rbr_pending--;
  2794. return;
  2795. }
  2796. rp->rbr_index += rp->rbr_blocks_per_page;
  2797. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2798. if (rp->rbr_index == rp->rbr_table_size)
  2799. rp->rbr_index = 0;
  2800. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2801. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2802. rp->rbr_pending = 0;
  2803. }
  2804. }
  2805. }
  2806. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2807. {
  2808. unsigned int index = rp->rcr_index;
  2809. int num_rcr = 0;
  2810. rp->rx_dropped++;
  2811. while (1) {
  2812. struct page *page, **link;
  2813. u64 addr, val;
  2814. u32 rcr_size;
  2815. num_rcr++;
  2816. val = le64_to_cpup(&rp->rcr[index]);
  2817. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2818. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2819. page = niu_find_rxpage(rp, addr, &link);
  2820. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2821. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2822. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2823. *link = niu_next_page(page);
  2824. np->ops->unmap_page(np->device, page->index,
  2825. PAGE_SIZE, DMA_FROM_DEVICE);
  2826. page->index = 0;
  2827. niu_next_page(page) = NULL;
  2828. __free_page(page);
  2829. rp->rbr_refill_pending++;
  2830. }
  2831. index = NEXT_RCR(rp, index);
  2832. if (!(val & RCR_ENTRY_MULTI))
  2833. break;
  2834. }
  2835. rp->rcr_index = index;
  2836. return num_rcr;
  2837. }
  2838. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2839. struct rx_ring_info *rp)
  2840. {
  2841. unsigned int index = rp->rcr_index;
  2842. struct rx_pkt_hdr1 *rh;
  2843. struct sk_buff *skb;
  2844. int len, num_rcr;
  2845. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2846. if (unlikely(!skb))
  2847. return niu_rx_pkt_ignore(np, rp);
  2848. num_rcr = 0;
  2849. while (1) {
  2850. struct page *page, **link;
  2851. u32 rcr_size, append_size;
  2852. u64 addr, val, off;
  2853. num_rcr++;
  2854. val = le64_to_cpup(&rp->rcr[index]);
  2855. len = (val & RCR_ENTRY_L2_LEN) >>
  2856. RCR_ENTRY_L2_LEN_SHIFT;
  2857. append_size = len + ETH_HLEN + ETH_FCS_LEN;
  2858. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2859. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2860. page = niu_find_rxpage(rp, addr, &link);
  2861. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2862. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2863. off = addr & ~PAGE_MASK;
  2864. if (num_rcr == 1) {
  2865. int ptype;
  2866. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2867. if ((ptype == RCR_PKT_TYPE_TCP ||
  2868. ptype == RCR_PKT_TYPE_UDP) &&
  2869. !(val & (RCR_ENTRY_NOPORT |
  2870. RCR_ENTRY_ERROR)))
  2871. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2872. else
  2873. skb_checksum_none_assert(skb);
  2874. } else if (!(val & RCR_ENTRY_MULTI))
  2875. append_size = append_size - skb->len;
  2876. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2877. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2878. *link = niu_next_page(page);
  2879. np->ops->unmap_page(np->device, page->index,
  2880. PAGE_SIZE, DMA_FROM_DEVICE);
  2881. page->index = 0;
  2882. niu_next_page(page) = NULL;
  2883. rp->rbr_refill_pending++;
  2884. } else
  2885. get_page(page);
  2886. index = NEXT_RCR(rp, index);
  2887. if (!(val & RCR_ENTRY_MULTI))
  2888. break;
  2889. }
  2890. rp->rcr_index = index;
  2891. len += sizeof(*rh);
  2892. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2893. __pskb_pull_tail(skb, len);
  2894. rh = (struct rx_pkt_hdr1 *) skb->data;
  2895. if (np->dev->features & NETIF_F_RXHASH)
  2896. skb_set_hash(skb,
  2897. ((u32)rh->hashval2_0 << 24 |
  2898. (u32)rh->hashval2_1 << 16 |
  2899. (u32)rh->hashval1_1 << 8 |
  2900. (u32)rh->hashval1_2 << 0),
  2901. PKT_HASH_TYPE_L3);
  2902. skb_pull(skb, sizeof(*rh));
  2903. rp->rx_packets++;
  2904. rp->rx_bytes += skb->len;
  2905. skb->protocol = eth_type_trans(skb, np->dev);
  2906. skb_record_rx_queue(skb, rp->rx_channel);
  2907. napi_gro_receive(napi, skb);
  2908. return num_rcr;
  2909. }
  2910. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2911. {
  2912. int blocks_per_page = rp->rbr_blocks_per_page;
  2913. int err, index = rp->rbr_index;
  2914. err = 0;
  2915. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2916. err = niu_rbr_add_page(np, rp, mask, index);
  2917. if (unlikely(err))
  2918. break;
  2919. index += blocks_per_page;
  2920. }
  2921. rp->rbr_index = index;
  2922. return err;
  2923. }
  2924. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2925. {
  2926. int i;
  2927. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2928. struct page *page;
  2929. page = rp->rxhash[i];
  2930. while (page) {
  2931. struct page *next = niu_next_page(page);
  2932. u64 base = page->index;
  2933. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2934. DMA_FROM_DEVICE);
  2935. page->index = 0;
  2936. niu_next_page(page) = NULL;
  2937. __free_page(page);
  2938. page = next;
  2939. }
  2940. }
  2941. for (i = 0; i < rp->rbr_table_size; i++)
  2942. rp->rbr[i] = cpu_to_le32(0);
  2943. rp->rbr_index = 0;
  2944. }
  2945. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2946. {
  2947. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2948. struct sk_buff *skb = tb->skb;
  2949. struct tx_pkt_hdr *tp;
  2950. u64 tx_flags;
  2951. int i, len;
  2952. tp = (struct tx_pkt_hdr *) skb->data;
  2953. tx_flags = le64_to_cpup(&tp->flags);
  2954. rp->tx_packets++;
  2955. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2956. ((tx_flags & TXHDR_PAD) / 2));
  2957. len = skb_headlen(skb);
  2958. np->ops->unmap_single(np->device, tb->mapping,
  2959. len, DMA_TO_DEVICE);
  2960. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2961. rp->mark_pending--;
  2962. tb->skb = NULL;
  2963. do {
  2964. idx = NEXT_TX(rp, idx);
  2965. len -= MAX_TX_DESC_LEN;
  2966. } while (len > 0);
  2967. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2968. tb = &rp->tx_buffs[idx];
  2969. BUG_ON(tb->skb != NULL);
  2970. np->ops->unmap_page(np->device, tb->mapping,
  2971. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2972. DMA_TO_DEVICE);
  2973. idx = NEXT_TX(rp, idx);
  2974. }
  2975. dev_kfree_skb(skb);
  2976. return idx;
  2977. }
  2978. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2979. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2980. {
  2981. struct netdev_queue *txq;
  2982. u16 pkt_cnt, tmp;
  2983. int cons, index;
  2984. u64 cs;
  2985. index = (rp - np->tx_rings);
  2986. txq = netdev_get_tx_queue(np->dev, index);
  2987. cs = rp->tx_cs;
  2988. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2989. goto out;
  2990. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2991. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2992. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2993. rp->last_pkt_cnt = tmp;
  2994. cons = rp->cons;
  2995. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2996. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2997. while (pkt_cnt--)
  2998. cons = release_tx_packet(np, rp, cons);
  2999. rp->cons = cons;
  3000. smp_mb();
  3001. out:
  3002. if (unlikely(netif_tx_queue_stopped(txq) &&
  3003. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3004. __netif_tx_lock(txq, smp_processor_id());
  3005. if (netif_tx_queue_stopped(txq) &&
  3006. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3007. netif_tx_wake_queue(txq);
  3008. __netif_tx_unlock(txq);
  3009. }
  3010. }
  3011. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3012. struct rx_ring_info *rp,
  3013. const int limit)
  3014. {
  3015. /* This elaborate scheme is needed for reading the RX discard
  3016. * counters, as they are only 16-bit and can overflow quickly,
  3017. * and because the overflow indication bit is not usable as
  3018. * the counter value does not wrap, but remains at max value
  3019. * 0xFFFF.
  3020. *
  3021. * In theory and in practice counters can be lost in between
  3022. * reading nr64() and clearing the counter nw64(). For this
  3023. * reason, the number of counter clearings nw64() is
  3024. * limited/reduced though the limit parameter.
  3025. */
  3026. int rx_channel = rp->rx_channel;
  3027. u32 misc, wred;
  3028. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3029. * following discard events: IPP (Input Port Process),
  3030. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3031. * Block Ring) prefetch buffer is empty.
  3032. */
  3033. misc = nr64(RXMISC(rx_channel));
  3034. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3035. nw64(RXMISC(rx_channel), 0);
  3036. rp->rx_errors += misc & RXMISC_COUNT;
  3037. if (unlikely(misc & RXMISC_OFLOW))
  3038. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3039. rx_channel);
  3040. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3041. "rx-%d: MISC drop=%u over=%u\n",
  3042. rx_channel, misc, misc-limit);
  3043. }
  3044. /* WRED (Weighted Random Early Discard) by hardware */
  3045. wred = nr64(RED_DIS_CNT(rx_channel));
  3046. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3047. nw64(RED_DIS_CNT(rx_channel), 0);
  3048. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3049. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3050. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3051. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3052. "rx-%d: WRED drop=%u over=%u\n",
  3053. rx_channel, wred, wred-limit);
  3054. }
  3055. }
  3056. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3057. struct rx_ring_info *rp, int budget)
  3058. {
  3059. int qlen, rcr_done = 0, work_done = 0;
  3060. struct rxdma_mailbox *mbox = rp->mbox;
  3061. u64 stat;
  3062. #if 1
  3063. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3064. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3065. #else
  3066. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3067. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3068. #endif
  3069. mbox->rx_dma_ctl_stat = 0;
  3070. mbox->rcrstat_a = 0;
  3071. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3072. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3073. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3074. rcr_done = work_done = 0;
  3075. qlen = min(qlen, budget);
  3076. while (work_done < qlen) {
  3077. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3078. work_done++;
  3079. }
  3080. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3081. unsigned int i;
  3082. for (i = 0; i < rp->rbr_refill_pending; i++)
  3083. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3084. rp->rbr_refill_pending = 0;
  3085. }
  3086. stat = (RX_DMA_CTL_STAT_MEX |
  3087. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3088. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3089. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3090. /* Only sync discards stats when qlen indicate potential for drops */
  3091. if (qlen > 10)
  3092. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3093. return work_done;
  3094. }
  3095. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3096. {
  3097. u64 v0 = lp->v0;
  3098. u32 tx_vec = (v0 >> 32);
  3099. u32 rx_vec = (v0 & 0xffffffff);
  3100. int i, work_done = 0;
  3101. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3102. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3103. for (i = 0; i < np->num_tx_rings; i++) {
  3104. struct tx_ring_info *rp = &np->tx_rings[i];
  3105. if (tx_vec & (1 << rp->tx_channel))
  3106. niu_tx_work(np, rp);
  3107. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3108. }
  3109. for (i = 0; i < np->num_rx_rings; i++) {
  3110. struct rx_ring_info *rp = &np->rx_rings[i];
  3111. if (rx_vec & (1 << rp->rx_channel)) {
  3112. int this_work_done;
  3113. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3114. budget);
  3115. budget -= this_work_done;
  3116. work_done += this_work_done;
  3117. }
  3118. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3119. }
  3120. return work_done;
  3121. }
  3122. static int niu_poll(struct napi_struct *napi, int budget)
  3123. {
  3124. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3125. struct niu *np = lp->np;
  3126. int work_done;
  3127. work_done = niu_poll_core(np, lp, budget);
  3128. if (work_done < budget) {
  3129. napi_complete_done(napi, work_done);
  3130. niu_ldg_rearm(np, lp, 1);
  3131. }
  3132. return work_done;
  3133. }
  3134. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3135. u64 stat)
  3136. {
  3137. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3138. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3139. pr_cont("RBR_TMOUT ");
  3140. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3141. pr_cont("RSP_CNT ");
  3142. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3143. pr_cont("BYTE_EN_BUS ");
  3144. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3145. pr_cont("RSP_DAT ");
  3146. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3147. pr_cont("RCR_ACK ");
  3148. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3149. pr_cont("RCR_SHA_PAR ");
  3150. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3151. pr_cont("RBR_PRE_PAR ");
  3152. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3153. pr_cont("CONFIG ");
  3154. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3155. pr_cont("RCRINCON ");
  3156. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3157. pr_cont("RCRFULL ");
  3158. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3159. pr_cont("RBRFULL ");
  3160. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3161. pr_cont("RBRLOGPAGE ");
  3162. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3163. pr_cont("CFIGLOGPAGE ");
  3164. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3165. pr_cont("DC_FIDO ");
  3166. pr_cont(")\n");
  3167. }
  3168. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3169. {
  3170. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3171. int err = 0;
  3172. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3173. RX_DMA_CTL_STAT_PORT_FATAL))
  3174. err = -EINVAL;
  3175. if (err) {
  3176. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3177. rp->rx_channel,
  3178. (unsigned long long) stat);
  3179. niu_log_rxchan_errors(np, rp, stat);
  3180. }
  3181. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3182. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3183. return err;
  3184. }
  3185. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3186. u64 cs)
  3187. {
  3188. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3189. if (cs & TX_CS_MBOX_ERR)
  3190. pr_cont("MBOX ");
  3191. if (cs & TX_CS_PKT_SIZE_ERR)
  3192. pr_cont("PKT_SIZE ");
  3193. if (cs & TX_CS_TX_RING_OFLOW)
  3194. pr_cont("TX_RING_OFLOW ");
  3195. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3196. pr_cont("PREF_BUF_PAR ");
  3197. if (cs & TX_CS_NACK_PREF)
  3198. pr_cont("NACK_PREF ");
  3199. if (cs & TX_CS_NACK_PKT_RD)
  3200. pr_cont("NACK_PKT_RD ");
  3201. if (cs & TX_CS_CONF_PART_ERR)
  3202. pr_cont("CONF_PART ");
  3203. if (cs & TX_CS_PKT_PRT_ERR)
  3204. pr_cont("PKT_PTR ");
  3205. pr_cont(")\n");
  3206. }
  3207. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3208. {
  3209. u64 cs, logh, logl;
  3210. cs = nr64(TX_CS(rp->tx_channel));
  3211. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3212. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3213. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3214. rp->tx_channel,
  3215. (unsigned long long)cs,
  3216. (unsigned long long)logh,
  3217. (unsigned long long)logl);
  3218. niu_log_txchan_errors(np, rp, cs);
  3219. return -ENODEV;
  3220. }
  3221. static int niu_mif_interrupt(struct niu *np)
  3222. {
  3223. u64 mif_status = nr64(MIF_STATUS);
  3224. int phy_mdint = 0;
  3225. if (np->flags & NIU_FLAGS_XMAC) {
  3226. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3227. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3228. phy_mdint = 1;
  3229. }
  3230. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3231. (unsigned long long)mif_status, phy_mdint);
  3232. return -ENODEV;
  3233. }
  3234. static void niu_xmac_interrupt(struct niu *np)
  3235. {
  3236. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3237. u64 val;
  3238. val = nr64_mac(XTXMAC_STATUS);
  3239. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3240. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3241. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3242. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3243. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3244. mp->tx_fifo_errors++;
  3245. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3246. mp->tx_overflow_errors++;
  3247. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3248. mp->tx_max_pkt_size_errors++;
  3249. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3250. mp->tx_underflow_errors++;
  3251. val = nr64_mac(XRXMAC_STATUS);
  3252. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3253. mp->rx_local_faults++;
  3254. if (val & XRXMAC_STATUS_RFLT_DET)
  3255. mp->rx_remote_faults++;
  3256. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3257. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3258. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3259. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3260. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3261. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3262. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3263. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3264. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3265. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3266. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3267. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3268. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3269. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3270. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3271. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3272. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3273. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3274. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3275. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3276. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3277. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3278. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3279. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3280. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3281. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3282. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3283. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3284. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3285. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3286. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3287. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3288. if (val & XRXMAC_STATUS_RXUFLOW)
  3289. mp->rx_underflows++;
  3290. if (val & XRXMAC_STATUS_RXOFLOW)
  3291. mp->rx_overflows++;
  3292. val = nr64_mac(XMAC_FC_STAT);
  3293. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3294. mp->pause_off_state++;
  3295. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3296. mp->pause_on_state++;
  3297. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3298. mp->pause_received++;
  3299. }
  3300. static void niu_bmac_interrupt(struct niu *np)
  3301. {
  3302. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3303. u64 val;
  3304. val = nr64_mac(BTXMAC_STATUS);
  3305. if (val & BTXMAC_STATUS_UNDERRUN)
  3306. mp->tx_underflow_errors++;
  3307. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3308. mp->tx_max_pkt_size_errors++;
  3309. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3310. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3311. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3312. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3313. val = nr64_mac(BRXMAC_STATUS);
  3314. if (val & BRXMAC_STATUS_OVERFLOW)
  3315. mp->rx_overflows++;
  3316. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3317. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3318. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3319. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3320. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3321. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3322. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3323. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3324. val = nr64_mac(BMAC_CTRL_STATUS);
  3325. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3326. mp->pause_off_state++;
  3327. if (val & BMAC_CTRL_STATUS_PAUSE)
  3328. mp->pause_on_state++;
  3329. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3330. mp->pause_received++;
  3331. }
  3332. static int niu_mac_interrupt(struct niu *np)
  3333. {
  3334. if (np->flags & NIU_FLAGS_XMAC)
  3335. niu_xmac_interrupt(np);
  3336. else
  3337. niu_bmac_interrupt(np);
  3338. return 0;
  3339. }
  3340. static void niu_log_device_error(struct niu *np, u64 stat)
  3341. {
  3342. netdev_err(np->dev, "Core device errors ( ");
  3343. if (stat & SYS_ERR_MASK_META2)
  3344. pr_cont("META2 ");
  3345. if (stat & SYS_ERR_MASK_META1)
  3346. pr_cont("META1 ");
  3347. if (stat & SYS_ERR_MASK_PEU)
  3348. pr_cont("PEU ");
  3349. if (stat & SYS_ERR_MASK_TXC)
  3350. pr_cont("TXC ");
  3351. if (stat & SYS_ERR_MASK_RDMC)
  3352. pr_cont("RDMC ");
  3353. if (stat & SYS_ERR_MASK_TDMC)
  3354. pr_cont("TDMC ");
  3355. if (stat & SYS_ERR_MASK_ZCP)
  3356. pr_cont("ZCP ");
  3357. if (stat & SYS_ERR_MASK_FFLP)
  3358. pr_cont("FFLP ");
  3359. if (stat & SYS_ERR_MASK_IPP)
  3360. pr_cont("IPP ");
  3361. if (stat & SYS_ERR_MASK_MAC)
  3362. pr_cont("MAC ");
  3363. if (stat & SYS_ERR_MASK_SMX)
  3364. pr_cont("SMX ");
  3365. pr_cont(")\n");
  3366. }
  3367. static int niu_device_error(struct niu *np)
  3368. {
  3369. u64 stat = nr64(SYS_ERR_STAT);
  3370. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3371. (unsigned long long)stat);
  3372. niu_log_device_error(np, stat);
  3373. return -ENODEV;
  3374. }
  3375. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3376. u64 v0, u64 v1, u64 v2)
  3377. {
  3378. int i, err = 0;
  3379. lp->v0 = v0;
  3380. lp->v1 = v1;
  3381. lp->v2 = v2;
  3382. if (v1 & 0x00000000ffffffffULL) {
  3383. u32 rx_vec = (v1 & 0xffffffff);
  3384. for (i = 0; i < np->num_rx_rings; i++) {
  3385. struct rx_ring_info *rp = &np->rx_rings[i];
  3386. if (rx_vec & (1 << rp->rx_channel)) {
  3387. int r = niu_rx_error(np, rp);
  3388. if (r) {
  3389. err = r;
  3390. } else {
  3391. if (!v0)
  3392. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3393. RX_DMA_CTL_STAT_MEX);
  3394. }
  3395. }
  3396. }
  3397. }
  3398. if (v1 & 0x7fffffff00000000ULL) {
  3399. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3400. for (i = 0; i < np->num_tx_rings; i++) {
  3401. struct tx_ring_info *rp = &np->tx_rings[i];
  3402. if (tx_vec & (1 << rp->tx_channel)) {
  3403. int r = niu_tx_error(np, rp);
  3404. if (r)
  3405. err = r;
  3406. }
  3407. }
  3408. }
  3409. if ((v0 | v1) & 0x8000000000000000ULL) {
  3410. int r = niu_mif_interrupt(np);
  3411. if (r)
  3412. err = r;
  3413. }
  3414. if (v2) {
  3415. if (v2 & 0x01ef) {
  3416. int r = niu_mac_interrupt(np);
  3417. if (r)
  3418. err = r;
  3419. }
  3420. if (v2 & 0x0210) {
  3421. int r = niu_device_error(np);
  3422. if (r)
  3423. err = r;
  3424. }
  3425. }
  3426. if (err)
  3427. niu_enable_interrupts(np, 0);
  3428. return err;
  3429. }
  3430. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3431. int ldn)
  3432. {
  3433. struct rxdma_mailbox *mbox = rp->mbox;
  3434. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3435. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3436. RX_DMA_CTL_STAT_RCRTO);
  3437. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3438. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3439. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3440. }
  3441. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3442. int ldn)
  3443. {
  3444. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3445. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3446. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3447. }
  3448. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3449. {
  3450. struct niu_parent *parent = np->parent;
  3451. u32 rx_vec, tx_vec;
  3452. int i;
  3453. tx_vec = (v0 >> 32);
  3454. rx_vec = (v0 & 0xffffffff);
  3455. for (i = 0; i < np->num_rx_rings; i++) {
  3456. struct rx_ring_info *rp = &np->rx_rings[i];
  3457. int ldn = LDN_RXDMA(rp->rx_channel);
  3458. if (parent->ldg_map[ldn] != ldg)
  3459. continue;
  3460. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3461. if (rx_vec & (1 << rp->rx_channel))
  3462. niu_rxchan_intr(np, rp, ldn);
  3463. }
  3464. for (i = 0; i < np->num_tx_rings; i++) {
  3465. struct tx_ring_info *rp = &np->tx_rings[i];
  3466. int ldn = LDN_TXDMA(rp->tx_channel);
  3467. if (parent->ldg_map[ldn] != ldg)
  3468. continue;
  3469. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3470. if (tx_vec & (1 << rp->tx_channel))
  3471. niu_txchan_intr(np, rp, ldn);
  3472. }
  3473. }
  3474. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3475. u64 v0, u64 v1, u64 v2)
  3476. {
  3477. if (likely(napi_schedule_prep(&lp->napi))) {
  3478. lp->v0 = v0;
  3479. lp->v1 = v1;
  3480. lp->v2 = v2;
  3481. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3482. __napi_schedule(&lp->napi);
  3483. }
  3484. }
  3485. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3486. {
  3487. struct niu_ldg *lp = dev_id;
  3488. struct niu *np = lp->np;
  3489. int ldg = lp->ldg_num;
  3490. unsigned long flags;
  3491. u64 v0, v1, v2;
  3492. if (netif_msg_intr(np))
  3493. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3494. __func__, lp, ldg);
  3495. spin_lock_irqsave(&np->lock, flags);
  3496. v0 = nr64(LDSV0(ldg));
  3497. v1 = nr64(LDSV1(ldg));
  3498. v2 = nr64(LDSV2(ldg));
  3499. if (netif_msg_intr(np))
  3500. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3501. (unsigned long long) v0,
  3502. (unsigned long long) v1,
  3503. (unsigned long long) v2);
  3504. if (unlikely(!v0 && !v1 && !v2)) {
  3505. spin_unlock_irqrestore(&np->lock, flags);
  3506. return IRQ_NONE;
  3507. }
  3508. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3509. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3510. if (err)
  3511. goto out;
  3512. }
  3513. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3514. niu_schedule_napi(np, lp, v0, v1, v2);
  3515. else
  3516. niu_ldg_rearm(np, lp, 1);
  3517. out:
  3518. spin_unlock_irqrestore(&np->lock, flags);
  3519. return IRQ_HANDLED;
  3520. }
  3521. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3522. {
  3523. if (rp->mbox) {
  3524. np->ops->free_coherent(np->device,
  3525. sizeof(struct rxdma_mailbox),
  3526. rp->mbox, rp->mbox_dma);
  3527. rp->mbox = NULL;
  3528. }
  3529. if (rp->rcr) {
  3530. np->ops->free_coherent(np->device,
  3531. MAX_RCR_RING_SIZE * sizeof(__le64),
  3532. rp->rcr, rp->rcr_dma);
  3533. rp->rcr = NULL;
  3534. rp->rcr_table_size = 0;
  3535. rp->rcr_index = 0;
  3536. }
  3537. if (rp->rbr) {
  3538. niu_rbr_free(np, rp);
  3539. np->ops->free_coherent(np->device,
  3540. MAX_RBR_RING_SIZE * sizeof(__le32),
  3541. rp->rbr, rp->rbr_dma);
  3542. rp->rbr = NULL;
  3543. rp->rbr_table_size = 0;
  3544. rp->rbr_index = 0;
  3545. }
  3546. kfree(rp->rxhash);
  3547. rp->rxhash = NULL;
  3548. }
  3549. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3550. {
  3551. if (rp->mbox) {
  3552. np->ops->free_coherent(np->device,
  3553. sizeof(struct txdma_mailbox),
  3554. rp->mbox, rp->mbox_dma);
  3555. rp->mbox = NULL;
  3556. }
  3557. if (rp->descr) {
  3558. int i;
  3559. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3560. if (rp->tx_buffs[i].skb)
  3561. (void) release_tx_packet(np, rp, i);
  3562. }
  3563. np->ops->free_coherent(np->device,
  3564. MAX_TX_RING_SIZE * sizeof(__le64),
  3565. rp->descr, rp->descr_dma);
  3566. rp->descr = NULL;
  3567. rp->pending = 0;
  3568. rp->prod = 0;
  3569. rp->cons = 0;
  3570. rp->wrap_bit = 0;
  3571. }
  3572. }
  3573. static void niu_free_channels(struct niu *np)
  3574. {
  3575. int i;
  3576. if (np->rx_rings) {
  3577. for (i = 0; i < np->num_rx_rings; i++) {
  3578. struct rx_ring_info *rp = &np->rx_rings[i];
  3579. niu_free_rx_ring_info(np, rp);
  3580. }
  3581. kfree(np->rx_rings);
  3582. np->rx_rings = NULL;
  3583. np->num_rx_rings = 0;
  3584. }
  3585. if (np->tx_rings) {
  3586. for (i = 0; i < np->num_tx_rings; i++) {
  3587. struct tx_ring_info *rp = &np->tx_rings[i];
  3588. niu_free_tx_ring_info(np, rp);
  3589. }
  3590. kfree(np->tx_rings);
  3591. np->tx_rings = NULL;
  3592. np->num_tx_rings = 0;
  3593. }
  3594. }
  3595. static int niu_alloc_rx_ring_info(struct niu *np,
  3596. struct rx_ring_info *rp)
  3597. {
  3598. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3599. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3600. GFP_KERNEL);
  3601. if (!rp->rxhash)
  3602. return -ENOMEM;
  3603. rp->mbox = np->ops->alloc_coherent(np->device,
  3604. sizeof(struct rxdma_mailbox),
  3605. &rp->mbox_dma, GFP_KERNEL);
  3606. if (!rp->mbox)
  3607. return -ENOMEM;
  3608. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3609. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3610. rp->mbox);
  3611. return -EINVAL;
  3612. }
  3613. rp->rcr = np->ops->alloc_coherent(np->device,
  3614. MAX_RCR_RING_SIZE * sizeof(__le64),
  3615. &rp->rcr_dma, GFP_KERNEL);
  3616. if (!rp->rcr)
  3617. return -ENOMEM;
  3618. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3619. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3620. rp->rcr);
  3621. return -EINVAL;
  3622. }
  3623. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3624. rp->rcr_index = 0;
  3625. rp->rbr = np->ops->alloc_coherent(np->device,
  3626. MAX_RBR_RING_SIZE * sizeof(__le32),
  3627. &rp->rbr_dma, GFP_KERNEL);
  3628. if (!rp->rbr)
  3629. return -ENOMEM;
  3630. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3631. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3632. rp->rbr);
  3633. return -EINVAL;
  3634. }
  3635. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3636. rp->rbr_index = 0;
  3637. rp->rbr_pending = 0;
  3638. return 0;
  3639. }
  3640. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3641. {
  3642. int mtu = np->dev->mtu;
  3643. /* These values are recommended by the HW designers for fair
  3644. * utilization of DRR amongst the rings.
  3645. */
  3646. rp->max_burst = mtu + 32;
  3647. if (rp->max_burst > 4096)
  3648. rp->max_burst = 4096;
  3649. }
  3650. static int niu_alloc_tx_ring_info(struct niu *np,
  3651. struct tx_ring_info *rp)
  3652. {
  3653. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3654. rp->mbox = np->ops->alloc_coherent(np->device,
  3655. sizeof(struct txdma_mailbox),
  3656. &rp->mbox_dma, GFP_KERNEL);
  3657. if (!rp->mbox)
  3658. return -ENOMEM;
  3659. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3660. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3661. rp->mbox);
  3662. return -EINVAL;
  3663. }
  3664. rp->descr = np->ops->alloc_coherent(np->device,
  3665. MAX_TX_RING_SIZE * sizeof(__le64),
  3666. &rp->descr_dma, GFP_KERNEL);
  3667. if (!rp->descr)
  3668. return -ENOMEM;
  3669. if ((unsigned long)rp->descr & (64UL - 1)) {
  3670. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3671. rp->descr);
  3672. return -EINVAL;
  3673. }
  3674. rp->pending = MAX_TX_RING_SIZE;
  3675. rp->prod = 0;
  3676. rp->cons = 0;
  3677. rp->wrap_bit = 0;
  3678. /* XXX make these configurable... XXX */
  3679. rp->mark_freq = rp->pending / 4;
  3680. niu_set_max_burst(np, rp);
  3681. return 0;
  3682. }
  3683. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3684. {
  3685. u16 bss;
  3686. bss = min(PAGE_SHIFT, 15);
  3687. rp->rbr_block_size = 1 << bss;
  3688. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3689. rp->rbr_sizes[0] = 256;
  3690. rp->rbr_sizes[1] = 1024;
  3691. if (np->dev->mtu > ETH_DATA_LEN) {
  3692. switch (PAGE_SIZE) {
  3693. case 4 * 1024:
  3694. rp->rbr_sizes[2] = 4096;
  3695. break;
  3696. default:
  3697. rp->rbr_sizes[2] = 8192;
  3698. break;
  3699. }
  3700. } else {
  3701. rp->rbr_sizes[2] = 2048;
  3702. }
  3703. rp->rbr_sizes[3] = rp->rbr_block_size;
  3704. }
  3705. static int niu_alloc_channels(struct niu *np)
  3706. {
  3707. struct niu_parent *parent = np->parent;
  3708. int first_rx_channel, first_tx_channel;
  3709. int num_rx_rings, num_tx_rings;
  3710. struct rx_ring_info *rx_rings;
  3711. struct tx_ring_info *tx_rings;
  3712. int i, port, err;
  3713. port = np->port;
  3714. first_rx_channel = first_tx_channel = 0;
  3715. for (i = 0; i < port; i++) {
  3716. first_rx_channel += parent->rxchan_per_port[i];
  3717. first_tx_channel += parent->txchan_per_port[i];
  3718. }
  3719. num_rx_rings = parent->rxchan_per_port[port];
  3720. num_tx_rings = parent->txchan_per_port[port];
  3721. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3722. GFP_KERNEL);
  3723. err = -ENOMEM;
  3724. if (!rx_rings)
  3725. goto out_err;
  3726. np->num_rx_rings = num_rx_rings;
  3727. smp_wmb();
  3728. np->rx_rings = rx_rings;
  3729. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3730. for (i = 0; i < np->num_rx_rings; i++) {
  3731. struct rx_ring_info *rp = &np->rx_rings[i];
  3732. rp->np = np;
  3733. rp->rx_channel = first_rx_channel + i;
  3734. err = niu_alloc_rx_ring_info(np, rp);
  3735. if (err)
  3736. goto out_err;
  3737. niu_size_rbr(np, rp);
  3738. /* XXX better defaults, configurable, etc... XXX */
  3739. rp->nonsyn_window = 64;
  3740. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3741. rp->syn_window = 64;
  3742. rp->syn_threshold = rp->rcr_table_size - 64;
  3743. rp->rcr_pkt_threshold = 16;
  3744. rp->rcr_timeout = 8;
  3745. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3746. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3747. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3748. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3749. if (err)
  3750. goto out_err;
  3751. }
  3752. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3753. GFP_KERNEL);
  3754. err = -ENOMEM;
  3755. if (!tx_rings)
  3756. goto out_err;
  3757. np->num_tx_rings = num_tx_rings;
  3758. smp_wmb();
  3759. np->tx_rings = tx_rings;
  3760. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3761. for (i = 0; i < np->num_tx_rings; i++) {
  3762. struct tx_ring_info *rp = &np->tx_rings[i];
  3763. rp->np = np;
  3764. rp->tx_channel = first_tx_channel + i;
  3765. err = niu_alloc_tx_ring_info(np, rp);
  3766. if (err)
  3767. goto out_err;
  3768. }
  3769. return 0;
  3770. out_err:
  3771. niu_free_channels(np);
  3772. return err;
  3773. }
  3774. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3775. {
  3776. int limit = 1000;
  3777. while (--limit > 0) {
  3778. u64 val = nr64(TX_CS(channel));
  3779. if (val & TX_CS_SNG_STATE)
  3780. return 0;
  3781. }
  3782. return -ENODEV;
  3783. }
  3784. static int niu_tx_channel_stop(struct niu *np, int channel)
  3785. {
  3786. u64 val = nr64(TX_CS(channel));
  3787. val |= TX_CS_STOP_N_GO;
  3788. nw64(TX_CS(channel), val);
  3789. return niu_tx_cs_sng_poll(np, channel);
  3790. }
  3791. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3792. {
  3793. int limit = 1000;
  3794. while (--limit > 0) {
  3795. u64 val = nr64(TX_CS(channel));
  3796. if (!(val & TX_CS_RST))
  3797. return 0;
  3798. }
  3799. return -ENODEV;
  3800. }
  3801. static int niu_tx_channel_reset(struct niu *np, int channel)
  3802. {
  3803. u64 val = nr64(TX_CS(channel));
  3804. int err;
  3805. val |= TX_CS_RST;
  3806. nw64(TX_CS(channel), val);
  3807. err = niu_tx_cs_reset_poll(np, channel);
  3808. if (!err)
  3809. nw64(TX_RING_KICK(channel), 0);
  3810. return err;
  3811. }
  3812. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3813. {
  3814. u64 val;
  3815. nw64(TX_LOG_MASK1(channel), 0);
  3816. nw64(TX_LOG_VAL1(channel), 0);
  3817. nw64(TX_LOG_MASK2(channel), 0);
  3818. nw64(TX_LOG_VAL2(channel), 0);
  3819. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3820. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3821. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3822. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3823. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3824. nw64(TX_LOG_PAGE_VLD(channel), val);
  3825. /* XXX TXDMA 32bit mode? XXX */
  3826. return 0;
  3827. }
  3828. static void niu_txc_enable_port(struct niu *np, int on)
  3829. {
  3830. unsigned long flags;
  3831. u64 val, mask;
  3832. niu_lock_parent(np, flags);
  3833. val = nr64(TXC_CONTROL);
  3834. mask = (u64)1 << np->port;
  3835. if (on) {
  3836. val |= TXC_CONTROL_ENABLE | mask;
  3837. } else {
  3838. val &= ~mask;
  3839. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3840. val &= ~TXC_CONTROL_ENABLE;
  3841. }
  3842. nw64(TXC_CONTROL, val);
  3843. niu_unlock_parent(np, flags);
  3844. }
  3845. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3846. {
  3847. unsigned long flags;
  3848. u64 val;
  3849. niu_lock_parent(np, flags);
  3850. val = nr64(TXC_INT_MASK);
  3851. val &= ~TXC_INT_MASK_VAL(np->port);
  3852. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3853. niu_unlock_parent(np, flags);
  3854. }
  3855. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3856. {
  3857. u64 val = 0;
  3858. if (on) {
  3859. int i;
  3860. for (i = 0; i < np->num_tx_rings; i++)
  3861. val |= (1 << np->tx_rings[i].tx_channel);
  3862. }
  3863. nw64(TXC_PORT_DMA(np->port), val);
  3864. }
  3865. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3866. {
  3867. int err, channel = rp->tx_channel;
  3868. u64 val, ring_len;
  3869. err = niu_tx_channel_stop(np, channel);
  3870. if (err)
  3871. return err;
  3872. err = niu_tx_channel_reset(np, channel);
  3873. if (err)
  3874. return err;
  3875. err = niu_tx_channel_lpage_init(np, channel);
  3876. if (err)
  3877. return err;
  3878. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3879. nw64(TX_ENT_MSK(channel), 0);
  3880. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3881. TX_RNG_CFIG_STADDR)) {
  3882. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3883. channel, (unsigned long long)rp->descr_dma);
  3884. return -EINVAL;
  3885. }
  3886. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3887. * blocks. rp->pending is the number of TX descriptors in
  3888. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3889. * to get the proper value the chip wants.
  3890. */
  3891. ring_len = (rp->pending / 8);
  3892. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3893. rp->descr_dma);
  3894. nw64(TX_RNG_CFIG(channel), val);
  3895. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3896. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3897. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3898. channel, (unsigned long long)rp->mbox_dma);
  3899. return -EINVAL;
  3900. }
  3901. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3902. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3903. nw64(TX_CS(channel), 0);
  3904. rp->last_pkt_cnt = 0;
  3905. return 0;
  3906. }
  3907. static void niu_init_rdc_groups(struct niu *np)
  3908. {
  3909. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3910. int i, first_table_num = tp->first_table_num;
  3911. for (i = 0; i < tp->num_tables; i++) {
  3912. struct rdc_table *tbl = &tp->tables[i];
  3913. int this_table = first_table_num + i;
  3914. int slot;
  3915. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3916. nw64(RDC_TBL(this_table, slot),
  3917. tbl->rxdma_channel[slot]);
  3918. }
  3919. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3920. }
  3921. static void niu_init_drr_weight(struct niu *np)
  3922. {
  3923. int type = phy_decode(np->parent->port_phy, np->port);
  3924. u64 val;
  3925. switch (type) {
  3926. case PORT_TYPE_10G:
  3927. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3928. break;
  3929. case PORT_TYPE_1G:
  3930. default:
  3931. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3932. break;
  3933. }
  3934. nw64(PT_DRR_WT(np->port), val);
  3935. }
  3936. static int niu_init_hostinfo(struct niu *np)
  3937. {
  3938. struct niu_parent *parent = np->parent;
  3939. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3940. int i, err, num_alt = niu_num_alt_addr(np);
  3941. int first_rdc_table = tp->first_table_num;
  3942. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3943. if (err)
  3944. return err;
  3945. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3946. if (err)
  3947. return err;
  3948. for (i = 0; i < num_alt; i++) {
  3949. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3950. if (err)
  3951. return err;
  3952. }
  3953. return 0;
  3954. }
  3955. static int niu_rx_channel_reset(struct niu *np, int channel)
  3956. {
  3957. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3958. RXDMA_CFIG1_RST, 1000, 10,
  3959. "RXDMA_CFIG1");
  3960. }
  3961. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3962. {
  3963. u64 val;
  3964. nw64(RX_LOG_MASK1(channel), 0);
  3965. nw64(RX_LOG_VAL1(channel), 0);
  3966. nw64(RX_LOG_MASK2(channel), 0);
  3967. nw64(RX_LOG_VAL2(channel), 0);
  3968. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3969. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3970. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3971. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3972. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3973. nw64(RX_LOG_PAGE_VLD(channel), val);
  3974. return 0;
  3975. }
  3976. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3977. {
  3978. u64 val;
  3979. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3980. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3981. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3982. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3983. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3984. }
  3985. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3986. {
  3987. u64 val = 0;
  3988. *ret = 0;
  3989. switch (rp->rbr_block_size) {
  3990. case 4 * 1024:
  3991. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3992. break;
  3993. case 8 * 1024:
  3994. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3995. break;
  3996. case 16 * 1024:
  3997. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3998. break;
  3999. case 32 * 1024:
  4000. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4001. break;
  4002. default:
  4003. return -EINVAL;
  4004. }
  4005. val |= RBR_CFIG_B_VLD2;
  4006. switch (rp->rbr_sizes[2]) {
  4007. case 2 * 1024:
  4008. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4009. break;
  4010. case 4 * 1024:
  4011. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4012. break;
  4013. case 8 * 1024:
  4014. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4015. break;
  4016. case 16 * 1024:
  4017. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4018. break;
  4019. default:
  4020. return -EINVAL;
  4021. }
  4022. val |= RBR_CFIG_B_VLD1;
  4023. switch (rp->rbr_sizes[1]) {
  4024. case 1 * 1024:
  4025. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4026. break;
  4027. case 2 * 1024:
  4028. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4029. break;
  4030. case 4 * 1024:
  4031. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4032. break;
  4033. case 8 * 1024:
  4034. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4035. break;
  4036. default:
  4037. return -EINVAL;
  4038. }
  4039. val |= RBR_CFIG_B_VLD0;
  4040. switch (rp->rbr_sizes[0]) {
  4041. case 256:
  4042. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4043. break;
  4044. case 512:
  4045. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4046. break;
  4047. case 1 * 1024:
  4048. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4049. break;
  4050. case 2 * 1024:
  4051. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4052. break;
  4053. default:
  4054. return -EINVAL;
  4055. }
  4056. *ret = val;
  4057. return 0;
  4058. }
  4059. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4060. {
  4061. u64 val = nr64(RXDMA_CFIG1(channel));
  4062. int limit;
  4063. if (on)
  4064. val |= RXDMA_CFIG1_EN;
  4065. else
  4066. val &= ~RXDMA_CFIG1_EN;
  4067. nw64(RXDMA_CFIG1(channel), val);
  4068. limit = 1000;
  4069. while (--limit > 0) {
  4070. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4071. break;
  4072. udelay(10);
  4073. }
  4074. if (limit <= 0)
  4075. return -ENODEV;
  4076. return 0;
  4077. }
  4078. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4079. {
  4080. int err, channel = rp->rx_channel;
  4081. u64 val;
  4082. err = niu_rx_channel_reset(np, channel);
  4083. if (err)
  4084. return err;
  4085. err = niu_rx_channel_lpage_init(np, channel);
  4086. if (err)
  4087. return err;
  4088. niu_rx_channel_wred_init(np, rp);
  4089. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4090. nw64(RX_DMA_CTL_STAT(channel),
  4091. (RX_DMA_CTL_STAT_MEX |
  4092. RX_DMA_CTL_STAT_RCRTHRES |
  4093. RX_DMA_CTL_STAT_RCRTO |
  4094. RX_DMA_CTL_STAT_RBR_EMPTY));
  4095. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4096. nw64(RXDMA_CFIG2(channel),
  4097. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4098. RXDMA_CFIG2_FULL_HDR));
  4099. nw64(RBR_CFIG_A(channel),
  4100. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4101. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4102. err = niu_compute_rbr_cfig_b(rp, &val);
  4103. if (err)
  4104. return err;
  4105. nw64(RBR_CFIG_B(channel), val);
  4106. nw64(RCRCFIG_A(channel),
  4107. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4108. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4109. nw64(RCRCFIG_B(channel),
  4110. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4111. RCRCFIG_B_ENTOUT |
  4112. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4113. err = niu_enable_rx_channel(np, channel, 1);
  4114. if (err)
  4115. return err;
  4116. nw64(RBR_KICK(channel), rp->rbr_index);
  4117. val = nr64(RX_DMA_CTL_STAT(channel));
  4118. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4119. nw64(RX_DMA_CTL_STAT(channel), val);
  4120. return 0;
  4121. }
  4122. static int niu_init_rx_channels(struct niu *np)
  4123. {
  4124. unsigned long flags;
  4125. u64 seed = jiffies_64;
  4126. int err, i;
  4127. niu_lock_parent(np, flags);
  4128. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4129. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4130. niu_unlock_parent(np, flags);
  4131. /* XXX RXDMA 32bit mode? XXX */
  4132. niu_init_rdc_groups(np);
  4133. niu_init_drr_weight(np);
  4134. err = niu_init_hostinfo(np);
  4135. if (err)
  4136. return err;
  4137. for (i = 0; i < np->num_rx_rings; i++) {
  4138. struct rx_ring_info *rp = &np->rx_rings[i];
  4139. err = niu_init_one_rx_channel(np, rp);
  4140. if (err)
  4141. return err;
  4142. }
  4143. return 0;
  4144. }
  4145. static int niu_set_ip_frag_rule(struct niu *np)
  4146. {
  4147. struct niu_parent *parent = np->parent;
  4148. struct niu_classifier *cp = &np->clas;
  4149. struct niu_tcam_entry *tp;
  4150. int index, err;
  4151. index = cp->tcam_top;
  4152. tp = &parent->tcam[index];
  4153. /* Note that the noport bit is the same in both ipv4 and
  4154. * ipv6 format TCAM entries.
  4155. */
  4156. memset(tp, 0, sizeof(*tp));
  4157. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4158. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4159. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4160. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4161. err = tcam_write(np, index, tp->key, tp->key_mask);
  4162. if (err)
  4163. return err;
  4164. err = tcam_assoc_write(np, index, tp->assoc_data);
  4165. if (err)
  4166. return err;
  4167. tp->valid = 1;
  4168. cp->tcam_valid_entries++;
  4169. return 0;
  4170. }
  4171. static int niu_init_classifier_hw(struct niu *np)
  4172. {
  4173. struct niu_parent *parent = np->parent;
  4174. struct niu_classifier *cp = &np->clas;
  4175. int i, err;
  4176. nw64(H1POLY, cp->h1_init);
  4177. nw64(H2POLY, cp->h2_init);
  4178. err = niu_init_hostinfo(np);
  4179. if (err)
  4180. return err;
  4181. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4182. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4183. vlan_tbl_write(np, i, np->port,
  4184. vp->vlan_pref, vp->rdc_num);
  4185. }
  4186. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4187. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4188. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4189. ap->rdc_num, ap->mac_pref);
  4190. if (err)
  4191. return err;
  4192. }
  4193. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4194. int index = i - CLASS_CODE_USER_PROG1;
  4195. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4196. if (err)
  4197. return err;
  4198. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4199. if (err)
  4200. return err;
  4201. }
  4202. err = niu_set_ip_frag_rule(np);
  4203. if (err)
  4204. return err;
  4205. tcam_enable(np, 1);
  4206. return 0;
  4207. }
  4208. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4209. {
  4210. nw64(ZCP_RAM_DATA0, data[0]);
  4211. nw64(ZCP_RAM_DATA1, data[1]);
  4212. nw64(ZCP_RAM_DATA2, data[2]);
  4213. nw64(ZCP_RAM_DATA3, data[3]);
  4214. nw64(ZCP_RAM_DATA4, data[4]);
  4215. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4216. nw64(ZCP_RAM_ACC,
  4217. (ZCP_RAM_ACC_WRITE |
  4218. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4219. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4220. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4221. 1000, 100);
  4222. }
  4223. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4224. {
  4225. int err;
  4226. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4227. 1000, 100);
  4228. if (err) {
  4229. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4230. (unsigned long long)nr64(ZCP_RAM_ACC));
  4231. return err;
  4232. }
  4233. nw64(ZCP_RAM_ACC,
  4234. (ZCP_RAM_ACC_READ |
  4235. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4236. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4237. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4238. 1000, 100);
  4239. if (err) {
  4240. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4241. (unsigned long long)nr64(ZCP_RAM_ACC));
  4242. return err;
  4243. }
  4244. data[0] = nr64(ZCP_RAM_DATA0);
  4245. data[1] = nr64(ZCP_RAM_DATA1);
  4246. data[2] = nr64(ZCP_RAM_DATA2);
  4247. data[3] = nr64(ZCP_RAM_DATA3);
  4248. data[4] = nr64(ZCP_RAM_DATA4);
  4249. return 0;
  4250. }
  4251. static void niu_zcp_cfifo_reset(struct niu *np)
  4252. {
  4253. u64 val = nr64(RESET_CFIFO);
  4254. val |= RESET_CFIFO_RST(np->port);
  4255. nw64(RESET_CFIFO, val);
  4256. udelay(10);
  4257. val &= ~RESET_CFIFO_RST(np->port);
  4258. nw64(RESET_CFIFO, val);
  4259. }
  4260. static int niu_init_zcp(struct niu *np)
  4261. {
  4262. u64 data[5], rbuf[5];
  4263. int i, max, err;
  4264. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4265. if (np->port == 0 || np->port == 1)
  4266. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4267. else
  4268. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4269. } else
  4270. max = NIU_CFIFO_ENTRIES;
  4271. data[0] = 0;
  4272. data[1] = 0;
  4273. data[2] = 0;
  4274. data[3] = 0;
  4275. data[4] = 0;
  4276. for (i = 0; i < max; i++) {
  4277. err = niu_zcp_write(np, i, data);
  4278. if (err)
  4279. return err;
  4280. err = niu_zcp_read(np, i, rbuf);
  4281. if (err)
  4282. return err;
  4283. }
  4284. niu_zcp_cfifo_reset(np);
  4285. nw64(CFIFO_ECC(np->port), 0);
  4286. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4287. (void) nr64(ZCP_INT_STAT);
  4288. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4289. return 0;
  4290. }
  4291. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4292. {
  4293. u64 val = nr64_ipp(IPP_CFIG);
  4294. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4295. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4296. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4297. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4298. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4299. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4300. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4301. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4302. }
  4303. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4304. {
  4305. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4306. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4307. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4308. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4309. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4310. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4311. }
  4312. static int niu_ipp_reset(struct niu *np)
  4313. {
  4314. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4315. 1000, 100, "IPP_CFIG");
  4316. }
  4317. static int niu_init_ipp(struct niu *np)
  4318. {
  4319. u64 data[5], rbuf[5], val;
  4320. int i, max, err;
  4321. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4322. if (np->port == 0 || np->port == 1)
  4323. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4324. else
  4325. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4326. } else
  4327. max = NIU_DFIFO_ENTRIES;
  4328. data[0] = 0;
  4329. data[1] = 0;
  4330. data[2] = 0;
  4331. data[3] = 0;
  4332. data[4] = 0;
  4333. for (i = 0; i < max; i++) {
  4334. niu_ipp_write(np, i, data);
  4335. niu_ipp_read(np, i, rbuf);
  4336. }
  4337. (void) nr64_ipp(IPP_INT_STAT);
  4338. (void) nr64_ipp(IPP_INT_STAT);
  4339. err = niu_ipp_reset(np);
  4340. if (err)
  4341. return err;
  4342. (void) nr64_ipp(IPP_PKT_DIS);
  4343. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4344. (void) nr64_ipp(IPP_ECC);
  4345. (void) nr64_ipp(IPP_INT_STAT);
  4346. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4347. val = nr64_ipp(IPP_CFIG);
  4348. val &= ~IPP_CFIG_IP_MAX_PKT;
  4349. val |= (IPP_CFIG_IPP_ENABLE |
  4350. IPP_CFIG_DFIFO_ECC_EN |
  4351. IPP_CFIG_DROP_BAD_CRC |
  4352. IPP_CFIG_CKSUM_EN |
  4353. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4354. nw64_ipp(IPP_CFIG, val);
  4355. return 0;
  4356. }
  4357. static void niu_handle_led(struct niu *np, int status)
  4358. {
  4359. u64 val;
  4360. val = nr64_mac(XMAC_CONFIG);
  4361. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4362. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4363. if (status) {
  4364. val |= XMAC_CONFIG_LED_POLARITY;
  4365. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4366. } else {
  4367. val |= XMAC_CONFIG_FORCE_LED_ON;
  4368. val &= ~XMAC_CONFIG_LED_POLARITY;
  4369. }
  4370. }
  4371. nw64_mac(XMAC_CONFIG, val);
  4372. }
  4373. static void niu_init_xif_xmac(struct niu *np)
  4374. {
  4375. struct niu_link_config *lp = &np->link_config;
  4376. u64 val;
  4377. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4378. val = nr64(MIF_CONFIG);
  4379. val |= MIF_CONFIG_ATCA_GE;
  4380. nw64(MIF_CONFIG, val);
  4381. }
  4382. val = nr64_mac(XMAC_CONFIG);
  4383. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4384. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4385. if (lp->loopback_mode == LOOPBACK_MAC) {
  4386. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4387. val |= XMAC_CONFIG_LOOPBACK;
  4388. } else {
  4389. val &= ~XMAC_CONFIG_LOOPBACK;
  4390. }
  4391. if (np->flags & NIU_FLAGS_10G) {
  4392. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4393. } else {
  4394. val |= XMAC_CONFIG_LFS_DISABLE;
  4395. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4396. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4397. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4398. else
  4399. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4400. }
  4401. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4402. if (lp->active_speed == SPEED_100)
  4403. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4404. else
  4405. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4406. nw64_mac(XMAC_CONFIG, val);
  4407. val = nr64_mac(XMAC_CONFIG);
  4408. val &= ~XMAC_CONFIG_MODE_MASK;
  4409. if (np->flags & NIU_FLAGS_10G) {
  4410. val |= XMAC_CONFIG_MODE_XGMII;
  4411. } else {
  4412. if (lp->active_speed == SPEED_1000)
  4413. val |= XMAC_CONFIG_MODE_GMII;
  4414. else
  4415. val |= XMAC_CONFIG_MODE_MII;
  4416. }
  4417. nw64_mac(XMAC_CONFIG, val);
  4418. }
  4419. static void niu_init_xif_bmac(struct niu *np)
  4420. {
  4421. struct niu_link_config *lp = &np->link_config;
  4422. u64 val;
  4423. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4424. if (lp->loopback_mode == LOOPBACK_MAC)
  4425. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4426. else
  4427. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4428. if (lp->active_speed == SPEED_1000)
  4429. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4430. else
  4431. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4432. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4433. BMAC_XIF_CONFIG_LED_POLARITY);
  4434. if (!(np->flags & NIU_FLAGS_10G) &&
  4435. !(np->flags & NIU_FLAGS_FIBER) &&
  4436. lp->active_speed == SPEED_100)
  4437. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4438. else
  4439. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4440. nw64_mac(BMAC_XIF_CONFIG, val);
  4441. }
  4442. static void niu_init_xif(struct niu *np)
  4443. {
  4444. if (np->flags & NIU_FLAGS_XMAC)
  4445. niu_init_xif_xmac(np);
  4446. else
  4447. niu_init_xif_bmac(np);
  4448. }
  4449. static void niu_pcs_mii_reset(struct niu *np)
  4450. {
  4451. int limit = 1000;
  4452. u64 val = nr64_pcs(PCS_MII_CTL);
  4453. val |= PCS_MII_CTL_RST;
  4454. nw64_pcs(PCS_MII_CTL, val);
  4455. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4456. udelay(100);
  4457. val = nr64_pcs(PCS_MII_CTL);
  4458. }
  4459. }
  4460. static void niu_xpcs_reset(struct niu *np)
  4461. {
  4462. int limit = 1000;
  4463. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4464. val |= XPCS_CONTROL1_RESET;
  4465. nw64_xpcs(XPCS_CONTROL1, val);
  4466. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4467. udelay(100);
  4468. val = nr64_xpcs(XPCS_CONTROL1);
  4469. }
  4470. }
  4471. static int niu_init_pcs(struct niu *np)
  4472. {
  4473. struct niu_link_config *lp = &np->link_config;
  4474. u64 val;
  4475. switch (np->flags & (NIU_FLAGS_10G |
  4476. NIU_FLAGS_FIBER |
  4477. NIU_FLAGS_XCVR_SERDES)) {
  4478. case NIU_FLAGS_FIBER:
  4479. /* 1G fiber */
  4480. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4481. nw64_pcs(PCS_DPATH_MODE, 0);
  4482. niu_pcs_mii_reset(np);
  4483. break;
  4484. case NIU_FLAGS_10G:
  4485. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4486. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4487. /* 10G SERDES */
  4488. if (!(np->flags & NIU_FLAGS_XMAC))
  4489. return -EINVAL;
  4490. /* 10G copper or fiber */
  4491. val = nr64_mac(XMAC_CONFIG);
  4492. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4493. nw64_mac(XMAC_CONFIG, val);
  4494. niu_xpcs_reset(np);
  4495. val = nr64_xpcs(XPCS_CONTROL1);
  4496. if (lp->loopback_mode == LOOPBACK_PHY)
  4497. val |= XPCS_CONTROL1_LOOPBACK;
  4498. else
  4499. val &= ~XPCS_CONTROL1_LOOPBACK;
  4500. nw64_xpcs(XPCS_CONTROL1, val);
  4501. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4502. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4503. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4504. break;
  4505. case NIU_FLAGS_XCVR_SERDES:
  4506. /* 1G SERDES */
  4507. niu_pcs_mii_reset(np);
  4508. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4509. nw64_pcs(PCS_DPATH_MODE, 0);
  4510. break;
  4511. case 0:
  4512. /* 1G copper */
  4513. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4514. /* 1G RGMII FIBER */
  4515. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4516. niu_pcs_mii_reset(np);
  4517. break;
  4518. default:
  4519. return -EINVAL;
  4520. }
  4521. return 0;
  4522. }
  4523. static int niu_reset_tx_xmac(struct niu *np)
  4524. {
  4525. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4526. (XTXMAC_SW_RST_REG_RS |
  4527. XTXMAC_SW_RST_SOFT_RST),
  4528. 1000, 100, "XTXMAC_SW_RST");
  4529. }
  4530. static int niu_reset_tx_bmac(struct niu *np)
  4531. {
  4532. int limit;
  4533. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4534. limit = 1000;
  4535. while (--limit >= 0) {
  4536. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4537. break;
  4538. udelay(100);
  4539. }
  4540. if (limit < 0) {
  4541. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4542. np->port,
  4543. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4544. return -ENODEV;
  4545. }
  4546. return 0;
  4547. }
  4548. static int niu_reset_tx_mac(struct niu *np)
  4549. {
  4550. if (np->flags & NIU_FLAGS_XMAC)
  4551. return niu_reset_tx_xmac(np);
  4552. else
  4553. return niu_reset_tx_bmac(np);
  4554. }
  4555. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4556. {
  4557. u64 val;
  4558. val = nr64_mac(XMAC_MIN);
  4559. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4560. XMAC_MIN_RX_MIN_PKT_SIZE);
  4561. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4562. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4563. nw64_mac(XMAC_MIN, val);
  4564. nw64_mac(XMAC_MAX, max);
  4565. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4566. val = nr64_mac(XMAC_IPG);
  4567. if (np->flags & NIU_FLAGS_10G) {
  4568. val &= ~XMAC_IPG_IPG_XGMII;
  4569. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4570. } else {
  4571. val &= ~XMAC_IPG_IPG_MII_GMII;
  4572. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4573. }
  4574. nw64_mac(XMAC_IPG, val);
  4575. val = nr64_mac(XMAC_CONFIG);
  4576. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4577. XMAC_CONFIG_STRETCH_MODE |
  4578. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4579. XMAC_CONFIG_TX_ENABLE);
  4580. nw64_mac(XMAC_CONFIG, val);
  4581. nw64_mac(TXMAC_FRM_CNT, 0);
  4582. nw64_mac(TXMAC_BYTE_CNT, 0);
  4583. }
  4584. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4585. {
  4586. u64 val;
  4587. nw64_mac(BMAC_MIN_FRAME, min);
  4588. nw64_mac(BMAC_MAX_FRAME, max);
  4589. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4590. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4591. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4592. val = nr64_mac(BTXMAC_CONFIG);
  4593. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4594. BTXMAC_CONFIG_ENABLE);
  4595. nw64_mac(BTXMAC_CONFIG, val);
  4596. }
  4597. static void niu_init_tx_mac(struct niu *np)
  4598. {
  4599. u64 min, max;
  4600. min = 64;
  4601. if (np->dev->mtu > ETH_DATA_LEN)
  4602. max = 9216;
  4603. else
  4604. max = 1522;
  4605. /* The XMAC_MIN register only accepts values for TX min which
  4606. * have the low 3 bits cleared.
  4607. */
  4608. BUG_ON(min & 0x7);
  4609. if (np->flags & NIU_FLAGS_XMAC)
  4610. niu_init_tx_xmac(np, min, max);
  4611. else
  4612. niu_init_tx_bmac(np, min, max);
  4613. }
  4614. static int niu_reset_rx_xmac(struct niu *np)
  4615. {
  4616. int limit;
  4617. nw64_mac(XRXMAC_SW_RST,
  4618. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4619. limit = 1000;
  4620. while (--limit >= 0) {
  4621. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4622. XRXMAC_SW_RST_SOFT_RST)))
  4623. break;
  4624. udelay(100);
  4625. }
  4626. if (limit < 0) {
  4627. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4628. np->port,
  4629. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4630. return -ENODEV;
  4631. }
  4632. return 0;
  4633. }
  4634. static int niu_reset_rx_bmac(struct niu *np)
  4635. {
  4636. int limit;
  4637. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4638. limit = 1000;
  4639. while (--limit >= 0) {
  4640. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4641. break;
  4642. udelay(100);
  4643. }
  4644. if (limit < 0) {
  4645. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4646. np->port,
  4647. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4648. return -ENODEV;
  4649. }
  4650. return 0;
  4651. }
  4652. static int niu_reset_rx_mac(struct niu *np)
  4653. {
  4654. if (np->flags & NIU_FLAGS_XMAC)
  4655. return niu_reset_rx_xmac(np);
  4656. else
  4657. return niu_reset_rx_bmac(np);
  4658. }
  4659. static void niu_init_rx_xmac(struct niu *np)
  4660. {
  4661. struct niu_parent *parent = np->parent;
  4662. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4663. int first_rdc_table = tp->first_table_num;
  4664. unsigned long i;
  4665. u64 val;
  4666. nw64_mac(XMAC_ADD_FILT0, 0);
  4667. nw64_mac(XMAC_ADD_FILT1, 0);
  4668. nw64_mac(XMAC_ADD_FILT2, 0);
  4669. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4670. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4671. for (i = 0; i < MAC_NUM_HASH; i++)
  4672. nw64_mac(XMAC_HASH_TBL(i), 0);
  4673. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4674. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4675. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4676. val = nr64_mac(XMAC_CONFIG);
  4677. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4678. XMAC_CONFIG_PROMISCUOUS |
  4679. XMAC_CONFIG_PROMISC_GROUP |
  4680. XMAC_CONFIG_ERR_CHK_DIS |
  4681. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4682. XMAC_CONFIG_RESERVED_MULTICAST |
  4683. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4684. XMAC_CONFIG_ADDR_FILTER_EN |
  4685. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4686. XMAC_CONFIG_STRIP_CRC |
  4687. XMAC_CONFIG_PASS_FLOW_CTRL |
  4688. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4689. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4690. nw64_mac(XMAC_CONFIG, val);
  4691. nw64_mac(RXMAC_BT_CNT, 0);
  4692. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4693. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4694. nw64_mac(RXMAC_FRAG_CNT, 0);
  4695. nw64_mac(RXMAC_HIST_CNT1, 0);
  4696. nw64_mac(RXMAC_HIST_CNT2, 0);
  4697. nw64_mac(RXMAC_HIST_CNT3, 0);
  4698. nw64_mac(RXMAC_HIST_CNT4, 0);
  4699. nw64_mac(RXMAC_HIST_CNT5, 0);
  4700. nw64_mac(RXMAC_HIST_CNT6, 0);
  4701. nw64_mac(RXMAC_HIST_CNT7, 0);
  4702. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4703. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4704. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4705. nw64_mac(LINK_FAULT_CNT, 0);
  4706. }
  4707. static void niu_init_rx_bmac(struct niu *np)
  4708. {
  4709. struct niu_parent *parent = np->parent;
  4710. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4711. int first_rdc_table = tp->first_table_num;
  4712. unsigned long i;
  4713. u64 val;
  4714. nw64_mac(BMAC_ADD_FILT0, 0);
  4715. nw64_mac(BMAC_ADD_FILT1, 0);
  4716. nw64_mac(BMAC_ADD_FILT2, 0);
  4717. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4718. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4719. for (i = 0; i < MAC_NUM_HASH; i++)
  4720. nw64_mac(BMAC_HASH_TBL(i), 0);
  4721. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4722. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4723. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4724. val = nr64_mac(BRXMAC_CONFIG);
  4725. val &= ~(BRXMAC_CONFIG_ENABLE |
  4726. BRXMAC_CONFIG_STRIP_PAD |
  4727. BRXMAC_CONFIG_STRIP_FCS |
  4728. BRXMAC_CONFIG_PROMISC |
  4729. BRXMAC_CONFIG_PROMISC_GRP |
  4730. BRXMAC_CONFIG_ADDR_FILT_EN |
  4731. BRXMAC_CONFIG_DISCARD_DIS);
  4732. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4733. nw64_mac(BRXMAC_CONFIG, val);
  4734. val = nr64_mac(BMAC_ADDR_CMPEN);
  4735. val |= BMAC_ADDR_CMPEN_EN0;
  4736. nw64_mac(BMAC_ADDR_CMPEN, val);
  4737. }
  4738. static void niu_init_rx_mac(struct niu *np)
  4739. {
  4740. niu_set_primary_mac(np, np->dev->dev_addr);
  4741. if (np->flags & NIU_FLAGS_XMAC)
  4742. niu_init_rx_xmac(np);
  4743. else
  4744. niu_init_rx_bmac(np);
  4745. }
  4746. static void niu_enable_tx_xmac(struct niu *np, int on)
  4747. {
  4748. u64 val = nr64_mac(XMAC_CONFIG);
  4749. if (on)
  4750. val |= XMAC_CONFIG_TX_ENABLE;
  4751. else
  4752. val &= ~XMAC_CONFIG_TX_ENABLE;
  4753. nw64_mac(XMAC_CONFIG, val);
  4754. }
  4755. static void niu_enable_tx_bmac(struct niu *np, int on)
  4756. {
  4757. u64 val = nr64_mac(BTXMAC_CONFIG);
  4758. if (on)
  4759. val |= BTXMAC_CONFIG_ENABLE;
  4760. else
  4761. val &= ~BTXMAC_CONFIG_ENABLE;
  4762. nw64_mac(BTXMAC_CONFIG, val);
  4763. }
  4764. static void niu_enable_tx_mac(struct niu *np, int on)
  4765. {
  4766. if (np->flags & NIU_FLAGS_XMAC)
  4767. niu_enable_tx_xmac(np, on);
  4768. else
  4769. niu_enable_tx_bmac(np, on);
  4770. }
  4771. static void niu_enable_rx_xmac(struct niu *np, int on)
  4772. {
  4773. u64 val = nr64_mac(XMAC_CONFIG);
  4774. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4775. XMAC_CONFIG_PROMISCUOUS);
  4776. if (np->flags & NIU_FLAGS_MCAST)
  4777. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4778. if (np->flags & NIU_FLAGS_PROMISC)
  4779. val |= XMAC_CONFIG_PROMISCUOUS;
  4780. if (on)
  4781. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4782. else
  4783. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4784. nw64_mac(XMAC_CONFIG, val);
  4785. }
  4786. static void niu_enable_rx_bmac(struct niu *np, int on)
  4787. {
  4788. u64 val = nr64_mac(BRXMAC_CONFIG);
  4789. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4790. BRXMAC_CONFIG_PROMISC);
  4791. if (np->flags & NIU_FLAGS_MCAST)
  4792. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4793. if (np->flags & NIU_FLAGS_PROMISC)
  4794. val |= BRXMAC_CONFIG_PROMISC;
  4795. if (on)
  4796. val |= BRXMAC_CONFIG_ENABLE;
  4797. else
  4798. val &= ~BRXMAC_CONFIG_ENABLE;
  4799. nw64_mac(BRXMAC_CONFIG, val);
  4800. }
  4801. static void niu_enable_rx_mac(struct niu *np, int on)
  4802. {
  4803. if (np->flags & NIU_FLAGS_XMAC)
  4804. niu_enable_rx_xmac(np, on);
  4805. else
  4806. niu_enable_rx_bmac(np, on);
  4807. }
  4808. static int niu_init_mac(struct niu *np)
  4809. {
  4810. int err;
  4811. niu_init_xif(np);
  4812. err = niu_init_pcs(np);
  4813. if (err)
  4814. return err;
  4815. err = niu_reset_tx_mac(np);
  4816. if (err)
  4817. return err;
  4818. niu_init_tx_mac(np);
  4819. err = niu_reset_rx_mac(np);
  4820. if (err)
  4821. return err;
  4822. niu_init_rx_mac(np);
  4823. /* This looks hookey but the RX MAC reset we just did will
  4824. * undo some of the state we setup in niu_init_tx_mac() so we
  4825. * have to call it again. In particular, the RX MAC reset will
  4826. * set the XMAC_MAX register back to it's default value.
  4827. */
  4828. niu_init_tx_mac(np);
  4829. niu_enable_tx_mac(np, 1);
  4830. niu_enable_rx_mac(np, 1);
  4831. return 0;
  4832. }
  4833. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4834. {
  4835. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4836. }
  4837. static void niu_stop_tx_channels(struct niu *np)
  4838. {
  4839. int i;
  4840. for (i = 0; i < np->num_tx_rings; i++) {
  4841. struct tx_ring_info *rp = &np->tx_rings[i];
  4842. niu_stop_one_tx_channel(np, rp);
  4843. }
  4844. }
  4845. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4846. {
  4847. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4848. }
  4849. static void niu_reset_tx_channels(struct niu *np)
  4850. {
  4851. int i;
  4852. for (i = 0; i < np->num_tx_rings; i++) {
  4853. struct tx_ring_info *rp = &np->tx_rings[i];
  4854. niu_reset_one_tx_channel(np, rp);
  4855. }
  4856. }
  4857. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4858. {
  4859. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4860. }
  4861. static void niu_stop_rx_channels(struct niu *np)
  4862. {
  4863. int i;
  4864. for (i = 0; i < np->num_rx_rings; i++) {
  4865. struct rx_ring_info *rp = &np->rx_rings[i];
  4866. niu_stop_one_rx_channel(np, rp);
  4867. }
  4868. }
  4869. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4870. {
  4871. int channel = rp->rx_channel;
  4872. (void) niu_rx_channel_reset(np, channel);
  4873. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4874. nw64(RX_DMA_CTL_STAT(channel), 0);
  4875. (void) niu_enable_rx_channel(np, channel, 0);
  4876. }
  4877. static void niu_reset_rx_channels(struct niu *np)
  4878. {
  4879. int i;
  4880. for (i = 0; i < np->num_rx_rings; i++) {
  4881. struct rx_ring_info *rp = &np->rx_rings[i];
  4882. niu_reset_one_rx_channel(np, rp);
  4883. }
  4884. }
  4885. static void niu_disable_ipp(struct niu *np)
  4886. {
  4887. u64 rd, wr, val;
  4888. int limit;
  4889. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4890. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4891. limit = 100;
  4892. while (--limit >= 0 && (rd != wr)) {
  4893. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4894. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4895. }
  4896. if (limit < 0 &&
  4897. (rd != 0 && wr != 1)) {
  4898. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4899. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4900. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4901. }
  4902. val = nr64_ipp(IPP_CFIG);
  4903. val &= ~(IPP_CFIG_IPP_ENABLE |
  4904. IPP_CFIG_DFIFO_ECC_EN |
  4905. IPP_CFIG_DROP_BAD_CRC |
  4906. IPP_CFIG_CKSUM_EN);
  4907. nw64_ipp(IPP_CFIG, val);
  4908. (void) niu_ipp_reset(np);
  4909. }
  4910. static int niu_init_hw(struct niu *np)
  4911. {
  4912. int i, err;
  4913. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4914. niu_txc_enable_port(np, 1);
  4915. niu_txc_port_dma_enable(np, 1);
  4916. niu_txc_set_imask(np, 0);
  4917. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4918. for (i = 0; i < np->num_tx_rings; i++) {
  4919. struct tx_ring_info *rp = &np->tx_rings[i];
  4920. err = niu_init_one_tx_channel(np, rp);
  4921. if (err)
  4922. return err;
  4923. }
  4924. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4925. err = niu_init_rx_channels(np);
  4926. if (err)
  4927. goto out_uninit_tx_channels;
  4928. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4929. err = niu_init_classifier_hw(np);
  4930. if (err)
  4931. goto out_uninit_rx_channels;
  4932. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4933. err = niu_init_zcp(np);
  4934. if (err)
  4935. goto out_uninit_rx_channels;
  4936. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4937. err = niu_init_ipp(np);
  4938. if (err)
  4939. goto out_uninit_rx_channels;
  4940. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4941. err = niu_init_mac(np);
  4942. if (err)
  4943. goto out_uninit_ipp;
  4944. return 0;
  4945. out_uninit_ipp:
  4946. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4947. niu_disable_ipp(np);
  4948. out_uninit_rx_channels:
  4949. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4950. niu_stop_rx_channels(np);
  4951. niu_reset_rx_channels(np);
  4952. out_uninit_tx_channels:
  4953. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4954. niu_stop_tx_channels(np);
  4955. niu_reset_tx_channels(np);
  4956. return err;
  4957. }
  4958. static void niu_stop_hw(struct niu *np)
  4959. {
  4960. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4961. niu_enable_interrupts(np, 0);
  4962. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4963. niu_enable_rx_mac(np, 0);
  4964. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4965. niu_disable_ipp(np);
  4966. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4967. niu_stop_tx_channels(np);
  4968. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4969. niu_stop_rx_channels(np);
  4970. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4971. niu_reset_tx_channels(np);
  4972. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4973. niu_reset_rx_channels(np);
  4974. }
  4975. static void niu_set_irq_name(struct niu *np)
  4976. {
  4977. int port = np->port;
  4978. int i, j = 1;
  4979. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4980. if (port == 0) {
  4981. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4982. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4983. j = 3;
  4984. }
  4985. for (i = 0; i < np->num_ldg - j; i++) {
  4986. if (i < np->num_rx_rings)
  4987. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4988. np->dev->name, i);
  4989. else if (i < np->num_tx_rings + np->num_rx_rings)
  4990. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4991. i - np->num_rx_rings);
  4992. }
  4993. }
  4994. static int niu_request_irq(struct niu *np)
  4995. {
  4996. int i, j, err;
  4997. niu_set_irq_name(np);
  4998. err = 0;
  4999. for (i = 0; i < np->num_ldg; i++) {
  5000. struct niu_ldg *lp = &np->ldg[i];
  5001. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  5002. np->irq_name[i], lp);
  5003. if (err)
  5004. goto out_free_irqs;
  5005. }
  5006. return 0;
  5007. out_free_irqs:
  5008. for (j = 0; j < i; j++) {
  5009. struct niu_ldg *lp = &np->ldg[j];
  5010. free_irq(lp->irq, lp);
  5011. }
  5012. return err;
  5013. }
  5014. static void niu_free_irq(struct niu *np)
  5015. {
  5016. int i;
  5017. for (i = 0; i < np->num_ldg; i++) {
  5018. struct niu_ldg *lp = &np->ldg[i];
  5019. free_irq(lp->irq, lp);
  5020. }
  5021. }
  5022. static void niu_enable_napi(struct niu *np)
  5023. {
  5024. int i;
  5025. for (i = 0; i < np->num_ldg; i++)
  5026. napi_enable(&np->ldg[i].napi);
  5027. }
  5028. static void niu_disable_napi(struct niu *np)
  5029. {
  5030. int i;
  5031. for (i = 0; i < np->num_ldg; i++)
  5032. napi_disable(&np->ldg[i].napi);
  5033. }
  5034. static int niu_open(struct net_device *dev)
  5035. {
  5036. struct niu *np = netdev_priv(dev);
  5037. int err;
  5038. netif_carrier_off(dev);
  5039. err = niu_alloc_channels(np);
  5040. if (err)
  5041. goto out_err;
  5042. err = niu_enable_interrupts(np, 0);
  5043. if (err)
  5044. goto out_free_channels;
  5045. err = niu_request_irq(np);
  5046. if (err)
  5047. goto out_free_channels;
  5048. niu_enable_napi(np);
  5049. spin_lock_irq(&np->lock);
  5050. err = niu_init_hw(np);
  5051. if (!err) {
  5052. timer_setup(&np->timer, niu_timer, 0);
  5053. np->timer.expires = jiffies + HZ;
  5054. err = niu_enable_interrupts(np, 1);
  5055. if (err)
  5056. niu_stop_hw(np);
  5057. }
  5058. spin_unlock_irq(&np->lock);
  5059. if (err) {
  5060. niu_disable_napi(np);
  5061. goto out_free_irq;
  5062. }
  5063. netif_tx_start_all_queues(dev);
  5064. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5065. netif_carrier_on(dev);
  5066. add_timer(&np->timer);
  5067. return 0;
  5068. out_free_irq:
  5069. niu_free_irq(np);
  5070. out_free_channels:
  5071. niu_free_channels(np);
  5072. out_err:
  5073. return err;
  5074. }
  5075. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5076. {
  5077. cancel_work_sync(&np->reset_task);
  5078. niu_disable_napi(np);
  5079. netif_tx_stop_all_queues(dev);
  5080. del_timer_sync(&np->timer);
  5081. spin_lock_irq(&np->lock);
  5082. niu_stop_hw(np);
  5083. spin_unlock_irq(&np->lock);
  5084. }
  5085. static int niu_close(struct net_device *dev)
  5086. {
  5087. struct niu *np = netdev_priv(dev);
  5088. niu_full_shutdown(np, dev);
  5089. niu_free_irq(np);
  5090. niu_free_channels(np);
  5091. niu_handle_led(np, 0);
  5092. return 0;
  5093. }
  5094. static void niu_sync_xmac_stats(struct niu *np)
  5095. {
  5096. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5097. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5098. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5099. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5100. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5101. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5102. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5103. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5104. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5105. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5106. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5107. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5108. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5109. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5110. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5111. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5112. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5113. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5114. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5115. }
  5116. static void niu_sync_bmac_stats(struct niu *np)
  5117. {
  5118. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5119. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5120. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5121. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5122. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5123. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5124. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5125. }
  5126. static void niu_sync_mac_stats(struct niu *np)
  5127. {
  5128. if (np->flags & NIU_FLAGS_XMAC)
  5129. niu_sync_xmac_stats(np);
  5130. else
  5131. niu_sync_bmac_stats(np);
  5132. }
  5133. static void niu_get_rx_stats(struct niu *np,
  5134. struct rtnl_link_stats64 *stats)
  5135. {
  5136. u64 pkts, dropped, errors, bytes;
  5137. struct rx_ring_info *rx_rings;
  5138. int i;
  5139. pkts = dropped = errors = bytes = 0;
  5140. rx_rings = READ_ONCE(np->rx_rings);
  5141. if (!rx_rings)
  5142. goto no_rings;
  5143. for (i = 0; i < np->num_rx_rings; i++) {
  5144. struct rx_ring_info *rp = &rx_rings[i];
  5145. niu_sync_rx_discard_stats(np, rp, 0);
  5146. pkts += rp->rx_packets;
  5147. bytes += rp->rx_bytes;
  5148. dropped += rp->rx_dropped;
  5149. errors += rp->rx_errors;
  5150. }
  5151. no_rings:
  5152. stats->rx_packets = pkts;
  5153. stats->rx_bytes = bytes;
  5154. stats->rx_dropped = dropped;
  5155. stats->rx_errors = errors;
  5156. }
  5157. static void niu_get_tx_stats(struct niu *np,
  5158. struct rtnl_link_stats64 *stats)
  5159. {
  5160. u64 pkts, errors, bytes;
  5161. struct tx_ring_info *tx_rings;
  5162. int i;
  5163. pkts = errors = bytes = 0;
  5164. tx_rings = READ_ONCE(np->tx_rings);
  5165. if (!tx_rings)
  5166. goto no_rings;
  5167. for (i = 0; i < np->num_tx_rings; i++) {
  5168. struct tx_ring_info *rp = &tx_rings[i];
  5169. pkts += rp->tx_packets;
  5170. bytes += rp->tx_bytes;
  5171. errors += rp->tx_errors;
  5172. }
  5173. no_rings:
  5174. stats->tx_packets = pkts;
  5175. stats->tx_bytes = bytes;
  5176. stats->tx_errors = errors;
  5177. }
  5178. static void niu_get_stats(struct net_device *dev,
  5179. struct rtnl_link_stats64 *stats)
  5180. {
  5181. struct niu *np = netdev_priv(dev);
  5182. if (netif_running(dev)) {
  5183. niu_get_rx_stats(np, stats);
  5184. niu_get_tx_stats(np, stats);
  5185. }
  5186. }
  5187. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5188. {
  5189. int i;
  5190. for (i = 0; i < 16; i++)
  5191. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5192. }
  5193. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5194. {
  5195. int i;
  5196. for (i = 0; i < 16; i++)
  5197. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5198. }
  5199. static void niu_load_hash(struct niu *np, u16 *hash)
  5200. {
  5201. if (np->flags & NIU_FLAGS_XMAC)
  5202. niu_load_hash_xmac(np, hash);
  5203. else
  5204. niu_load_hash_bmac(np, hash);
  5205. }
  5206. static void niu_set_rx_mode(struct net_device *dev)
  5207. {
  5208. struct niu *np = netdev_priv(dev);
  5209. int i, alt_cnt, err;
  5210. struct netdev_hw_addr *ha;
  5211. unsigned long flags;
  5212. u16 hash[16] = { 0, };
  5213. spin_lock_irqsave(&np->lock, flags);
  5214. niu_enable_rx_mac(np, 0);
  5215. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5216. if (dev->flags & IFF_PROMISC)
  5217. np->flags |= NIU_FLAGS_PROMISC;
  5218. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5219. np->flags |= NIU_FLAGS_MCAST;
  5220. alt_cnt = netdev_uc_count(dev);
  5221. if (alt_cnt > niu_num_alt_addr(np)) {
  5222. alt_cnt = 0;
  5223. np->flags |= NIU_FLAGS_PROMISC;
  5224. }
  5225. if (alt_cnt) {
  5226. int index = 0;
  5227. netdev_for_each_uc_addr(ha, dev) {
  5228. err = niu_set_alt_mac(np, index, ha->addr);
  5229. if (err)
  5230. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5231. err, index);
  5232. err = niu_enable_alt_mac(np, index, 1);
  5233. if (err)
  5234. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5235. err, index);
  5236. index++;
  5237. }
  5238. } else {
  5239. int alt_start;
  5240. if (np->flags & NIU_FLAGS_XMAC)
  5241. alt_start = 0;
  5242. else
  5243. alt_start = 1;
  5244. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5245. err = niu_enable_alt_mac(np, i, 0);
  5246. if (err)
  5247. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5248. err, i);
  5249. }
  5250. }
  5251. if (dev->flags & IFF_ALLMULTI) {
  5252. for (i = 0; i < 16; i++)
  5253. hash[i] = 0xffff;
  5254. } else if (!netdev_mc_empty(dev)) {
  5255. netdev_for_each_mc_addr(ha, dev) {
  5256. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5257. crc >>= 24;
  5258. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5259. }
  5260. }
  5261. if (np->flags & NIU_FLAGS_MCAST)
  5262. niu_load_hash(np, hash);
  5263. niu_enable_rx_mac(np, 1);
  5264. spin_unlock_irqrestore(&np->lock, flags);
  5265. }
  5266. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5267. {
  5268. struct niu *np = netdev_priv(dev);
  5269. struct sockaddr *addr = p;
  5270. unsigned long flags;
  5271. if (!is_valid_ether_addr(addr->sa_data))
  5272. return -EADDRNOTAVAIL;
  5273. eth_hw_addr_set(dev, addr->sa_data);
  5274. if (!netif_running(dev))
  5275. return 0;
  5276. spin_lock_irqsave(&np->lock, flags);
  5277. niu_enable_rx_mac(np, 0);
  5278. niu_set_primary_mac(np, dev->dev_addr);
  5279. niu_enable_rx_mac(np, 1);
  5280. spin_unlock_irqrestore(&np->lock, flags);
  5281. return 0;
  5282. }
  5283. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5284. {
  5285. return -EOPNOTSUPP;
  5286. }
  5287. static void niu_netif_stop(struct niu *np)
  5288. {
  5289. netif_trans_update(np->dev); /* prevent tx timeout */
  5290. niu_disable_napi(np);
  5291. netif_tx_disable(np->dev);
  5292. }
  5293. static void niu_netif_start(struct niu *np)
  5294. {
  5295. /* NOTE: unconditional netif_wake_queue is only appropriate
  5296. * so long as all callers are assured to have free tx slots
  5297. * (such as after niu_init_hw).
  5298. */
  5299. netif_tx_wake_all_queues(np->dev);
  5300. niu_enable_napi(np);
  5301. niu_enable_interrupts(np, 1);
  5302. }
  5303. static void niu_reset_buffers(struct niu *np)
  5304. {
  5305. int i, j, k, err;
  5306. if (np->rx_rings) {
  5307. for (i = 0; i < np->num_rx_rings; i++) {
  5308. struct rx_ring_info *rp = &np->rx_rings[i];
  5309. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5310. struct page *page;
  5311. page = rp->rxhash[j];
  5312. while (page) {
  5313. struct page *next = niu_next_page(page);
  5314. u64 base = page->index;
  5315. base = base >> RBR_DESCR_ADDR_SHIFT;
  5316. rp->rbr[k++] = cpu_to_le32(base);
  5317. page = next;
  5318. }
  5319. }
  5320. for (; k < MAX_RBR_RING_SIZE; k++) {
  5321. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5322. if (unlikely(err))
  5323. break;
  5324. }
  5325. rp->rbr_index = rp->rbr_table_size - 1;
  5326. rp->rcr_index = 0;
  5327. rp->rbr_pending = 0;
  5328. rp->rbr_refill_pending = 0;
  5329. }
  5330. }
  5331. if (np->tx_rings) {
  5332. for (i = 0; i < np->num_tx_rings; i++) {
  5333. struct tx_ring_info *rp = &np->tx_rings[i];
  5334. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5335. if (rp->tx_buffs[j].skb)
  5336. (void) release_tx_packet(np, rp, j);
  5337. }
  5338. rp->pending = MAX_TX_RING_SIZE;
  5339. rp->prod = 0;
  5340. rp->cons = 0;
  5341. rp->wrap_bit = 0;
  5342. }
  5343. }
  5344. }
  5345. static void niu_reset_task(struct work_struct *work)
  5346. {
  5347. struct niu *np = container_of(work, struct niu, reset_task);
  5348. unsigned long flags;
  5349. int err;
  5350. spin_lock_irqsave(&np->lock, flags);
  5351. if (!netif_running(np->dev)) {
  5352. spin_unlock_irqrestore(&np->lock, flags);
  5353. return;
  5354. }
  5355. spin_unlock_irqrestore(&np->lock, flags);
  5356. del_timer_sync(&np->timer);
  5357. niu_netif_stop(np);
  5358. spin_lock_irqsave(&np->lock, flags);
  5359. niu_stop_hw(np);
  5360. spin_unlock_irqrestore(&np->lock, flags);
  5361. niu_reset_buffers(np);
  5362. spin_lock_irqsave(&np->lock, flags);
  5363. err = niu_init_hw(np);
  5364. if (!err) {
  5365. np->timer.expires = jiffies + HZ;
  5366. add_timer(&np->timer);
  5367. niu_netif_start(np);
  5368. }
  5369. spin_unlock_irqrestore(&np->lock, flags);
  5370. }
  5371. static void niu_tx_timeout(struct net_device *dev, unsigned int txqueue)
  5372. {
  5373. struct niu *np = netdev_priv(dev);
  5374. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5375. dev->name);
  5376. schedule_work(&np->reset_task);
  5377. }
  5378. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5379. u64 mapping, u64 len, u64 mark,
  5380. u64 n_frags)
  5381. {
  5382. __le64 *desc = &rp->descr[index];
  5383. *desc = cpu_to_le64(mark |
  5384. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5385. (len << TX_DESC_TR_LEN_SHIFT) |
  5386. (mapping & TX_DESC_SAD));
  5387. }
  5388. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5389. u64 pad_bytes, u64 len)
  5390. {
  5391. u16 eth_proto, eth_proto_inner;
  5392. u64 csum_bits, l3off, ihl, ret;
  5393. u8 ip_proto;
  5394. int ipv6;
  5395. eth_proto = be16_to_cpu(ehdr->h_proto);
  5396. eth_proto_inner = eth_proto;
  5397. if (eth_proto == ETH_P_8021Q) {
  5398. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5399. __be16 val = vp->h_vlan_encapsulated_proto;
  5400. eth_proto_inner = be16_to_cpu(val);
  5401. }
  5402. ipv6 = ihl = 0;
  5403. switch (skb->protocol) {
  5404. case cpu_to_be16(ETH_P_IP):
  5405. ip_proto = ip_hdr(skb)->protocol;
  5406. ihl = ip_hdr(skb)->ihl;
  5407. break;
  5408. case cpu_to_be16(ETH_P_IPV6):
  5409. ip_proto = ipv6_hdr(skb)->nexthdr;
  5410. ihl = (40 >> 2);
  5411. ipv6 = 1;
  5412. break;
  5413. default:
  5414. ip_proto = ihl = 0;
  5415. break;
  5416. }
  5417. csum_bits = TXHDR_CSUM_NONE;
  5418. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5419. u64 start, stuff;
  5420. csum_bits = (ip_proto == IPPROTO_TCP ?
  5421. TXHDR_CSUM_TCP :
  5422. (ip_proto == IPPROTO_UDP ?
  5423. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5424. start = skb_checksum_start_offset(skb) -
  5425. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5426. stuff = start + skb->csum_offset;
  5427. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5428. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5429. }
  5430. l3off = skb_network_offset(skb) -
  5431. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5432. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5433. (len << TXHDR_LEN_SHIFT) |
  5434. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5435. (ihl << TXHDR_IHL_SHIFT) |
  5436. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5437. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5438. (ipv6 ? TXHDR_IP_VER : 0) |
  5439. csum_bits);
  5440. return ret;
  5441. }
  5442. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5443. struct net_device *dev)
  5444. {
  5445. struct niu *np = netdev_priv(dev);
  5446. unsigned long align, headroom;
  5447. struct netdev_queue *txq;
  5448. struct tx_ring_info *rp;
  5449. struct tx_pkt_hdr *tp;
  5450. unsigned int len, nfg;
  5451. struct ethhdr *ehdr;
  5452. int prod, i, tlen;
  5453. u64 mapping, mrk;
  5454. i = skb_get_queue_mapping(skb);
  5455. rp = &np->tx_rings[i];
  5456. txq = netdev_get_tx_queue(dev, i);
  5457. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5458. netif_tx_stop_queue(txq);
  5459. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5460. rp->tx_errors++;
  5461. return NETDEV_TX_BUSY;
  5462. }
  5463. if (eth_skb_pad(skb))
  5464. goto out;
  5465. len = sizeof(struct tx_pkt_hdr) + 15;
  5466. if (skb_headroom(skb) < len) {
  5467. struct sk_buff *skb_new;
  5468. skb_new = skb_realloc_headroom(skb, len);
  5469. if (!skb_new)
  5470. goto out_drop;
  5471. kfree_skb(skb);
  5472. skb = skb_new;
  5473. } else
  5474. skb_orphan(skb);
  5475. align = ((unsigned long) skb->data & (16 - 1));
  5476. headroom = align + sizeof(struct tx_pkt_hdr);
  5477. ehdr = (struct ethhdr *) skb->data;
  5478. tp = skb_push(skb, headroom);
  5479. len = skb->len - sizeof(struct tx_pkt_hdr);
  5480. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5481. tp->resv = 0;
  5482. len = skb_headlen(skb);
  5483. mapping = np->ops->map_single(np->device, skb->data,
  5484. len, DMA_TO_DEVICE);
  5485. prod = rp->prod;
  5486. rp->tx_buffs[prod].skb = skb;
  5487. rp->tx_buffs[prod].mapping = mapping;
  5488. mrk = TX_DESC_SOP;
  5489. if (++rp->mark_counter == rp->mark_freq) {
  5490. rp->mark_counter = 0;
  5491. mrk |= TX_DESC_MARK;
  5492. rp->mark_pending++;
  5493. }
  5494. tlen = len;
  5495. nfg = skb_shinfo(skb)->nr_frags;
  5496. while (tlen > 0) {
  5497. tlen -= MAX_TX_DESC_LEN;
  5498. nfg++;
  5499. }
  5500. while (len > 0) {
  5501. unsigned int this_len = len;
  5502. if (this_len > MAX_TX_DESC_LEN)
  5503. this_len = MAX_TX_DESC_LEN;
  5504. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5505. mrk = nfg = 0;
  5506. prod = NEXT_TX(rp, prod);
  5507. mapping += this_len;
  5508. len -= this_len;
  5509. }
  5510. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5511. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5512. len = skb_frag_size(frag);
  5513. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5514. skb_frag_off(frag), len,
  5515. DMA_TO_DEVICE);
  5516. rp->tx_buffs[prod].skb = NULL;
  5517. rp->tx_buffs[prod].mapping = mapping;
  5518. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5519. prod = NEXT_TX(rp, prod);
  5520. }
  5521. if (prod < rp->prod)
  5522. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5523. rp->prod = prod;
  5524. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5525. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5526. netif_tx_stop_queue(txq);
  5527. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5528. netif_tx_wake_queue(txq);
  5529. }
  5530. out:
  5531. return NETDEV_TX_OK;
  5532. out_drop:
  5533. rp->tx_errors++;
  5534. kfree_skb(skb);
  5535. goto out;
  5536. }
  5537. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5538. {
  5539. struct niu *np = netdev_priv(dev);
  5540. int err, orig_jumbo, new_jumbo;
  5541. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5542. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5543. dev->mtu = new_mtu;
  5544. if (!netif_running(dev) ||
  5545. (orig_jumbo == new_jumbo))
  5546. return 0;
  5547. niu_full_shutdown(np, dev);
  5548. niu_free_channels(np);
  5549. niu_enable_napi(np);
  5550. err = niu_alloc_channels(np);
  5551. if (err)
  5552. return err;
  5553. spin_lock_irq(&np->lock);
  5554. err = niu_init_hw(np);
  5555. if (!err) {
  5556. timer_setup(&np->timer, niu_timer, 0);
  5557. np->timer.expires = jiffies + HZ;
  5558. err = niu_enable_interrupts(np, 1);
  5559. if (err)
  5560. niu_stop_hw(np);
  5561. }
  5562. spin_unlock_irq(&np->lock);
  5563. if (!err) {
  5564. netif_tx_start_all_queues(dev);
  5565. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5566. netif_carrier_on(dev);
  5567. add_timer(&np->timer);
  5568. }
  5569. return err;
  5570. }
  5571. static void niu_get_drvinfo(struct net_device *dev,
  5572. struct ethtool_drvinfo *info)
  5573. {
  5574. struct niu *np = netdev_priv(dev);
  5575. struct niu_vpd *vpd = &np->vpd;
  5576. strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5577. strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5578. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5579. vpd->fcode_major, vpd->fcode_minor);
  5580. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5581. strscpy(info->bus_info, pci_name(np->pdev),
  5582. sizeof(info->bus_info));
  5583. }
  5584. static int niu_get_link_ksettings(struct net_device *dev,
  5585. struct ethtool_link_ksettings *cmd)
  5586. {
  5587. struct niu *np = netdev_priv(dev);
  5588. struct niu_link_config *lp;
  5589. lp = &np->link_config;
  5590. memset(cmd, 0, sizeof(*cmd));
  5591. cmd->base.phy_address = np->phy_addr;
  5592. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  5593. lp->supported);
  5594. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  5595. lp->active_advertising);
  5596. cmd->base.autoneg = lp->active_autoneg;
  5597. cmd->base.speed = lp->active_speed;
  5598. cmd->base.duplex = lp->active_duplex;
  5599. cmd->base.port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5600. return 0;
  5601. }
  5602. static int niu_set_link_ksettings(struct net_device *dev,
  5603. const struct ethtool_link_ksettings *cmd)
  5604. {
  5605. struct niu *np = netdev_priv(dev);
  5606. struct niu_link_config *lp = &np->link_config;
  5607. ethtool_convert_link_mode_to_legacy_u32(&lp->advertising,
  5608. cmd->link_modes.advertising);
  5609. lp->speed = cmd->base.speed;
  5610. lp->duplex = cmd->base.duplex;
  5611. lp->autoneg = cmd->base.autoneg;
  5612. return niu_init_link(np);
  5613. }
  5614. static u32 niu_get_msglevel(struct net_device *dev)
  5615. {
  5616. struct niu *np = netdev_priv(dev);
  5617. return np->msg_enable;
  5618. }
  5619. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5620. {
  5621. struct niu *np = netdev_priv(dev);
  5622. np->msg_enable = value;
  5623. }
  5624. static int niu_nway_reset(struct net_device *dev)
  5625. {
  5626. struct niu *np = netdev_priv(dev);
  5627. if (np->link_config.autoneg)
  5628. return niu_init_link(np);
  5629. return 0;
  5630. }
  5631. static int niu_get_eeprom_len(struct net_device *dev)
  5632. {
  5633. struct niu *np = netdev_priv(dev);
  5634. return np->eeprom_len;
  5635. }
  5636. static int niu_get_eeprom(struct net_device *dev,
  5637. struct ethtool_eeprom *eeprom, u8 *data)
  5638. {
  5639. struct niu *np = netdev_priv(dev);
  5640. u32 offset, len, val;
  5641. offset = eeprom->offset;
  5642. len = eeprom->len;
  5643. if (offset + len < offset)
  5644. return -EINVAL;
  5645. if (offset >= np->eeprom_len)
  5646. return -EINVAL;
  5647. if (offset + len > np->eeprom_len)
  5648. len = eeprom->len = np->eeprom_len - offset;
  5649. if (offset & 3) {
  5650. u32 b_offset, b_count;
  5651. b_offset = offset & 3;
  5652. b_count = 4 - b_offset;
  5653. if (b_count > len)
  5654. b_count = len;
  5655. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5656. memcpy(data, ((char *)&val) + b_offset, b_count);
  5657. data += b_count;
  5658. len -= b_count;
  5659. offset += b_count;
  5660. }
  5661. while (len >= 4) {
  5662. val = nr64(ESPC_NCR(offset / 4));
  5663. memcpy(data, &val, 4);
  5664. data += 4;
  5665. len -= 4;
  5666. offset += 4;
  5667. }
  5668. if (len) {
  5669. val = nr64(ESPC_NCR(offset / 4));
  5670. memcpy(data, &val, len);
  5671. }
  5672. return 0;
  5673. }
  5674. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5675. {
  5676. switch (flow_type) {
  5677. case TCP_V4_FLOW:
  5678. case TCP_V6_FLOW:
  5679. *pid = IPPROTO_TCP;
  5680. break;
  5681. case UDP_V4_FLOW:
  5682. case UDP_V6_FLOW:
  5683. *pid = IPPROTO_UDP;
  5684. break;
  5685. case SCTP_V4_FLOW:
  5686. case SCTP_V6_FLOW:
  5687. *pid = IPPROTO_SCTP;
  5688. break;
  5689. case AH_V4_FLOW:
  5690. case AH_V6_FLOW:
  5691. *pid = IPPROTO_AH;
  5692. break;
  5693. case ESP_V4_FLOW:
  5694. case ESP_V6_FLOW:
  5695. *pid = IPPROTO_ESP;
  5696. break;
  5697. default:
  5698. *pid = 0;
  5699. break;
  5700. }
  5701. }
  5702. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5703. {
  5704. switch (class) {
  5705. case CLASS_CODE_TCP_IPV4:
  5706. *flow_type = TCP_V4_FLOW;
  5707. break;
  5708. case CLASS_CODE_UDP_IPV4:
  5709. *flow_type = UDP_V4_FLOW;
  5710. break;
  5711. case CLASS_CODE_AH_ESP_IPV4:
  5712. *flow_type = AH_V4_FLOW;
  5713. break;
  5714. case CLASS_CODE_SCTP_IPV4:
  5715. *flow_type = SCTP_V4_FLOW;
  5716. break;
  5717. case CLASS_CODE_TCP_IPV6:
  5718. *flow_type = TCP_V6_FLOW;
  5719. break;
  5720. case CLASS_CODE_UDP_IPV6:
  5721. *flow_type = UDP_V6_FLOW;
  5722. break;
  5723. case CLASS_CODE_AH_ESP_IPV6:
  5724. *flow_type = AH_V6_FLOW;
  5725. break;
  5726. case CLASS_CODE_SCTP_IPV6:
  5727. *flow_type = SCTP_V6_FLOW;
  5728. break;
  5729. case CLASS_CODE_USER_PROG1:
  5730. case CLASS_CODE_USER_PROG2:
  5731. case CLASS_CODE_USER_PROG3:
  5732. case CLASS_CODE_USER_PROG4:
  5733. *flow_type = IP_USER_FLOW;
  5734. break;
  5735. default:
  5736. return -EINVAL;
  5737. }
  5738. return 0;
  5739. }
  5740. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5741. {
  5742. switch (flow_type) {
  5743. case TCP_V4_FLOW:
  5744. *class = CLASS_CODE_TCP_IPV4;
  5745. break;
  5746. case UDP_V4_FLOW:
  5747. *class = CLASS_CODE_UDP_IPV4;
  5748. break;
  5749. case AH_ESP_V4_FLOW:
  5750. case AH_V4_FLOW:
  5751. case ESP_V4_FLOW:
  5752. *class = CLASS_CODE_AH_ESP_IPV4;
  5753. break;
  5754. case SCTP_V4_FLOW:
  5755. *class = CLASS_CODE_SCTP_IPV4;
  5756. break;
  5757. case TCP_V6_FLOW:
  5758. *class = CLASS_CODE_TCP_IPV6;
  5759. break;
  5760. case UDP_V6_FLOW:
  5761. *class = CLASS_CODE_UDP_IPV6;
  5762. break;
  5763. case AH_ESP_V6_FLOW:
  5764. case AH_V6_FLOW:
  5765. case ESP_V6_FLOW:
  5766. *class = CLASS_CODE_AH_ESP_IPV6;
  5767. break;
  5768. case SCTP_V6_FLOW:
  5769. *class = CLASS_CODE_SCTP_IPV6;
  5770. break;
  5771. default:
  5772. return 0;
  5773. }
  5774. return 1;
  5775. }
  5776. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5777. {
  5778. u64 ethflow = 0;
  5779. if (flow_key & FLOW_KEY_L2DA)
  5780. ethflow |= RXH_L2DA;
  5781. if (flow_key & FLOW_KEY_VLAN)
  5782. ethflow |= RXH_VLAN;
  5783. if (flow_key & FLOW_KEY_IPSA)
  5784. ethflow |= RXH_IP_SRC;
  5785. if (flow_key & FLOW_KEY_IPDA)
  5786. ethflow |= RXH_IP_DST;
  5787. if (flow_key & FLOW_KEY_PROTO)
  5788. ethflow |= RXH_L3_PROTO;
  5789. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5790. ethflow |= RXH_L4_B_0_1;
  5791. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5792. ethflow |= RXH_L4_B_2_3;
  5793. return ethflow;
  5794. }
  5795. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5796. {
  5797. u64 key = 0;
  5798. if (ethflow & RXH_L2DA)
  5799. key |= FLOW_KEY_L2DA;
  5800. if (ethflow & RXH_VLAN)
  5801. key |= FLOW_KEY_VLAN;
  5802. if (ethflow & RXH_IP_SRC)
  5803. key |= FLOW_KEY_IPSA;
  5804. if (ethflow & RXH_IP_DST)
  5805. key |= FLOW_KEY_IPDA;
  5806. if (ethflow & RXH_L3_PROTO)
  5807. key |= FLOW_KEY_PROTO;
  5808. if (ethflow & RXH_L4_B_0_1)
  5809. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5810. if (ethflow & RXH_L4_B_2_3)
  5811. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5812. *flow_key = key;
  5813. return 1;
  5814. }
  5815. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5816. {
  5817. u64 class;
  5818. nfc->data = 0;
  5819. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5820. return -EINVAL;
  5821. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5822. TCAM_KEY_DISC)
  5823. nfc->data = RXH_DISCARD;
  5824. else
  5825. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5826. CLASS_CODE_USER_PROG1]);
  5827. return 0;
  5828. }
  5829. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5830. struct ethtool_rx_flow_spec *fsp)
  5831. {
  5832. u32 tmp;
  5833. u16 prt;
  5834. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5835. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5836. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5837. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5838. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5839. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5840. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5841. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5842. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5843. TCAM_V4KEY2_TOS_SHIFT;
  5844. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5845. TCAM_V4KEY2_TOS_SHIFT;
  5846. switch (fsp->flow_type) {
  5847. case TCP_V4_FLOW:
  5848. case UDP_V4_FLOW:
  5849. case SCTP_V4_FLOW:
  5850. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5851. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5852. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5853. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5854. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5855. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5856. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5857. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5858. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5859. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5860. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5861. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5862. break;
  5863. case AH_V4_FLOW:
  5864. case ESP_V4_FLOW:
  5865. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5866. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5867. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5868. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5869. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5870. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5871. break;
  5872. case IP_USER_FLOW:
  5873. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5874. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5875. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5876. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5877. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5878. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5879. fsp->h_u.usr_ip4_spec.proto =
  5880. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5881. TCAM_V4KEY2_PROTO_SHIFT;
  5882. fsp->m_u.usr_ip4_spec.proto =
  5883. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5884. TCAM_V4KEY2_PROTO_SHIFT;
  5885. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5886. break;
  5887. default:
  5888. break;
  5889. }
  5890. }
  5891. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5892. struct ethtool_rxnfc *nfc)
  5893. {
  5894. struct niu_parent *parent = np->parent;
  5895. struct niu_tcam_entry *tp;
  5896. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5897. u16 idx;
  5898. u64 class;
  5899. int ret = 0;
  5900. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5901. tp = &parent->tcam[idx];
  5902. if (!tp->valid) {
  5903. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5904. parent->index, (u16)nfc->fs.location, idx);
  5905. return -EINVAL;
  5906. }
  5907. /* fill the flow spec entry */
  5908. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5909. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5910. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5911. if (ret < 0) {
  5912. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5913. parent->index);
  5914. goto out;
  5915. }
  5916. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5917. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5918. TCAM_V4KEY2_PROTO_SHIFT;
  5919. if (proto == IPPROTO_ESP) {
  5920. if (fsp->flow_type == AH_V4_FLOW)
  5921. fsp->flow_type = ESP_V4_FLOW;
  5922. else
  5923. fsp->flow_type = ESP_V6_FLOW;
  5924. }
  5925. }
  5926. switch (fsp->flow_type) {
  5927. case TCP_V4_FLOW:
  5928. case UDP_V4_FLOW:
  5929. case SCTP_V4_FLOW:
  5930. case AH_V4_FLOW:
  5931. case ESP_V4_FLOW:
  5932. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5933. break;
  5934. case TCP_V6_FLOW:
  5935. case UDP_V6_FLOW:
  5936. case SCTP_V6_FLOW:
  5937. case AH_V6_FLOW:
  5938. case ESP_V6_FLOW:
  5939. /* Not yet implemented */
  5940. ret = -EINVAL;
  5941. break;
  5942. case IP_USER_FLOW:
  5943. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5944. break;
  5945. default:
  5946. ret = -EINVAL;
  5947. break;
  5948. }
  5949. if (ret < 0)
  5950. goto out;
  5951. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5952. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5953. else
  5954. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5955. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5956. /* put the tcam size here */
  5957. nfc->data = tcam_get_size(np);
  5958. out:
  5959. return ret;
  5960. }
  5961. static int niu_get_ethtool_tcam_all(struct niu *np,
  5962. struct ethtool_rxnfc *nfc,
  5963. u32 *rule_locs)
  5964. {
  5965. struct niu_parent *parent = np->parent;
  5966. struct niu_tcam_entry *tp;
  5967. int i, idx, cnt;
  5968. unsigned long flags;
  5969. int ret = 0;
  5970. /* put the tcam size here */
  5971. nfc->data = tcam_get_size(np);
  5972. niu_lock_parent(np, flags);
  5973. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5974. idx = tcam_get_index(np, i);
  5975. tp = &parent->tcam[idx];
  5976. if (!tp->valid)
  5977. continue;
  5978. if (cnt == nfc->rule_cnt) {
  5979. ret = -EMSGSIZE;
  5980. break;
  5981. }
  5982. rule_locs[cnt] = i;
  5983. cnt++;
  5984. }
  5985. niu_unlock_parent(np, flags);
  5986. nfc->rule_cnt = cnt;
  5987. return ret;
  5988. }
  5989. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  5990. u32 *rule_locs)
  5991. {
  5992. struct niu *np = netdev_priv(dev);
  5993. int ret = 0;
  5994. switch (cmd->cmd) {
  5995. case ETHTOOL_GRXFH:
  5996. ret = niu_get_hash_opts(np, cmd);
  5997. break;
  5998. case ETHTOOL_GRXRINGS:
  5999. cmd->data = np->num_rx_rings;
  6000. break;
  6001. case ETHTOOL_GRXCLSRLCNT:
  6002. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6003. break;
  6004. case ETHTOOL_GRXCLSRULE:
  6005. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6006. break;
  6007. case ETHTOOL_GRXCLSRLALL:
  6008. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6009. break;
  6010. default:
  6011. ret = -EINVAL;
  6012. break;
  6013. }
  6014. return ret;
  6015. }
  6016. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6017. {
  6018. u64 class;
  6019. u64 flow_key = 0;
  6020. unsigned long flags;
  6021. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6022. return -EINVAL;
  6023. if (class < CLASS_CODE_USER_PROG1 ||
  6024. class > CLASS_CODE_SCTP_IPV6)
  6025. return -EINVAL;
  6026. if (nfc->data & RXH_DISCARD) {
  6027. niu_lock_parent(np, flags);
  6028. flow_key = np->parent->tcam_key[class -
  6029. CLASS_CODE_USER_PROG1];
  6030. flow_key |= TCAM_KEY_DISC;
  6031. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6032. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6033. niu_unlock_parent(np, flags);
  6034. return 0;
  6035. } else {
  6036. /* Discard was set before, but is not set now */
  6037. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6038. TCAM_KEY_DISC) {
  6039. niu_lock_parent(np, flags);
  6040. flow_key = np->parent->tcam_key[class -
  6041. CLASS_CODE_USER_PROG1];
  6042. flow_key &= ~TCAM_KEY_DISC;
  6043. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6044. flow_key);
  6045. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6046. flow_key;
  6047. niu_unlock_parent(np, flags);
  6048. }
  6049. }
  6050. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6051. return -EINVAL;
  6052. niu_lock_parent(np, flags);
  6053. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6054. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6055. niu_unlock_parent(np, flags);
  6056. return 0;
  6057. }
  6058. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6059. struct niu_tcam_entry *tp,
  6060. int l2_rdc_tab, u64 class)
  6061. {
  6062. u8 pid = 0;
  6063. u32 sip, dip, sipm, dipm, spi, spim;
  6064. u16 sport, dport, spm, dpm;
  6065. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6066. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6067. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6068. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6069. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6070. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6071. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6072. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6073. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6074. tp->key[3] |= dip;
  6075. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6076. tp->key_mask[3] |= dipm;
  6077. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6078. TCAM_V4KEY2_TOS_SHIFT);
  6079. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6080. TCAM_V4KEY2_TOS_SHIFT);
  6081. switch (fsp->flow_type) {
  6082. case TCP_V4_FLOW:
  6083. case UDP_V4_FLOW:
  6084. case SCTP_V4_FLOW:
  6085. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6086. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6087. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6088. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6089. tp->key[2] |= (((u64)sport << 16) | dport);
  6090. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6091. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6092. break;
  6093. case AH_V4_FLOW:
  6094. case ESP_V4_FLOW:
  6095. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6096. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6097. tp->key[2] |= spi;
  6098. tp->key_mask[2] |= spim;
  6099. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6100. break;
  6101. case IP_USER_FLOW:
  6102. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6103. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6104. tp->key[2] |= spi;
  6105. tp->key_mask[2] |= spim;
  6106. pid = fsp->h_u.usr_ip4_spec.proto;
  6107. break;
  6108. default:
  6109. break;
  6110. }
  6111. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6112. if (pid) {
  6113. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6114. }
  6115. }
  6116. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6117. struct ethtool_rxnfc *nfc)
  6118. {
  6119. struct niu_parent *parent = np->parent;
  6120. struct niu_tcam_entry *tp;
  6121. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6122. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6123. int l2_rdc_table = rdc_table->first_table_num;
  6124. u16 idx;
  6125. u64 class;
  6126. unsigned long flags;
  6127. int err, ret;
  6128. ret = 0;
  6129. idx = nfc->fs.location;
  6130. if (idx >= tcam_get_size(np))
  6131. return -EINVAL;
  6132. if (fsp->flow_type == IP_USER_FLOW) {
  6133. int i;
  6134. int add_usr_cls = 0;
  6135. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6136. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6137. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6138. return -EINVAL;
  6139. niu_lock_parent(np, flags);
  6140. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6141. if (parent->l3_cls[i]) {
  6142. if (uspec->proto == parent->l3_cls_pid[i]) {
  6143. class = parent->l3_cls[i];
  6144. parent->l3_cls_refcnt[i]++;
  6145. add_usr_cls = 1;
  6146. break;
  6147. }
  6148. } else {
  6149. /* Program new user IP class */
  6150. switch (i) {
  6151. case 0:
  6152. class = CLASS_CODE_USER_PROG1;
  6153. break;
  6154. case 1:
  6155. class = CLASS_CODE_USER_PROG2;
  6156. break;
  6157. case 2:
  6158. class = CLASS_CODE_USER_PROG3;
  6159. break;
  6160. case 3:
  6161. class = CLASS_CODE_USER_PROG4;
  6162. break;
  6163. default:
  6164. class = CLASS_CODE_UNRECOG;
  6165. break;
  6166. }
  6167. ret = tcam_user_ip_class_set(np, class, 0,
  6168. uspec->proto,
  6169. uspec->tos,
  6170. umask->tos);
  6171. if (ret)
  6172. goto out;
  6173. ret = tcam_user_ip_class_enable(np, class, 1);
  6174. if (ret)
  6175. goto out;
  6176. parent->l3_cls[i] = class;
  6177. parent->l3_cls_pid[i] = uspec->proto;
  6178. parent->l3_cls_refcnt[i]++;
  6179. add_usr_cls = 1;
  6180. break;
  6181. }
  6182. }
  6183. if (!add_usr_cls) {
  6184. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6185. parent->index, __func__, uspec->proto);
  6186. ret = -EINVAL;
  6187. goto out;
  6188. }
  6189. niu_unlock_parent(np, flags);
  6190. } else {
  6191. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6192. return -EINVAL;
  6193. }
  6194. }
  6195. niu_lock_parent(np, flags);
  6196. idx = tcam_get_index(np, idx);
  6197. tp = &parent->tcam[idx];
  6198. memset(tp, 0, sizeof(*tp));
  6199. /* fill in the tcam key and mask */
  6200. switch (fsp->flow_type) {
  6201. case TCP_V4_FLOW:
  6202. case UDP_V4_FLOW:
  6203. case SCTP_V4_FLOW:
  6204. case AH_V4_FLOW:
  6205. case ESP_V4_FLOW:
  6206. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6207. break;
  6208. case TCP_V6_FLOW:
  6209. case UDP_V6_FLOW:
  6210. case SCTP_V6_FLOW:
  6211. case AH_V6_FLOW:
  6212. case ESP_V6_FLOW:
  6213. /* Not yet implemented */
  6214. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6215. parent->index, __func__, fsp->flow_type);
  6216. ret = -EINVAL;
  6217. goto out;
  6218. case IP_USER_FLOW:
  6219. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6220. break;
  6221. default:
  6222. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6223. parent->index, __func__, fsp->flow_type);
  6224. ret = -EINVAL;
  6225. goto out;
  6226. }
  6227. /* fill in the assoc data */
  6228. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6229. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6230. } else {
  6231. if (fsp->ring_cookie >= np->num_rx_rings) {
  6232. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6233. parent->index, __func__,
  6234. (long long)fsp->ring_cookie);
  6235. ret = -EINVAL;
  6236. goto out;
  6237. }
  6238. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6239. (fsp->ring_cookie <<
  6240. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6241. }
  6242. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6243. if (err) {
  6244. ret = -EINVAL;
  6245. goto out;
  6246. }
  6247. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6248. if (err) {
  6249. ret = -EINVAL;
  6250. goto out;
  6251. }
  6252. /* validate the entry */
  6253. tp->valid = 1;
  6254. np->clas.tcam_valid_entries++;
  6255. out:
  6256. niu_unlock_parent(np, flags);
  6257. return ret;
  6258. }
  6259. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6260. {
  6261. struct niu_parent *parent = np->parent;
  6262. struct niu_tcam_entry *tp;
  6263. u16 idx;
  6264. unsigned long flags;
  6265. u64 class;
  6266. int ret = 0;
  6267. if (loc >= tcam_get_size(np))
  6268. return -EINVAL;
  6269. niu_lock_parent(np, flags);
  6270. idx = tcam_get_index(np, loc);
  6271. tp = &parent->tcam[idx];
  6272. /* if the entry is of a user defined class, then update*/
  6273. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6274. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6275. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6276. int i;
  6277. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6278. if (parent->l3_cls[i] == class) {
  6279. parent->l3_cls_refcnt[i]--;
  6280. if (!parent->l3_cls_refcnt[i]) {
  6281. /* disable class */
  6282. ret = tcam_user_ip_class_enable(np,
  6283. class,
  6284. 0);
  6285. if (ret)
  6286. goto out;
  6287. parent->l3_cls[i] = 0;
  6288. parent->l3_cls_pid[i] = 0;
  6289. }
  6290. break;
  6291. }
  6292. }
  6293. if (i == NIU_L3_PROG_CLS) {
  6294. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6295. parent->index, __func__,
  6296. (unsigned long long)class);
  6297. ret = -EINVAL;
  6298. goto out;
  6299. }
  6300. }
  6301. ret = tcam_flush(np, idx);
  6302. if (ret)
  6303. goto out;
  6304. /* invalidate the entry */
  6305. tp->valid = 0;
  6306. np->clas.tcam_valid_entries--;
  6307. out:
  6308. niu_unlock_parent(np, flags);
  6309. return ret;
  6310. }
  6311. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6312. {
  6313. struct niu *np = netdev_priv(dev);
  6314. int ret = 0;
  6315. switch (cmd->cmd) {
  6316. case ETHTOOL_SRXFH:
  6317. ret = niu_set_hash_opts(np, cmd);
  6318. break;
  6319. case ETHTOOL_SRXCLSRLINS:
  6320. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6321. break;
  6322. case ETHTOOL_SRXCLSRLDEL:
  6323. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6324. break;
  6325. default:
  6326. ret = -EINVAL;
  6327. break;
  6328. }
  6329. return ret;
  6330. }
  6331. static const struct {
  6332. const char string[ETH_GSTRING_LEN];
  6333. } niu_xmac_stat_keys[] = {
  6334. { "tx_frames" },
  6335. { "tx_bytes" },
  6336. { "tx_fifo_errors" },
  6337. { "tx_overflow_errors" },
  6338. { "tx_max_pkt_size_errors" },
  6339. { "tx_underflow_errors" },
  6340. { "rx_local_faults" },
  6341. { "rx_remote_faults" },
  6342. { "rx_link_faults" },
  6343. { "rx_align_errors" },
  6344. { "rx_frags" },
  6345. { "rx_mcasts" },
  6346. { "rx_bcasts" },
  6347. { "rx_hist_cnt1" },
  6348. { "rx_hist_cnt2" },
  6349. { "rx_hist_cnt3" },
  6350. { "rx_hist_cnt4" },
  6351. { "rx_hist_cnt5" },
  6352. { "rx_hist_cnt6" },
  6353. { "rx_hist_cnt7" },
  6354. { "rx_octets" },
  6355. { "rx_code_violations" },
  6356. { "rx_len_errors" },
  6357. { "rx_crc_errors" },
  6358. { "rx_underflows" },
  6359. { "rx_overflows" },
  6360. { "pause_off_state" },
  6361. { "pause_on_state" },
  6362. { "pause_received" },
  6363. };
  6364. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6365. static const struct {
  6366. const char string[ETH_GSTRING_LEN];
  6367. } niu_bmac_stat_keys[] = {
  6368. { "tx_underflow_errors" },
  6369. { "tx_max_pkt_size_errors" },
  6370. { "tx_bytes" },
  6371. { "tx_frames" },
  6372. { "rx_overflows" },
  6373. { "rx_frames" },
  6374. { "rx_align_errors" },
  6375. { "rx_crc_errors" },
  6376. { "rx_len_errors" },
  6377. { "pause_off_state" },
  6378. { "pause_on_state" },
  6379. { "pause_received" },
  6380. };
  6381. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6382. static const struct {
  6383. const char string[ETH_GSTRING_LEN];
  6384. } niu_rxchan_stat_keys[] = {
  6385. { "rx_channel" },
  6386. { "rx_packets" },
  6387. { "rx_bytes" },
  6388. { "rx_dropped" },
  6389. { "rx_errors" },
  6390. };
  6391. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6392. static const struct {
  6393. const char string[ETH_GSTRING_LEN];
  6394. } niu_txchan_stat_keys[] = {
  6395. { "tx_channel" },
  6396. { "tx_packets" },
  6397. { "tx_bytes" },
  6398. { "tx_errors" },
  6399. };
  6400. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6401. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6402. {
  6403. struct niu *np = netdev_priv(dev);
  6404. int i;
  6405. if (stringset != ETH_SS_STATS)
  6406. return;
  6407. if (np->flags & NIU_FLAGS_XMAC) {
  6408. memcpy(data, niu_xmac_stat_keys,
  6409. sizeof(niu_xmac_stat_keys));
  6410. data += sizeof(niu_xmac_stat_keys);
  6411. } else {
  6412. memcpy(data, niu_bmac_stat_keys,
  6413. sizeof(niu_bmac_stat_keys));
  6414. data += sizeof(niu_bmac_stat_keys);
  6415. }
  6416. for (i = 0; i < np->num_rx_rings; i++) {
  6417. memcpy(data, niu_rxchan_stat_keys,
  6418. sizeof(niu_rxchan_stat_keys));
  6419. data += sizeof(niu_rxchan_stat_keys);
  6420. }
  6421. for (i = 0; i < np->num_tx_rings; i++) {
  6422. memcpy(data, niu_txchan_stat_keys,
  6423. sizeof(niu_txchan_stat_keys));
  6424. data += sizeof(niu_txchan_stat_keys);
  6425. }
  6426. }
  6427. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6428. {
  6429. struct niu *np = netdev_priv(dev);
  6430. if (stringset != ETH_SS_STATS)
  6431. return -EINVAL;
  6432. return (np->flags & NIU_FLAGS_XMAC ?
  6433. NUM_XMAC_STAT_KEYS :
  6434. NUM_BMAC_STAT_KEYS) +
  6435. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6436. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6437. }
  6438. static void niu_get_ethtool_stats(struct net_device *dev,
  6439. struct ethtool_stats *stats, u64 *data)
  6440. {
  6441. struct niu *np = netdev_priv(dev);
  6442. int i;
  6443. niu_sync_mac_stats(np);
  6444. if (np->flags & NIU_FLAGS_XMAC) {
  6445. memcpy(data, &np->mac_stats.xmac,
  6446. sizeof(struct niu_xmac_stats));
  6447. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6448. } else {
  6449. memcpy(data, &np->mac_stats.bmac,
  6450. sizeof(struct niu_bmac_stats));
  6451. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6452. }
  6453. for (i = 0; i < np->num_rx_rings; i++) {
  6454. struct rx_ring_info *rp = &np->rx_rings[i];
  6455. niu_sync_rx_discard_stats(np, rp, 0);
  6456. data[0] = rp->rx_channel;
  6457. data[1] = rp->rx_packets;
  6458. data[2] = rp->rx_bytes;
  6459. data[3] = rp->rx_dropped;
  6460. data[4] = rp->rx_errors;
  6461. data += 5;
  6462. }
  6463. for (i = 0; i < np->num_tx_rings; i++) {
  6464. struct tx_ring_info *rp = &np->tx_rings[i];
  6465. data[0] = rp->tx_channel;
  6466. data[1] = rp->tx_packets;
  6467. data[2] = rp->tx_bytes;
  6468. data[3] = rp->tx_errors;
  6469. data += 4;
  6470. }
  6471. }
  6472. static u64 niu_led_state_save(struct niu *np)
  6473. {
  6474. if (np->flags & NIU_FLAGS_XMAC)
  6475. return nr64_mac(XMAC_CONFIG);
  6476. else
  6477. return nr64_mac(BMAC_XIF_CONFIG);
  6478. }
  6479. static void niu_led_state_restore(struct niu *np, u64 val)
  6480. {
  6481. if (np->flags & NIU_FLAGS_XMAC)
  6482. nw64_mac(XMAC_CONFIG, val);
  6483. else
  6484. nw64_mac(BMAC_XIF_CONFIG, val);
  6485. }
  6486. static void niu_force_led(struct niu *np, int on)
  6487. {
  6488. u64 val, reg, bit;
  6489. if (np->flags & NIU_FLAGS_XMAC) {
  6490. reg = XMAC_CONFIG;
  6491. bit = XMAC_CONFIG_FORCE_LED_ON;
  6492. } else {
  6493. reg = BMAC_XIF_CONFIG;
  6494. bit = BMAC_XIF_CONFIG_LINK_LED;
  6495. }
  6496. val = nr64_mac(reg);
  6497. if (on)
  6498. val |= bit;
  6499. else
  6500. val &= ~bit;
  6501. nw64_mac(reg, val);
  6502. }
  6503. static int niu_set_phys_id(struct net_device *dev,
  6504. enum ethtool_phys_id_state state)
  6505. {
  6506. struct niu *np = netdev_priv(dev);
  6507. if (!netif_running(dev))
  6508. return -EAGAIN;
  6509. switch (state) {
  6510. case ETHTOOL_ID_ACTIVE:
  6511. np->orig_led_state = niu_led_state_save(np);
  6512. return 1; /* cycle on/off once per second */
  6513. case ETHTOOL_ID_ON:
  6514. niu_force_led(np, 1);
  6515. break;
  6516. case ETHTOOL_ID_OFF:
  6517. niu_force_led(np, 0);
  6518. break;
  6519. case ETHTOOL_ID_INACTIVE:
  6520. niu_led_state_restore(np, np->orig_led_state);
  6521. }
  6522. return 0;
  6523. }
  6524. static const struct ethtool_ops niu_ethtool_ops = {
  6525. .get_drvinfo = niu_get_drvinfo,
  6526. .get_link = ethtool_op_get_link,
  6527. .get_msglevel = niu_get_msglevel,
  6528. .set_msglevel = niu_set_msglevel,
  6529. .nway_reset = niu_nway_reset,
  6530. .get_eeprom_len = niu_get_eeprom_len,
  6531. .get_eeprom = niu_get_eeprom,
  6532. .get_strings = niu_get_strings,
  6533. .get_sset_count = niu_get_sset_count,
  6534. .get_ethtool_stats = niu_get_ethtool_stats,
  6535. .set_phys_id = niu_set_phys_id,
  6536. .get_rxnfc = niu_get_nfc,
  6537. .set_rxnfc = niu_set_nfc,
  6538. .get_link_ksettings = niu_get_link_ksettings,
  6539. .set_link_ksettings = niu_set_link_ksettings,
  6540. };
  6541. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6542. int ldg, int ldn)
  6543. {
  6544. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6545. return -EINVAL;
  6546. if (ldn < 0 || ldn > LDN_MAX)
  6547. return -EINVAL;
  6548. parent->ldg_map[ldn] = ldg;
  6549. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6550. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6551. * the firmware, and we're not supposed to change them.
  6552. * Validate the mapping, because if it's wrong we probably
  6553. * won't get any interrupts and that's painful to debug.
  6554. */
  6555. if (nr64(LDG_NUM(ldn)) != ldg) {
  6556. dev_err(np->device, "Port %u, mismatched LDG assignment for ldn %d, should be %d is %llu\n",
  6557. np->port, ldn, ldg,
  6558. (unsigned long long) nr64(LDG_NUM(ldn)));
  6559. return -EINVAL;
  6560. }
  6561. } else
  6562. nw64(LDG_NUM(ldn), ldg);
  6563. return 0;
  6564. }
  6565. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6566. {
  6567. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6568. return -EINVAL;
  6569. nw64(LDG_TIMER_RES, res);
  6570. return 0;
  6571. }
  6572. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6573. {
  6574. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6575. (func < 0 || func > 3) ||
  6576. (vector < 0 || vector > 0x1f))
  6577. return -EINVAL;
  6578. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6579. return 0;
  6580. }
  6581. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6582. {
  6583. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6584. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6585. int limit;
  6586. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6587. return -EINVAL;
  6588. frame = frame_base;
  6589. nw64(ESPC_PIO_STAT, frame);
  6590. limit = 64;
  6591. do {
  6592. udelay(5);
  6593. frame = nr64(ESPC_PIO_STAT);
  6594. if (frame & ESPC_PIO_STAT_READ_END)
  6595. break;
  6596. } while (limit--);
  6597. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6598. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6599. (unsigned long long) frame);
  6600. return -ENODEV;
  6601. }
  6602. frame = frame_base;
  6603. nw64(ESPC_PIO_STAT, frame);
  6604. limit = 64;
  6605. do {
  6606. udelay(5);
  6607. frame = nr64(ESPC_PIO_STAT);
  6608. if (frame & ESPC_PIO_STAT_READ_END)
  6609. break;
  6610. } while (limit--);
  6611. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6612. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6613. (unsigned long long) frame);
  6614. return -ENODEV;
  6615. }
  6616. frame = nr64(ESPC_PIO_STAT);
  6617. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6618. }
  6619. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6620. {
  6621. int err = niu_pci_eeprom_read(np, off);
  6622. u16 val;
  6623. if (err < 0)
  6624. return err;
  6625. val = (err << 8);
  6626. err = niu_pci_eeprom_read(np, off + 1);
  6627. if (err < 0)
  6628. return err;
  6629. val |= (err & 0xff);
  6630. return val;
  6631. }
  6632. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6633. {
  6634. int err = niu_pci_eeprom_read(np, off);
  6635. u16 val;
  6636. if (err < 0)
  6637. return err;
  6638. val = (err & 0xff);
  6639. err = niu_pci_eeprom_read(np, off + 1);
  6640. if (err < 0)
  6641. return err;
  6642. val |= (err & 0xff) << 8;
  6643. return val;
  6644. }
  6645. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6646. int namebuf_len)
  6647. {
  6648. int i;
  6649. for (i = 0; i < namebuf_len; i++) {
  6650. int err = niu_pci_eeprom_read(np, off + i);
  6651. if (err < 0)
  6652. return err;
  6653. *namebuf++ = err;
  6654. if (!err)
  6655. break;
  6656. }
  6657. if (i >= namebuf_len)
  6658. return -EINVAL;
  6659. return i + 1;
  6660. }
  6661. static void niu_vpd_parse_version(struct niu *np)
  6662. {
  6663. struct niu_vpd *vpd = &np->vpd;
  6664. int len = strlen(vpd->version) + 1;
  6665. const char *s = vpd->version;
  6666. int i;
  6667. for (i = 0; i < len - 5; i++) {
  6668. if (!strncmp(s + i, "FCode ", 6))
  6669. break;
  6670. }
  6671. if (i >= len - 5)
  6672. return;
  6673. s += i + 5;
  6674. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6675. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6676. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6677. vpd->fcode_major, vpd->fcode_minor);
  6678. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6679. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6680. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6681. np->flags |= NIU_FLAGS_VPD_VALID;
  6682. }
  6683. /* ESPC_PIO_EN_ENABLE must be set */
  6684. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6685. {
  6686. unsigned int found_mask = 0;
  6687. #define FOUND_MASK_MODEL 0x00000001
  6688. #define FOUND_MASK_BMODEL 0x00000002
  6689. #define FOUND_MASK_VERS 0x00000004
  6690. #define FOUND_MASK_MAC 0x00000008
  6691. #define FOUND_MASK_NMAC 0x00000010
  6692. #define FOUND_MASK_PHY 0x00000020
  6693. #define FOUND_MASK_ALL 0x0000003f
  6694. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6695. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6696. while (start < end) {
  6697. int len, err, prop_len;
  6698. char namebuf[64];
  6699. u8 *prop_buf;
  6700. int max_len;
  6701. if (found_mask == FOUND_MASK_ALL) {
  6702. niu_vpd_parse_version(np);
  6703. return 1;
  6704. }
  6705. err = niu_pci_eeprom_read(np, start + 2);
  6706. if (err < 0)
  6707. return err;
  6708. len = err;
  6709. start += 3;
  6710. prop_len = niu_pci_eeprom_read(np, start + 4);
  6711. if (prop_len < 0)
  6712. return prop_len;
  6713. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6714. if (err < 0)
  6715. return err;
  6716. prop_buf = NULL;
  6717. max_len = 0;
  6718. if (!strcmp(namebuf, "model")) {
  6719. prop_buf = np->vpd.model;
  6720. max_len = NIU_VPD_MODEL_MAX;
  6721. found_mask |= FOUND_MASK_MODEL;
  6722. } else if (!strcmp(namebuf, "board-model")) {
  6723. prop_buf = np->vpd.board_model;
  6724. max_len = NIU_VPD_BD_MODEL_MAX;
  6725. found_mask |= FOUND_MASK_BMODEL;
  6726. } else if (!strcmp(namebuf, "version")) {
  6727. prop_buf = np->vpd.version;
  6728. max_len = NIU_VPD_VERSION_MAX;
  6729. found_mask |= FOUND_MASK_VERS;
  6730. } else if (!strcmp(namebuf, "local-mac-address")) {
  6731. prop_buf = np->vpd.local_mac;
  6732. max_len = ETH_ALEN;
  6733. found_mask |= FOUND_MASK_MAC;
  6734. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6735. prop_buf = &np->vpd.mac_num;
  6736. max_len = 1;
  6737. found_mask |= FOUND_MASK_NMAC;
  6738. } else if (!strcmp(namebuf, "phy-type")) {
  6739. prop_buf = np->vpd.phy_type;
  6740. max_len = NIU_VPD_PHY_TYPE_MAX;
  6741. found_mask |= FOUND_MASK_PHY;
  6742. }
  6743. if (max_len && prop_len > max_len) {
  6744. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6745. return -EINVAL;
  6746. }
  6747. if (prop_buf) {
  6748. u32 off = start + 5 + err;
  6749. int i;
  6750. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6751. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6752. namebuf, prop_len);
  6753. for (i = 0; i < prop_len; i++) {
  6754. err = niu_pci_eeprom_read(np, off + i);
  6755. if (err < 0)
  6756. return err;
  6757. *prop_buf++ = err;
  6758. }
  6759. }
  6760. start += len;
  6761. }
  6762. return 0;
  6763. }
  6764. /* ESPC_PIO_EN_ENABLE must be set */
  6765. static int niu_pci_vpd_fetch(struct niu *np, u32 start)
  6766. {
  6767. u32 offset;
  6768. int err;
  6769. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6770. if (err < 0)
  6771. return err;
  6772. offset = err + 3;
  6773. while (start + offset < ESPC_EEPROM_SIZE) {
  6774. u32 here = start + offset;
  6775. u32 end;
  6776. err = niu_pci_eeprom_read(np, here);
  6777. if (err < 0)
  6778. return err;
  6779. if (err != 0x90)
  6780. return -EINVAL;
  6781. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6782. if (err < 0)
  6783. return err;
  6784. here = start + offset + 3;
  6785. end = start + offset + err;
  6786. offset += err;
  6787. err = niu_pci_vpd_scan_props(np, here, end);
  6788. if (err < 0)
  6789. return err;
  6790. /* ret == 1 is not an error */
  6791. if (err == 1)
  6792. return 0;
  6793. }
  6794. return 0;
  6795. }
  6796. /* ESPC_PIO_EN_ENABLE must be set */
  6797. static u32 niu_pci_vpd_offset(struct niu *np)
  6798. {
  6799. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6800. int err;
  6801. while (start < end) {
  6802. ret = start;
  6803. /* ROM header signature? */
  6804. err = niu_pci_eeprom_read16(np, start + 0);
  6805. if (err != 0x55aa)
  6806. return 0;
  6807. /* Apply offset to PCI data structure. */
  6808. err = niu_pci_eeprom_read16(np, start + 23);
  6809. if (err < 0)
  6810. return 0;
  6811. start += err;
  6812. /* Check for "PCIR" signature. */
  6813. err = niu_pci_eeprom_read16(np, start + 0);
  6814. if (err != 0x5043)
  6815. return 0;
  6816. err = niu_pci_eeprom_read16(np, start + 2);
  6817. if (err != 0x4952)
  6818. return 0;
  6819. /* Check for OBP image type. */
  6820. err = niu_pci_eeprom_read(np, start + 20);
  6821. if (err < 0)
  6822. return 0;
  6823. if (err != 0x01) {
  6824. err = niu_pci_eeprom_read(np, ret + 2);
  6825. if (err < 0)
  6826. return 0;
  6827. start = ret + (err * 512);
  6828. continue;
  6829. }
  6830. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6831. if (err < 0)
  6832. return err;
  6833. ret += err;
  6834. err = niu_pci_eeprom_read(np, ret + 0);
  6835. if (err != 0x82)
  6836. return 0;
  6837. return ret;
  6838. }
  6839. return 0;
  6840. }
  6841. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6842. {
  6843. if (!strcmp(phy_prop, "mif")) {
  6844. /* 1G copper, MII */
  6845. np->flags &= ~(NIU_FLAGS_FIBER |
  6846. NIU_FLAGS_10G);
  6847. np->mac_xcvr = MAC_XCVR_MII;
  6848. } else if (!strcmp(phy_prop, "xgf")) {
  6849. /* 10G fiber, XPCS */
  6850. np->flags |= (NIU_FLAGS_10G |
  6851. NIU_FLAGS_FIBER);
  6852. np->mac_xcvr = MAC_XCVR_XPCS;
  6853. } else if (!strcmp(phy_prop, "pcs")) {
  6854. /* 1G fiber, PCS */
  6855. np->flags &= ~NIU_FLAGS_10G;
  6856. np->flags |= NIU_FLAGS_FIBER;
  6857. np->mac_xcvr = MAC_XCVR_PCS;
  6858. } else if (!strcmp(phy_prop, "xgc")) {
  6859. /* 10G copper, XPCS */
  6860. np->flags |= NIU_FLAGS_10G;
  6861. np->flags &= ~NIU_FLAGS_FIBER;
  6862. np->mac_xcvr = MAC_XCVR_XPCS;
  6863. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6864. /* 10G Serdes or 1G Serdes, default to 10G */
  6865. np->flags |= NIU_FLAGS_10G;
  6866. np->flags &= ~NIU_FLAGS_FIBER;
  6867. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6868. np->mac_xcvr = MAC_XCVR_XPCS;
  6869. } else {
  6870. return -EINVAL;
  6871. }
  6872. return 0;
  6873. }
  6874. static int niu_pci_vpd_get_nports(struct niu *np)
  6875. {
  6876. int ports = 0;
  6877. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6878. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6879. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6880. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6881. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6882. ports = 4;
  6883. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6884. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6885. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6886. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6887. ports = 2;
  6888. }
  6889. return ports;
  6890. }
  6891. static void niu_pci_vpd_validate(struct niu *np)
  6892. {
  6893. struct net_device *dev = np->dev;
  6894. struct niu_vpd *vpd = &np->vpd;
  6895. u8 addr[ETH_ALEN];
  6896. u8 val8;
  6897. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6898. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6899. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6900. return;
  6901. }
  6902. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6903. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6904. np->flags |= NIU_FLAGS_10G;
  6905. np->flags &= ~NIU_FLAGS_FIBER;
  6906. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6907. np->mac_xcvr = MAC_XCVR_PCS;
  6908. if (np->port > 1) {
  6909. np->flags |= NIU_FLAGS_FIBER;
  6910. np->flags &= ~NIU_FLAGS_10G;
  6911. }
  6912. if (np->flags & NIU_FLAGS_10G)
  6913. np->mac_xcvr = MAC_XCVR_XPCS;
  6914. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6915. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6916. NIU_FLAGS_HOTPLUG_PHY);
  6917. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6918. dev_err(np->device, "Illegal phy string [%s]\n",
  6919. np->vpd.phy_type);
  6920. dev_err(np->device, "Falling back to SPROM\n");
  6921. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6922. return;
  6923. }
  6924. ether_addr_copy(addr, vpd->local_mac);
  6925. val8 = addr[5];
  6926. addr[5] += np->port;
  6927. if (addr[5] < val8)
  6928. addr[4]++;
  6929. eth_hw_addr_set(dev, addr);
  6930. }
  6931. static int niu_pci_probe_sprom(struct niu *np)
  6932. {
  6933. struct net_device *dev = np->dev;
  6934. u8 addr[ETH_ALEN];
  6935. int len, i;
  6936. u64 val, sum;
  6937. u8 val8;
  6938. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6939. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6940. len = val / 4;
  6941. np->eeprom_len = len;
  6942. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6943. "SPROM: Image size %llu\n", (unsigned long long)val);
  6944. sum = 0;
  6945. for (i = 0; i < len; i++) {
  6946. val = nr64(ESPC_NCR(i));
  6947. sum += (val >> 0) & 0xff;
  6948. sum += (val >> 8) & 0xff;
  6949. sum += (val >> 16) & 0xff;
  6950. sum += (val >> 24) & 0xff;
  6951. }
  6952. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6953. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6954. if ((sum & 0xff) != 0xab) {
  6955. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6956. return -EINVAL;
  6957. }
  6958. val = nr64(ESPC_PHY_TYPE);
  6959. switch (np->port) {
  6960. case 0:
  6961. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6962. ESPC_PHY_TYPE_PORT0_SHIFT;
  6963. break;
  6964. case 1:
  6965. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6966. ESPC_PHY_TYPE_PORT1_SHIFT;
  6967. break;
  6968. case 2:
  6969. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6970. ESPC_PHY_TYPE_PORT2_SHIFT;
  6971. break;
  6972. case 3:
  6973. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6974. ESPC_PHY_TYPE_PORT3_SHIFT;
  6975. break;
  6976. default:
  6977. dev_err(np->device, "Bogus port number %u\n",
  6978. np->port);
  6979. return -EINVAL;
  6980. }
  6981. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6982. "SPROM: PHY type %x\n", val8);
  6983. switch (val8) {
  6984. case ESPC_PHY_TYPE_1G_COPPER:
  6985. /* 1G copper, MII */
  6986. np->flags &= ~(NIU_FLAGS_FIBER |
  6987. NIU_FLAGS_10G);
  6988. np->mac_xcvr = MAC_XCVR_MII;
  6989. break;
  6990. case ESPC_PHY_TYPE_1G_FIBER:
  6991. /* 1G fiber, PCS */
  6992. np->flags &= ~NIU_FLAGS_10G;
  6993. np->flags |= NIU_FLAGS_FIBER;
  6994. np->mac_xcvr = MAC_XCVR_PCS;
  6995. break;
  6996. case ESPC_PHY_TYPE_10G_COPPER:
  6997. /* 10G copper, XPCS */
  6998. np->flags |= NIU_FLAGS_10G;
  6999. np->flags &= ~NIU_FLAGS_FIBER;
  7000. np->mac_xcvr = MAC_XCVR_XPCS;
  7001. break;
  7002. case ESPC_PHY_TYPE_10G_FIBER:
  7003. /* 10G fiber, XPCS */
  7004. np->flags |= (NIU_FLAGS_10G |
  7005. NIU_FLAGS_FIBER);
  7006. np->mac_xcvr = MAC_XCVR_XPCS;
  7007. break;
  7008. default:
  7009. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7010. return -EINVAL;
  7011. }
  7012. val = nr64(ESPC_MAC_ADDR0);
  7013. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7014. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7015. addr[0] = (val >> 0) & 0xff;
  7016. addr[1] = (val >> 8) & 0xff;
  7017. addr[2] = (val >> 16) & 0xff;
  7018. addr[3] = (val >> 24) & 0xff;
  7019. val = nr64(ESPC_MAC_ADDR1);
  7020. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7021. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7022. addr[4] = (val >> 0) & 0xff;
  7023. addr[5] = (val >> 8) & 0xff;
  7024. if (!is_valid_ether_addr(addr)) {
  7025. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7026. addr);
  7027. return -EINVAL;
  7028. }
  7029. val8 = addr[5];
  7030. addr[5] += np->port;
  7031. if (addr[5] < val8)
  7032. addr[4]++;
  7033. eth_hw_addr_set(dev, addr);
  7034. val = nr64(ESPC_MOD_STR_LEN);
  7035. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7036. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7037. if (val >= 8 * 4)
  7038. return -EINVAL;
  7039. for (i = 0; i < val; i += 4) {
  7040. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7041. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7042. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7043. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7044. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7045. }
  7046. np->vpd.model[val] = '\0';
  7047. val = nr64(ESPC_BD_MOD_STR_LEN);
  7048. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7049. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7050. if (val >= 4 * 4)
  7051. return -EINVAL;
  7052. for (i = 0; i < val; i += 4) {
  7053. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7054. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7055. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7056. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7057. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7058. }
  7059. np->vpd.board_model[val] = '\0';
  7060. np->vpd.mac_num =
  7061. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7062. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7063. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7064. return 0;
  7065. }
  7066. static int niu_get_and_validate_port(struct niu *np)
  7067. {
  7068. struct niu_parent *parent = np->parent;
  7069. if (np->port <= 1)
  7070. np->flags |= NIU_FLAGS_XMAC;
  7071. if (!parent->num_ports) {
  7072. if (parent->plat_type == PLAT_TYPE_NIU) {
  7073. parent->num_ports = 2;
  7074. } else {
  7075. parent->num_ports = niu_pci_vpd_get_nports(np);
  7076. if (!parent->num_ports) {
  7077. /* Fall back to SPROM as last resort.
  7078. * This will fail on most cards.
  7079. */
  7080. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7081. ESPC_NUM_PORTS_MACS_VAL;
  7082. /* All of the current probing methods fail on
  7083. * Maramba on-board parts.
  7084. */
  7085. if (!parent->num_ports)
  7086. parent->num_ports = 4;
  7087. }
  7088. }
  7089. }
  7090. if (np->port >= parent->num_ports)
  7091. return -ENODEV;
  7092. return 0;
  7093. }
  7094. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7095. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7096. {
  7097. u32 id = (dev_id_1 << 16) | dev_id_2;
  7098. u8 idx;
  7099. if (dev_id_1 < 0 || dev_id_2 < 0)
  7100. return 0;
  7101. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7102. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7103. * test covers the 8706 as well.
  7104. */
  7105. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7106. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7107. return 0;
  7108. } else {
  7109. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7110. return 0;
  7111. }
  7112. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7113. parent->index, id,
  7114. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7115. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7116. phy_port);
  7117. if (p->cur[type] >= NIU_MAX_PORTS) {
  7118. pr_err("Too many PHY ports\n");
  7119. return -EINVAL;
  7120. }
  7121. idx = p->cur[type];
  7122. p->phy_id[type][idx] = id;
  7123. p->phy_port[type][idx] = phy_port;
  7124. p->cur[type] = idx + 1;
  7125. return 0;
  7126. }
  7127. static int port_has_10g(struct phy_probe_info *p, int port)
  7128. {
  7129. int i;
  7130. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7131. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7132. return 1;
  7133. }
  7134. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7135. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7136. return 1;
  7137. }
  7138. return 0;
  7139. }
  7140. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7141. {
  7142. int port, cnt;
  7143. cnt = 0;
  7144. *lowest = 32;
  7145. for (port = 8; port < 32; port++) {
  7146. if (port_has_10g(p, port)) {
  7147. if (!cnt)
  7148. *lowest = port;
  7149. cnt++;
  7150. }
  7151. }
  7152. return cnt;
  7153. }
  7154. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7155. {
  7156. *lowest = 32;
  7157. if (p->cur[PHY_TYPE_MII])
  7158. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7159. return p->cur[PHY_TYPE_MII];
  7160. }
  7161. static void niu_n2_divide_channels(struct niu_parent *parent)
  7162. {
  7163. int num_ports = parent->num_ports;
  7164. int i;
  7165. for (i = 0; i < num_ports; i++) {
  7166. parent->rxchan_per_port[i] = (16 / num_ports);
  7167. parent->txchan_per_port[i] = (16 / num_ports);
  7168. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7169. parent->index, i,
  7170. parent->rxchan_per_port[i],
  7171. parent->txchan_per_port[i]);
  7172. }
  7173. }
  7174. static void niu_divide_channels(struct niu_parent *parent,
  7175. int num_10g, int num_1g)
  7176. {
  7177. int num_ports = parent->num_ports;
  7178. int rx_chans_per_10g, rx_chans_per_1g;
  7179. int tx_chans_per_10g, tx_chans_per_1g;
  7180. int i, tot_rx, tot_tx;
  7181. if (!num_10g || !num_1g) {
  7182. rx_chans_per_10g = rx_chans_per_1g =
  7183. (NIU_NUM_RXCHAN / num_ports);
  7184. tx_chans_per_10g = tx_chans_per_1g =
  7185. (NIU_NUM_TXCHAN / num_ports);
  7186. } else {
  7187. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7188. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7189. (rx_chans_per_1g * num_1g)) /
  7190. num_10g;
  7191. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7192. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7193. (tx_chans_per_1g * num_1g)) /
  7194. num_10g;
  7195. }
  7196. tot_rx = tot_tx = 0;
  7197. for (i = 0; i < num_ports; i++) {
  7198. int type = phy_decode(parent->port_phy, i);
  7199. if (type == PORT_TYPE_10G) {
  7200. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7201. parent->txchan_per_port[i] = tx_chans_per_10g;
  7202. } else {
  7203. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7204. parent->txchan_per_port[i] = tx_chans_per_1g;
  7205. }
  7206. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7207. parent->index, i,
  7208. parent->rxchan_per_port[i],
  7209. parent->txchan_per_port[i]);
  7210. tot_rx += parent->rxchan_per_port[i];
  7211. tot_tx += parent->txchan_per_port[i];
  7212. }
  7213. if (tot_rx > NIU_NUM_RXCHAN) {
  7214. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7215. parent->index, tot_rx);
  7216. for (i = 0; i < num_ports; i++)
  7217. parent->rxchan_per_port[i] = 1;
  7218. }
  7219. if (tot_tx > NIU_NUM_TXCHAN) {
  7220. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7221. parent->index, tot_tx);
  7222. for (i = 0; i < num_ports; i++)
  7223. parent->txchan_per_port[i] = 1;
  7224. }
  7225. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7226. pr_warn("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7227. parent->index, tot_rx, tot_tx);
  7228. }
  7229. }
  7230. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7231. int num_10g, int num_1g)
  7232. {
  7233. int i, num_ports = parent->num_ports;
  7234. int rdc_group, rdc_groups_per_port;
  7235. int rdc_channel_base;
  7236. rdc_group = 0;
  7237. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7238. rdc_channel_base = 0;
  7239. for (i = 0; i < num_ports; i++) {
  7240. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7241. int grp, num_channels = parent->rxchan_per_port[i];
  7242. int this_channel_offset;
  7243. tp->first_table_num = rdc_group;
  7244. tp->num_tables = rdc_groups_per_port;
  7245. this_channel_offset = 0;
  7246. for (grp = 0; grp < tp->num_tables; grp++) {
  7247. struct rdc_table *rt = &tp->tables[grp];
  7248. int slot;
  7249. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7250. parent->index, i, tp->first_table_num + grp);
  7251. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7252. rt->rxdma_channel[slot] =
  7253. rdc_channel_base + this_channel_offset;
  7254. pr_cont("%d ", rt->rxdma_channel[slot]);
  7255. if (++this_channel_offset == num_channels)
  7256. this_channel_offset = 0;
  7257. }
  7258. pr_cont("]\n");
  7259. }
  7260. parent->rdc_default[i] = rdc_channel_base;
  7261. rdc_channel_base += num_channels;
  7262. rdc_group += rdc_groups_per_port;
  7263. }
  7264. }
  7265. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7266. struct phy_probe_info *info)
  7267. {
  7268. unsigned long flags;
  7269. int port, err;
  7270. memset(info, 0, sizeof(*info));
  7271. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7272. niu_lock_parent(np, flags);
  7273. err = 0;
  7274. for (port = 8; port < 32; port++) {
  7275. int dev_id_1, dev_id_2;
  7276. dev_id_1 = mdio_read(np, port,
  7277. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7278. dev_id_2 = mdio_read(np, port,
  7279. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7280. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7281. PHY_TYPE_PMA_PMD);
  7282. if (err)
  7283. break;
  7284. dev_id_1 = mdio_read(np, port,
  7285. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7286. dev_id_2 = mdio_read(np, port,
  7287. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7288. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7289. PHY_TYPE_PCS);
  7290. if (err)
  7291. break;
  7292. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7293. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7294. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7295. PHY_TYPE_MII);
  7296. if (err)
  7297. break;
  7298. }
  7299. niu_unlock_parent(np, flags);
  7300. return err;
  7301. }
  7302. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7303. {
  7304. struct phy_probe_info *info = &parent->phy_probe_info;
  7305. int lowest_10g, lowest_1g;
  7306. int num_10g, num_1g;
  7307. u32 val;
  7308. int err;
  7309. num_10g = num_1g = 0;
  7310. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7311. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7312. num_10g = 0;
  7313. num_1g = 2;
  7314. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7315. parent->num_ports = 4;
  7316. val = (phy_encode(PORT_TYPE_1G, 0) |
  7317. phy_encode(PORT_TYPE_1G, 1) |
  7318. phy_encode(PORT_TYPE_1G, 2) |
  7319. phy_encode(PORT_TYPE_1G, 3));
  7320. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7321. num_10g = 2;
  7322. num_1g = 0;
  7323. parent->num_ports = 2;
  7324. val = (phy_encode(PORT_TYPE_10G, 0) |
  7325. phy_encode(PORT_TYPE_10G, 1));
  7326. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7327. (parent->plat_type == PLAT_TYPE_NIU)) {
  7328. /* this is the Monza case */
  7329. if (np->flags & NIU_FLAGS_10G) {
  7330. val = (phy_encode(PORT_TYPE_10G, 0) |
  7331. phy_encode(PORT_TYPE_10G, 1));
  7332. } else {
  7333. val = (phy_encode(PORT_TYPE_1G, 0) |
  7334. phy_encode(PORT_TYPE_1G, 1));
  7335. }
  7336. } else {
  7337. err = fill_phy_probe_info(np, parent, info);
  7338. if (err)
  7339. return err;
  7340. num_10g = count_10g_ports(info, &lowest_10g);
  7341. num_1g = count_1g_ports(info, &lowest_1g);
  7342. switch ((num_10g << 4) | num_1g) {
  7343. case 0x24:
  7344. if (lowest_1g == 10)
  7345. parent->plat_type = PLAT_TYPE_VF_P0;
  7346. else if (lowest_1g == 26)
  7347. parent->plat_type = PLAT_TYPE_VF_P1;
  7348. else
  7349. goto unknown_vg_1g_port;
  7350. fallthrough;
  7351. case 0x22:
  7352. val = (phy_encode(PORT_TYPE_10G, 0) |
  7353. phy_encode(PORT_TYPE_10G, 1) |
  7354. phy_encode(PORT_TYPE_1G, 2) |
  7355. phy_encode(PORT_TYPE_1G, 3));
  7356. break;
  7357. case 0x20:
  7358. val = (phy_encode(PORT_TYPE_10G, 0) |
  7359. phy_encode(PORT_TYPE_10G, 1));
  7360. break;
  7361. case 0x10:
  7362. val = phy_encode(PORT_TYPE_10G, np->port);
  7363. break;
  7364. case 0x14:
  7365. if (lowest_1g == 10)
  7366. parent->plat_type = PLAT_TYPE_VF_P0;
  7367. else if (lowest_1g == 26)
  7368. parent->plat_type = PLAT_TYPE_VF_P1;
  7369. else
  7370. goto unknown_vg_1g_port;
  7371. fallthrough;
  7372. case 0x13:
  7373. if ((lowest_10g & 0x7) == 0)
  7374. val = (phy_encode(PORT_TYPE_10G, 0) |
  7375. phy_encode(PORT_TYPE_1G, 1) |
  7376. phy_encode(PORT_TYPE_1G, 2) |
  7377. phy_encode(PORT_TYPE_1G, 3));
  7378. else
  7379. val = (phy_encode(PORT_TYPE_1G, 0) |
  7380. phy_encode(PORT_TYPE_10G, 1) |
  7381. phy_encode(PORT_TYPE_1G, 2) |
  7382. phy_encode(PORT_TYPE_1G, 3));
  7383. break;
  7384. case 0x04:
  7385. if (lowest_1g == 10)
  7386. parent->plat_type = PLAT_TYPE_VF_P0;
  7387. else if (lowest_1g == 26)
  7388. parent->plat_type = PLAT_TYPE_VF_P1;
  7389. else
  7390. goto unknown_vg_1g_port;
  7391. val = (phy_encode(PORT_TYPE_1G, 0) |
  7392. phy_encode(PORT_TYPE_1G, 1) |
  7393. phy_encode(PORT_TYPE_1G, 2) |
  7394. phy_encode(PORT_TYPE_1G, 3));
  7395. break;
  7396. default:
  7397. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7398. num_10g, num_1g);
  7399. return -EINVAL;
  7400. }
  7401. }
  7402. parent->port_phy = val;
  7403. if (parent->plat_type == PLAT_TYPE_NIU)
  7404. niu_n2_divide_channels(parent);
  7405. else
  7406. niu_divide_channels(parent, num_10g, num_1g);
  7407. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7408. return 0;
  7409. unknown_vg_1g_port:
  7410. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7411. return -EINVAL;
  7412. }
  7413. static int niu_probe_ports(struct niu *np)
  7414. {
  7415. struct niu_parent *parent = np->parent;
  7416. int err, i;
  7417. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7418. err = walk_phys(np, parent);
  7419. if (err)
  7420. return err;
  7421. niu_set_ldg_timer_res(np, 2);
  7422. for (i = 0; i <= LDN_MAX; i++)
  7423. niu_ldn_irq_enable(np, i, 0);
  7424. }
  7425. if (parent->port_phy == PORT_PHY_INVALID)
  7426. return -EINVAL;
  7427. return 0;
  7428. }
  7429. static int niu_classifier_swstate_init(struct niu *np)
  7430. {
  7431. struct niu_classifier *cp = &np->clas;
  7432. cp->tcam_top = (u16) np->port;
  7433. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7434. cp->h1_init = 0xffffffff;
  7435. cp->h2_init = 0xffff;
  7436. return fflp_early_init(np);
  7437. }
  7438. static void niu_link_config_init(struct niu *np)
  7439. {
  7440. struct niu_link_config *lp = &np->link_config;
  7441. lp->advertising = (ADVERTISED_10baseT_Half |
  7442. ADVERTISED_10baseT_Full |
  7443. ADVERTISED_100baseT_Half |
  7444. ADVERTISED_100baseT_Full |
  7445. ADVERTISED_1000baseT_Half |
  7446. ADVERTISED_1000baseT_Full |
  7447. ADVERTISED_10000baseT_Full |
  7448. ADVERTISED_Autoneg);
  7449. lp->speed = lp->active_speed = SPEED_INVALID;
  7450. lp->duplex = DUPLEX_FULL;
  7451. lp->active_duplex = DUPLEX_INVALID;
  7452. lp->autoneg = 1;
  7453. #if 0
  7454. lp->loopback_mode = LOOPBACK_MAC;
  7455. lp->active_speed = SPEED_10000;
  7456. lp->active_duplex = DUPLEX_FULL;
  7457. #else
  7458. lp->loopback_mode = LOOPBACK_DISABLED;
  7459. #endif
  7460. }
  7461. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7462. {
  7463. switch (np->port) {
  7464. case 0:
  7465. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7466. np->ipp_off = 0x00000;
  7467. np->pcs_off = 0x04000;
  7468. np->xpcs_off = 0x02000;
  7469. break;
  7470. case 1:
  7471. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7472. np->ipp_off = 0x08000;
  7473. np->pcs_off = 0x0a000;
  7474. np->xpcs_off = 0x08000;
  7475. break;
  7476. case 2:
  7477. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7478. np->ipp_off = 0x04000;
  7479. np->pcs_off = 0x0e000;
  7480. np->xpcs_off = ~0UL;
  7481. break;
  7482. case 3:
  7483. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7484. np->ipp_off = 0x0c000;
  7485. np->pcs_off = 0x12000;
  7486. np->xpcs_off = ~0UL;
  7487. break;
  7488. default:
  7489. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7490. return -EINVAL;
  7491. }
  7492. return 0;
  7493. }
  7494. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7495. {
  7496. struct msix_entry msi_vec[NIU_NUM_LDG];
  7497. struct niu_parent *parent = np->parent;
  7498. struct pci_dev *pdev = np->pdev;
  7499. int i, num_irqs;
  7500. u8 first_ldg;
  7501. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7502. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7503. ldg_num_map[i] = first_ldg + i;
  7504. num_irqs = (parent->rxchan_per_port[np->port] +
  7505. parent->txchan_per_port[np->port] +
  7506. (np->port == 0 ? 3 : 1));
  7507. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7508. for (i = 0; i < num_irqs; i++) {
  7509. msi_vec[i].vector = 0;
  7510. msi_vec[i].entry = i;
  7511. }
  7512. num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
  7513. if (num_irqs < 0) {
  7514. np->flags &= ~NIU_FLAGS_MSIX;
  7515. return;
  7516. }
  7517. np->flags |= NIU_FLAGS_MSIX;
  7518. for (i = 0; i < num_irqs; i++)
  7519. np->ldg[i].irq = msi_vec[i].vector;
  7520. np->num_ldg = num_irqs;
  7521. }
  7522. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7523. {
  7524. #ifdef CONFIG_SPARC64
  7525. struct platform_device *op = np->op;
  7526. const u32 *int_prop;
  7527. int i;
  7528. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7529. if (!int_prop)
  7530. return -ENODEV;
  7531. for (i = 0; i < op->archdata.num_irqs; i++) {
  7532. ldg_num_map[i] = int_prop[i];
  7533. np->ldg[i].irq = op->archdata.irqs[i];
  7534. }
  7535. np->num_ldg = op->archdata.num_irqs;
  7536. return 0;
  7537. #else
  7538. return -EINVAL;
  7539. #endif
  7540. }
  7541. static int niu_ldg_init(struct niu *np)
  7542. {
  7543. struct niu_parent *parent = np->parent;
  7544. u8 ldg_num_map[NIU_NUM_LDG];
  7545. int first_chan, num_chan;
  7546. int i, err, ldg_rotor;
  7547. u8 port;
  7548. np->num_ldg = 1;
  7549. np->ldg[0].irq = np->dev->irq;
  7550. if (parent->plat_type == PLAT_TYPE_NIU) {
  7551. err = niu_n2_irq_init(np, ldg_num_map);
  7552. if (err)
  7553. return err;
  7554. } else
  7555. niu_try_msix(np, ldg_num_map);
  7556. port = np->port;
  7557. for (i = 0; i < np->num_ldg; i++) {
  7558. struct niu_ldg *lp = &np->ldg[i];
  7559. netif_napi_add(np->dev, &lp->napi, niu_poll);
  7560. lp->np = np;
  7561. lp->ldg_num = ldg_num_map[i];
  7562. lp->timer = 2; /* XXX */
  7563. /* On N2 NIU the firmware has setup the SID mappings so they go
  7564. * to the correct values that will route the LDG to the proper
  7565. * interrupt in the NCU interrupt table.
  7566. */
  7567. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7568. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7569. if (err)
  7570. return err;
  7571. }
  7572. }
  7573. /* We adopt the LDG assignment ordering used by the N2 NIU
  7574. * 'interrupt' properties because that simplifies a lot of
  7575. * things. This ordering is:
  7576. *
  7577. * MAC
  7578. * MIF (if port zero)
  7579. * SYSERR (if port zero)
  7580. * RX channels
  7581. * TX channels
  7582. */
  7583. ldg_rotor = 0;
  7584. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7585. LDN_MAC(port));
  7586. if (err)
  7587. return err;
  7588. ldg_rotor++;
  7589. if (ldg_rotor == np->num_ldg)
  7590. ldg_rotor = 0;
  7591. if (port == 0) {
  7592. err = niu_ldg_assign_ldn(np, parent,
  7593. ldg_num_map[ldg_rotor],
  7594. LDN_MIF);
  7595. if (err)
  7596. return err;
  7597. ldg_rotor++;
  7598. if (ldg_rotor == np->num_ldg)
  7599. ldg_rotor = 0;
  7600. err = niu_ldg_assign_ldn(np, parent,
  7601. ldg_num_map[ldg_rotor],
  7602. LDN_DEVICE_ERROR);
  7603. if (err)
  7604. return err;
  7605. ldg_rotor++;
  7606. if (ldg_rotor == np->num_ldg)
  7607. ldg_rotor = 0;
  7608. }
  7609. first_chan = 0;
  7610. for (i = 0; i < port; i++)
  7611. first_chan += parent->rxchan_per_port[i];
  7612. num_chan = parent->rxchan_per_port[port];
  7613. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7614. err = niu_ldg_assign_ldn(np, parent,
  7615. ldg_num_map[ldg_rotor],
  7616. LDN_RXDMA(i));
  7617. if (err)
  7618. return err;
  7619. ldg_rotor++;
  7620. if (ldg_rotor == np->num_ldg)
  7621. ldg_rotor = 0;
  7622. }
  7623. first_chan = 0;
  7624. for (i = 0; i < port; i++)
  7625. first_chan += parent->txchan_per_port[i];
  7626. num_chan = parent->txchan_per_port[port];
  7627. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7628. err = niu_ldg_assign_ldn(np, parent,
  7629. ldg_num_map[ldg_rotor],
  7630. LDN_TXDMA(i));
  7631. if (err)
  7632. return err;
  7633. ldg_rotor++;
  7634. if (ldg_rotor == np->num_ldg)
  7635. ldg_rotor = 0;
  7636. }
  7637. return 0;
  7638. }
  7639. static void niu_ldg_free(struct niu *np)
  7640. {
  7641. if (np->flags & NIU_FLAGS_MSIX)
  7642. pci_disable_msix(np->pdev);
  7643. }
  7644. static int niu_get_of_props(struct niu *np)
  7645. {
  7646. #ifdef CONFIG_SPARC64
  7647. struct net_device *dev = np->dev;
  7648. struct device_node *dp;
  7649. const char *phy_type;
  7650. const u8 *mac_addr;
  7651. const char *model;
  7652. int prop_len;
  7653. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7654. dp = np->op->dev.of_node;
  7655. else
  7656. dp = pci_device_to_OF_node(np->pdev);
  7657. phy_type = of_get_property(dp, "phy-type", NULL);
  7658. if (!phy_type) {
  7659. netdev_err(dev, "%pOF: OF node lacks phy-type property\n", dp);
  7660. return -EINVAL;
  7661. }
  7662. if (!strcmp(phy_type, "none"))
  7663. return -ENODEV;
  7664. strcpy(np->vpd.phy_type, phy_type);
  7665. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7666. netdev_err(dev, "%pOF: Illegal phy string [%s]\n",
  7667. dp, np->vpd.phy_type);
  7668. return -EINVAL;
  7669. }
  7670. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7671. if (!mac_addr) {
  7672. netdev_err(dev, "%pOF: OF node lacks local-mac-address property\n",
  7673. dp);
  7674. return -EINVAL;
  7675. }
  7676. if (prop_len != dev->addr_len) {
  7677. netdev_err(dev, "%pOF: OF MAC address prop len (%d) is wrong\n",
  7678. dp, prop_len);
  7679. }
  7680. eth_hw_addr_set(dev, mac_addr);
  7681. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7682. netdev_err(dev, "%pOF: OF MAC address is invalid\n", dp);
  7683. netdev_err(dev, "%pOF: [ %pM ]\n", dp, dev->dev_addr);
  7684. return -EINVAL;
  7685. }
  7686. model = of_get_property(dp, "model", NULL);
  7687. if (model)
  7688. strcpy(np->vpd.model, model);
  7689. if (of_find_property(dp, "hot-swappable-phy", NULL)) {
  7690. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7691. NIU_FLAGS_HOTPLUG_PHY);
  7692. }
  7693. return 0;
  7694. #else
  7695. return -EINVAL;
  7696. #endif
  7697. }
  7698. static int niu_get_invariants(struct niu *np)
  7699. {
  7700. int err, have_props;
  7701. u32 offset;
  7702. err = niu_get_of_props(np);
  7703. if (err == -ENODEV)
  7704. return err;
  7705. have_props = !err;
  7706. err = niu_init_mac_ipp_pcs_base(np);
  7707. if (err)
  7708. return err;
  7709. if (have_props) {
  7710. err = niu_get_and_validate_port(np);
  7711. if (err)
  7712. return err;
  7713. } else {
  7714. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7715. return -EINVAL;
  7716. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7717. offset = niu_pci_vpd_offset(np);
  7718. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7719. "%s() VPD offset [%08x]\n", __func__, offset);
  7720. if (offset) {
  7721. err = niu_pci_vpd_fetch(np, offset);
  7722. if (err < 0)
  7723. return err;
  7724. }
  7725. nw64(ESPC_PIO_EN, 0);
  7726. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7727. niu_pci_vpd_validate(np);
  7728. err = niu_get_and_validate_port(np);
  7729. if (err)
  7730. return err;
  7731. }
  7732. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7733. err = niu_get_and_validate_port(np);
  7734. if (err)
  7735. return err;
  7736. err = niu_pci_probe_sprom(np);
  7737. if (err)
  7738. return err;
  7739. }
  7740. }
  7741. err = niu_probe_ports(np);
  7742. if (err)
  7743. return err;
  7744. niu_ldg_init(np);
  7745. niu_classifier_swstate_init(np);
  7746. niu_link_config_init(np);
  7747. err = niu_determine_phy_disposition(np);
  7748. if (!err)
  7749. err = niu_init_link(np);
  7750. return err;
  7751. }
  7752. static LIST_HEAD(niu_parent_list);
  7753. static DEFINE_MUTEX(niu_parent_lock);
  7754. static int niu_parent_index;
  7755. static ssize_t show_port_phy(struct device *dev,
  7756. struct device_attribute *attr, char *buf)
  7757. {
  7758. struct platform_device *plat_dev = to_platform_device(dev);
  7759. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7760. u32 port_phy = p->port_phy;
  7761. char *orig_buf = buf;
  7762. int i;
  7763. if (port_phy == PORT_PHY_UNKNOWN ||
  7764. port_phy == PORT_PHY_INVALID)
  7765. return 0;
  7766. for (i = 0; i < p->num_ports; i++) {
  7767. const char *type_str;
  7768. int type;
  7769. type = phy_decode(port_phy, i);
  7770. if (type == PORT_TYPE_10G)
  7771. type_str = "10G";
  7772. else
  7773. type_str = "1G";
  7774. buf += sprintf(buf,
  7775. (i == 0) ? "%s" : " %s",
  7776. type_str);
  7777. }
  7778. buf += sprintf(buf, "\n");
  7779. return buf - orig_buf;
  7780. }
  7781. static ssize_t show_plat_type(struct device *dev,
  7782. struct device_attribute *attr, char *buf)
  7783. {
  7784. struct platform_device *plat_dev = to_platform_device(dev);
  7785. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7786. const char *type_str;
  7787. switch (p->plat_type) {
  7788. case PLAT_TYPE_ATLAS:
  7789. type_str = "atlas";
  7790. break;
  7791. case PLAT_TYPE_NIU:
  7792. type_str = "niu";
  7793. break;
  7794. case PLAT_TYPE_VF_P0:
  7795. type_str = "vf_p0";
  7796. break;
  7797. case PLAT_TYPE_VF_P1:
  7798. type_str = "vf_p1";
  7799. break;
  7800. default:
  7801. type_str = "unknown";
  7802. break;
  7803. }
  7804. return sprintf(buf, "%s\n", type_str);
  7805. }
  7806. static ssize_t __show_chan_per_port(struct device *dev,
  7807. struct device_attribute *attr, char *buf,
  7808. int rx)
  7809. {
  7810. struct platform_device *plat_dev = to_platform_device(dev);
  7811. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7812. char *orig_buf = buf;
  7813. u8 *arr;
  7814. int i;
  7815. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7816. for (i = 0; i < p->num_ports; i++) {
  7817. buf += sprintf(buf,
  7818. (i == 0) ? "%d" : " %d",
  7819. arr[i]);
  7820. }
  7821. buf += sprintf(buf, "\n");
  7822. return buf - orig_buf;
  7823. }
  7824. static ssize_t show_rxchan_per_port(struct device *dev,
  7825. struct device_attribute *attr, char *buf)
  7826. {
  7827. return __show_chan_per_port(dev, attr, buf, 1);
  7828. }
  7829. static ssize_t show_txchan_per_port(struct device *dev,
  7830. struct device_attribute *attr, char *buf)
  7831. {
  7832. return __show_chan_per_port(dev, attr, buf, 1);
  7833. }
  7834. static ssize_t show_num_ports(struct device *dev,
  7835. struct device_attribute *attr, char *buf)
  7836. {
  7837. struct platform_device *plat_dev = to_platform_device(dev);
  7838. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7839. return sprintf(buf, "%d\n", p->num_ports);
  7840. }
  7841. static struct device_attribute niu_parent_attributes[] = {
  7842. __ATTR(port_phy, 0444, show_port_phy, NULL),
  7843. __ATTR(plat_type, 0444, show_plat_type, NULL),
  7844. __ATTR(rxchan_per_port, 0444, show_rxchan_per_port, NULL),
  7845. __ATTR(txchan_per_port, 0444, show_txchan_per_port, NULL),
  7846. __ATTR(num_ports, 0444, show_num_ports, NULL),
  7847. {}
  7848. };
  7849. static struct niu_parent *niu_new_parent(struct niu *np,
  7850. union niu_parent_id *id, u8 ptype)
  7851. {
  7852. struct platform_device *plat_dev;
  7853. struct niu_parent *p;
  7854. int i;
  7855. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7856. NULL, 0);
  7857. if (IS_ERR(plat_dev))
  7858. return NULL;
  7859. for (i = 0; niu_parent_attributes[i].attr.name; i++) {
  7860. int err = device_create_file(&plat_dev->dev,
  7861. &niu_parent_attributes[i]);
  7862. if (err)
  7863. goto fail_unregister;
  7864. }
  7865. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7866. if (!p)
  7867. goto fail_unregister;
  7868. p->index = niu_parent_index++;
  7869. plat_dev->dev.platform_data = p;
  7870. p->plat_dev = plat_dev;
  7871. memcpy(&p->id, id, sizeof(*id));
  7872. p->plat_type = ptype;
  7873. INIT_LIST_HEAD(&p->list);
  7874. atomic_set(&p->refcnt, 0);
  7875. list_add(&p->list, &niu_parent_list);
  7876. spin_lock_init(&p->lock);
  7877. p->rxdma_clock_divider = 7500;
  7878. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7879. if (p->plat_type == PLAT_TYPE_NIU)
  7880. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7881. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7882. int index = i - CLASS_CODE_USER_PROG1;
  7883. p->tcam_key[index] = TCAM_KEY_TSEL;
  7884. p->flow_key[index] = (FLOW_KEY_IPSA |
  7885. FLOW_KEY_IPDA |
  7886. FLOW_KEY_PROTO |
  7887. (FLOW_KEY_L4_BYTE12 <<
  7888. FLOW_KEY_L4_0_SHIFT) |
  7889. (FLOW_KEY_L4_BYTE12 <<
  7890. FLOW_KEY_L4_1_SHIFT));
  7891. }
  7892. for (i = 0; i < LDN_MAX + 1; i++)
  7893. p->ldg_map[i] = LDG_INVALID;
  7894. return p;
  7895. fail_unregister:
  7896. platform_device_unregister(plat_dev);
  7897. return NULL;
  7898. }
  7899. static struct niu_parent *niu_get_parent(struct niu *np,
  7900. union niu_parent_id *id, u8 ptype)
  7901. {
  7902. struct niu_parent *p, *tmp;
  7903. int port = np->port;
  7904. mutex_lock(&niu_parent_lock);
  7905. p = NULL;
  7906. list_for_each_entry(tmp, &niu_parent_list, list) {
  7907. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7908. p = tmp;
  7909. break;
  7910. }
  7911. }
  7912. if (!p)
  7913. p = niu_new_parent(np, id, ptype);
  7914. if (p) {
  7915. char port_name[8];
  7916. int err;
  7917. sprintf(port_name, "port%d", port);
  7918. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7919. &np->device->kobj,
  7920. port_name);
  7921. if (!err) {
  7922. p->ports[port] = np;
  7923. atomic_inc(&p->refcnt);
  7924. }
  7925. }
  7926. mutex_unlock(&niu_parent_lock);
  7927. return p;
  7928. }
  7929. static void niu_put_parent(struct niu *np)
  7930. {
  7931. struct niu_parent *p = np->parent;
  7932. u8 port = np->port;
  7933. char port_name[8];
  7934. BUG_ON(!p || p->ports[port] != np);
  7935. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7936. "%s() port[%u]\n", __func__, port);
  7937. sprintf(port_name, "port%d", port);
  7938. mutex_lock(&niu_parent_lock);
  7939. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7940. p->ports[port] = NULL;
  7941. np->parent = NULL;
  7942. if (atomic_dec_and_test(&p->refcnt)) {
  7943. list_del(&p->list);
  7944. platform_device_unregister(p->plat_dev);
  7945. }
  7946. mutex_unlock(&niu_parent_lock);
  7947. }
  7948. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7949. u64 *handle, gfp_t flag)
  7950. {
  7951. dma_addr_t dh;
  7952. void *ret;
  7953. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7954. if (ret)
  7955. *handle = dh;
  7956. return ret;
  7957. }
  7958. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7959. void *cpu_addr, u64 handle)
  7960. {
  7961. dma_free_coherent(dev, size, cpu_addr, handle);
  7962. }
  7963. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7964. unsigned long offset, size_t size,
  7965. enum dma_data_direction direction)
  7966. {
  7967. return dma_map_page(dev, page, offset, size, direction);
  7968. }
  7969. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7970. size_t size, enum dma_data_direction direction)
  7971. {
  7972. dma_unmap_page(dev, dma_address, size, direction);
  7973. }
  7974. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7975. size_t size,
  7976. enum dma_data_direction direction)
  7977. {
  7978. return dma_map_single(dev, cpu_addr, size, direction);
  7979. }
  7980. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7981. size_t size,
  7982. enum dma_data_direction direction)
  7983. {
  7984. dma_unmap_single(dev, dma_address, size, direction);
  7985. }
  7986. static const struct niu_ops niu_pci_ops = {
  7987. .alloc_coherent = niu_pci_alloc_coherent,
  7988. .free_coherent = niu_pci_free_coherent,
  7989. .map_page = niu_pci_map_page,
  7990. .unmap_page = niu_pci_unmap_page,
  7991. .map_single = niu_pci_map_single,
  7992. .unmap_single = niu_pci_unmap_single,
  7993. };
  7994. static void niu_driver_version(void)
  7995. {
  7996. static int niu_version_printed;
  7997. if (niu_version_printed++ == 0)
  7998. pr_info("%s", version);
  7999. }
  8000. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  8001. struct pci_dev *pdev,
  8002. struct platform_device *op,
  8003. const struct niu_ops *ops, u8 port)
  8004. {
  8005. struct net_device *dev;
  8006. struct niu *np;
  8007. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8008. if (!dev)
  8009. return NULL;
  8010. SET_NETDEV_DEV(dev, gen_dev);
  8011. np = netdev_priv(dev);
  8012. np->dev = dev;
  8013. np->pdev = pdev;
  8014. np->op = op;
  8015. np->device = gen_dev;
  8016. np->ops = ops;
  8017. np->msg_enable = niu_debug;
  8018. spin_lock_init(&np->lock);
  8019. INIT_WORK(&np->reset_task, niu_reset_task);
  8020. np->port = port;
  8021. return dev;
  8022. }
  8023. static const struct net_device_ops niu_netdev_ops = {
  8024. .ndo_open = niu_open,
  8025. .ndo_stop = niu_close,
  8026. .ndo_start_xmit = niu_start_xmit,
  8027. .ndo_get_stats64 = niu_get_stats,
  8028. .ndo_set_rx_mode = niu_set_rx_mode,
  8029. .ndo_validate_addr = eth_validate_addr,
  8030. .ndo_set_mac_address = niu_set_mac_addr,
  8031. .ndo_eth_ioctl = niu_ioctl,
  8032. .ndo_tx_timeout = niu_tx_timeout,
  8033. .ndo_change_mtu = niu_change_mtu,
  8034. };
  8035. static void niu_assign_netdev_ops(struct net_device *dev)
  8036. {
  8037. dev->netdev_ops = &niu_netdev_ops;
  8038. dev->ethtool_ops = &niu_ethtool_ops;
  8039. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8040. }
  8041. static void niu_device_announce(struct niu *np)
  8042. {
  8043. struct net_device *dev = np->dev;
  8044. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8045. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8046. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8047. dev->name,
  8048. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8049. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8050. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8051. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8052. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8053. np->vpd.phy_type);
  8054. } else {
  8055. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8056. dev->name,
  8057. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8058. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8059. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8060. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8061. "COPPER")),
  8062. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8063. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8064. np->vpd.phy_type);
  8065. }
  8066. }
  8067. static void niu_set_basic_features(struct net_device *dev)
  8068. {
  8069. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8070. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8071. }
  8072. static int niu_pci_init_one(struct pci_dev *pdev,
  8073. const struct pci_device_id *ent)
  8074. {
  8075. union niu_parent_id parent_id;
  8076. struct net_device *dev;
  8077. struct niu *np;
  8078. int err;
  8079. niu_driver_version();
  8080. err = pci_enable_device(pdev);
  8081. if (err) {
  8082. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8083. return err;
  8084. }
  8085. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8086. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8087. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8088. err = -ENODEV;
  8089. goto err_out_disable_pdev;
  8090. }
  8091. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8092. if (err) {
  8093. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8094. goto err_out_disable_pdev;
  8095. }
  8096. if (!pci_is_pcie(pdev)) {
  8097. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8098. err = -ENODEV;
  8099. goto err_out_free_res;
  8100. }
  8101. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8102. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8103. if (!dev) {
  8104. err = -ENOMEM;
  8105. goto err_out_free_res;
  8106. }
  8107. np = netdev_priv(dev);
  8108. memset(&parent_id, 0, sizeof(parent_id));
  8109. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8110. parent_id.pci.bus = pdev->bus->number;
  8111. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8112. np->parent = niu_get_parent(np, &parent_id,
  8113. PLAT_TYPE_ATLAS);
  8114. if (!np->parent) {
  8115. err = -ENOMEM;
  8116. goto err_out_free_dev;
  8117. }
  8118. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8119. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8120. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8121. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8122. PCI_EXP_DEVCTL_RELAX_EN);
  8123. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
  8124. if (!err)
  8125. dev->features |= NETIF_F_HIGHDMA;
  8126. if (err) {
  8127. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  8128. if (err) {
  8129. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8130. goto err_out_release_parent;
  8131. }
  8132. }
  8133. niu_set_basic_features(dev);
  8134. dev->priv_flags |= IFF_UNICAST_FLT;
  8135. np->regs = pci_ioremap_bar(pdev, 0);
  8136. if (!np->regs) {
  8137. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8138. err = -ENOMEM;
  8139. goto err_out_release_parent;
  8140. }
  8141. pci_set_master(pdev);
  8142. pci_save_state(pdev);
  8143. dev->irq = pdev->irq;
  8144. /* MTU range: 68 - 9216 */
  8145. dev->min_mtu = ETH_MIN_MTU;
  8146. dev->max_mtu = NIU_MAX_MTU;
  8147. niu_assign_netdev_ops(dev);
  8148. err = niu_get_invariants(np);
  8149. if (err) {
  8150. if (err != -ENODEV)
  8151. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8152. goto err_out_iounmap;
  8153. }
  8154. err = register_netdev(dev);
  8155. if (err) {
  8156. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8157. goto err_out_iounmap;
  8158. }
  8159. pci_set_drvdata(pdev, dev);
  8160. niu_device_announce(np);
  8161. return 0;
  8162. err_out_iounmap:
  8163. if (np->regs) {
  8164. iounmap(np->regs);
  8165. np->regs = NULL;
  8166. }
  8167. err_out_release_parent:
  8168. niu_put_parent(np);
  8169. err_out_free_dev:
  8170. free_netdev(dev);
  8171. err_out_free_res:
  8172. pci_release_regions(pdev);
  8173. err_out_disable_pdev:
  8174. pci_disable_device(pdev);
  8175. return err;
  8176. }
  8177. static void niu_pci_remove_one(struct pci_dev *pdev)
  8178. {
  8179. struct net_device *dev = pci_get_drvdata(pdev);
  8180. if (dev) {
  8181. struct niu *np = netdev_priv(dev);
  8182. unregister_netdev(dev);
  8183. if (np->regs) {
  8184. iounmap(np->regs);
  8185. np->regs = NULL;
  8186. }
  8187. niu_ldg_free(np);
  8188. niu_put_parent(np);
  8189. free_netdev(dev);
  8190. pci_release_regions(pdev);
  8191. pci_disable_device(pdev);
  8192. }
  8193. }
  8194. static int __maybe_unused niu_suspend(struct device *dev_d)
  8195. {
  8196. struct net_device *dev = dev_get_drvdata(dev_d);
  8197. struct niu *np = netdev_priv(dev);
  8198. unsigned long flags;
  8199. if (!netif_running(dev))
  8200. return 0;
  8201. flush_work(&np->reset_task);
  8202. niu_netif_stop(np);
  8203. del_timer_sync(&np->timer);
  8204. spin_lock_irqsave(&np->lock, flags);
  8205. niu_enable_interrupts(np, 0);
  8206. spin_unlock_irqrestore(&np->lock, flags);
  8207. netif_device_detach(dev);
  8208. spin_lock_irqsave(&np->lock, flags);
  8209. niu_stop_hw(np);
  8210. spin_unlock_irqrestore(&np->lock, flags);
  8211. return 0;
  8212. }
  8213. static int __maybe_unused niu_resume(struct device *dev_d)
  8214. {
  8215. struct net_device *dev = dev_get_drvdata(dev_d);
  8216. struct niu *np = netdev_priv(dev);
  8217. unsigned long flags;
  8218. int err;
  8219. if (!netif_running(dev))
  8220. return 0;
  8221. netif_device_attach(dev);
  8222. spin_lock_irqsave(&np->lock, flags);
  8223. err = niu_init_hw(np);
  8224. if (!err) {
  8225. np->timer.expires = jiffies + HZ;
  8226. add_timer(&np->timer);
  8227. niu_netif_start(np);
  8228. }
  8229. spin_unlock_irqrestore(&np->lock, flags);
  8230. return err;
  8231. }
  8232. static SIMPLE_DEV_PM_OPS(niu_pm_ops, niu_suspend, niu_resume);
  8233. static struct pci_driver niu_pci_driver = {
  8234. .name = DRV_MODULE_NAME,
  8235. .id_table = niu_pci_tbl,
  8236. .probe = niu_pci_init_one,
  8237. .remove = niu_pci_remove_one,
  8238. .driver.pm = &niu_pm_ops,
  8239. };
  8240. #ifdef CONFIG_SPARC64
  8241. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8242. u64 *dma_addr, gfp_t flag)
  8243. {
  8244. unsigned long order = get_order(size);
  8245. unsigned long page = __get_free_pages(flag, order);
  8246. if (page == 0UL)
  8247. return NULL;
  8248. memset((char *)page, 0, PAGE_SIZE << order);
  8249. *dma_addr = __pa(page);
  8250. return (void *) page;
  8251. }
  8252. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8253. void *cpu_addr, u64 handle)
  8254. {
  8255. unsigned long order = get_order(size);
  8256. free_pages((unsigned long) cpu_addr, order);
  8257. }
  8258. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8259. unsigned long offset, size_t size,
  8260. enum dma_data_direction direction)
  8261. {
  8262. return page_to_phys(page) + offset;
  8263. }
  8264. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8265. size_t size, enum dma_data_direction direction)
  8266. {
  8267. /* Nothing to do. */
  8268. }
  8269. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8270. size_t size,
  8271. enum dma_data_direction direction)
  8272. {
  8273. return __pa(cpu_addr);
  8274. }
  8275. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8276. size_t size,
  8277. enum dma_data_direction direction)
  8278. {
  8279. /* Nothing to do. */
  8280. }
  8281. static const struct niu_ops niu_phys_ops = {
  8282. .alloc_coherent = niu_phys_alloc_coherent,
  8283. .free_coherent = niu_phys_free_coherent,
  8284. .map_page = niu_phys_map_page,
  8285. .unmap_page = niu_phys_unmap_page,
  8286. .map_single = niu_phys_map_single,
  8287. .unmap_single = niu_phys_unmap_single,
  8288. };
  8289. static int niu_of_probe(struct platform_device *op)
  8290. {
  8291. union niu_parent_id parent_id;
  8292. struct net_device *dev;
  8293. struct niu *np;
  8294. const u32 *reg;
  8295. int err;
  8296. niu_driver_version();
  8297. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8298. if (!reg) {
  8299. dev_err(&op->dev, "%pOF: No 'reg' property, aborting\n",
  8300. op->dev.of_node);
  8301. return -ENODEV;
  8302. }
  8303. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8304. &niu_phys_ops, reg[0] & 0x1);
  8305. if (!dev) {
  8306. err = -ENOMEM;
  8307. goto err_out;
  8308. }
  8309. np = netdev_priv(dev);
  8310. memset(&parent_id, 0, sizeof(parent_id));
  8311. parent_id.of = of_get_parent(op->dev.of_node);
  8312. np->parent = niu_get_parent(np, &parent_id,
  8313. PLAT_TYPE_NIU);
  8314. if (!np->parent) {
  8315. err = -ENOMEM;
  8316. goto err_out_free_dev;
  8317. }
  8318. niu_set_basic_features(dev);
  8319. np->regs = of_ioremap(&op->resource[1], 0,
  8320. resource_size(&op->resource[1]),
  8321. "niu regs");
  8322. if (!np->regs) {
  8323. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8324. err = -ENOMEM;
  8325. goto err_out_release_parent;
  8326. }
  8327. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8328. resource_size(&op->resource[2]),
  8329. "niu vregs-1");
  8330. if (!np->vir_regs_1) {
  8331. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8332. err = -ENOMEM;
  8333. goto err_out_iounmap;
  8334. }
  8335. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8336. resource_size(&op->resource[3]),
  8337. "niu vregs-2");
  8338. if (!np->vir_regs_2) {
  8339. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8340. err = -ENOMEM;
  8341. goto err_out_iounmap;
  8342. }
  8343. niu_assign_netdev_ops(dev);
  8344. err = niu_get_invariants(np);
  8345. if (err) {
  8346. if (err != -ENODEV)
  8347. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8348. goto err_out_iounmap;
  8349. }
  8350. err = register_netdev(dev);
  8351. if (err) {
  8352. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8353. goto err_out_iounmap;
  8354. }
  8355. platform_set_drvdata(op, dev);
  8356. niu_device_announce(np);
  8357. return 0;
  8358. err_out_iounmap:
  8359. if (np->vir_regs_1) {
  8360. of_iounmap(&op->resource[2], np->vir_regs_1,
  8361. resource_size(&op->resource[2]));
  8362. np->vir_regs_1 = NULL;
  8363. }
  8364. if (np->vir_regs_2) {
  8365. of_iounmap(&op->resource[3], np->vir_regs_2,
  8366. resource_size(&op->resource[3]));
  8367. np->vir_regs_2 = NULL;
  8368. }
  8369. if (np->regs) {
  8370. of_iounmap(&op->resource[1], np->regs,
  8371. resource_size(&op->resource[1]));
  8372. np->regs = NULL;
  8373. }
  8374. err_out_release_parent:
  8375. niu_put_parent(np);
  8376. err_out_free_dev:
  8377. free_netdev(dev);
  8378. err_out:
  8379. return err;
  8380. }
  8381. static int niu_of_remove(struct platform_device *op)
  8382. {
  8383. struct net_device *dev = platform_get_drvdata(op);
  8384. if (dev) {
  8385. struct niu *np = netdev_priv(dev);
  8386. unregister_netdev(dev);
  8387. if (np->vir_regs_1) {
  8388. of_iounmap(&op->resource[2], np->vir_regs_1,
  8389. resource_size(&op->resource[2]));
  8390. np->vir_regs_1 = NULL;
  8391. }
  8392. if (np->vir_regs_2) {
  8393. of_iounmap(&op->resource[3], np->vir_regs_2,
  8394. resource_size(&op->resource[3]));
  8395. np->vir_regs_2 = NULL;
  8396. }
  8397. if (np->regs) {
  8398. of_iounmap(&op->resource[1], np->regs,
  8399. resource_size(&op->resource[1]));
  8400. np->regs = NULL;
  8401. }
  8402. niu_ldg_free(np);
  8403. niu_put_parent(np);
  8404. free_netdev(dev);
  8405. }
  8406. return 0;
  8407. }
  8408. static const struct of_device_id niu_match[] = {
  8409. {
  8410. .name = "network",
  8411. .compatible = "SUNW,niusl",
  8412. },
  8413. {},
  8414. };
  8415. MODULE_DEVICE_TABLE(of, niu_match);
  8416. static struct platform_driver niu_of_driver = {
  8417. .driver = {
  8418. .name = "niu",
  8419. .of_match_table = niu_match,
  8420. },
  8421. .probe = niu_of_probe,
  8422. .remove = niu_of_remove,
  8423. };
  8424. #endif /* CONFIG_SPARC64 */
  8425. static int __init niu_init(void)
  8426. {
  8427. int err = 0;
  8428. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8429. BUILD_BUG_ON(offsetof(struct page, mapping) !=
  8430. offsetof(union niu_page, next));
  8431. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8432. #ifdef CONFIG_SPARC64
  8433. err = platform_driver_register(&niu_of_driver);
  8434. #endif
  8435. if (!err) {
  8436. err = pci_register_driver(&niu_pci_driver);
  8437. #ifdef CONFIG_SPARC64
  8438. if (err)
  8439. platform_driver_unregister(&niu_of_driver);
  8440. #endif
  8441. }
  8442. return err;
  8443. }
  8444. static void __exit niu_exit(void)
  8445. {
  8446. pci_unregister_driver(&niu_pci_driver);
  8447. #ifdef CONFIG_SPARC64
  8448. platform_driver_unregister(&niu_of_driver);
  8449. #endif
  8450. }
  8451. module_init(niu_init);
  8452. module_exit(niu_exit);