s2io.c 238 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2010 Exar Corp.
  4. *
  5. * This software may be used and distributed according to the terms of
  6. * the GNU General Public License (GPL), incorporated herein by reference.
  7. * Drivers based on or derived from this code fall under the GPL and must
  8. * retain the authorship, copyright and license notice. This file is not
  9. * a complete program and may only be used when the entire operating
  10. * system is licensed under the GPL.
  11. * See the file COPYING in this distribution for more information.
  12. *
  13. * Credits:
  14. * Jeff Garzik : For pointing out the improper error condition
  15. * check in the s2io_xmit routine and also some
  16. * issues in the Tx watch dog function. Also for
  17. * patiently answering all those innumerable
  18. * questions regaring the 2.6 porting issues.
  19. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  20. * macros available only in 2.6 Kernel.
  21. * Francois Romieu : For pointing out all code part that were
  22. * deprecated and also styling related comments.
  23. * Grant Grundler : For helping me get rid of some Architecture
  24. * dependent code.
  25. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  26. *
  27. * The module loadable parameters that are supported by the driver and a brief
  28. * explanation of all the variables.
  29. *
  30. * rx_ring_num : This can be used to program the number of receive rings used
  31. * in the driver.
  32. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33. * This is also an array of size 8.
  34. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35. * values are 1, 2.
  36. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38. * Tx descriptors that can be associated with each corresponding FIFO.
  39. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40. * 2(MSI_X). Default value is '2(MSI_X)'
  41. * lro_max_pkts: This parameter defines maximum number of packets can be
  42. * aggregated as a single large packet
  43. * napi: This parameter used to enable/disable NAPI (polling Rx)
  44. * Possible values '1' for enable and '0' for disable. Default is '1'
  45. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  46. * Possible values '1' for enable , '0' for disable.
  47. * Default is '2' - which means disable in promisc mode
  48. * and enable in non-promiscuous mode.
  49. * multiq: This parameter used to enable/disable MULTIQUEUE support.
  50. * Possible values '1' for enable and '0' for disable. Default is '0'
  51. ************************************************************************/
  52. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/mdio.h>
  63. #include <linux/skbuff.h>
  64. #include <linux/init.h>
  65. #include <linux/delay.h>
  66. #include <linux/stddef.h>
  67. #include <linux/ioctl.h>
  68. #include <linux/timex.h>
  69. #include <linux/ethtool.h>
  70. #include <linux/workqueue.h>
  71. #include <linux/if_vlan.h>
  72. #include <linux/ip.h>
  73. #include <linux/tcp.h>
  74. #include <linux/uaccess.h>
  75. #include <linux/io.h>
  76. #include <linux/io-64-nonatomic-lo-hi.h>
  77. #include <linux/slab.h>
  78. #include <linux/prefetch.h>
  79. #include <net/tcp.h>
  80. #include <net/checksum.h>
  81. #include <asm/div64.h>
  82. #include <asm/irq.h>
  83. /* local include */
  84. #include "s2io.h"
  85. #include "s2io-regs.h"
  86. #define DRV_VERSION "2.0.26.28"
  87. /* S2io Driver name & version. */
  88. static const char s2io_driver_name[] = "Neterion";
  89. static const char s2io_driver_version[] = DRV_VERSION;
  90. static const int rxd_size[2] = {32, 48};
  91. static const int rxd_count[2] = {127, 85};
  92. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  93. {
  94. int ret;
  95. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  96. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  97. return ret;
  98. }
  99. /*
  100. * Cards with following subsystem_id have a link state indication
  101. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  102. * macro below identifies these cards given the subsystem_id.
  103. */
  104. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  105. (dev_type == XFRAME_I_DEVICE) ? \
  106. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  107. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  108. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  109. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  110. static inline int is_s2io_card_up(const struct s2io_nic *sp)
  111. {
  112. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  113. }
  114. /* Ethtool related variables and Macros. */
  115. static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
  116. "Register test\t(offline)",
  117. "Eeprom test\t(offline)",
  118. "Link test\t(online)",
  119. "RLDRAM test\t(offline)",
  120. "BIST Test\t(offline)"
  121. };
  122. static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  123. {"tmac_frms"},
  124. {"tmac_data_octets"},
  125. {"tmac_drop_frms"},
  126. {"tmac_mcst_frms"},
  127. {"tmac_bcst_frms"},
  128. {"tmac_pause_ctrl_frms"},
  129. {"tmac_ttl_octets"},
  130. {"tmac_ucst_frms"},
  131. {"tmac_nucst_frms"},
  132. {"tmac_any_err_frms"},
  133. {"tmac_ttl_less_fb_octets"},
  134. {"tmac_vld_ip_octets"},
  135. {"tmac_vld_ip"},
  136. {"tmac_drop_ip"},
  137. {"tmac_icmp"},
  138. {"tmac_rst_tcp"},
  139. {"tmac_tcp"},
  140. {"tmac_udp"},
  141. {"rmac_vld_frms"},
  142. {"rmac_data_octets"},
  143. {"rmac_fcs_err_frms"},
  144. {"rmac_drop_frms"},
  145. {"rmac_vld_mcst_frms"},
  146. {"rmac_vld_bcst_frms"},
  147. {"rmac_in_rng_len_err_frms"},
  148. {"rmac_out_rng_len_err_frms"},
  149. {"rmac_long_frms"},
  150. {"rmac_pause_ctrl_frms"},
  151. {"rmac_unsup_ctrl_frms"},
  152. {"rmac_ttl_octets"},
  153. {"rmac_accepted_ucst_frms"},
  154. {"rmac_accepted_nucst_frms"},
  155. {"rmac_discarded_frms"},
  156. {"rmac_drop_events"},
  157. {"rmac_ttl_less_fb_octets"},
  158. {"rmac_ttl_frms"},
  159. {"rmac_usized_frms"},
  160. {"rmac_osized_frms"},
  161. {"rmac_frag_frms"},
  162. {"rmac_jabber_frms"},
  163. {"rmac_ttl_64_frms"},
  164. {"rmac_ttl_65_127_frms"},
  165. {"rmac_ttl_128_255_frms"},
  166. {"rmac_ttl_256_511_frms"},
  167. {"rmac_ttl_512_1023_frms"},
  168. {"rmac_ttl_1024_1518_frms"},
  169. {"rmac_ip"},
  170. {"rmac_ip_octets"},
  171. {"rmac_hdr_err_ip"},
  172. {"rmac_drop_ip"},
  173. {"rmac_icmp"},
  174. {"rmac_tcp"},
  175. {"rmac_udp"},
  176. {"rmac_err_drp_udp"},
  177. {"rmac_xgmii_err_sym"},
  178. {"rmac_frms_q0"},
  179. {"rmac_frms_q1"},
  180. {"rmac_frms_q2"},
  181. {"rmac_frms_q3"},
  182. {"rmac_frms_q4"},
  183. {"rmac_frms_q5"},
  184. {"rmac_frms_q6"},
  185. {"rmac_frms_q7"},
  186. {"rmac_full_q0"},
  187. {"rmac_full_q1"},
  188. {"rmac_full_q2"},
  189. {"rmac_full_q3"},
  190. {"rmac_full_q4"},
  191. {"rmac_full_q5"},
  192. {"rmac_full_q6"},
  193. {"rmac_full_q7"},
  194. {"rmac_pause_cnt"},
  195. {"rmac_xgmii_data_err_cnt"},
  196. {"rmac_xgmii_ctrl_err_cnt"},
  197. {"rmac_accepted_ip"},
  198. {"rmac_err_tcp"},
  199. {"rd_req_cnt"},
  200. {"new_rd_req_cnt"},
  201. {"new_rd_req_rtry_cnt"},
  202. {"rd_rtry_cnt"},
  203. {"wr_rtry_rd_ack_cnt"},
  204. {"wr_req_cnt"},
  205. {"new_wr_req_cnt"},
  206. {"new_wr_req_rtry_cnt"},
  207. {"wr_rtry_cnt"},
  208. {"wr_disc_cnt"},
  209. {"rd_rtry_wr_ack_cnt"},
  210. {"txp_wr_cnt"},
  211. {"txd_rd_cnt"},
  212. {"txd_wr_cnt"},
  213. {"rxd_rd_cnt"},
  214. {"rxd_wr_cnt"},
  215. {"txf_rd_cnt"},
  216. {"rxf_wr_cnt"}
  217. };
  218. static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  219. {"rmac_ttl_1519_4095_frms"},
  220. {"rmac_ttl_4096_8191_frms"},
  221. {"rmac_ttl_8192_max_frms"},
  222. {"rmac_ttl_gt_max_frms"},
  223. {"rmac_osized_alt_frms"},
  224. {"rmac_jabber_alt_frms"},
  225. {"rmac_gt_max_alt_frms"},
  226. {"rmac_vlan_frms"},
  227. {"rmac_len_discard"},
  228. {"rmac_fcs_discard"},
  229. {"rmac_pf_discard"},
  230. {"rmac_da_discard"},
  231. {"rmac_red_discard"},
  232. {"rmac_rts_discard"},
  233. {"rmac_ingm_full_discard"},
  234. {"link_fault_cnt"}
  235. };
  236. static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  237. {"\n DRIVER STATISTICS"},
  238. {"single_bit_ecc_errs"},
  239. {"double_bit_ecc_errs"},
  240. {"parity_err_cnt"},
  241. {"serious_err_cnt"},
  242. {"soft_reset_cnt"},
  243. {"fifo_full_cnt"},
  244. {"ring_0_full_cnt"},
  245. {"ring_1_full_cnt"},
  246. {"ring_2_full_cnt"},
  247. {"ring_3_full_cnt"},
  248. {"ring_4_full_cnt"},
  249. {"ring_5_full_cnt"},
  250. {"ring_6_full_cnt"},
  251. {"ring_7_full_cnt"},
  252. {"alarm_transceiver_temp_high"},
  253. {"alarm_transceiver_temp_low"},
  254. {"alarm_laser_bias_current_high"},
  255. {"alarm_laser_bias_current_low"},
  256. {"alarm_laser_output_power_high"},
  257. {"alarm_laser_output_power_low"},
  258. {"warn_transceiver_temp_high"},
  259. {"warn_transceiver_temp_low"},
  260. {"warn_laser_bias_current_high"},
  261. {"warn_laser_bias_current_low"},
  262. {"warn_laser_output_power_high"},
  263. {"warn_laser_output_power_low"},
  264. {"lro_aggregated_pkts"},
  265. {"lro_flush_both_count"},
  266. {"lro_out_of_sequence_pkts"},
  267. {"lro_flush_due_to_max_pkts"},
  268. {"lro_avg_aggr_pkts"},
  269. {"mem_alloc_fail_cnt"},
  270. {"pci_map_fail_cnt"},
  271. {"watchdog_timer_cnt"},
  272. {"mem_allocated"},
  273. {"mem_freed"},
  274. {"link_up_cnt"},
  275. {"link_down_cnt"},
  276. {"link_up_time"},
  277. {"link_down_time"},
  278. {"tx_tcode_buf_abort_cnt"},
  279. {"tx_tcode_desc_abort_cnt"},
  280. {"tx_tcode_parity_err_cnt"},
  281. {"tx_tcode_link_loss_cnt"},
  282. {"tx_tcode_list_proc_err_cnt"},
  283. {"rx_tcode_parity_err_cnt"},
  284. {"rx_tcode_abort_cnt"},
  285. {"rx_tcode_parity_abort_cnt"},
  286. {"rx_tcode_rda_fail_cnt"},
  287. {"rx_tcode_unkn_prot_cnt"},
  288. {"rx_tcode_fcs_err_cnt"},
  289. {"rx_tcode_buf_size_err_cnt"},
  290. {"rx_tcode_rxd_corrupt_cnt"},
  291. {"rx_tcode_unkn_err_cnt"},
  292. {"tda_err_cnt"},
  293. {"pfc_err_cnt"},
  294. {"pcc_err_cnt"},
  295. {"tti_err_cnt"},
  296. {"tpa_err_cnt"},
  297. {"sm_err_cnt"},
  298. {"lso_err_cnt"},
  299. {"mac_tmac_err_cnt"},
  300. {"mac_rmac_err_cnt"},
  301. {"xgxs_txgxs_err_cnt"},
  302. {"xgxs_rxgxs_err_cnt"},
  303. {"rc_err_cnt"},
  304. {"prc_pcix_err_cnt"},
  305. {"rpa_err_cnt"},
  306. {"rda_err_cnt"},
  307. {"rti_err_cnt"},
  308. {"mc_err_cnt"}
  309. };
  310. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  311. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  312. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  313. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
  314. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
  315. #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
  316. #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
  317. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  318. #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
  319. /* copy mac addr to def_mac_addr array */
  320. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  321. {
  322. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  323. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  324. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  325. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  326. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  327. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  328. }
  329. /*
  330. * Constants to be programmed into the Xena's registers, to configure
  331. * the XAUI.
  332. */
  333. #define END_SIGN 0x0
  334. static const u64 herc_act_dtx_cfg[] = {
  335. /* Set address */
  336. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  337. /* Write data */
  338. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  339. /* Set address */
  340. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  341. /* Write data */
  342. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  343. /* Set address */
  344. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  345. /* Write data */
  346. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  347. /* Set address */
  348. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  349. /* Write data */
  350. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  351. /* Done */
  352. END_SIGN
  353. };
  354. static const u64 xena_dtx_cfg[] = {
  355. /* Set address */
  356. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  357. /* Write data */
  358. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  359. /* Set address */
  360. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  361. /* Write data */
  362. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  363. /* Set address */
  364. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  365. /* Write data */
  366. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  367. END_SIGN
  368. };
  369. /*
  370. * Constants for Fixing the MacAddress problem seen mostly on
  371. * Alpha machines.
  372. */
  373. static const u64 fix_mac[] = {
  374. 0x0060000000000000ULL, 0x0060600000000000ULL,
  375. 0x0040600000000000ULL, 0x0000600000000000ULL,
  376. 0x0020600000000000ULL, 0x0060600000000000ULL,
  377. 0x0020600000000000ULL, 0x0060600000000000ULL,
  378. 0x0020600000000000ULL, 0x0060600000000000ULL,
  379. 0x0020600000000000ULL, 0x0060600000000000ULL,
  380. 0x0020600000000000ULL, 0x0060600000000000ULL,
  381. 0x0020600000000000ULL, 0x0060600000000000ULL,
  382. 0x0020600000000000ULL, 0x0060600000000000ULL,
  383. 0x0020600000000000ULL, 0x0060600000000000ULL,
  384. 0x0020600000000000ULL, 0x0060600000000000ULL,
  385. 0x0020600000000000ULL, 0x0060600000000000ULL,
  386. 0x0020600000000000ULL, 0x0000600000000000ULL,
  387. 0x0040600000000000ULL, 0x0060600000000000ULL,
  388. END_SIGN
  389. };
  390. MODULE_LICENSE("GPL");
  391. MODULE_VERSION(DRV_VERSION);
  392. /* Module Loadable parameters. */
  393. S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
  394. S2IO_PARM_INT(rx_ring_num, 1);
  395. S2IO_PARM_INT(multiq, 0);
  396. S2IO_PARM_INT(rx_ring_mode, 1);
  397. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  398. S2IO_PARM_INT(rmac_pause_time, 0x100);
  399. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  400. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  401. S2IO_PARM_INT(shared_splits, 0);
  402. S2IO_PARM_INT(tmac_util_period, 5);
  403. S2IO_PARM_INT(rmac_util_period, 5);
  404. S2IO_PARM_INT(l3l4hdr_size, 128);
  405. /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
  406. S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
  407. /* Frequency of Rx desc syncs expressed as power of 2 */
  408. S2IO_PARM_INT(rxsync_frequency, 3);
  409. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  410. S2IO_PARM_INT(intr_type, 2);
  411. /* Large receive offload feature */
  412. /* Max pkts to be aggregated by LRO at one time. If not specified,
  413. * aggregation happens until we hit max IP pkt size(64K)
  414. */
  415. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  416. S2IO_PARM_INT(indicate_max_pkts, 0);
  417. S2IO_PARM_INT(napi, 1);
  418. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  419. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  420. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  421. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  422. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  423. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  424. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  425. module_param_array(tx_fifo_len, uint, NULL, 0);
  426. module_param_array(rx_ring_sz, uint, NULL, 0);
  427. module_param_array(rts_frm_len, uint, NULL, 0);
  428. /*
  429. * S2IO device table.
  430. * This table lists all the devices that this driver supports.
  431. */
  432. static const struct pci_device_id s2io_tbl[] = {
  433. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  434. PCI_ANY_ID, PCI_ANY_ID},
  435. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  436. PCI_ANY_ID, PCI_ANY_ID},
  437. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  438. PCI_ANY_ID, PCI_ANY_ID},
  439. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  440. PCI_ANY_ID, PCI_ANY_ID},
  441. {0,}
  442. };
  443. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  444. static const struct pci_error_handlers s2io_err_handler = {
  445. .error_detected = s2io_io_error_detected,
  446. .slot_reset = s2io_io_slot_reset,
  447. .resume = s2io_io_resume,
  448. };
  449. static struct pci_driver s2io_driver = {
  450. .name = "S2IO",
  451. .id_table = s2io_tbl,
  452. .probe = s2io_init_nic,
  453. .remove = s2io_rem_nic,
  454. .err_handler = &s2io_err_handler,
  455. };
  456. /* A simplifier macro used both by init and free shared_mem Fns(). */
  457. #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
  458. /* netqueue manipulation helper functions */
  459. static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
  460. {
  461. if (!sp->config.multiq) {
  462. int i;
  463. for (i = 0; i < sp->config.tx_fifo_num; i++)
  464. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
  465. }
  466. netif_tx_stop_all_queues(sp->dev);
  467. }
  468. static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
  469. {
  470. if (!sp->config.multiq)
  471. sp->mac_control.fifos[fifo_no].queue_state =
  472. FIFO_QUEUE_STOP;
  473. netif_tx_stop_all_queues(sp->dev);
  474. }
  475. static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
  476. {
  477. if (!sp->config.multiq) {
  478. int i;
  479. for (i = 0; i < sp->config.tx_fifo_num; i++)
  480. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  481. }
  482. netif_tx_start_all_queues(sp->dev);
  483. }
  484. static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
  485. {
  486. if (!sp->config.multiq) {
  487. int i;
  488. for (i = 0; i < sp->config.tx_fifo_num; i++)
  489. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  490. }
  491. netif_tx_wake_all_queues(sp->dev);
  492. }
  493. static inline void s2io_wake_tx_queue(
  494. struct fifo_info *fifo, int cnt, u8 multiq)
  495. {
  496. if (multiq) {
  497. if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
  498. netif_wake_subqueue(fifo->dev, fifo->fifo_no);
  499. } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
  500. if (netif_queue_stopped(fifo->dev)) {
  501. fifo->queue_state = FIFO_QUEUE_START;
  502. netif_wake_queue(fifo->dev);
  503. }
  504. }
  505. }
  506. /**
  507. * init_shared_mem - Allocation and Initialization of Memory
  508. * @nic: Device private variable.
  509. * Description: The function allocates all the memory areas shared
  510. * between the NIC and the driver. This includes Tx descriptors,
  511. * Rx descriptors and the statistics block.
  512. */
  513. static int init_shared_mem(struct s2io_nic *nic)
  514. {
  515. u32 size;
  516. void *tmp_v_addr, *tmp_v_addr_next;
  517. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  518. struct RxD_block *pre_rxd_blk = NULL;
  519. int i, j, blk_cnt;
  520. int lst_size, lst_per_page;
  521. struct net_device *dev = nic->dev;
  522. unsigned long tmp;
  523. struct buffAdd *ba;
  524. struct config_param *config = &nic->config;
  525. struct mac_info *mac_control = &nic->mac_control;
  526. unsigned long long mem_allocated = 0;
  527. /* Allocation and initialization of TXDLs in FIFOs */
  528. size = 0;
  529. for (i = 0; i < config->tx_fifo_num; i++) {
  530. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  531. size += tx_cfg->fifo_len;
  532. }
  533. if (size > MAX_AVAILABLE_TXDS) {
  534. DBG_PRINT(ERR_DBG,
  535. "Too many TxDs requested: %d, max supported: %d\n",
  536. size, MAX_AVAILABLE_TXDS);
  537. return -EINVAL;
  538. }
  539. size = 0;
  540. for (i = 0; i < config->tx_fifo_num; i++) {
  541. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  542. size = tx_cfg->fifo_len;
  543. /*
  544. * Legal values are from 2 to 8192
  545. */
  546. if (size < 2) {
  547. DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
  548. "Valid lengths are 2 through 8192\n",
  549. i, size);
  550. return -EINVAL;
  551. }
  552. }
  553. lst_size = (sizeof(struct TxD) * config->max_txds);
  554. lst_per_page = PAGE_SIZE / lst_size;
  555. for (i = 0; i < config->tx_fifo_num; i++) {
  556. struct fifo_info *fifo = &mac_control->fifos[i];
  557. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  558. int fifo_len = tx_cfg->fifo_len;
  559. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  560. fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
  561. if (!fifo->list_info) {
  562. DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
  563. return -ENOMEM;
  564. }
  565. mem_allocated += list_holder_size;
  566. }
  567. for (i = 0; i < config->tx_fifo_num; i++) {
  568. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  569. lst_per_page);
  570. struct fifo_info *fifo = &mac_control->fifos[i];
  571. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  572. fifo->tx_curr_put_info.offset = 0;
  573. fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
  574. fifo->tx_curr_get_info.offset = 0;
  575. fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
  576. fifo->fifo_no = i;
  577. fifo->nic = nic;
  578. fifo->max_txds = MAX_SKB_FRAGS + 2;
  579. fifo->dev = dev;
  580. for (j = 0; j < page_num; j++) {
  581. int k = 0;
  582. dma_addr_t tmp_p;
  583. void *tmp_v;
  584. tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
  585. &tmp_p, GFP_KERNEL);
  586. if (!tmp_v) {
  587. DBG_PRINT(INFO_DBG,
  588. "dma_alloc_coherent failed for TxDL\n");
  589. return -ENOMEM;
  590. }
  591. /* If we got a zero DMA address(can happen on
  592. * certain platforms like PPC), reallocate.
  593. * Store virtual address of page we don't want,
  594. * to be freed later.
  595. */
  596. if (!tmp_p) {
  597. mac_control->zerodma_virt_addr = tmp_v;
  598. DBG_PRINT(INIT_DBG,
  599. "%s: Zero DMA address for TxDL. "
  600. "Virtual address %p\n",
  601. dev->name, tmp_v);
  602. tmp_v = dma_alloc_coherent(&nic->pdev->dev,
  603. PAGE_SIZE, &tmp_p,
  604. GFP_KERNEL);
  605. if (!tmp_v) {
  606. DBG_PRINT(INFO_DBG,
  607. "dma_alloc_coherent failed for TxDL\n");
  608. return -ENOMEM;
  609. }
  610. mem_allocated += PAGE_SIZE;
  611. }
  612. while (k < lst_per_page) {
  613. int l = (j * lst_per_page) + k;
  614. if (l == tx_cfg->fifo_len)
  615. break;
  616. fifo->list_info[l].list_virt_addr =
  617. tmp_v + (k * lst_size);
  618. fifo->list_info[l].list_phy_addr =
  619. tmp_p + (k * lst_size);
  620. k++;
  621. }
  622. }
  623. }
  624. for (i = 0; i < config->tx_fifo_num; i++) {
  625. struct fifo_info *fifo = &mac_control->fifos[i];
  626. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  627. size = tx_cfg->fifo_len;
  628. fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  629. if (!fifo->ufo_in_band_v)
  630. return -ENOMEM;
  631. mem_allocated += (size * sizeof(u64));
  632. }
  633. /* Allocation and initialization of RXDs in Rings */
  634. size = 0;
  635. for (i = 0; i < config->rx_ring_num; i++) {
  636. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  637. struct ring_info *ring = &mac_control->rings[i];
  638. if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
  639. DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
  640. "multiple of RxDs per Block\n",
  641. dev->name, i);
  642. return FAILURE;
  643. }
  644. size += rx_cfg->num_rxd;
  645. ring->block_count = rx_cfg->num_rxd /
  646. (rxd_count[nic->rxd_mode] + 1);
  647. ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
  648. }
  649. if (nic->rxd_mode == RXD_MODE_1)
  650. size = (size * (sizeof(struct RxD1)));
  651. else
  652. size = (size * (sizeof(struct RxD3)));
  653. for (i = 0; i < config->rx_ring_num; i++) {
  654. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  655. struct ring_info *ring = &mac_control->rings[i];
  656. ring->rx_curr_get_info.block_index = 0;
  657. ring->rx_curr_get_info.offset = 0;
  658. ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
  659. ring->rx_curr_put_info.block_index = 0;
  660. ring->rx_curr_put_info.offset = 0;
  661. ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
  662. ring->nic = nic;
  663. ring->ring_no = i;
  664. blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
  665. /* Allocating all the Rx blocks */
  666. for (j = 0; j < blk_cnt; j++) {
  667. struct rx_block_info *rx_blocks;
  668. int l;
  669. rx_blocks = &ring->rx_blocks[j];
  670. size = SIZE_OF_BLOCK; /* size is always page size */
  671. tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
  672. &tmp_p_addr, GFP_KERNEL);
  673. if (tmp_v_addr == NULL) {
  674. /*
  675. * In case of failure, free_shared_mem()
  676. * is called, which should free any
  677. * memory that was alloced till the
  678. * failure happened.
  679. */
  680. rx_blocks->block_virt_addr = tmp_v_addr;
  681. return -ENOMEM;
  682. }
  683. mem_allocated += size;
  684. size = sizeof(struct rxd_info) *
  685. rxd_count[nic->rxd_mode];
  686. rx_blocks->block_virt_addr = tmp_v_addr;
  687. rx_blocks->block_dma_addr = tmp_p_addr;
  688. rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
  689. if (!rx_blocks->rxds)
  690. return -ENOMEM;
  691. mem_allocated += size;
  692. for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
  693. rx_blocks->rxds[l].virt_addr =
  694. rx_blocks->block_virt_addr +
  695. (rxd_size[nic->rxd_mode] * l);
  696. rx_blocks->rxds[l].dma_addr =
  697. rx_blocks->block_dma_addr +
  698. (rxd_size[nic->rxd_mode] * l);
  699. }
  700. }
  701. /* Interlinking all Rx Blocks */
  702. for (j = 0; j < blk_cnt; j++) {
  703. int next = (j + 1) % blk_cnt;
  704. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  705. tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
  706. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  707. tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
  708. pre_rxd_blk = tmp_v_addr;
  709. pre_rxd_blk->reserved_2_pNext_RxD_block =
  710. (unsigned long)tmp_v_addr_next;
  711. pre_rxd_blk->pNext_RxD_Blk_physical =
  712. (u64)tmp_p_addr_next;
  713. }
  714. }
  715. if (nic->rxd_mode == RXD_MODE_3B) {
  716. /*
  717. * Allocation of Storages for buffer addresses in 2BUFF mode
  718. * and the buffers as well.
  719. */
  720. for (i = 0; i < config->rx_ring_num; i++) {
  721. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  722. struct ring_info *ring = &mac_control->rings[i];
  723. blk_cnt = rx_cfg->num_rxd /
  724. (rxd_count[nic->rxd_mode] + 1);
  725. size = sizeof(struct buffAdd *) * blk_cnt;
  726. ring->ba = kmalloc(size, GFP_KERNEL);
  727. if (!ring->ba)
  728. return -ENOMEM;
  729. mem_allocated += size;
  730. for (j = 0; j < blk_cnt; j++) {
  731. int k = 0;
  732. size = sizeof(struct buffAdd) *
  733. (rxd_count[nic->rxd_mode] + 1);
  734. ring->ba[j] = kmalloc(size, GFP_KERNEL);
  735. if (!ring->ba[j])
  736. return -ENOMEM;
  737. mem_allocated += size;
  738. while (k != rxd_count[nic->rxd_mode]) {
  739. ba = &ring->ba[j][k];
  740. size = BUF0_LEN + ALIGN_SIZE;
  741. ba->ba_0_org = kmalloc(size, GFP_KERNEL);
  742. if (!ba->ba_0_org)
  743. return -ENOMEM;
  744. mem_allocated += size;
  745. tmp = (unsigned long)ba->ba_0_org;
  746. tmp += ALIGN_SIZE;
  747. tmp &= ~((unsigned long)ALIGN_SIZE);
  748. ba->ba_0 = (void *)tmp;
  749. size = BUF1_LEN + ALIGN_SIZE;
  750. ba->ba_1_org = kmalloc(size, GFP_KERNEL);
  751. if (!ba->ba_1_org)
  752. return -ENOMEM;
  753. mem_allocated += size;
  754. tmp = (unsigned long)ba->ba_1_org;
  755. tmp += ALIGN_SIZE;
  756. tmp &= ~((unsigned long)ALIGN_SIZE);
  757. ba->ba_1 = (void *)tmp;
  758. k++;
  759. }
  760. }
  761. }
  762. }
  763. /* Allocation and initialization of Statistics block */
  764. size = sizeof(struct stat_block);
  765. mac_control->stats_mem =
  766. dma_alloc_coherent(&nic->pdev->dev, size,
  767. &mac_control->stats_mem_phy, GFP_KERNEL);
  768. if (!mac_control->stats_mem) {
  769. /*
  770. * In case of failure, free_shared_mem() is called, which
  771. * should free any memory that was alloced till the
  772. * failure happened.
  773. */
  774. return -ENOMEM;
  775. }
  776. mem_allocated += size;
  777. mac_control->stats_mem_sz = size;
  778. tmp_v_addr = mac_control->stats_mem;
  779. mac_control->stats_info = tmp_v_addr;
  780. memset(tmp_v_addr, 0, size);
  781. DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
  782. dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
  783. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  784. return SUCCESS;
  785. }
  786. /**
  787. * free_shared_mem - Free the allocated Memory
  788. * @nic: Device private variable.
  789. * Description: This function is to free all memory locations allocated by
  790. * the init_shared_mem() function and return it to the kernel.
  791. */
  792. static void free_shared_mem(struct s2io_nic *nic)
  793. {
  794. int i, j, blk_cnt, size;
  795. void *tmp_v_addr;
  796. dma_addr_t tmp_p_addr;
  797. int lst_size, lst_per_page;
  798. struct net_device *dev;
  799. int page_num = 0;
  800. struct config_param *config;
  801. struct mac_info *mac_control;
  802. struct stat_block *stats;
  803. struct swStat *swstats;
  804. if (!nic)
  805. return;
  806. dev = nic->dev;
  807. config = &nic->config;
  808. mac_control = &nic->mac_control;
  809. stats = mac_control->stats_info;
  810. swstats = &stats->sw_stat;
  811. lst_size = sizeof(struct TxD) * config->max_txds;
  812. lst_per_page = PAGE_SIZE / lst_size;
  813. for (i = 0; i < config->tx_fifo_num; i++) {
  814. struct fifo_info *fifo = &mac_control->fifos[i];
  815. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  816. page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
  817. for (j = 0; j < page_num; j++) {
  818. int mem_blks = (j * lst_per_page);
  819. struct list_info_hold *fli;
  820. if (!fifo->list_info)
  821. return;
  822. fli = &fifo->list_info[mem_blks];
  823. if (!fli->list_virt_addr)
  824. break;
  825. dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
  826. fli->list_virt_addr,
  827. fli->list_phy_addr);
  828. swstats->mem_freed += PAGE_SIZE;
  829. }
  830. /* If we got a zero DMA address during allocation,
  831. * free the page now
  832. */
  833. if (mac_control->zerodma_virt_addr) {
  834. dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
  835. mac_control->zerodma_virt_addr,
  836. (dma_addr_t)0);
  837. DBG_PRINT(INIT_DBG,
  838. "%s: Freeing TxDL with zero DMA address. "
  839. "Virtual address %p\n",
  840. dev->name, mac_control->zerodma_virt_addr);
  841. swstats->mem_freed += PAGE_SIZE;
  842. }
  843. kfree(fifo->list_info);
  844. swstats->mem_freed += tx_cfg->fifo_len *
  845. sizeof(struct list_info_hold);
  846. }
  847. size = SIZE_OF_BLOCK;
  848. for (i = 0; i < config->rx_ring_num; i++) {
  849. struct ring_info *ring = &mac_control->rings[i];
  850. blk_cnt = ring->block_count;
  851. for (j = 0; j < blk_cnt; j++) {
  852. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  853. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  854. if (tmp_v_addr == NULL)
  855. break;
  856. dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
  857. tmp_p_addr);
  858. swstats->mem_freed += size;
  859. kfree(ring->rx_blocks[j].rxds);
  860. swstats->mem_freed += sizeof(struct rxd_info) *
  861. rxd_count[nic->rxd_mode];
  862. }
  863. }
  864. if (nic->rxd_mode == RXD_MODE_3B) {
  865. /* Freeing buffer storage addresses in 2BUFF mode. */
  866. for (i = 0; i < config->rx_ring_num; i++) {
  867. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  868. struct ring_info *ring = &mac_control->rings[i];
  869. blk_cnt = rx_cfg->num_rxd /
  870. (rxd_count[nic->rxd_mode] + 1);
  871. for (j = 0; j < blk_cnt; j++) {
  872. int k = 0;
  873. if (!ring->ba[j])
  874. continue;
  875. while (k != rxd_count[nic->rxd_mode]) {
  876. struct buffAdd *ba = &ring->ba[j][k];
  877. kfree(ba->ba_0_org);
  878. swstats->mem_freed +=
  879. BUF0_LEN + ALIGN_SIZE;
  880. kfree(ba->ba_1_org);
  881. swstats->mem_freed +=
  882. BUF1_LEN + ALIGN_SIZE;
  883. k++;
  884. }
  885. kfree(ring->ba[j]);
  886. swstats->mem_freed += sizeof(struct buffAdd) *
  887. (rxd_count[nic->rxd_mode] + 1);
  888. }
  889. kfree(ring->ba);
  890. swstats->mem_freed += sizeof(struct buffAdd *) *
  891. blk_cnt;
  892. }
  893. }
  894. for (i = 0; i < nic->config.tx_fifo_num; i++) {
  895. struct fifo_info *fifo = &mac_control->fifos[i];
  896. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  897. if (fifo->ufo_in_band_v) {
  898. swstats->mem_freed += tx_cfg->fifo_len *
  899. sizeof(u64);
  900. kfree(fifo->ufo_in_band_v);
  901. }
  902. }
  903. if (mac_control->stats_mem) {
  904. swstats->mem_freed += mac_control->stats_mem_sz;
  905. dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
  906. mac_control->stats_mem,
  907. mac_control->stats_mem_phy);
  908. }
  909. }
  910. /*
  911. * s2io_verify_pci_mode -
  912. */
  913. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  914. {
  915. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  916. register u64 val64 = 0;
  917. int mode;
  918. val64 = readq(&bar0->pci_mode);
  919. mode = (u8)GET_PCI_MODE(val64);
  920. if (val64 & PCI_MODE_UNKNOWN_MODE)
  921. return -1; /* Unknown PCI mode */
  922. return mode;
  923. }
  924. #define NEC_VENID 0x1033
  925. #define NEC_DEVID 0x0125
  926. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  927. {
  928. struct pci_dev *tdev = NULL;
  929. for_each_pci_dev(tdev) {
  930. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  931. if (tdev->bus == s2io_pdev->bus->parent) {
  932. pci_dev_put(tdev);
  933. return 1;
  934. }
  935. }
  936. }
  937. return 0;
  938. }
  939. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  940. /*
  941. * s2io_print_pci_mode -
  942. */
  943. static int s2io_print_pci_mode(struct s2io_nic *nic)
  944. {
  945. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  946. register u64 val64 = 0;
  947. int mode;
  948. struct config_param *config = &nic->config;
  949. const char *pcimode;
  950. val64 = readq(&bar0->pci_mode);
  951. mode = (u8)GET_PCI_MODE(val64);
  952. if (val64 & PCI_MODE_UNKNOWN_MODE)
  953. return -1; /* Unknown PCI mode */
  954. config->bus_speed = bus_speed[mode];
  955. if (s2io_on_nec_bridge(nic->pdev)) {
  956. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  957. nic->dev->name);
  958. return mode;
  959. }
  960. switch (mode) {
  961. case PCI_MODE_PCI_33:
  962. pcimode = "33MHz PCI bus";
  963. break;
  964. case PCI_MODE_PCI_66:
  965. pcimode = "66MHz PCI bus";
  966. break;
  967. case PCI_MODE_PCIX_M1_66:
  968. pcimode = "66MHz PCIX(M1) bus";
  969. break;
  970. case PCI_MODE_PCIX_M1_100:
  971. pcimode = "100MHz PCIX(M1) bus";
  972. break;
  973. case PCI_MODE_PCIX_M1_133:
  974. pcimode = "133MHz PCIX(M1) bus";
  975. break;
  976. case PCI_MODE_PCIX_M2_66:
  977. pcimode = "133MHz PCIX(M2) bus";
  978. break;
  979. case PCI_MODE_PCIX_M2_100:
  980. pcimode = "200MHz PCIX(M2) bus";
  981. break;
  982. case PCI_MODE_PCIX_M2_133:
  983. pcimode = "266MHz PCIX(M2) bus";
  984. break;
  985. default:
  986. pcimode = "unsupported bus!";
  987. mode = -1;
  988. }
  989. DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
  990. nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
  991. return mode;
  992. }
  993. /**
  994. * init_tti - Initialization transmit traffic interrupt scheme
  995. * @nic: device private variable
  996. * @link: link status (UP/DOWN) used to enable/disable continuous
  997. * transmit interrupts
  998. * @may_sleep: parameter indicates if sleeping when waiting for
  999. * command complete
  1000. * Description: The function configures transmit traffic interrupts
  1001. * Return Value: SUCCESS on success and
  1002. * '-1' on failure
  1003. */
  1004. static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
  1005. {
  1006. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1007. register u64 val64 = 0;
  1008. int i;
  1009. struct config_param *config = &nic->config;
  1010. for (i = 0; i < config->tx_fifo_num; i++) {
  1011. /*
  1012. * TTI Initialization. Default Tx timer gets us about
  1013. * 250 interrupts per sec. Continuous interrupts are enabled
  1014. * by default.
  1015. */
  1016. if (nic->device_type == XFRAME_II_DEVICE) {
  1017. int count = (nic->config.bus_speed * 125)/2;
  1018. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1019. } else
  1020. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1021. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1022. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1023. TTI_DATA1_MEM_TX_URNG_C(0x30) |
  1024. TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1025. if (i == 0)
  1026. if (use_continuous_tx_intrs && (link == LINK_UP))
  1027. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1028. writeq(val64, &bar0->tti_data1_mem);
  1029. if (nic->config.intr_type == MSI_X) {
  1030. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1031. TTI_DATA2_MEM_TX_UFC_B(0x100) |
  1032. TTI_DATA2_MEM_TX_UFC_C(0x200) |
  1033. TTI_DATA2_MEM_TX_UFC_D(0x300);
  1034. } else {
  1035. if ((nic->config.tx_steering_type ==
  1036. TX_DEFAULT_STEERING) &&
  1037. (config->tx_fifo_num > 1) &&
  1038. (i >= nic->udp_fifo_idx) &&
  1039. (i < (nic->udp_fifo_idx +
  1040. nic->total_udp_fifos)))
  1041. val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
  1042. TTI_DATA2_MEM_TX_UFC_B(0x80) |
  1043. TTI_DATA2_MEM_TX_UFC_C(0x100) |
  1044. TTI_DATA2_MEM_TX_UFC_D(0x120);
  1045. else
  1046. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1047. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1048. TTI_DATA2_MEM_TX_UFC_C(0x40) |
  1049. TTI_DATA2_MEM_TX_UFC_D(0x80);
  1050. }
  1051. writeq(val64, &bar0->tti_data2_mem);
  1052. val64 = TTI_CMD_MEM_WE |
  1053. TTI_CMD_MEM_STROBE_NEW_CMD |
  1054. TTI_CMD_MEM_OFFSET(i);
  1055. writeq(val64, &bar0->tti_command_mem);
  1056. if (wait_for_cmd_complete(&bar0->tti_command_mem,
  1057. TTI_CMD_MEM_STROBE_NEW_CMD,
  1058. S2IO_BIT_RESET, may_sleep) != SUCCESS)
  1059. return FAILURE;
  1060. }
  1061. return SUCCESS;
  1062. }
  1063. /**
  1064. * init_nic - Initialization of hardware
  1065. * @nic: device private variable
  1066. * Description: The function sequentially configures every block
  1067. * of the H/W from their reset values.
  1068. * Return Value: SUCCESS on success and
  1069. * '-1' on failure (endian settings incorrect).
  1070. */
  1071. static int init_nic(struct s2io_nic *nic)
  1072. {
  1073. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1074. struct net_device *dev = nic->dev;
  1075. register u64 val64 = 0;
  1076. void __iomem *add;
  1077. u32 time;
  1078. int i, j;
  1079. int dtx_cnt = 0;
  1080. unsigned long long mem_share;
  1081. int mem_size;
  1082. struct config_param *config = &nic->config;
  1083. struct mac_info *mac_control = &nic->mac_control;
  1084. /* to set the swapper controle on the card */
  1085. if (s2io_set_swapper(nic)) {
  1086. DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
  1087. return -EIO;
  1088. }
  1089. /*
  1090. * Herc requires EOI to be removed from reset before XGXS, so..
  1091. */
  1092. if (nic->device_type & XFRAME_II_DEVICE) {
  1093. val64 = 0xA500000000ULL;
  1094. writeq(val64, &bar0->sw_reset);
  1095. msleep(500);
  1096. val64 = readq(&bar0->sw_reset);
  1097. }
  1098. /* Remove XGXS from reset state */
  1099. val64 = 0;
  1100. writeq(val64, &bar0->sw_reset);
  1101. msleep(500);
  1102. val64 = readq(&bar0->sw_reset);
  1103. /* Ensure that it's safe to access registers by checking
  1104. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1105. */
  1106. if (nic->device_type == XFRAME_II_DEVICE) {
  1107. for (i = 0; i < 50; i++) {
  1108. val64 = readq(&bar0->adapter_status);
  1109. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1110. break;
  1111. msleep(10);
  1112. }
  1113. if (i == 50)
  1114. return -ENODEV;
  1115. }
  1116. /* Enable Receiving broadcasts */
  1117. add = &bar0->mac_cfg;
  1118. val64 = readq(&bar0->mac_cfg);
  1119. val64 |= MAC_RMAC_BCAST_ENABLE;
  1120. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1121. writel((u32)val64, add);
  1122. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1123. writel((u32) (val64 >> 32), (add + 4));
  1124. /* Read registers in all blocks */
  1125. val64 = readq(&bar0->mac_int_mask);
  1126. val64 = readq(&bar0->mc_int_mask);
  1127. val64 = readq(&bar0->xgxs_int_mask);
  1128. /* Set MTU */
  1129. val64 = dev->mtu;
  1130. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1131. if (nic->device_type & XFRAME_II_DEVICE) {
  1132. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1133. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1134. &bar0->dtx_control, UF);
  1135. if (dtx_cnt & 0x1)
  1136. msleep(1); /* Necessary!! */
  1137. dtx_cnt++;
  1138. }
  1139. } else {
  1140. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1141. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1142. &bar0->dtx_control, UF);
  1143. val64 = readq(&bar0->dtx_control);
  1144. dtx_cnt++;
  1145. }
  1146. }
  1147. /* Tx DMA Initialization */
  1148. val64 = 0;
  1149. writeq(val64, &bar0->tx_fifo_partition_0);
  1150. writeq(val64, &bar0->tx_fifo_partition_1);
  1151. writeq(val64, &bar0->tx_fifo_partition_2);
  1152. writeq(val64, &bar0->tx_fifo_partition_3);
  1153. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1154. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  1155. val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
  1156. vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
  1157. if (i == (config->tx_fifo_num - 1)) {
  1158. if (i % 2 == 0)
  1159. i++;
  1160. }
  1161. switch (i) {
  1162. case 1:
  1163. writeq(val64, &bar0->tx_fifo_partition_0);
  1164. val64 = 0;
  1165. j = 0;
  1166. break;
  1167. case 3:
  1168. writeq(val64, &bar0->tx_fifo_partition_1);
  1169. val64 = 0;
  1170. j = 0;
  1171. break;
  1172. case 5:
  1173. writeq(val64, &bar0->tx_fifo_partition_2);
  1174. val64 = 0;
  1175. j = 0;
  1176. break;
  1177. case 7:
  1178. writeq(val64, &bar0->tx_fifo_partition_3);
  1179. val64 = 0;
  1180. j = 0;
  1181. break;
  1182. default:
  1183. j++;
  1184. break;
  1185. }
  1186. }
  1187. /*
  1188. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1189. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1190. */
  1191. if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
  1192. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1193. val64 = readq(&bar0->tx_fifo_partition_0);
  1194. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1195. &bar0->tx_fifo_partition_0, (unsigned long long)val64);
  1196. /*
  1197. * Initialization of Tx_PA_CONFIG register to ignore packet
  1198. * integrity checking.
  1199. */
  1200. val64 = readq(&bar0->tx_pa_cfg);
  1201. val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
  1202. TX_PA_CFG_IGNORE_SNAP_OUI |
  1203. TX_PA_CFG_IGNORE_LLC_CTRL |
  1204. TX_PA_CFG_IGNORE_L2_ERR;
  1205. writeq(val64, &bar0->tx_pa_cfg);
  1206. /* Rx DMA initialization. */
  1207. val64 = 0;
  1208. for (i = 0; i < config->rx_ring_num; i++) {
  1209. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  1210. val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
  1211. }
  1212. writeq(val64, &bar0->rx_queue_priority);
  1213. /*
  1214. * Allocating equal share of memory to all the
  1215. * configured Rings.
  1216. */
  1217. val64 = 0;
  1218. if (nic->device_type & XFRAME_II_DEVICE)
  1219. mem_size = 32;
  1220. else
  1221. mem_size = 64;
  1222. for (i = 0; i < config->rx_ring_num; i++) {
  1223. switch (i) {
  1224. case 0:
  1225. mem_share = (mem_size / config->rx_ring_num +
  1226. mem_size % config->rx_ring_num);
  1227. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1228. continue;
  1229. case 1:
  1230. mem_share = (mem_size / config->rx_ring_num);
  1231. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1232. continue;
  1233. case 2:
  1234. mem_share = (mem_size / config->rx_ring_num);
  1235. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1236. continue;
  1237. case 3:
  1238. mem_share = (mem_size / config->rx_ring_num);
  1239. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1240. continue;
  1241. case 4:
  1242. mem_share = (mem_size / config->rx_ring_num);
  1243. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1244. continue;
  1245. case 5:
  1246. mem_share = (mem_size / config->rx_ring_num);
  1247. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1248. continue;
  1249. case 6:
  1250. mem_share = (mem_size / config->rx_ring_num);
  1251. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1252. continue;
  1253. case 7:
  1254. mem_share = (mem_size / config->rx_ring_num);
  1255. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1256. continue;
  1257. }
  1258. }
  1259. writeq(val64, &bar0->rx_queue_cfg);
  1260. /*
  1261. * Filling Tx round robin registers
  1262. * as per the number of FIFOs for equal scheduling priority
  1263. */
  1264. switch (config->tx_fifo_num) {
  1265. case 1:
  1266. val64 = 0x0;
  1267. writeq(val64, &bar0->tx_w_round_robin_0);
  1268. writeq(val64, &bar0->tx_w_round_robin_1);
  1269. writeq(val64, &bar0->tx_w_round_robin_2);
  1270. writeq(val64, &bar0->tx_w_round_robin_3);
  1271. writeq(val64, &bar0->tx_w_round_robin_4);
  1272. break;
  1273. case 2:
  1274. val64 = 0x0001000100010001ULL;
  1275. writeq(val64, &bar0->tx_w_round_robin_0);
  1276. writeq(val64, &bar0->tx_w_round_robin_1);
  1277. writeq(val64, &bar0->tx_w_round_robin_2);
  1278. writeq(val64, &bar0->tx_w_round_robin_3);
  1279. val64 = 0x0001000100000000ULL;
  1280. writeq(val64, &bar0->tx_w_round_robin_4);
  1281. break;
  1282. case 3:
  1283. val64 = 0x0001020001020001ULL;
  1284. writeq(val64, &bar0->tx_w_round_robin_0);
  1285. val64 = 0x0200010200010200ULL;
  1286. writeq(val64, &bar0->tx_w_round_robin_1);
  1287. val64 = 0x0102000102000102ULL;
  1288. writeq(val64, &bar0->tx_w_round_robin_2);
  1289. val64 = 0x0001020001020001ULL;
  1290. writeq(val64, &bar0->tx_w_round_robin_3);
  1291. val64 = 0x0200010200000000ULL;
  1292. writeq(val64, &bar0->tx_w_round_robin_4);
  1293. break;
  1294. case 4:
  1295. val64 = 0x0001020300010203ULL;
  1296. writeq(val64, &bar0->tx_w_round_robin_0);
  1297. writeq(val64, &bar0->tx_w_round_robin_1);
  1298. writeq(val64, &bar0->tx_w_round_robin_2);
  1299. writeq(val64, &bar0->tx_w_round_robin_3);
  1300. val64 = 0x0001020300000000ULL;
  1301. writeq(val64, &bar0->tx_w_round_robin_4);
  1302. break;
  1303. case 5:
  1304. val64 = 0x0001020304000102ULL;
  1305. writeq(val64, &bar0->tx_w_round_robin_0);
  1306. val64 = 0x0304000102030400ULL;
  1307. writeq(val64, &bar0->tx_w_round_robin_1);
  1308. val64 = 0x0102030400010203ULL;
  1309. writeq(val64, &bar0->tx_w_round_robin_2);
  1310. val64 = 0x0400010203040001ULL;
  1311. writeq(val64, &bar0->tx_w_round_robin_3);
  1312. val64 = 0x0203040000000000ULL;
  1313. writeq(val64, &bar0->tx_w_round_robin_4);
  1314. break;
  1315. case 6:
  1316. val64 = 0x0001020304050001ULL;
  1317. writeq(val64, &bar0->tx_w_round_robin_0);
  1318. val64 = 0x0203040500010203ULL;
  1319. writeq(val64, &bar0->tx_w_round_robin_1);
  1320. val64 = 0x0405000102030405ULL;
  1321. writeq(val64, &bar0->tx_w_round_robin_2);
  1322. val64 = 0x0001020304050001ULL;
  1323. writeq(val64, &bar0->tx_w_round_robin_3);
  1324. val64 = 0x0203040500000000ULL;
  1325. writeq(val64, &bar0->tx_w_round_robin_4);
  1326. break;
  1327. case 7:
  1328. val64 = 0x0001020304050600ULL;
  1329. writeq(val64, &bar0->tx_w_round_robin_0);
  1330. val64 = 0x0102030405060001ULL;
  1331. writeq(val64, &bar0->tx_w_round_robin_1);
  1332. val64 = 0x0203040506000102ULL;
  1333. writeq(val64, &bar0->tx_w_round_robin_2);
  1334. val64 = 0x0304050600010203ULL;
  1335. writeq(val64, &bar0->tx_w_round_robin_3);
  1336. val64 = 0x0405060000000000ULL;
  1337. writeq(val64, &bar0->tx_w_round_robin_4);
  1338. break;
  1339. case 8:
  1340. val64 = 0x0001020304050607ULL;
  1341. writeq(val64, &bar0->tx_w_round_robin_0);
  1342. writeq(val64, &bar0->tx_w_round_robin_1);
  1343. writeq(val64, &bar0->tx_w_round_robin_2);
  1344. writeq(val64, &bar0->tx_w_round_robin_3);
  1345. val64 = 0x0001020300000000ULL;
  1346. writeq(val64, &bar0->tx_w_round_robin_4);
  1347. break;
  1348. }
  1349. /* Enable all configured Tx FIFO partitions */
  1350. val64 = readq(&bar0->tx_fifo_partition_0);
  1351. val64 |= (TX_FIFO_PARTITION_EN);
  1352. writeq(val64, &bar0->tx_fifo_partition_0);
  1353. /* Filling the Rx round robin registers as per the
  1354. * number of Rings and steering based on QoS with
  1355. * equal priority.
  1356. */
  1357. switch (config->rx_ring_num) {
  1358. case 1:
  1359. val64 = 0x0;
  1360. writeq(val64, &bar0->rx_w_round_robin_0);
  1361. writeq(val64, &bar0->rx_w_round_robin_1);
  1362. writeq(val64, &bar0->rx_w_round_robin_2);
  1363. writeq(val64, &bar0->rx_w_round_robin_3);
  1364. writeq(val64, &bar0->rx_w_round_robin_4);
  1365. val64 = 0x8080808080808080ULL;
  1366. writeq(val64, &bar0->rts_qos_steering);
  1367. break;
  1368. case 2:
  1369. val64 = 0x0001000100010001ULL;
  1370. writeq(val64, &bar0->rx_w_round_robin_0);
  1371. writeq(val64, &bar0->rx_w_round_robin_1);
  1372. writeq(val64, &bar0->rx_w_round_robin_2);
  1373. writeq(val64, &bar0->rx_w_round_robin_3);
  1374. val64 = 0x0001000100000000ULL;
  1375. writeq(val64, &bar0->rx_w_round_robin_4);
  1376. val64 = 0x8080808040404040ULL;
  1377. writeq(val64, &bar0->rts_qos_steering);
  1378. break;
  1379. case 3:
  1380. val64 = 0x0001020001020001ULL;
  1381. writeq(val64, &bar0->rx_w_round_robin_0);
  1382. val64 = 0x0200010200010200ULL;
  1383. writeq(val64, &bar0->rx_w_round_robin_1);
  1384. val64 = 0x0102000102000102ULL;
  1385. writeq(val64, &bar0->rx_w_round_robin_2);
  1386. val64 = 0x0001020001020001ULL;
  1387. writeq(val64, &bar0->rx_w_round_robin_3);
  1388. val64 = 0x0200010200000000ULL;
  1389. writeq(val64, &bar0->rx_w_round_robin_4);
  1390. val64 = 0x8080804040402020ULL;
  1391. writeq(val64, &bar0->rts_qos_steering);
  1392. break;
  1393. case 4:
  1394. val64 = 0x0001020300010203ULL;
  1395. writeq(val64, &bar0->rx_w_round_robin_0);
  1396. writeq(val64, &bar0->rx_w_round_robin_1);
  1397. writeq(val64, &bar0->rx_w_round_robin_2);
  1398. writeq(val64, &bar0->rx_w_round_robin_3);
  1399. val64 = 0x0001020300000000ULL;
  1400. writeq(val64, &bar0->rx_w_round_robin_4);
  1401. val64 = 0x8080404020201010ULL;
  1402. writeq(val64, &bar0->rts_qos_steering);
  1403. break;
  1404. case 5:
  1405. val64 = 0x0001020304000102ULL;
  1406. writeq(val64, &bar0->rx_w_round_robin_0);
  1407. val64 = 0x0304000102030400ULL;
  1408. writeq(val64, &bar0->rx_w_round_robin_1);
  1409. val64 = 0x0102030400010203ULL;
  1410. writeq(val64, &bar0->rx_w_round_robin_2);
  1411. val64 = 0x0400010203040001ULL;
  1412. writeq(val64, &bar0->rx_w_round_robin_3);
  1413. val64 = 0x0203040000000000ULL;
  1414. writeq(val64, &bar0->rx_w_round_robin_4);
  1415. val64 = 0x8080404020201008ULL;
  1416. writeq(val64, &bar0->rts_qos_steering);
  1417. break;
  1418. case 6:
  1419. val64 = 0x0001020304050001ULL;
  1420. writeq(val64, &bar0->rx_w_round_robin_0);
  1421. val64 = 0x0203040500010203ULL;
  1422. writeq(val64, &bar0->rx_w_round_robin_1);
  1423. val64 = 0x0405000102030405ULL;
  1424. writeq(val64, &bar0->rx_w_round_robin_2);
  1425. val64 = 0x0001020304050001ULL;
  1426. writeq(val64, &bar0->rx_w_round_robin_3);
  1427. val64 = 0x0203040500000000ULL;
  1428. writeq(val64, &bar0->rx_w_round_robin_4);
  1429. val64 = 0x8080404020100804ULL;
  1430. writeq(val64, &bar0->rts_qos_steering);
  1431. break;
  1432. case 7:
  1433. val64 = 0x0001020304050600ULL;
  1434. writeq(val64, &bar0->rx_w_round_robin_0);
  1435. val64 = 0x0102030405060001ULL;
  1436. writeq(val64, &bar0->rx_w_round_robin_1);
  1437. val64 = 0x0203040506000102ULL;
  1438. writeq(val64, &bar0->rx_w_round_robin_2);
  1439. val64 = 0x0304050600010203ULL;
  1440. writeq(val64, &bar0->rx_w_round_robin_3);
  1441. val64 = 0x0405060000000000ULL;
  1442. writeq(val64, &bar0->rx_w_round_robin_4);
  1443. val64 = 0x8080402010080402ULL;
  1444. writeq(val64, &bar0->rts_qos_steering);
  1445. break;
  1446. case 8:
  1447. val64 = 0x0001020304050607ULL;
  1448. writeq(val64, &bar0->rx_w_round_robin_0);
  1449. writeq(val64, &bar0->rx_w_round_robin_1);
  1450. writeq(val64, &bar0->rx_w_round_robin_2);
  1451. writeq(val64, &bar0->rx_w_round_robin_3);
  1452. val64 = 0x0001020300000000ULL;
  1453. writeq(val64, &bar0->rx_w_round_robin_4);
  1454. val64 = 0x8040201008040201ULL;
  1455. writeq(val64, &bar0->rts_qos_steering);
  1456. break;
  1457. }
  1458. /* UDP Fix */
  1459. val64 = 0;
  1460. for (i = 0; i < 8; i++)
  1461. writeq(val64, &bar0->rts_frm_len_n[i]);
  1462. /* Set the default rts frame length for the rings configured */
  1463. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1464. for (i = 0 ; i < config->rx_ring_num ; i++)
  1465. writeq(val64, &bar0->rts_frm_len_n[i]);
  1466. /* Set the frame length for the configured rings
  1467. * desired by the user
  1468. */
  1469. for (i = 0; i < config->rx_ring_num; i++) {
  1470. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1471. * specified frame length steering.
  1472. * If the user provides the frame length then program
  1473. * the rts_frm_len register for those values or else
  1474. * leave it as it is.
  1475. */
  1476. if (rts_frm_len[i] != 0) {
  1477. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1478. &bar0->rts_frm_len_n[i]);
  1479. }
  1480. }
  1481. /* Disable differentiated services steering logic */
  1482. for (i = 0; i < 64; i++) {
  1483. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1484. DBG_PRINT(ERR_DBG,
  1485. "%s: rts_ds_steer failed on codepoint %d\n",
  1486. dev->name, i);
  1487. return -ENODEV;
  1488. }
  1489. }
  1490. /* Program statistics memory */
  1491. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1492. if (nic->device_type == XFRAME_II_DEVICE) {
  1493. val64 = STAT_BC(0x320);
  1494. writeq(val64, &bar0->stat_byte_cnt);
  1495. }
  1496. /*
  1497. * Initializing the sampling rate for the device to calculate the
  1498. * bandwidth utilization.
  1499. */
  1500. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1501. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1502. writeq(val64, &bar0->mac_link_util);
  1503. /*
  1504. * Initializing the Transmit and Receive Traffic Interrupt
  1505. * Scheme.
  1506. */
  1507. /* Initialize TTI */
  1508. if (SUCCESS != init_tti(nic, nic->last_link_state, true))
  1509. return -ENODEV;
  1510. /* RTI Initialization */
  1511. if (nic->device_type == XFRAME_II_DEVICE) {
  1512. /*
  1513. * Programmed to generate Apprx 500 Intrs per
  1514. * second
  1515. */
  1516. int count = (nic->config.bus_speed * 125)/4;
  1517. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1518. } else
  1519. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1520. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1521. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1522. RTI_DATA1_MEM_RX_URNG_C(0x30) |
  1523. RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1524. writeq(val64, &bar0->rti_data1_mem);
  1525. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1526. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1527. if (nic->config.intr_type == MSI_X)
  1528. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
  1529. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1530. else
  1531. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
  1532. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1533. writeq(val64, &bar0->rti_data2_mem);
  1534. for (i = 0; i < config->rx_ring_num; i++) {
  1535. val64 = RTI_CMD_MEM_WE |
  1536. RTI_CMD_MEM_STROBE_NEW_CMD |
  1537. RTI_CMD_MEM_OFFSET(i);
  1538. writeq(val64, &bar0->rti_command_mem);
  1539. /*
  1540. * Once the operation completes, the Strobe bit of the
  1541. * command register will be reset. We poll for this
  1542. * particular condition. We wait for a maximum of 500ms
  1543. * for the operation to complete, if it's not complete
  1544. * by then we return error.
  1545. */
  1546. time = 0;
  1547. while (true) {
  1548. val64 = readq(&bar0->rti_command_mem);
  1549. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1550. break;
  1551. if (time > 10) {
  1552. DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
  1553. dev->name);
  1554. return -ENODEV;
  1555. }
  1556. time++;
  1557. msleep(50);
  1558. }
  1559. }
  1560. /*
  1561. * Initializing proper values as Pause threshold into all
  1562. * the 8 Queues on Rx side.
  1563. */
  1564. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1565. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1566. /* Disable RMAC PAD STRIPPING */
  1567. add = &bar0->mac_cfg;
  1568. val64 = readq(&bar0->mac_cfg);
  1569. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1570. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1571. writel((u32) (val64), add);
  1572. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1573. writel((u32) (val64 >> 32), (add + 4));
  1574. val64 = readq(&bar0->mac_cfg);
  1575. /* Enable FCS stripping by adapter */
  1576. add = &bar0->mac_cfg;
  1577. val64 = readq(&bar0->mac_cfg);
  1578. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1579. if (nic->device_type == XFRAME_II_DEVICE)
  1580. writeq(val64, &bar0->mac_cfg);
  1581. else {
  1582. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1583. writel((u32) (val64), add);
  1584. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1585. writel((u32) (val64 >> 32), (add + 4));
  1586. }
  1587. /*
  1588. * Set the time value to be inserted in the pause frame
  1589. * generated by xena.
  1590. */
  1591. val64 = readq(&bar0->rmac_pause_cfg);
  1592. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1593. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1594. writeq(val64, &bar0->rmac_pause_cfg);
  1595. /*
  1596. * Set the Threshold Limit for Generating the pause frame
  1597. * If the amount of data in any Queue exceeds ratio of
  1598. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1599. * pause frame is generated
  1600. */
  1601. val64 = 0;
  1602. for (i = 0; i < 4; i++) {
  1603. val64 |= (((u64)0xFF00 |
  1604. nic->mac_control.mc_pause_threshold_q0q3)
  1605. << (i * 2 * 8));
  1606. }
  1607. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1608. val64 = 0;
  1609. for (i = 0; i < 4; i++) {
  1610. val64 |= (((u64)0xFF00 |
  1611. nic->mac_control.mc_pause_threshold_q4q7)
  1612. << (i * 2 * 8));
  1613. }
  1614. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1615. /*
  1616. * TxDMA will stop Read request if the number of read split has
  1617. * exceeded the limit pointed by shared_splits
  1618. */
  1619. val64 = readq(&bar0->pic_control);
  1620. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1621. writeq(val64, &bar0->pic_control);
  1622. if (nic->config.bus_speed == 266) {
  1623. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1624. writeq(0x0, &bar0->read_retry_delay);
  1625. writeq(0x0, &bar0->write_retry_delay);
  1626. }
  1627. /*
  1628. * Programming the Herc to split every write transaction
  1629. * that does not start on an ADB to reduce disconnects.
  1630. */
  1631. if (nic->device_type == XFRAME_II_DEVICE) {
  1632. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1633. MISC_LINK_STABILITY_PRD(3);
  1634. writeq(val64, &bar0->misc_control);
  1635. val64 = readq(&bar0->pic_control2);
  1636. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1637. writeq(val64, &bar0->pic_control2);
  1638. }
  1639. if (strstr(nic->product_name, "CX4")) {
  1640. val64 = TMAC_AVG_IPG(0x17);
  1641. writeq(val64, &bar0->tmac_avg_ipg);
  1642. }
  1643. return SUCCESS;
  1644. }
  1645. #define LINK_UP_DOWN_INTERRUPT 1
  1646. #define MAC_RMAC_ERR_TIMER 2
  1647. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1648. {
  1649. if (nic->device_type == XFRAME_II_DEVICE)
  1650. return LINK_UP_DOWN_INTERRUPT;
  1651. else
  1652. return MAC_RMAC_ERR_TIMER;
  1653. }
  1654. /**
  1655. * do_s2io_write_bits - update alarm bits in alarm register
  1656. * @value: alarm bits
  1657. * @flag: interrupt status
  1658. * @addr: address value
  1659. * Description: update alarm bits in alarm register
  1660. * Return Value:
  1661. * NONE.
  1662. */
  1663. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1664. {
  1665. u64 temp64;
  1666. temp64 = readq(addr);
  1667. if (flag == ENABLE_INTRS)
  1668. temp64 &= ~((u64)value);
  1669. else
  1670. temp64 |= ((u64)value);
  1671. writeq(temp64, addr);
  1672. }
  1673. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1674. {
  1675. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1676. register u64 gen_int_mask = 0;
  1677. u64 interruptible;
  1678. writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
  1679. if (mask & TX_DMA_INTR) {
  1680. gen_int_mask |= TXDMA_INT_M;
  1681. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1682. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1683. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1684. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1685. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1686. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1687. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1688. &bar0->pfc_err_mask);
  1689. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1690. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1691. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1692. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1693. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1694. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1695. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1696. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1697. PCC_TXB_ECC_SG_ERR,
  1698. flag, &bar0->pcc_err_mask);
  1699. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1700. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1701. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1702. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1703. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1704. flag, &bar0->lso_err_mask);
  1705. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1706. flag, &bar0->tpa_err_mask);
  1707. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1708. }
  1709. if (mask & TX_MAC_INTR) {
  1710. gen_int_mask |= TXMAC_INT_M;
  1711. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1712. &bar0->mac_int_mask);
  1713. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1714. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1715. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1716. flag, &bar0->mac_tmac_err_mask);
  1717. }
  1718. if (mask & TX_XGXS_INTR) {
  1719. gen_int_mask |= TXXGXS_INT_M;
  1720. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1721. &bar0->xgxs_int_mask);
  1722. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1723. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1724. flag, &bar0->xgxs_txgxs_err_mask);
  1725. }
  1726. if (mask & RX_DMA_INTR) {
  1727. gen_int_mask |= RXDMA_INT_M;
  1728. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1729. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1730. flag, &bar0->rxdma_int_mask);
  1731. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1732. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1733. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1734. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1735. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1736. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1737. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1738. &bar0->prc_pcix_err_mask);
  1739. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1740. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1741. &bar0->rpa_err_mask);
  1742. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1743. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1744. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1745. RDA_FRM_ECC_SG_ERR |
  1746. RDA_MISC_ERR|RDA_PCIX_ERR,
  1747. flag, &bar0->rda_err_mask);
  1748. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1749. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1750. flag, &bar0->rti_err_mask);
  1751. }
  1752. if (mask & RX_MAC_INTR) {
  1753. gen_int_mask |= RXMAC_INT_M;
  1754. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1755. &bar0->mac_int_mask);
  1756. interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1757. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1758. RMAC_DOUBLE_ECC_ERR);
  1759. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
  1760. interruptible |= RMAC_LINK_STATE_CHANGE_INT;
  1761. do_s2io_write_bits(interruptible,
  1762. flag, &bar0->mac_rmac_err_mask);
  1763. }
  1764. if (mask & RX_XGXS_INTR) {
  1765. gen_int_mask |= RXXGXS_INT_M;
  1766. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1767. &bar0->xgxs_int_mask);
  1768. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1769. &bar0->xgxs_rxgxs_err_mask);
  1770. }
  1771. if (mask & MC_INTR) {
  1772. gen_int_mask |= MC_INT_M;
  1773. do_s2io_write_bits(MC_INT_MASK_MC_INT,
  1774. flag, &bar0->mc_int_mask);
  1775. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1776. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1777. &bar0->mc_err_mask);
  1778. }
  1779. nic->general_int_mask = gen_int_mask;
  1780. /* Remove this line when alarm interrupts are enabled */
  1781. nic->general_int_mask = 0;
  1782. }
  1783. /**
  1784. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1785. * @nic: device private variable,
  1786. * @mask: A mask indicating which Intr block must be modified and,
  1787. * @flag: A flag indicating whether to enable or disable the Intrs.
  1788. * Description: This function will either disable or enable the interrupts
  1789. * depending on the flag argument. The mask argument can be used to
  1790. * enable/disable any Intr block.
  1791. * Return Value: NONE.
  1792. */
  1793. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1794. {
  1795. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1796. register u64 temp64 = 0, intr_mask = 0;
  1797. intr_mask = nic->general_int_mask;
  1798. /* Top level interrupt classification */
  1799. /* PIC Interrupts */
  1800. if (mask & TX_PIC_INTR) {
  1801. /* Enable PIC Intrs in the general intr mask register */
  1802. intr_mask |= TXPIC_INT_M;
  1803. if (flag == ENABLE_INTRS) {
  1804. /*
  1805. * If Hercules adapter enable GPIO otherwise
  1806. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1807. * interrupts for now.
  1808. * TODO
  1809. */
  1810. if (s2io_link_fault_indication(nic) ==
  1811. LINK_UP_DOWN_INTERRUPT) {
  1812. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1813. &bar0->pic_int_mask);
  1814. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1815. &bar0->gpio_int_mask);
  1816. } else
  1817. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1818. } else if (flag == DISABLE_INTRS) {
  1819. /*
  1820. * Disable PIC Intrs in the general
  1821. * intr mask register
  1822. */
  1823. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1824. }
  1825. }
  1826. /* Tx traffic interrupts */
  1827. if (mask & TX_TRAFFIC_INTR) {
  1828. intr_mask |= TXTRAFFIC_INT_M;
  1829. if (flag == ENABLE_INTRS) {
  1830. /*
  1831. * Enable all the Tx side interrupts
  1832. * writing 0 Enables all 64 TX interrupt levels
  1833. */
  1834. writeq(0x0, &bar0->tx_traffic_mask);
  1835. } else if (flag == DISABLE_INTRS) {
  1836. /*
  1837. * Disable Tx Traffic Intrs in the general intr mask
  1838. * register.
  1839. */
  1840. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1841. }
  1842. }
  1843. /* Rx traffic interrupts */
  1844. if (mask & RX_TRAFFIC_INTR) {
  1845. intr_mask |= RXTRAFFIC_INT_M;
  1846. if (flag == ENABLE_INTRS) {
  1847. /* writing 0 Enables all 8 RX interrupt levels */
  1848. writeq(0x0, &bar0->rx_traffic_mask);
  1849. } else if (flag == DISABLE_INTRS) {
  1850. /*
  1851. * Disable Rx Traffic Intrs in the general intr mask
  1852. * register.
  1853. */
  1854. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1855. }
  1856. }
  1857. temp64 = readq(&bar0->general_int_mask);
  1858. if (flag == ENABLE_INTRS)
  1859. temp64 &= ~((u64)intr_mask);
  1860. else
  1861. temp64 = DISABLE_ALL_INTRS;
  1862. writeq(temp64, &bar0->general_int_mask);
  1863. nic->general_int_mask = readq(&bar0->general_int_mask);
  1864. }
  1865. /**
  1866. * verify_pcc_quiescent- Checks for PCC quiescent state
  1867. * @sp : private member of the device structure, which is a pointer to the
  1868. * s2io_nic structure.
  1869. * @flag: boolean controlling function path
  1870. * Return: 1 If PCC is quiescence
  1871. * 0 If PCC is not quiescence
  1872. */
  1873. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1874. {
  1875. int ret = 0, herc;
  1876. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1877. u64 val64 = readq(&bar0->adapter_status);
  1878. herc = (sp->device_type == XFRAME_II_DEVICE);
  1879. if (flag == false) {
  1880. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1881. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1882. ret = 1;
  1883. } else {
  1884. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1885. ret = 1;
  1886. }
  1887. } else {
  1888. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1889. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1890. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1891. ret = 1;
  1892. } else {
  1893. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1894. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1895. ret = 1;
  1896. }
  1897. }
  1898. return ret;
  1899. }
  1900. /**
  1901. * verify_xena_quiescence - Checks whether the H/W is ready
  1902. * @sp : private member of the device structure, which is a pointer to the
  1903. * s2io_nic structure.
  1904. * Description: Returns whether the H/W is ready to go or not. Depending
  1905. * on whether adapter enable bit was written or not the comparison
  1906. * differs and the calling function passes the input argument flag to
  1907. * indicate this.
  1908. * Return: 1 If xena is quiescence
  1909. * 0 If Xena is not quiescence
  1910. */
  1911. static int verify_xena_quiescence(struct s2io_nic *sp)
  1912. {
  1913. int mode;
  1914. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1915. u64 val64 = readq(&bar0->adapter_status);
  1916. mode = s2io_verify_pci_mode(sp);
  1917. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1918. DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
  1919. return 0;
  1920. }
  1921. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1922. DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
  1923. return 0;
  1924. }
  1925. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1926. DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
  1927. return 0;
  1928. }
  1929. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1930. DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
  1931. return 0;
  1932. }
  1933. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1934. DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
  1935. return 0;
  1936. }
  1937. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1938. DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
  1939. return 0;
  1940. }
  1941. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1942. DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
  1943. return 0;
  1944. }
  1945. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1946. DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
  1947. return 0;
  1948. }
  1949. /*
  1950. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1951. * the P_PLL_LOCK bit in the adapter_status register will
  1952. * not be asserted.
  1953. */
  1954. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1955. sp->device_type == XFRAME_II_DEVICE &&
  1956. mode != PCI_MODE_PCI_33) {
  1957. DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
  1958. return 0;
  1959. }
  1960. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1961. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1962. DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
  1963. return 0;
  1964. }
  1965. return 1;
  1966. }
  1967. /**
  1968. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1969. * @sp: Pointer to device specifc structure
  1970. * Description :
  1971. * New procedure to clear mac address reading problems on Alpha platforms
  1972. *
  1973. */
  1974. static void fix_mac_address(struct s2io_nic *sp)
  1975. {
  1976. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1977. int i = 0;
  1978. while (fix_mac[i] != END_SIGN) {
  1979. writeq(fix_mac[i++], &bar0->gpio_control);
  1980. udelay(10);
  1981. (void) readq(&bar0->gpio_control);
  1982. }
  1983. }
  1984. /**
  1985. * start_nic - Turns the device on
  1986. * @nic : device private variable.
  1987. * Description:
  1988. * This function actually turns the device on. Before this function is
  1989. * called,all Registers are configured from their reset states
  1990. * and shared memory is allocated but the NIC is still quiescent. On
  1991. * calling this function, the device interrupts are cleared and the NIC is
  1992. * literally switched on by writing into the adapter control register.
  1993. * Return Value:
  1994. * SUCCESS on success and -1 on failure.
  1995. */
  1996. static int start_nic(struct s2io_nic *nic)
  1997. {
  1998. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1999. struct net_device *dev = nic->dev;
  2000. register u64 val64 = 0;
  2001. u16 subid, i;
  2002. struct config_param *config = &nic->config;
  2003. struct mac_info *mac_control = &nic->mac_control;
  2004. /* PRC Initialization and configuration */
  2005. for (i = 0; i < config->rx_ring_num; i++) {
  2006. struct ring_info *ring = &mac_control->rings[i];
  2007. writeq((u64)ring->rx_blocks[0].block_dma_addr,
  2008. &bar0->prc_rxd0_n[i]);
  2009. val64 = readq(&bar0->prc_ctrl_n[i]);
  2010. if (nic->rxd_mode == RXD_MODE_1)
  2011. val64 |= PRC_CTRL_RC_ENABLED;
  2012. else
  2013. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  2014. if (nic->device_type == XFRAME_II_DEVICE)
  2015. val64 |= PRC_CTRL_GROUP_READS;
  2016. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  2017. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  2018. writeq(val64, &bar0->prc_ctrl_n[i]);
  2019. }
  2020. if (nic->rxd_mode == RXD_MODE_3B) {
  2021. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  2022. val64 = readq(&bar0->rx_pa_cfg);
  2023. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  2024. writeq(val64, &bar0->rx_pa_cfg);
  2025. }
  2026. if (vlan_tag_strip == 0) {
  2027. val64 = readq(&bar0->rx_pa_cfg);
  2028. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  2029. writeq(val64, &bar0->rx_pa_cfg);
  2030. nic->vlan_strip_flag = 0;
  2031. }
  2032. /*
  2033. * Enabling MC-RLDRAM. After enabling the device, we timeout
  2034. * for around 100ms, which is approximately the time required
  2035. * for the device to be ready for operation.
  2036. */
  2037. val64 = readq(&bar0->mc_rldram_mrs);
  2038. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  2039. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  2040. val64 = readq(&bar0->mc_rldram_mrs);
  2041. msleep(100); /* Delay by around 100 ms. */
  2042. /* Enabling ECC Protection. */
  2043. val64 = readq(&bar0->adapter_control);
  2044. val64 &= ~ADAPTER_ECC_EN;
  2045. writeq(val64, &bar0->adapter_control);
  2046. /*
  2047. * Verify if the device is ready to be enabled, if so enable
  2048. * it.
  2049. */
  2050. val64 = readq(&bar0->adapter_status);
  2051. if (!verify_xena_quiescence(nic)) {
  2052. DBG_PRINT(ERR_DBG, "%s: device is not ready, "
  2053. "Adapter status reads: 0x%llx\n",
  2054. dev->name, (unsigned long long)val64);
  2055. return FAILURE;
  2056. }
  2057. /*
  2058. * With some switches, link might be already up at this point.
  2059. * Because of this weird behavior, when we enable laser,
  2060. * we may not get link. We need to handle this. We cannot
  2061. * figure out which switch is misbehaving. So we are forced to
  2062. * make a global change.
  2063. */
  2064. /* Enabling Laser. */
  2065. val64 = readq(&bar0->adapter_control);
  2066. val64 |= ADAPTER_EOI_TX_ON;
  2067. writeq(val64, &bar0->adapter_control);
  2068. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2069. /*
  2070. * Dont see link state interrupts initially on some switches,
  2071. * so directly scheduling the link state task here.
  2072. */
  2073. schedule_work(&nic->set_link_task);
  2074. }
  2075. /* SXE-002: Initialize link and activity LED */
  2076. subid = nic->pdev->subsystem_device;
  2077. if (((subid & 0xFF) >= 0x07) &&
  2078. (nic->device_type == XFRAME_I_DEVICE)) {
  2079. val64 = readq(&bar0->gpio_control);
  2080. val64 |= 0x0000800000000000ULL;
  2081. writeq(val64, &bar0->gpio_control);
  2082. val64 = 0x0411040400000000ULL;
  2083. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2084. }
  2085. return SUCCESS;
  2086. }
  2087. /**
  2088. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2089. * @fifo_data: fifo data pointer
  2090. * @txdlp: descriptor
  2091. * @get_off: unused
  2092. */
  2093. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
  2094. struct TxD *txdlp, int get_off)
  2095. {
  2096. struct s2io_nic *nic = fifo_data->nic;
  2097. struct sk_buff *skb;
  2098. struct TxD *txds;
  2099. u16 j, frg_cnt;
  2100. txds = txdlp;
  2101. if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
  2102. dma_unmap_single(&nic->pdev->dev,
  2103. (dma_addr_t)txds->Buffer_Pointer,
  2104. sizeof(u64), DMA_TO_DEVICE);
  2105. txds++;
  2106. }
  2107. skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
  2108. if (!skb) {
  2109. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2110. return NULL;
  2111. }
  2112. dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
  2113. skb_headlen(skb), DMA_TO_DEVICE);
  2114. frg_cnt = skb_shinfo(skb)->nr_frags;
  2115. if (frg_cnt) {
  2116. txds++;
  2117. for (j = 0; j < frg_cnt; j++, txds++) {
  2118. const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2119. if (!txds->Buffer_Pointer)
  2120. break;
  2121. dma_unmap_page(&nic->pdev->dev,
  2122. (dma_addr_t)txds->Buffer_Pointer,
  2123. skb_frag_size(frag), DMA_TO_DEVICE);
  2124. }
  2125. }
  2126. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2127. return skb;
  2128. }
  2129. /**
  2130. * free_tx_buffers - Free all queued Tx buffers
  2131. * @nic : device private variable.
  2132. * Description:
  2133. * Free all queued Tx buffers.
  2134. * Return Value: void
  2135. */
  2136. static void free_tx_buffers(struct s2io_nic *nic)
  2137. {
  2138. struct net_device *dev = nic->dev;
  2139. struct sk_buff *skb;
  2140. struct TxD *txdp;
  2141. int i, j;
  2142. int cnt = 0;
  2143. struct config_param *config = &nic->config;
  2144. struct mac_info *mac_control = &nic->mac_control;
  2145. struct stat_block *stats = mac_control->stats_info;
  2146. struct swStat *swstats = &stats->sw_stat;
  2147. for (i = 0; i < config->tx_fifo_num; i++) {
  2148. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  2149. struct fifo_info *fifo = &mac_control->fifos[i];
  2150. unsigned long flags;
  2151. spin_lock_irqsave(&fifo->tx_lock, flags);
  2152. for (j = 0; j < tx_cfg->fifo_len; j++) {
  2153. txdp = fifo->list_info[j].list_virt_addr;
  2154. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2155. if (skb) {
  2156. swstats->mem_freed += skb->truesize;
  2157. dev_kfree_skb_irq(skb);
  2158. cnt++;
  2159. }
  2160. }
  2161. DBG_PRINT(INTR_DBG,
  2162. "%s: forcibly freeing %d skbs on FIFO%d\n",
  2163. dev->name, cnt, i);
  2164. fifo->tx_curr_get_info.offset = 0;
  2165. fifo->tx_curr_put_info.offset = 0;
  2166. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  2167. }
  2168. }
  2169. /**
  2170. * stop_nic - To stop the nic
  2171. * @nic : device private variable.
  2172. * Description:
  2173. * This function does exactly the opposite of what the start_nic()
  2174. * function does. This function is called to stop the device.
  2175. * Return Value:
  2176. * void.
  2177. */
  2178. static void stop_nic(struct s2io_nic *nic)
  2179. {
  2180. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2181. register u64 val64 = 0;
  2182. u16 interruptible;
  2183. /* Disable all interrupts */
  2184. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2185. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2186. interruptible |= TX_PIC_INTR;
  2187. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2188. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2189. val64 = readq(&bar0->adapter_control);
  2190. val64 &= ~(ADAPTER_CNTL_EN);
  2191. writeq(val64, &bar0->adapter_control);
  2192. }
  2193. /**
  2194. * fill_rx_buffers - Allocates the Rx side skbs
  2195. * @nic : device private variable.
  2196. * @ring: per ring structure
  2197. * @from_card_up: If this is true, we will map the buffer to get
  2198. * the dma address for buf0 and buf1 to give it to the card.
  2199. * Else we will sync the already mapped buffer to give it to the card.
  2200. * Description:
  2201. * The function allocates Rx side skbs and puts the physical
  2202. * address of these buffers into the RxD buffer pointers, so that the NIC
  2203. * can DMA the received frame into these locations.
  2204. * The NIC supports 3 receive modes, viz
  2205. * 1. single buffer,
  2206. * 2. three buffer and
  2207. * 3. Five buffer modes.
  2208. * Each mode defines how many fragments the received frame will be split
  2209. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2210. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2211. * is split into 3 fragments. As of now only single buffer mode is
  2212. * supported.
  2213. * Return Value:
  2214. * SUCCESS on success or an appropriate -ve value on failure.
  2215. */
  2216. static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
  2217. int from_card_up)
  2218. {
  2219. struct sk_buff *skb;
  2220. struct RxD_t *rxdp;
  2221. int off, size, block_no, block_no1;
  2222. u32 alloc_tab = 0;
  2223. u32 alloc_cnt;
  2224. u64 tmp;
  2225. struct buffAdd *ba;
  2226. struct RxD_t *first_rxdp = NULL;
  2227. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2228. struct RxD1 *rxdp1;
  2229. struct RxD3 *rxdp3;
  2230. struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
  2231. alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
  2232. block_no1 = ring->rx_curr_get_info.block_index;
  2233. while (alloc_tab < alloc_cnt) {
  2234. block_no = ring->rx_curr_put_info.block_index;
  2235. off = ring->rx_curr_put_info.offset;
  2236. rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
  2237. if ((block_no == block_no1) &&
  2238. (off == ring->rx_curr_get_info.offset) &&
  2239. (rxdp->Host_Control)) {
  2240. DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
  2241. ring->dev->name);
  2242. goto end;
  2243. }
  2244. if (off && (off == ring->rxd_count)) {
  2245. ring->rx_curr_put_info.block_index++;
  2246. if (ring->rx_curr_put_info.block_index ==
  2247. ring->block_count)
  2248. ring->rx_curr_put_info.block_index = 0;
  2249. block_no = ring->rx_curr_put_info.block_index;
  2250. off = 0;
  2251. ring->rx_curr_put_info.offset = off;
  2252. rxdp = ring->rx_blocks[block_no].block_virt_addr;
  2253. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2254. ring->dev->name, rxdp);
  2255. }
  2256. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2257. ((ring->rxd_mode == RXD_MODE_3B) &&
  2258. (rxdp->Control_2 & s2BIT(0)))) {
  2259. ring->rx_curr_put_info.offset = off;
  2260. goto end;
  2261. }
  2262. /* calculate size of skb based on ring mode */
  2263. size = ring->mtu +
  2264. HEADER_ETHERNET_II_802_3_SIZE +
  2265. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2266. if (ring->rxd_mode == RXD_MODE_1)
  2267. size += NET_IP_ALIGN;
  2268. else
  2269. size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2270. /* allocate skb */
  2271. skb = netdev_alloc_skb(nic->dev, size);
  2272. if (!skb) {
  2273. DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
  2274. ring->dev->name);
  2275. if (first_rxdp) {
  2276. dma_wmb();
  2277. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2278. }
  2279. swstats->mem_alloc_fail_cnt++;
  2280. return -ENOMEM ;
  2281. }
  2282. swstats->mem_allocated += skb->truesize;
  2283. if (ring->rxd_mode == RXD_MODE_1) {
  2284. /* 1 buffer mode - normal operation mode */
  2285. rxdp1 = (struct RxD1 *)rxdp;
  2286. memset(rxdp, 0, sizeof(struct RxD1));
  2287. skb_reserve(skb, NET_IP_ALIGN);
  2288. rxdp1->Buffer0_ptr =
  2289. dma_map_single(&ring->pdev->dev, skb->data,
  2290. size - NET_IP_ALIGN,
  2291. DMA_FROM_DEVICE);
  2292. if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
  2293. goto pci_map_failed;
  2294. rxdp->Control_2 =
  2295. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2296. rxdp->Host_Control = (unsigned long)skb;
  2297. } else if (ring->rxd_mode == RXD_MODE_3B) {
  2298. /*
  2299. * 2 buffer mode -
  2300. * 2 buffer mode provides 128
  2301. * byte aligned receive buffers.
  2302. */
  2303. rxdp3 = (struct RxD3 *)rxdp;
  2304. /* save buffer pointers to avoid frequent dma mapping */
  2305. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2306. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2307. memset(rxdp, 0, sizeof(struct RxD3));
  2308. /* restore the buffer pointers for dma sync*/
  2309. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2310. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2311. ba = &ring->ba[block_no][off];
  2312. skb_reserve(skb, BUF0_LEN);
  2313. tmp = (u64)(unsigned long)skb->data;
  2314. tmp += ALIGN_SIZE;
  2315. tmp &= ~ALIGN_SIZE;
  2316. skb->data = (void *) (unsigned long)tmp;
  2317. skb_reset_tail_pointer(skb);
  2318. if (from_card_up) {
  2319. rxdp3->Buffer0_ptr =
  2320. dma_map_single(&ring->pdev->dev,
  2321. ba->ba_0, BUF0_LEN,
  2322. DMA_FROM_DEVICE);
  2323. if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
  2324. goto pci_map_failed;
  2325. } else
  2326. dma_sync_single_for_device(&ring->pdev->dev,
  2327. (dma_addr_t)rxdp3->Buffer0_ptr,
  2328. BUF0_LEN,
  2329. DMA_FROM_DEVICE);
  2330. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2331. if (ring->rxd_mode == RXD_MODE_3B) {
  2332. /* Two buffer mode */
  2333. /*
  2334. * Buffer2 will have L3/L4 header plus
  2335. * L4 payload
  2336. */
  2337. rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
  2338. skb->data,
  2339. ring->mtu + 4,
  2340. DMA_FROM_DEVICE);
  2341. if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
  2342. goto pci_map_failed;
  2343. if (from_card_up) {
  2344. rxdp3->Buffer1_ptr =
  2345. dma_map_single(&ring->pdev->dev,
  2346. ba->ba_1,
  2347. BUF1_LEN,
  2348. DMA_FROM_DEVICE);
  2349. if (dma_mapping_error(&nic->pdev->dev,
  2350. rxdp3->Buffer1_ptr)) {
  2351. dma_unmap_single(&ring->pdev->dev,
  2352. (dma_addr_t)(unsigned long)
  2353. skb->data,
  2354. ring->mtu + 4,
  2355. DMA_FROM_DEVICE);
  2356. goto pci_map_failed;
  2357. }
  2358. }
  2359. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2360. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2361. (ring->mtu + 4);
  2362. }
  2363. rxdp->Control_2 |= s2BIT(0);
  2364. rxdp->Host_Control = (unsigned long) (skb);
  2365. }
  2366. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2367. rxdp->Control_1 |= RXD_OWN_XENA;
  2368. off++;
  2369. if (off == (ring->rxd_count + 1))
  2370. off = 0;
  2371. ring->rx_curr_put_info.offset = off;
  2372. rxdp->Control_2 |= SET_RXD_MARKER;
  2373. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2374. if (first_rxdp) {
  2375. dma_wmb();
  2376. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2377. }
  2378. first_rxdp = rxdp;
  2379. }
  2380. ring->rx_bufs_left += 1;
  2381. alloc_tab++;
  2382. }
  2383. end:
  2384. /* Transfer ownership of first descriptor to adapter just before
  2385. * exiting. Before that, use memory barrier so that ownership
  2386. * and other fields are seen by adapter correctly.
  2387. */
  2388. if (first_rxdp) {
  2389. dma_wmb();
  2390. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2391. }
  2392. return SUCCESS;
  2393. pci_map_failed:
  2394. swstats->pci_map_fail_cnt++;
  2395. swstats->mem_freed += skb->truesize;
  2396. dev_kfree_skb_irq(skb);
  2397. return -ENOMEM;
  2398. }
  2399. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2400. {
  2401. struct net_device *dev = sp->dev;
  2402. int j;
  2403. struct sk_buff *skb;
  2404. struct RxD_t *rxdp;
  2405. struct RxD1 *rxdp1;
  2406. struct RxD3 *rxdp3;
  2407. struct mac_info *mac_control = &sp->mac_control;
  2408. struct stat_block *stats = mac_control->stats_info;
  2409. struct swStat *swstats = &stats->sw_stat;
  2410. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2411. rxdp = mac_control->rings[ring_no].
  2412. rx_blocks[blk].rxds[j].virt_addr;
  2413. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2414. if (!skb)
  2415. continue;
  2416. if (sp->rxd_mode == RXD_MODE_1) {
  2417. rxdp1 = (struct RxD1 *)rxdp;
  2418. dma_unmap_single(&sp->pdev->dev,
  2419. (dma_addr_t)rxdp1->Buffer0_ptr,
  2420. dev->mtu +
  2421. HEADER_ETHERNET_II_802_3_SIZE +
  2422. HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
  2423. DMA_FROM_DEVICE);
  2424. memset(rxdp, 0, sizeof(struct RxD1));
  2425. } else if (sp->rxd_mode == RXD_MODE_3B) {
  2426. rxdp3 = (struct RxD3 *)rxdp;
  2427. dma_unmap_single(&sp->pdev->dev,
  2428. (dma_addr_t)rxdp3->Buffer0_ptr,
  2429. BUF0_LEN, DMA_FROM_DEVICE);
  2430. dma_unmap_single(&sp->pdev->dev,
  2431. (dma_addr_t)rxdp3->Buffer1_ptr,
  2432. BUF1_LEN, DMA_FROM_DEVICE);
  2433. dma_unmap_single(&sp->pdev->dev,
  2434. (dma_addr_t)rxdp3->Buffer2_ptr,
  2435. dev->mtu + 4, DMA_FROM_DEVICE);
  2436. memset(rxdp, 0, sizeof(struct RxD3));
  2437. }
  2438. swstats->mem_freed += skb->truesize;
  2439. dev_kfree_skb(skb);
  2440. mac_control->rings[ring_no].rx_bufs_left -= 1;
  2441. }
  2442. }
  2443. /**
  2444. * free_rx_buffers - Frees all Rx buffers
  2445. * @sp: device private variable.
  2446. * Description:
  2447. * This function will free all Rx buffers allocated by host.
  2448. * Return Value:
  2449. * NONE.
  2450. */
  2451. static void free_rx_buffers(struct s2io_nic *sp)
  2452. {
  2453. struct net_device *dev = sp->dev;
  2454. int i, blk = 0, buf_cnt = 0;
  2455. struct config_param *config = &sp->config;
  2456. struct mac_info *mac_control = &sp->mac_control;
  2457. for (i = 0; i < config->rx_ring_num; i++) {
  2458. struct ring_info *ring = &mac_control->rings[i];
  2459. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2460. free_rxd_blk(sp, i, blk);
  2461. ring->rx_curr_put_info.block_index = 0;
  2462. ring->rx_curr_get_info.block_index = 0;
  2463. ring->rx_curr_put_info.offset = 0;
  2464. ring->rx_curr_get_info.offset = 0;
  2465. ring->rx_bufs_left = 0;
  2466. DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
  2467. dev->name, buf_cnt, i);
  2468. }
  2469. }
  2470. static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
  2471. {
  2472. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2473. DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
  2474. ring->dev->name);
  2475. }
  2476. return 0;
  2477. }
  2478. /**
  2479. * s2io_poll_msix - Rx interrupt handler for NAPI support
  2480. * @napi : pointer to the napi structure.
  2481. * @budget : The number of packets that were budgeted to be processed
  2482. * during one pass through the 'Poll" function.
  2483. * Description:
  2484. * Comes into picture only if NAPI support has been incorporated. It does
  2485. * the same thing that rx_intr_handler does, but not in a interrupt context
  2486. * also It will process only a given number of packets.
  2487. * Return value:
  2488. * 0 on success and 1 if there are No Rx packets to be processed.
  2489. */
  2490. static int s2io_poll_msix(struct napi_struct *napi, int budget)
  2491. {
  2492. struct ring_info *ring = container_of(napi, struct ring_info, napi);
  2493. struct net_device *dev = ring->dev;
  2494. int pkts_processed = 0;
  2495. u8 __iomem *addr = NULL;
  2496. u8 val8 = 0;
  2497. struct s2io_nic *nic = netdev_priv(dev);
  2498. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2499. int budget_org = budget;
  2500. if (unlikely(!is_s2io_card_up(nic)))
  2501. return 0;
  2502. pkts_processed = rx_intr_handler(ring, budget);
  2503. s2io_chk_rx_buffers(nic, ring);
  2504. if (pkts_processed < budget_org) {
  2505. napi_complete_done(napi, pkts_processed);
  2506. /*Re Enable MSI-Rx Vector*/
  2507. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  2508. addr += 7 - ring->ring_no;
  2509. val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
  2510. writeb(val8, addr);
  2511. val8 = readb(addr);
  2512. }
  2513. return pkts_processed;
  2514. }
  2515. static int s2io_poll_inta(struct napi_struct *napi, int budget)
  2516. {
  2517. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2518. int pkts_processed = 0;
  2519. int ring_pkts_processed, i;
  2520. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2521. int budget_org = budget;
  2522. struct config_param *config = &nic->config;
  2523. struct mac_info *mac_control = &nic->mac_control;
  2524. if (unlikely(!is_s2io_card_up(nic)))
  2525. return 0;
  2526. for (i = 0; i < config->rx_ring_num; i++) {
  2527. struct ring_info *ring = &mac_control->rings[i];
  2528. ring_pkts_processed = rx_intr_handler(ring, budget);
  2529. s2io_chk_rx_buffers(nic, ring);
  2530. pkts_processed += ring_pkts_processed;
  2531. budget -= ring_pkts_processed;
  2532. if (budget <= 0)
  2533. break;
  2534. }
  2535. if (pkts_processed < budget_org) {
  2536. napi_complete_done(napi, pkts_processed);
  2537. /* Re enable the Rx interrupts for the ring */
  2538. writeq(0, &bar0->rx_traffic_mask);
  2539. readl(&bar0->rx_traffic_mask);
  2540. }
  2541. return pkts_processed;
  2542. }
  2543. #ifdef CONFIG_NET_POLL_CONTROLLER
  2544. /**
  2545. * s2io_netpoll - netpoll event handler entry point
  2546. * @dev : pointer to the device structure.
  2547. * Description:
  2548. * This function will be called by upper layer to check for events on the
  2549. * interface in situations where interrupts are disabled. It is used for
  2550. * specific in-kernel networking tasks, such as remote consoles and kernel
  2551. * debugging over the network (example netdump in RedHat).
  2552. */
  2553. static void s2io_netpoll(struct net_device *dev)
  2554. {
  2555. struct s2io_nic *nic = netdev_priv(dev);
  2556. const int irq = nic->pdev->irq;
  2557. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2558. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2559. int i;
  2560. struct config_param *config = &nic->config;
  2561. struct mac_info *mac_control = &nic->mac_control;
  2562. if (pci_channel_offline(nic->pdev))
  2563. return;
  2564. disable_irq(irq);
  2565. writeq(val64, &bar0->rx_traffic_int);
  2566. writeq(val64, &bar0->tx_traffic_int);
  2567. /* we need to free up the transmitted skbufs or else netpoll will
  2568. * run out of skbs and will fail and eventually netpoll application such
  2569. * as netdump will fail.
  2570. */
  2571. for (i = 0; i < config->tx_fifo_num; i++)
  2572. tx_intr_handler(&mac_control->fifos[i]);
  2573. /* check for received packet and indicate up to network */
  2574. for (i = 0; i < config->rx_ring_num; i++) {
  2575. struct ring_info *ring = &mac_control->rings[i];
  2576. rx_intr_handler(ring, 0);
  2577. }
  2578. for (i = 0; i < config->rx_ring_num; i++) {
  2579. struct ring_info *ring = &mac_control->rings[i];
  2580. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2581. DBG_PRINT(INFO_DBG,
  2582. "%s: Out of memory in Rx Netpoll!!\n",
  2583. dev->name);
  2584. break;
  2585. }
  2586. }
  2587. enable_irq(irq);
  2588. }
  2589. #endif
  2590. /**
  2591. * rx_intr_handler - Rx interrupt handler
  2592. * @ring_data: per ring structure.
  2593. * @budget: budget for napi processing.
  2594. * Description:
  2595. * If the interrupt is because of a received frame or if the
  2596. * receive ring contains fresh as yet un-processed frames,this function is
  2597. * called. It picks out the RxD at which place the last Rx processing had
  2598. * stopped and sends the skb to the OSM's Rx handler and then increments
  2599. * the offset.
  2600. * Return Value:
  2601. * No. of napi packets processed.
  2602. */
  2603. static int rx_intr_handler(struct ring_info *ring_data, int budget)
  2604. {
  2605. int get_block, put_block;
  2606. struct rx_curr_get_info get_info, put_info;
  2607. struct RxD_t *rxdp;
  2608. struct sk_buff *skb;
  2609. int pkt_cnt = 0, napi_pkts = 0;
  2610. int i;
  2611. struct RxD1 *rxdp1;
  2612. struct RxD3 *rxdp3;
  2613. if (budget <= 0)
  2614. return napi_pkts;
  2615. get_info = ring_data->rx_curr_get_info;
  2616. get_block = get_info.block_index;
  2617. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2618. put_block = put_info.block_index;
  2619. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2620. while (RXD_IS_UP2DT(rxdp)) {
  2621. /*
  2622. * If your are next to put index then it's
  2623. * FIFO full condition
  2624. */
  2625. if ((get_block == put_block) &&
  2626. (get_info.offset + 1) == put_info.offset) {
  2627. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
  2628. ring_data->dev->name);
  2629. break;
  2630. }
  2631. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2632. if (skb == NULL) {
  2633. DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
  2634. ring_data->dev->name);
  2635. return 0;
  2636. }
  2637. if (ring_data->rxd_mode == RXD_MODE_1) {
  2638. rxdp1 = (struct RxD1 *)rxdp;
  2639. dma_unmap_single(&ring_data->pdev->dev,
  2640. (dma_addr_t)rxdp1->Buffer0_ptr,
  2641. ring_data->mtu +
  2642. HEADER_ETHERNET_II_802_3_SIZE +
  2643. HEADER_802_2_SIZE +
  2644. HEADER_SNAP_SIZE,
  2645. DMA_FROM_DEVICE);
  2646. } else if (ring_data->rxd_mode == RXD_MODE_3B) {
  2647. rxdp3 = (struct RxD3 *)rxdp;
  2648. dma_sync_single_for_cpu(&ring_data->pdev->dev,
  2649. (dma_addr_t)rxdp3->Buffer0_ptr,
  2650. BUF0_LEN, DMA_FROM_DEVICE);
  2651. dma_unmap_single(&ring_data->pdev->dev,
  2652. (dma_addr_t)rxdp3->Buffer2_ptr,
  2653. ring_data->mtu + 4, DMA_FROM_DEVICE);
  2654. }
  2655. prefetch(skb->data);
  2656. rx_osm_handler(ring_data, rxdp);
  2657. get_info.offset++;
  2658. ring_data->rx_curr_get_info.offset = get_info.offset;
  2659. rxdp = ring_data->rx_blocks[get_block].
  2660. rxds[get_info.offset].virt_addr;
  2661. if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
  2662. get_info.offset = 0;
  2663. ring_data->rx_curr_get_info.offset = get_info.offset;
  2664. get_block++;
  2665. if (get_block == ring_data->block_count)
  2666. get_block = 0;
  2667. ring_data->rx_curr_get_info.block_index = get_block;
  2668. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2669. }
  2670. if (ring_data->nic->config.napi) {
  2671. budget--;
  2672. napi_pkts++;
  2673. if (!budget)
  2674. break;
  2675. }
  2676. pkt_cnt++;
  2677. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2678. break;
  2679. }
  2680. if (ring_data->lro) {
  2681. /* Clear all LRO sessions before exiting */
  2682. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  2683. struct lro *lro = &ring_data->lro0_n[i];
  2684. if (lro->in_use) {
  2685. update_L3L4_header(ring_data->nic, lro);
  2686. queue_rx_frame(lro->parent, lro->vlan_tag);
  2687. clear_lro_session(lro);
  2688. }
  2689. }
  2690. }
  2691. return napi_pkts;
  2692. }
  2693. /**
  2694. * tx_intr_handler - Transmit interrupt handler
  2695. * @fifo_data : fifo data pointer
  2696. * Description:
  2697. * If an interrupt was raised to indicate DMA complete of the
  2698. * Tx packet, this function is called. It identifies the last TxD
  2699. * whose buffer was freed and frees all skbs whose data have already
  2700. * DMA'ed into the NICs internal memory.
  2701. * Return Value:
  2702. * NONE
  2703. */
  2704. static void tx_intr_handler(struct fifo_info *fifo_data)
  2705. {
  2706. struct s2io_nic *nic = fifo_data->nic;
  2707. struct tx_curr_get_info get_info, put_info;
  2708. struct sk_buff *skb = NULL;
  2709. struct TxD *txdlp;
  2710. int pkt_cnt = 0;
  2711. unsigned long flags = 0;
  2712. u8 err_mask;
  2713. struct stat_block *stats = nic->mac_control.stats_info;
  2714. struct swStat *swstats = &stats->sw_stat;
  2715. if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
  2716. return;
  2717. get_info = fifo_data->tx_curr_get_info;
  2718. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2719. txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
  2720. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2721. (get_info.offset != put_info.offset) &&
  2722. (txdlp->Host_Control)) {
  2723. /* Check for TxD errors */
  2724. if (txdlp->Control_1 & TXD_T_CODE) {
  2725. unsigned long long err;
  2726. err = txdlp->Control_1 & TXD_T_CODE;
  2727. if (err & 0x1) {
  2728. swstats->parity_err_cnt++;
  2729. }
  2730. /* update t_code statistics */
  2731. err_mask = err >> 48;
  2732. switch (err_mask) {
  2733. case 2:
  2734. swstats->tx_buf_abort_cnt++;
  2735. break;
  2736. case 3:
  2737. swstats->tx_desc_abort_cnt++;
  2738. break;
  2739. case 7:
  2740. swstats->tx_parity_err_cnt++;
  2741. break;
  2742. case 10:
  2743. swstats->tx_link_loss_cnt++;
  2744. break;
  2745. case 15:
  2746. swstats->tx_list_proc_err_cnt++;
  2747. break;
  2748. }
  2749. }
  2750. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2751. if (skb == NULL) {
  2752. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2753. DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
  2754. __func__);
  2755. return;
  2756. }
  2757. pkt_cnt++;
  2758. /* Updating the statistics block */
  2759. swstats->mem_freed += skb->truesize;
  2760. dev_consume_skb_irq(skb);
  2761. get_info.offset++;
  2762. if (get_info.offset == get_info.fifo_len + 1)
  2763. get_info.offset = 0;
  2764. txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
  2765. fifo_data->tx_curr_get_info.offset = get_info.offset;
  2766. }
  2767. s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
  2768. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2769. }
  2770. /**
  2771. * s2io_mdio_write - Function to write in to MDIO registers
  2772. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2773. * @addr : address value
  2774. * @value : data value
  2775. * @dev : pointer to net_device structure
  2776. * Description:
  2777. * This function is used to write values to the MDIO registers
  2778. * NONE
  2779. */
  2780. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
  2781. struct net_device *dev)
  2782. {
  2783. u64 val64;
  2784. struct s2io_nic *sp = netdev_priv(dev);
  2785. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2786. /* address transaction */
  2787. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2788. MDIO_MMD_DEV_ADDR(mmd_type) |
  2789. MDIO_MMS_PRT_ADDR(0x0);
  2790. writeq(val64, &bar0->mdio_control);
  2791. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2792. writeq(val64, &bar0->mdio_control);
  2793. udelay(100);
  2794. /* Data transaction */
  2795. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2796. MDIO_MMD_DEV_ADDR(mmd_type) |
  2797. MDIO_MMS_PRT_ADDR(0x0) |
  2798. MDIO_MDIO_DATA(value) |
  2799. MDIO_OP(MDIO_OP_WRITE_TRANS);
  2800. writeq(val64, &bar0->mdio_control);
  2801. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2802. writeq(val64, &bar0->mdio_control);
  2803. udelay(100);
  2804. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2805. MDIO_MMD_DEV_ADDR(mmd_type) |
  2806. MDIO_MMS_PRT_ADDR(0x0) |
  2807. MDIO_OP(MDIO_OP_READ_TRANS);
  2808. writeq(val64, &bar0->mdio_control);
  2809. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2810. writeq(val64, &bar0->mdio_control);
  2811. udelay(100);
  2812. }
  2813. /**
  2814. * s2io_mdio_read - Function to write in to MDIO registers
  2815. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2816. * @addr : address value
  2817. * @dev : pointer to net_device structure
  2818. * Description:
  2819. * This function is used to read values to the MDIO registers
  2820. * NONE
  2821. */
  2822. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2823. {
  2824. u64 val64 = 0x0;
  2825. u64 rval64 = 0x0;
  2826. struct s2io_nic *sp = netdev_priv(dev);
  2827. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2828. /* address transaction */
  2829. val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
  2830. | MDIO_MMD_DEV_ADDR(mmd_type)
  2831. | MDIO_MMS_PRT_ADDR(0x0));
  2832. writeq(val64, &bar0->mdio_control);
  2833. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2834. writeq(val64, &bar0->mdio_control);
  2835. udelay(100);
  2836. /* Data transaction */
  2837. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2838. MDIO_MMD_DEV_ADDR(mmd_type) |
  2839. MDIO_MMS_PRT_ADDR(0x0) |
  2840. MDIO_OP(MDIO_OP_READ_TRANS);
  2841. writeq(val64, &bar0->mdio_control);
  2842. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2843. writeq(val64, &bar0->mdio_control);
  2844. udelay(100);
  2845. /* Read the value from regs */
  2846. rval64 = readq(&bar0->mdio_control);
  2847. rval64 = rval64 & 0xFFFF0000;
  2848. rval64 = rval64 >> 16;
  2849. return rval64;
  2850. }
  2851. /**
  2852. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2853. * @counter : counter value to be updated
  2854. * @regs_stat : registers status
  2855. * @index : index
  2856. * @flag : flag to indicate the status
  2857. * @type : counter type
  2858. * Description:
  2859. * This function is to check the status of the xpak counters value
  2860. * NONE
  2861. */
  2862. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
  2863. u16 flag, u16 type)
  2864. {
  2865. u64 mask = 0x3;
  2866. u64 val64;
  2867. int i;
  2868. for (i = 0; i < index; i++)
  2869. mask = mask << 0x2;
  2870. if (flag > 0) {
  2871. *counter = *counter + 1;
  2872. val64 = *regs_stat & mask;
  2873. val64 = val64 >> (index * 0x2);
  2874. val64 = val64 + 1;
  2875. if (val64 == 3) {
  2876. switch (type) {
  2877. case 1:
  2878. DBG_PRINT(ERR_DBG,
  2879. "Take Xframe NIC out of service.\n");
  2880. DBG_PRINT(ERR_DBG,
  2881. "Excessive temperatures may result in premature transceiver failure.\n");
  2882. break;
  2883. case 2:
  2884. DBG_PRINT(ERR_DBG,
  2885. "Take Xframe NIC out of service.\n");
  2886. DBG_PRINT(ERR_DBG,
  2887. "Excessive bias currents may indicate imminent laser diode failure.\n");
  2888. break;
  2889. case 3:
  2890. DBG_PRINT(ERR_DBG,
  2891. "Take Xframe NIC out of service.\n");
  2892. DBG_PRINT(ERR_DBG,
  2893. "Excessive laser output power may saturate far-end receiver.\n");
  2894. break;
  2895. default:
  2896. DBG_PRINT(ERR_DBG,
  2897. "Incorrect XPAK Alarm type\n");
  2898. }
  2899. val64 = 0x0;
  2900. }
  2901. val64 = val64 << (index * 0x2);
  2902. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2903. } else {
  2904. *regs_stat = *regs_stat & (~mask);
  2905. }
  2906. }
  2907. /**
  2908. * s2io_updt_xpak_counter - Function to update the xpak counters
  2909. * @dev : pointer to net_device struct
  2910. * Description:
  2911. * This function is to upate the status of the xpak counters value
  2912. * NONE
  2913. */
  2914. static void s2io_updt_xpak_counter(struct net_device *dev)
  2915. {
  2916. u16 flag = 0x0;
  2917. u16 type = 0x0;
  2918. u16 val16 = 0x0;
  2919. u64 val64 = 0x0;
  2920. u64 addr = 0x0;
  2921. struct s2io_nic *sp = netdev_priv(dev);
  2922. struct stat_block *stats = sp->mac_control.stats_info;
  2923. struct xpakStat *xstats = &stats->xpak_stat;
  2924. /* Check the communication with the MDIO slave */
  2925. addr = MDIO_CTRL1;
  2926. val64 = 0x0;
  2927. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2928. if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
  2929. DBG_PRINT(ERR_DBG,
  2930. "ERR: MDIO slave access failed - Returned %llx\n",
  2931. (unsigned long long)val64);
  2932. return;
  2933. }
  2934. /* Check for the expected value of control reg 1 */
  2935. if (val64 != MDIO_CTRL1_SPEED10G) {
  2936. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
  2937. "Returned: %llx- Expected: 0x%x\n",
  2938. (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
  2939. return;
  2940. }
  2941. /* Loading the DOM register to MDIO register */
  2942. addr = 0xA100;
  2943. s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
  2944. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2945. /* Reading the Alarm flags */
  2946. addr = 0xA070;
  2947. val64 = 0x0;
  2948. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2949. flag = CHECKBIT(val64, 0x7);
  2950. type = 1;
  2951. s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
  2952. &xstats->xpak_regs_stat,
  2953. 0x0, flag, type);
  2954. if (CHECKBIT(val64, 0x6))
  2955. xstats->alarm_transceiver_temp_low++;
  2956. flag = CHECKBIT(val64, 0x3);
  2957. type = 2;
  2958. s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
  2959. &xstats->xpak_regs_stat,
  2960. 0x2, flag, type);
  2961. if (CHECKBIT(val64, 0x2))
  2962. xstats->alarm_laser_bias_current_low++;
  2963. flag = CHECKBIT(val64, 0x1);
  2964. type = 3;
  2965. s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
  2966. &xstats->xpak_regs_stat,
  2967. 0x4, flag, type);
  2968. if (CHECKBIT(val64, 0x0))
  2969. xstats->alarm_laser_output_power_low++;
  2970. /* Reading the Warning flags */
  2971. addr = 0xA074;
  2972. val64 = 0x0;
  2973. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2974. if (CHECKBIT(val64, 0x7))
  2975. xstats->warn_transceiver_temp_high++;
  2976. if (CHECKBIT(val64, 0x6))
  2977. xstats->warn_transceiver_temp_low++;
  2978. if (CHECKBIT(val64, 0x3))
  2979. xstats->warn_laser_bias_current_high++;
  2980. if (CHECKBIT(val64, 0x2))
  2981. xstats->warn_laser_bias_current_low++;
  2982. if (CHECKBIT(val64, 0x1))
  2983. xstats->warn_laser_output_power_high++;
  2984. if (CHECKBIT(val64, 0x0))
  2985. xstats->warn_laser_output_power_low++;
  2986. }
  2987. /**
  2988. * wait_for_cmd_complete - waits for a command to complete.
  2989. * @addr: address
  2990. * @busy_bit: bit to check for busy
  2991. * @bit_state: state to check
  2992. * @may_sleep: parameter indicates if sleeping when waiting for
  2993. * command complete
  2994. * Description: Function that waits for a command to Write into RMAC
  2995. * ADDR DATA registers to be completed and returns either success or
  2996. * error depending on whether the command was complete or not.
  2997. * Return value:
  2998. * SUCCESS on success and FAILURE on failure.
  2999. */
  3000. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3001. int bit_state, bool may_sleep)
  3002. {
  3003. int ret = FAILURE, cnt = 0, delay = 1;
  3004. u64 val64;
  3005. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3006. return FAILURE;
  3007. do {
  3008. val64 = readq(addr);
  3009. if (bit_state == S2IO_BIT_RESET) {
  3010. if (!(val64 & busy_bit)) {
  3011. ret = SUCCESS;
  3012. break;
  3013. }
  3014. } else {
  3015. if (val64 & busy_bit) {
  3016. ret = SUCCESS;
  3017. break;
  3018. }
  3019. }
  3020. if (!may_sleep)
  3021. mdelay(delay);
  3022. else
  3023. msleep(delay);
  3024. if (++cnt >= 10)
  3025. delay = 50;
  3026. } while (cnt < 20);
  3027. return ret;
  3028. }
  3029. /**
  3030. * check_pci_device_id - Checks if the device id is supported
  3031. * @id : device id
  3032. * Description: Function to check if the pci device id is supported by driver.
  3033. * Return value: Actual device id if supported else PCI_ANY_ID
  3034. */
  3035. static u16 check_pci_device_id(u16 id)
  3036. {
  3037. switch (id) {
  3038. case PCI_DEVICE_ID_HERC_WIN:
  3039. case PCI_DEVICE_ID_HERC_UNI:
  3040. return XFRAME_II_DEVICE;
  3041. case PCI_DEVICE_ID_S2IO_UNI:
  3042. case PCI_DEVICE_ID_S2IO_WIN:
  3043. return XFRAME_I_DEVICE;
  3044. default:
  3045. return PCI_ANY_ID;
  3046. }
  3047. }
  3048. /**
  3049. * s2io_reset - Resets the card.
  3050. * @sp : private member of the device structure.
  3051. * Description: Function to Reset the card. This function then also
  3052. * restores the previously saved PCI configuration space registers as
  3053. * the card reset also resets the configuration space.
  3054. * Return value:
  3055. * void.
  3056. */
  3057. static void s2io_reset(struct s2io_nic *sp)
  3058. {
  3059. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3060. u64 val64;
  3061. u16 subid, pci_cmd;
  3062. int i;
  3063. u16 val16;
  3064. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3065. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3066. struct stat_block *stats;
  3067. struct swStat *swstats;
  3068. DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
  3069. __func__, pci_name(sp->pdev));
  3070. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3071. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3072. val64 = SW_RESET_ALL;
  3073. writeq(val64, &bar0->sw_reset);
  3074. if (strstr(sp->product_name, "CX4"))
  3075. msleep(750);
  3076. msleep(250);
  3077. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3078. /* Restore the PCI state saved during initialization. */
  3079. pci_restore_state(sp->pdev);
  3080. pci_save_state(sp->pdev);
  3081. pci_read_config_word(sp->pdev, 0x2, &val16);
  3082. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3083. break;
  3084. msleep(200);
  3085. }
  3086. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
  3087. DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
  3088. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3089. s2io_init_pci(sp);
  3090. /* Set swapper to enable I/O register access */
  3091. s2io_set_swapper(sp);
  3092. /* restore mac_addr entries */
  3093. do_s2io_restore_unicast_mc(sp);
  3094. /* Restore the MSIX table entries from local variables */
  3095. restore_xmsi_data(sp);
  3096. /* Clear certain PCI/PCI-X fields after reset */
  3097. if (sp->device_type == XFRAME_II_DEVICE) {
  3098. /* Clear "detected parity error" bit */
  3099. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3100. /* Clearing PCIX Ecc status register */
  3101. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3102. /* Clearing PCI_STATUS error reflected here */
  3103. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3104. }
  3105. /* Reset device statistics maintained by OS */
  3106. memset(&sp->stats, 0, sizeof(struct net_device_stats));
  3107. stats = sp->mac_control.stats_info;
  3108. swstats = &stats->sw_stat;
  3109. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3110. up_cnt = swstats->link_up_cnt;
  3111. down_cnt = swstats->link_down_cnt;
  3112. up_time = swstats->link_up_time;
  3113. down_time = swstats->link_down_time;
  3114. reset_cnt = swstats->soft_reset_cnt;
  3115. mem_alloc_cnt = swstats->mem_allocated;
  3116. mem_free_cnt = swstats->mem_freed;
  3117. watchdog_cnt = swstats->watchdog_timer_cnt;
  3118. memset(stats, 0, sizeof(struct stat_block));
  3119. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3120. swstats->link_up_cnt = up_cnt;
  3121. swstats->link_down_cnt = down_cnt;
  3122. swstats->link_up_time = up_time;
  3123. swstats->link_down_time = down_time;
  3124. swstats->soft_reset_cnt = reset_cnt;
  3125. swstats->mem_allocated = mem_alloc_cnt;
  3126. swstats->mem_freed = mem_free_cnt;
  3127. swstats->watchdog_timer_cnt = watchdog_cnt;
  3128. /* SXE-002: Configure link and activity LED to turn it off */
  3129. subid = sp->pdev->subsystem_device;
  3130. if (((subid & 0xFF) >= 0x07) &&
  3131. (sp->device_type == XFRAME_I_DEVICE)) {
  3132. val64 = readq(&bar0->gpio_control);
  3133. val64 |= 0x0000800000000000ULL;
  3134. writeq(val64, &bar0->gpio_control);
  3135. val64 = 0x0411040400000000ULL;
  3136. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3137. }
  3138. /*
  3139. * Clear spurious ECC interrupts that would have occurred on
  3140. * XFRAME II cards after reset.
  3141. */
  3142. if (sp->device_type == XFRAME_II_DEVICE) {
  3143. val64 = readq(&bar0->pcc_err_reg);
  3144. writeq(val64, &bar0->pcc_err_reg);
  3145. }
  3146. sp->device_enabled_once = false;
  3147. }
  3148. /**
  3149. * s2io_set_swapper - to set the swapper controle on the card
  3150. * @sp : private member of the device structure,
  3151. * pointer to the s2io_nic structure.
  3152. * Description: Function to set the swapper control on the card
  3153. * correctly depending on the 'endianness' of the system.
  3154. * Return value:
  3155. * SUCCESS on success and FAILURE on failure.
  3156. */
  3157. static int s2io_set_swapper(struct s2io_nic *sp)
  3158. {
  3159. struct net_device *dev = sp->dev;
  3160. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3161. u64 val64, valt, valr;
  3162. /*
  3163. * Set proper endian settings and verify the same by reading
  3164. * the PIF Feed-back register.
  3165. */
  3166. val64 = readq(&bar0->pif_rd_swapper_fb);
  3167. if (val64 != 0x0123456789ABCDEFULL) {
  3168. int i = 0;
  3169. static const u64 value[] = {
  3170. 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3171. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3172. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3173. 0 /* FE=0, SE=0 */
  3174. };
  3175. while (i < 4) {
  3176. writeq(value[i], &bar0->swapper_ctrl);
  3177. val64 = readq(&bar0->pif_rd_swapper_fb);
  3178. if (val64 == 0x0123456789ABCDEFULL)
  3179. break;
  3180. i++;
  3181. }
  3182. if (i == 4) {
  3183. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
  3184. "feedback read %llx\n",
  3185. dev->name, (unsigned long long)val64);
  3186. return FAILURE;
  3187. }
  3188. valr = value[i];
  3189. } else {
  3190. valr = readq(&bar0->swapper_ctrl);
  3191. }
  3192. valt = 0x0123456789ABCDEFULL;
  3193. writeq(valt, &bar0->xmsi_address);
  3194. val64 = readq(&bar0->xmsi_address);
  3195. if (val64 != valt) {
  3196. int i = 0;
  3197. static const u64 value[] = {
  3198. 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3199. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3200. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3201. 0 /* FE=0, SE=0 */
  3202. };
  3203. while (i < 4) {
  3204. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3205. writeq(valt, &bar0->xmsi_address);
  3206. val64 = readq(&bar0->xmsi_address);
  3207. if (val64 == valt)
  3208. break;
  3209. i++;
  3210. }
  3211. if (i == 4) {
  3212. unsigned long long x = val64;
  3213. DBG_PRINT(ERR_DBG,
  3214. "Write failed, Xmsi_addr reads:0x%llx\n", x);
  3215. return FAILURE;
  3216. }
  3217. }
  3218. val64 = readq(&bar0->swapper_ctrl);
  3219. val64 &= 0xFFFF000000000000ULL;
  3220. #ifdef __BIG_ENDIAN
  3221. /*
  3222. * The device by default set to a big endian format, so a
  3223. * big endian driver need not set anything.
  3224. */
  3225. val64 |= (SWAPPER_CTRL_TXP_FE |
  3226. SWAPPER_CTRL_TXP_SE |
  3227. SWAPPER_CTRL_TXD_R_FE |
  3228. SWAPPER_CTRL_TXD_W_FE |
  3229. SWAPPER_CTRL_TXF_R_FE |
  3230. SWAPPER_CTRL_RXD_R_FE |
  3231. SWAPPER_CTRL_RXD_W_FE |
  3232. SWAPPER_CTRL_RXF_W_FE |
  3233. SWAPPER_CTRL_XMSI_FE |
  3234. SWAPPER_CTRL_STATS_FE |
  3235. SWAPPER_CTRL_STATS_SE);
  3236. if (sp->config.intr_type == INTA)
  3237. val64 |= SWAPPER_CTRL_XMSI_SE;
  3238. writeq(val64, &bar0->swapper_ctrl);
  3239. #else
  3240. /*
  3241. * Initially we enable all bits to make it accessible by the
  3242. * driver, then we selectively enable only those bits that
  3243. * we want to set.
  3244. */
  3245. val64 |= (SWAPPER_CTRL_TXP_FE |
  3246. SWAPPER_CTRL_TXP_SE |
  3247. SWAPPER_CTRL_TXD_R_FE |
  3248. SWAPPER_CTRL_TXD_R_SE |
  3249. SWAPPER_CTRL_TXD_W_FE |
  3250. SWAPPER_CTRL_TXD_W_SE |
  3251. SWAPPER_CTRL_TXF_R_FE |
  3252. SWAPPER_CTRL_RXD_R_FE |
  3253. SWAPPER_CTRL_RXD_R_SE |
  3254. SWAPPER_CTRL_RXD_W_FE |
  3255. SWAPPER_CTRL_RXD_W_SE |
  3256. SWAPPER_CTRL_RXF_W_FE |
  3257. SWAPPER_CTRL_XMSI_FE |
  3258. SWAPPER_CTRL_STATS_FE |
  3259. SWAPPER_CTRL_STATS_SE);
  3260. if (sp->config.intr_type == INTA)
  3261. val64 |= SWAPPER_CTRL_XMSI_SE;
  3262. writeq(val64, &bar0->swapper_ctrl);
  3263. #endif
  3264. val64 = readq(&bar0->swapper_ctrl);
  3265. /*
  3266. * Verifying if endian settings are accurate by reading a
  3267. * feedback register.
  3268. */
  3269. val64 = readq(&bar0->pif_rd_swapper_fb);
  3270. if (val64 != 0x0123456789ABCDEFULL) {
  3271. /* Endian settings are incorrect, calls for another dekko. */
  3272. DBG_PRINT(ERR_DBG,
  3273. "%s: Endian settings are wrong, feedback read %llx\n",
  3274. dev->name, (unsigned long long)val64);
  3275. return FAILURE;
  3276. }
  3277. return SUCCESS;
  3278. }
  3279. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3280. {
  3281. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3282. u64 val64;
  3283. int ret = 0, cnt = 0;
  3284. do {
  3285. val64 = readq(&bar0->xmsi_access);
  3286. if (!(val64 & s2BIT(15)))
  3287. break;
  3288. mdelay(1);
  3289. cnt++;
  3290. } while (cnt < 5);
  3291. if (cnt == 5) {
  3292. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3293. ret = 1;
  3294. }
  3295. return ret;
  3296. }
  3297. static void restore_xmsi_data(struct s2io_nic *nic)
  3298. {
  3299. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3300. u64 val64;
  3301. int i, msix_index;
  3302. if (nic->device_type == XFRAME_I_DEVICE)
  3303. return;
  3304. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3305. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3306. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3307. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3308. val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
  3309. writeq(val64, &bar0->xmsi_access);
  3310. if (wait_for_msix_trans(nic, msix_index))
  3311. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3312. __func__, msix_index);
  3313. }
  3314. }
  3315. static void store_xmsi_data(struct s2io_nic *nic)
  3316. {
  3317. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3318. u64 val64, addr, data;
  3319. int i, msix_index;
  3320. if (nic->device_type == XFRAME_I_DEVICE)
  3321. return;
  3322. /* Store and display */
  3323. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3324. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3325. val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
  3326. writeq(val64, &bar0->xmsi_access);
  3327. if (wait_for_msix_trans(nic, msix_index)) {
  3328. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3329. __func__, msix_index);
  3330. continue;
  3331. }
  3332. addr = readq(&bar0->xmsi_address);
  3333. data = readq(&bar0->xmsi_data);
  3334. if (addr && data) {
  3335. nic->msix_info[i].addr = addr;
  3336. nic->msix_info[i].data = data;
  3337. }
  3338. }
  3339. }
  3340. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3341. {
  3342. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3343. u64 rx_mat;
  3344. u16 msi_control; /* Temp variable */
  3345. int ret, i, j, msix_indx = 1;
  3346. int size;
  3347. struct stat_block *stats = nic->mac_control.stats_info;
  3348. struct swStat *swstats = &stats->sw_stat;
  3349. size = nic->num_entries * sizeof(struct msix_entry);
  3350. nic->entries = kzalloc(size, GFP_KERNEL);
  3351. if (!nic->entries) {
  3352. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3353. __func__);
  3354. swstats->mem_alloc_fail_cnt++;
  3355. return -ENOMEM;
  3356. }
  3357. swstats->mem_allocated += size;
  3358. size = nic->num_entries * sizeof(struct s2io_msix_entry);
  3359. nic->s2io_entries = kzalloc(size, GFP_KERNEL);
  3360. if (!nic->s2io_entries) {
  3361. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3362. __func__);
  3363. swstats->mem_alloc_fail_cnt++;
  3364. kfree(nic->entries);
  3365. swstats->mem_freed
  3366. += (nic->num_entries * sizeof(struct msix_entry));
  3367. return -ENOMEM;
  3368. }
  3369. swstats->mem_allocated += size;
  3370. nic->entries[0].entry = 0;
  3371. nic->s2io_entries[0].entry = 0;
  3372. nic->s2io_entries[0].in_use = MSIX_FLG;
  3373. nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
  3374. nic->s2io_entries[0].arg = &nic->mac_control.fifos;
  3375. for (i = 1; i < nic->num_entries; i++) {
  3376. nic->entries[i].entry = ((i - 1) * 8) + 1;
  3377. nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
  3378. nic->s2io_entries[i].arg = NULL;
  3379. nic->s2io_entries[i].in_use = 0;
  3380. }
  3381. rx_mat = readq(&bar0->rx_mat);
  3382. for (j = 0; j < nic->config.rx_ring_num; j++) {
  3383. rx_mat |= RX_MAT_SET(j, msix_indx);
  3384. nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
  3385. nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
  3386. nic->s2io_entries[j+1].in_use = MSIX_FLG;
  3387. msix_indx += 8;
  3388. }
  3389. writeq(rx_mat, &bar0->rx_mat);
  3390. readq(&bar0->rx_mat);
  3391. ret = pci_enable_msix_range(nic->pdev, nic->entries,
  3392. nic->num_entries, nic->num_entries);
  3393. /* We fail init if error or we get less vectors than min required */
  3394. if (ret < 0) {
  3395. DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
  3396. kfree(nic->entries);
  3397. swstats->mem_freed += nic->num_entries *
  3398. sizeof(struct msix_entry);
  3399. kfree(nic->s2io_entries);
  3400. swstats->mem_freed += nic->num_entries *
  3401. sizeof(struct s2io_msix_entry);
  3402. nic->entries = NULL;
  3403. nic->s2io_entries = NULL;
  3404. return -ENOMEM;
  3405. }
  3406. /*
  3407. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3408. * in the herc NIC. (Temp change, needs to be removed later)
  3409. */
  3410. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3411. msi_control |= 0x1; /* Enable MSI */
  3412. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3413. return 0;
  3414. }
  3415. /* Handle software interrupt used during MSI(X) test */
  3416. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3417. {
  3418. struct s2io_nic *sp = dev_id;
  3419. sp->msi_detected = 1;
  3420. wake_up(&sp->msi_wait);
  3421. return IRQ_HANDLED;
  3422. }
  3423. /* Test interrupt path by forcing a software IRQ */
  3424. static int s2io_test_msi(struct s2io_nic *sp)
  3425. {
  3426. struct pci_dev *pdev = sp->pdev;
  3427. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3428. int err;
  3429. u64 val64, saved64;
  3430. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3431. sp->name, sp);
  3432. if (err) {
  3433. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3434. sp->dev->name, pci_name(pdev), pdev->irq);
  3435. return err;
  3436. }
  3437. init_waitqueue_head(&sp->msi_wait);
  3438. sp->msi_detected = 0;
  3439. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3440. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3441. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3442. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3443. writeq(val64, &bar0->scheduled_int_ctrl);
  3444. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3445. if (!sp->msi_detected) {
  3446. /* MSI(X) test failed, go back to INTx mode */
  3447. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3448. "using MSI(X) during test\n",
  3449. sp->dev->name, pci_name(pdev));
  3450. err = -EOPNOTSUPP;
  3451. }
  3452. free_irq(sp->entries[1].vector, sp);
  3453. writeq(saved64, &bar0->scheduled_int_ctrl);
  3454. return err;
  3455. }
  3456. static void remove_msix_isr(struct s2io_nic *sp)
  3457. {
  3458. int i;
  3459. u16 msi_control;
  3460. for (i = 0; i < sp->num_entries; i++) {
  3461. if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
  3462. int vector = sp->entries[i].vector;
  3463. void *arg = sp->s2io_entries[i].arg;
  3464. free_irq(vector, arg);
  3465. }
  3466. }
  3467. kfree(sp->entries);
  3468. kfree(sp->s2io_entries);
  3469. sp->entries = NULL;
  3470. sp->s2io_entries = NULL;
  3471. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3472. msi_control &= 0xFFFE; /* Disable MSI */
  3473. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3474. pci_disable_msix(sp->pdev);
  3475. }
  3476. static void remove_inta_isr(struct s2io_nic *sp)
  3477. {
  3478. free_irq(sp->pdev->irq, sp->dev);
  3479. }
  3480. /* ********************************************************* *
  3481. * Functions defined below concern the OS part of the driver *
  3482. * ********************************************************* */
  3483. /**
  3484. * s2io_open - open entry point of the driver
  3485. * @dev : pointer to the device structure.
  3486. * Description:
  3487. * This function is the open entry point of the driver. It mainly calls a
  3488. * function to allocate Rx buffers and inserts them into the buffer
  3489. * descriptors and then enables the Rx part of the NIC.
  3490. * Return value:
  3491. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3492. * file on failure.
  3493. */
  3494. static int s2io_open(struct net_device *dev)
  3495. {
  3496. struct s2io_nic *sp = netdev_priv(dev);
  3497. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  3498. int err = 0;
  3499. /*
  3500. * Make sure you have link off by default every time
  3501. * Nic is initialized
  3502. */
  3503. netif_carrier_off(dev);
  3504. sp->last_link_state = 0;
  3505. /* Initialize H/W and enable interrupts */
  3506. err = s2io_card_up(sp);
  3507. if (err) {
  3508. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3509. dev->name);
  3510. goto hw_init_failed;
  3511. }
  3512. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3513. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3514. s2io_card_down(sp);
  3515. err = -ENODEV;
  3516. goto hw_init_failed;
  3517. }
  3518. s2io_start_all_tx_queue(sp);
  3519. return 0;
  3520. hw_init_failed:
  3521. if (sp->config.intr_type == MSI_X) {
  3522. if (sp->entries) {
  3523. kfree(sp->entries);
  3524. swstats->mem_freed += sp->num_entries *
  3525. sizeof(struct msix_entry);
  3526. }
  3527. if (sp->s2io_entries) {
  3528. kfree(sp->s2io_entries);
  3529. swstats->mem_freed += sp->num_entries *
  3530. sizeof(struct s2io_msix_entry);
  3531. }
  3532. }
  3533. return err;
  3534. }
  3535. /**
  3536. * s2io_close -close entry point of the driver
  3537. * @dev : device pointer.
  3538. * Description:
  3539. * This is the stop entry point of the driver. It needs to undo exactly
  3540. * whatever was done by the open entry point,thus it's usually referred to
  3541. * as the close function.Among other things this function mainly stops the
  3542. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3543. * Return value:
  3544. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3545. * file on failure.
  3546. */
  3547. static int s2io_close(struct net_device *dev)
  3548. {
  3549. struct s2io_nic *sp = netdev_priv(dev);
  3550. struct config_param *config = &sp->config;
  3551. u64 tmp64;
  3552. int offset;
  3553. /* Return if the device is already closed *
  3554. * Can happen when s2io_card_up failed in change_mtu *
  3555. */
  3556. if (!is_s2io_card_up(sp))
  3557. return 0;
  3558. s2io_stop_all_tx_queue(sp);
  3559. /* delete all populated mac entries */
  3560. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3561. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3562. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3563. do_s2io_delete_unicast_mc(sp, tmp64);
  3564. }
  3565. s2io_card_down(sp);
  3566. return 0;
  3567. }
  3568. /**
  3569. * s2io_xmit - Tx entry point of te driver
  3570. * @skb : the socket buffer containing the Tx data.
  3571. * @dev : device pointer.
  3572. * Description :
  3573. * This function is the Tx entry point of the driver. S2IO NIC supports
  3574. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3575. * NOTE: when device can't queue the pkt,just the trans_start variable will
  3576. * not be upadted.
  3577. * Return value:
  3578. * 0 on success & 1 on failure.
  3579. */
  3580. static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3581. {
  3582. struct s2io_nic *sp = netdev_priv(dev);
  3583. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3584. register u64 val64;
  3585. struct TxD *txdp;
  3586. struct TxFIFO_element __iomem *tx_fifo;
  3587. unsigned long flags = 0;
  3588. u16 vlan_tag = 0;
  3589. struct fifo_info *fifo = NULL;
  3590. int offload_type;
  3591. int enable_per_list_interrupt = 0;
  3592. struct config_param *config = &sp->config;
  3593. struct mac_info *mac_control = &sp->mac_control;
  3594. struct stat_block *stats = mac_control->stats_info;
  3595. struct swStat *swstats = &stats->sw_stat;
  3596. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3597. if (unlikely(skb->len <= 0)) {
  3598. DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
  3599. dev_kfree_skb_any(skb);
  3600. return NETDEV_TX_OK;
  3601. }
  3602. if (!is_s2io_card_up(sp)) {
  3603. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3604. dev->name);
  3605. dev_kfree_skb_any(skb);
  3606. return NETDEV_TX_OK;
  3607. }
  3608. queue = 0;
  3609. if (skb_vlan_tag_present(skb))
  3610. vlan_tag = skb_vlan_tag_get(skb);
  3611. if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
  3612. if (skb->protocol == htons(ETH_P_IP)) {
  3613. struct iphdr *ip;
  3614. struct tcphdr *th;
  3615. ip = ip_hdr(skb);
  3616. if (!ip_is_fragment(ip)) {
  3617. th = (struct tcphdr *)(((unsigned char *)ip) +
  3618. ip->ihl*4);
  3619. if (ip->protocol == IPPROTO_TCP) {
  3620. queue_len = sp->total_tcp_fifos;
  3621. queue = (ntohs(th->source) +
  3622. ntohs(th->dest)) &
  3623. sp->fifo_selector[queue_len - 1];
  3624. if (queue >= queue_len)
  3625. queue = queue_len - 1;
  3626. } else if (ip->protocol == IPPROTO_UDP) {
  3627. queue_len = sp->total_udp_fifos;
  3628. queue = (ntohs(th->source) +
  3629. ntohs(th->dest)) &
  3630. sp->fifo_selector[queue_len - 1];
  3631. if (queue >= queue_len)
  3632. queue = queue_len - 1;
  3633. queue += sp->udp_fifo_idx;
  3634. if (skb->len > 1024)
  3635. enable_per_list_interrupt = 1;
  3636. }
  3637. }
  3638. }
  3639. } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
  3640. /* get fifo number based on skb->priority value */
  3641. queue = config->fifo_mapping
  3642. [skb->priority & (MAX_TX_FIFOS - 1)];
  3643. fifo = &mac_control->fifos[queue];
  3644. spin_lock_irqsave(&fifo->tx_lock, flags);
  3645. if (sp->config.multiq) {
  3646. if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
  3647. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3648. return NETDEV_TX_BUSY;
  3649. }
  3650. } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
  3651. if (netif_queue_stopped(dev)) {
  3652. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3653. return NETDEV_TX_BUSY;
  3654. }
  3655. }
  3656. put_off = (u16)fifo->tx_curr_put_info.offset;
  3657. get_off = (u16)fifo->tx_curr_get_info.offset;
  3658. txdp = fifo->list_info[put_off].list_virt_addr;
  3659. queue_len = fifo->tx_curr_put_info.fifo_len + 1;
  3660. /* Avoid "put" pointer going beyond "get" pointer */
  3661. if (txdp->Host_Control ||
  3662. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3663. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3664. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3665. dev_kfree_skb_any(skb);
  3666. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3667. return NETDEV_TX_OK;
  3668. }
  3669. offload_type = s2io_offload_type(skb);
  3670. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3671. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3672. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3673. }
  3674. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3675. txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
  3676. TXD_TX_CKO_TCP_EN |
  3677. TXD_TX_CKO_UDP_EN);
  3678. }
  3679. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3680. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3681. txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
  3682. if (enable_per_list_interrupt)
  3683. if (put_off & (queue_len >> 5))
  3684. txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
  3685. if (vlan_tag) {
  3686. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3687. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3688. }
  3689. frg_len = skb_headlen(skb);
  3690. txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
  3691. frg_len, DMA_TO_DEVICE);
  3692. if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
  3693. goto pci_map_failed;
  3694. txdp->Host_Control = (unsigned long)skb;
  3695. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3696. frg_cnt = skb_shinfo(skb)->nr_frags;
  3697. /* For fragmented SKB. */
  3698. for (i = 0; i < frg_cnt; i++) {
  3699. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3700. /* A '0' length fragment will be ignored */
  3701. if (!skb_frag_size(frag))
  3702. continue;
  3703. txdp++;
  3704. txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
  3705. frag, 0,
  3706. skb_frag_size(frag),
  3707. DMA_TO_DEVICE);
  3708. txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
  3709. }
  3710. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3711. tx_fifo = mac_control->tx_FIFO_start[queue];
  3712. val64 = fifo->list_info[put_off].list_phy_addr;
  3713. writeq(val64, &tx_fifo->TxDL_Pointer);
  3714. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3715. TX_FIFO_LAST_LIST);
  3716. if (offload_type)
  3717. val64 |= TX_FIFO_SPECIAL_FUNC;
  3718. writeq(val64, &tx_fifo->List_Control);
  3719. put_off++;
  3720. if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
  3721. put_off = 0;
  3722. fifo->tx_curr_put_info.offset = put_off;
  3723. /* Avoid "put" pointer going beyond "get" pointer */
  3724. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3725. swstats->fifo_full_cnt++;
  3726. DBG_PRINT(TX_DBG,
  3727. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3728. put_off, get_off);
  3729. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3730. }
  3731. swstats->mem_allocated += skb->truesize;
  3732. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3733. if (sp->config.intr_type == MSI_X)
  3734. tx_intr_handler(fifo);
  3735. return NETDEV_TX_OK;
  3736. pci_map_failed:
  3737. swstats->pci_map_fail_cnt++;
  3738. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3739. swstats->mem_freed += skb->truesize;
  3740. dev_kfree_skb_any(skb);
  3741. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3742. return NETDEV_TX_OK;
  3743. }
  3744. static void
  3745. s2io_alarm_handle(struct timer_list *t)
  3746. {
  3747. struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
  3748. struct net_device *dev = sp->dev;
  3749. s2io_handle_errors(dev);
  3750. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3751. }
  3752. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3753. {
  3754. struct ring_info *ring = (struct ring_info *)dev_id;
  3755. struct s2io_nic *sp = ring->nic;
  3756. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3757. if (unlikely(!is_s2io_card_up(sp)))
  3758. return IRQ_HANDLED;
  3759. if (sp->config.napi) {
  3760. u8 __iomem *addr = NULL;
  3761. u8 val8 = 0;
  3762. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  3763. addr += (7 - ring->ring_no);
  3764. val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
  3765. writeb(val8, addr);
  3766. val8 = readb(addr);
  3767. napi_schedule(&ring->napi);
  3768. } else {
  3769. rx_intr_handler(ring, 0);
  3770. s2io_chk_rx_buffers(sp, ring);
  3771. }
  3772. return IRQ_HANDLED;
  3773. }
  3774. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3775. {
  3776. int i;
  3777. struct fifo_info *fifos = (struct fifo_info *)dev_id;
  3778. struct s2io_nic *sp = fifos->nic;
  3779. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3780. struct config_param *config = &sp->config;
  3781. u64 reason;
  3782. if (unlikely(!is_s2io_card_up(sp)))
  3783. return IRQ_NONE;
  3784. reason = readq(&bar0->general_int_status);
  3785. if (unlikely(reason == S2IO_MINUS_ONE))
  3786. /* Nothing much can be done. Get out */
  3787. return IRQ_HANDLED;
  3788. if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
  3789. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  3790. if (reason & GEN_INTR_TXPIC)
  3791. s2io_txpic_intr_handle(sp);
  3792. if (reason & GEN_INTR_TXTRAFFIC)
  3793. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  3794. for (i = 0; i < config->tx_fifo_num; i++)
  3795. tx_intr_handler(&fifos[i]);
  3796. writeq(sp->general_int_mask, &bar0->general_int_mask);
  3797. readl(&bar0->general_int_status);
  3798. return IRQ_HANDLED;
  3799. }
  3800. /* The interrupt was not raised by us */
  3801. return IRQ_NONE;
  3802. }
  3803. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3804. {
  3805. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3806. u64 val64;
  3807. val64 = readq(&bar0->pic_int_status);
  3808. if (val64 & PIC_INT_GPIO) {
  3809. val64 = readq(&bar0->gpio_int_reg);
  3810. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3811. (val64 & GPIO_INT_REG_LINK_UP)) {
  3812. /*
  3813. * This is unstable state so clear both up/down
  3814. * interrupt and adapter to re-evaluate the link state.
  3815. */
  3816. val64 |= GPIO_INT_REG_LINK_DOWN;
  3817. val64 |= GPIO_INT_REG_LINK_UP;
  3818. writeq(val64, &bar0->gpio_int_reg);
  3819. val64 = readq(&bar0->gpio_int_mask);
  3820. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3821. GPIO_INT_MASK_LINK_DOWN);
  3822. writeq(val64, &bar0->gpio_int_mask);
  3823. } else if (val64 & GPIO_INT_REG_LINK_UP) {
  3824. val64 = readq(&bar0->adapter_status);
  3825. /* Enable Adapter */
  3826. val64 = readq(&bar0->adapter_control);
  3827. val64 |= ADAPTER_CNTL_EN;
  3828. writeq(val64, &bar0->adapter_control);
  3829. val64 |= ADAPTER_LED_ON;
  3830. writeq(val64, &bar0->adapter_control);
  3831. if (!sp->device_enabled_once)
  3832. sp->device_enabled_once = 1;
  3833. s2io_link(sp, LINK_UP);
  3834. /*
  3835. * unmask link down interrupt and mask link-up
  3836. * intr
  3837. */
  3838. val64 = readq(&bar0->gpio_int_mask);
  3839. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3840. val64 |= GPIO_INT_MASK_LINK_UP;
  3841. writeq(val64, &bar0->gpio_int_mask);
  3842. } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3843. val64 = readq(&bar0->adapter_status);
  3844. s2io_link(sp, LINK_DOWN);
  3845. /* Link is down so unmaks link up interrupt */
  3846. val64 = readq(&bar0->gpio_int_mask);
  3847. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3848. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3849. writeq(val64, &bar0->gpio_int_mask);
  3850. /* turn off LED */
  3851. val64 = readq(&bar0->adapter_control);
  3852. val64 = val64 & (~ADAPTER_LED_ON);
  3853. writeq(val64, &bar0->adapter_control);
  3854. }
  3855. }
  3856. val64 = readq(&bar0->gpio_int_mask);
  3857. }
  3858. /**
  3859. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3860. * @value: alarm bits
  3861. * @addr: address value
  3862. * @cnt: counter variable
  3863. * Description: Check for alarm and increment the counter
  3864. * Return Value:
  3865. * 1 - if alarm bit set
  3866. * 0 - if alarm bit is not set
  3867. */
  3868. static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
  3869. unsigned long long *cnt)
  3870. {
  3871. u64 val64;
  3872. val64 = readq(addr);
  3873. if (val64 & value) {
  3874. writeq(val64, addr);
  3875. (*cnt)++;
  3876. return 1;
  3877. }
  3878. return 0;
  3879. }
  3880. /**
  3881. * s2io_handle_errors - Xframe error indication handler
  3882. * @dev_id: opaque handle to dev
  3883. * Description: Handle alarms such as loss of link, single or
  3884. * double ECC errors, critical and serious errors.
  3885. * Return Value:
  3886. * NONE
  3887. */
  3888. static void s2io_handle_errors(void *dev_id)
  3889. {
  3890. struct net_device *dev = (struct net_device *)dev_id;
  3891. struct s2io_nic *sp = netdev_priv(dev);
  3892. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3893. u64 temp64 = 0, val64 = 0;
  3894. int i = 0;
  3895. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3896. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3897. if (!is_s2io_card_up(sp))
  3898. return;
  3899. if (pci_channel_offline(sp->pdev))
  3900. return;
  3901. memset(&sw_stat->ring_full_cnt, 0,
  3902. sizeof(sw_stat->ring_full_cnt));
  3903. /* Handling the XPAK counters update */
  3904. if (stats->xpak_timer_count < 72000) {
  3905. /* waiting for an hour */
  3906. stats->xpak_timer_count++;
  3907. } else {
  3908. s2io_updt_xpak_counter(dev);
  3909. /* reset the count to zero */
  3910. stats->xpak_timer_count = 0;
  3911. }
  3912. /* Handling link status change error Intr */
  3913. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3914. val64 = readq(&bar0->mac_rmac_err_reg);
  3915. writeq(val64, &bar0->mac_rmac_err_reg);
  3916. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3917. schedule_work(&sp->set_link_task);
  3918. }
  3919. /* In case of a serious error, the device will be Reset. */
  3920. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3921. &sw_stat->serious_err_cnt))
  3922. goto reset;
  3923. /* Check for data parity error */
  3924. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3925. &sw_stat->parity_err_cnt))
  3926. goto reset;
  3927. /* Check for ring full counter */
  3928. if (sp->device_type == XFRAME_II_DEVICE) {
  3929. val64 = readq(&bar0->ring_bump_counter1);
  3930. for (i = 0; i < 4; i++) {
  3931. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  3932. temp64 >>= 64 - ((i+1)*16);
  3933. sw_stat->ring_full_cnt[i] += temp64;
  3934. }
  3935. val64 = readq(&bar0->ring_bump_counter2);
  3936. for (i = 0; i < 4; i++) {
  3937. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  3938. temp64 >>= 64 - ((i+1)*16);
  3939. sw_stat->ring_full_cnt[i+4] += temp64;
  3940. }
  3941. }
  3942. val64 = readq(&bar0->txdma_int_status);
  3943. /*check for pfc_err*/
  3944. if (val64 & TXDMA_PFC_INT) {
  3945. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  3946. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  3947. PFC_PCIX_ERR,
  3948. &bar0->pfc_err_reg,
  3949. &sw_stat->pfc_err_cnt))
  3950. goto reset;
  3951. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
  3952. &bar0->pfc_err_reg,
  3953. &sw_stat->pfc_err_cnt);
  3954. }
  3955. /*check for tda_err*/
  3956. if (val64 & TXDMA_TDA_INT) {
  3957. if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
  3958. TDA_SM0_ERR_ALARM |
  3959. TDA_SM1_ERR_ALARM,
  3960. &bar0->tda_err_reg,
  3961. &sw_stat->tda_err_cnt))
  3962. goto reset;
  3963. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3964. &bar0->tda_err_reg,
  3965. &sw_stat->tda_err_cnt);
  3966. }
  3967. /*check for pcc_err*/
  3968. if (val64 & TXDMA_PCC_INT) {
  3969. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  3970. PCC_N_SERR | PCC_6_COF_OV_ERR |
  3971. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  3972. PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
  3973. PCC_TXB_ECC_DB_ERR,
  3974. &bar0->pcc_err_reg,
  3975. &sw_stat->pcc_err_cnt))
  3976. goto reset;
  3977. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3978. &bar0->pcc_err_reg,
  3979. &sw_stat->pcc_err_cnt);
  3980. }
  3981. /*check for tti_err*/
  3982. if (val64 & TXDMA_TTI_INT) {
  3983. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
  3984. &bar0->tti_err_reg,
  3985. &sw_stat->tti_err_cnt))
  3986. goto reset;
  3987. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3988. &bar0->tti_err_reg,
  3989. &sw_stat->tti_err_cnt);
  3990. }
  3991. /*check for lso_err*/
  3992. if (val64 & TXDMA_LSO_INT) {
  3993. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
  3994. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3995. &bar0->lso_err_reg,
  3996. &sw_stat->lso_err_cnt))
  3997. goto reset;
  3998. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3999. &bar0->lso_err_reg,
  4000. &sw_stat->lso_err_cnt);
  4001. }
  4002. /*check for tpa_err*/
  4003. if (val64 & TXDMA_TPA_INT) {
  4004. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
  4005. &bar0->tpa_err_reg,
  4006. &sw_stat->tpa_err_cnt))
  4007. goto reset;
  4008. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
  4009. &bar0->tpa_err_reg,
  4010. &sw_stat->tpa_err_cnt);
  4011. }
  4012. /*check for sm_err*/
  4013. if (val64 & TXDMA_SM_INT) {
  4014. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
  4015. &bar0->sm_err_reg,
  4016. &sw_stat->sm_err_cnt))
  4017. goto reset;
  4018. }
  4019. val64 = readq(&bar0->mac_int_status);
  4020. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  4021. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  4022. &bar0->mac_tmac_err_reg,
  4023. &sw_stat->mac_tmac_err_cnt))
  4024. goto reset;
  4025. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  4026. TMAC_DESC_ECC_SG_ERR |
  4027. TMAC_DESC_ECC_DB_ERR,
  4028. &bar0->mac_tmac_err_reg,
  4029. &sw_stat->mac_tmac_err_cnt);
  4030. }
  4031. val64 = readq(&bar0->xgxs_int_status);
  4032. if (val64 & XGXS_INT_STATUS_TXGXS) {
  4033. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  4034. &bar0->xgxs_txgxs_err_reg,
  4035. &sw_stat->xgxs_txgxs_err_cnt))
  4036. goto reset;
  4037. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  4038. &bar0->xgxs_txgxs_err_reg,
  4039. &sw_stat->xgxs_txgxs_err_cnt);
  4040. }
  4041. val64 = readq(&bar0->rxdma_int_status);
  4042. if (val64 & RXDMA_INT_RC_INT_M) {
  4043. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
  4044. RC_FTC_ECC_DB_ERR |
  4045. RC_PRCn_SM_ERR_ALARM |
  4046. RC_FTC_SM_ERR_ALARM,
  4047. &bar0->rc_err_reg,
  4048. &sw_stat->rc_err_cnt))
  4049. goto reset;
  4050. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
  4051. RC_FTC_ECC_SG_ERR |
  4052. RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4053. &sw_stat->rc_err_cnt);
  4054. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
  4055. PRC_PCI_AB_WR_Rn |
  4056. PRC_PCI_AB_F_WR_Rn,
  4057. &bar0->prc_pcix_err_reg,
  4058. &sw_stat->prc_pcix_err_cnt))
  4059. goto reset;
  4060. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
  4061. PRC_PCI_DP_WR_Rn |
  4062. PRC_PCI_DP_F_WR_Rn,
  4063. &bar0->prc_pcix_err_reg,
  4064. &sw_stat->prc_pcix_err_cnt);
  4065. }
  4066. if (val64 & RXDMA_INT_RPA_INT_M) {
  4067. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4068. &bar0->rpa_err_reg,
  4069. &sw_stat->rpa_err_cnt))
  4070. goto reset;
  4071. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4072. &bar0->rpa_err_reg,
  4073. &sw_stat->rpa_err_cnt);
  4074. }
  4075. if (val64 & RXDMA_INT_RDA_INT_M) {
  4076. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
  4077. RDA_FRM_ECC_DB_N_AERR |
  4078. RDA_SM1_ERR_ALARM |
  4079. RDA_SM0_ERR_ALARM |
  4080. RDA_RXD_ECC_DB_SERR,
  4081. &bar0->rda_err_reg,
  4082. &sw_stat->rda_err_cnt))
  4083. goto reset;
  4084. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
  4085. RDA_FRM_ECC_SG_ERR |
  4086. RDA_MISC_ERR |
  4087. RDA_PCIX_ERR,
  4088. &bar0->rda_err_reg,
  4089. &sw_stat->rda_err_cnt);
  4090. }
  4091. if (val64 & RXDMA_INT_RTI_INT_M) {
  4092. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
  4093. &bar0->rti_err_reg,
  4094. &sw_stat->rti_err_cnt))
  4095. goto reset;
  4096. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4097. &bar0->rti_err_reg,
  4098. &sw_stat->rti_err_cnt);
  4099. }
  4100. val64 = readq(&bar0->mac_int_status);
  4101. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4102. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4103. &bar0->mac_rmac_err_reg,
  4104. &sw_stat->mac_rmac_err_cnt))
  4105. goto reset;
  4106. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
  4107. RMAC_SINGLE_ECC_ERR |
  4108. RMAC_DOUBLE_ECC_ERR,
  4109. &bar0->mac_rmac_err_reg,
  4110. &sw_stat->mac_rmac_err_cnt);
  4111. }
  4112. val64 = readq(&bar0->xgxs_int_status);
  4113. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4114. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4115. &bar0->xgxs_rxgxs_err_reg,
  4116. &sw_stat->xgxs_rxgxs_err_cnt))
  4117. goto reset;
  4118. }
  4119. val64 = readq(&bar0->mc_int_status);
  4120. if (val64 & MC_INT_STATUS_MC_INT) {
  4121. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
  4122. &bar0->mc_err_reg,
  4123. &sw_stat->mc_err_cnt))
  4124. goto reset;
  4125. /* Handling Ecc errors */
  4126. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4127. writeq(val64, &bar0->mc_err_reg);
  4128. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4129. sw_stat->double_ecc_errs++;
  4130. if (sp->device_type != XFRAME_II_DEVICE) {
  4131. /*
  4132. * Reset XframeI only if critical error
  4133. */
  4134. if (val64 &
  4135. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4136. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4137. goto reset;
  4138. }
  4139. } else
  4140. sw_stat->single_ecc_errs++;
  4141. }
  4142. }
  4143. return;
  4144. reset:
  4145. s2io_stop_all_tx_queue(sp);
  4146. schedule_work(&sp->rst_timer_task);
  4147. sw_stat->soft_reset_cnt++;
  4148. }
  4149. /**
  4150. * s2io_isr - ISR handler of the device .
  4151. * @irq: the irq of the device.
  4152. * @dev_id: a void pointer to the dev structure of the NIC.
  4153. * Description: This function is the ISR handler of the device. It
  4154. * identifies the reason for the interrupt and calls the relevant
  4155. * service routines. As a contongency measure, this ISR allocates the
  4156. * recv buffers, if their numbers are below the panic value which is
  4157. * presently set to 25% of the original number of rcv buffers allocated.
  4158. * Return value:
  4159. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4160. * IRQ_NONE: will be returned if interrupt is not from our device
  4161. */
  4162. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4163. {
  4164. struct net_device *dev = (struct net_device *)dev_id;
  4165. struct s2io_nic *sp = netdev_priv(dev);
  4166. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4167. int i;
  4168. u64 reason = 0;
  4169. struct mac_info *mac_control;
  4170. struct config_param *config;
  4171. /* Pretend we handled any irq's from a disconnected card */
  4172. if (pci_channel_offline(sp->pdev))
  4173. return IRQ_NONE;
  4174. if (!is_s2io_card_up(sp))
  4175. return IRQ_NONE;
  4176. config = &sp->config;
  4177. mac_control = &sp->mac_control;
  4178. /*
  4179. * Identify the cause for interrupt and call the appropriate
  4180. * interrupt handler. Causes for the interrupt could be;
  4181. * 1. Rx of packet.
  4182. * 2. Tx complete.
  4183. * 3. Link down.
  4184. */
  4185. reason = readq(&bar0->general_int_status);
  4186. if (unlikely(reason == S2IO_MINUS_ONE))
  4187. return IRQ_HANDLED; /* Nothing much can be done. Get out */
  4188. if (reason &
  4189. (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
  4190. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4191. if (config->napi) {
  4192. if (reason & GEN_INTR_RXTRAFFIC) {
  4193. napi_schedule(&sp->napi);
  4194. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
  4195. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4196. readl(&bar0->rx_traffic_int);
  4197. }
  4198. } else {
  4199. /*
  4200. * rx_traffic_int reg is an R1 register, writing all 1's
  4201. * will ensure that the actual interrupt causing bit
  4202. * get's cleared and hence a read can be avoided.
  4203. */
  4204. if (reason & GEN_INTR_RXTRAFFIC)
  4205. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4206. for (i = 0; i < config->rx_ring_num; i++) {
  4207. struct ring_info *ring = &mac_control->rings[i];
  4208. rx_intr_handler(ring, 0);
  4209. }
  4210. }
  4211. /*
  4212. * tx_traffic_int reg is an R1 register, writing all 1's
  4213. * will ensure that the actual interrupt causing bit get's
  4214. * cleared and hence a read can be avoided.
  4215. */
  4216. if (reason & GEN_INTR_TXTRAFFIC)
  4217. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4218. for (i = 0; i < config->tx_fifo_num; i++)
  4219. tx_intr_handler(&mac_control->fifos[i]);
  4220. if (reason & GEN_INTR_TXPIC)
  4221. s2io_txpic_intr_handle(sp);
  4222. /*
  4223. * Reallocate the buffers from the interrupt handler itself.
  4224. */
  4225. if (!config->napi) {
  4226. for (i = 0; i < config->rx_ring_num; i++) {
  4227. struct ring_info *ring = &mac_control->rings[i];
  4228. s2io_chk_rx_buffers(sp, ring);
  4229. }
  4230. }
  4231. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4232. readl(&bar0->general_int_status);
  4233. return IRQ_HANDLED;
  4234. } else if (!reason) {
  4235. /* The interrupt was not raised by us */
  4236. return IRQ_NONE;
  4237. }
  4238. return IRQ_HANDLED;
  4239. }
  4240. /*
  4241. * s2io_updt_stats -
  4242. */
  4243. static void s2io_updt_stats(struct s2io_nic *sp)
  4244. {
  4245. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4246. u64 val64;
  4247. int cnt = 0;
  4248. if (is_s2io_card_up(sp)) {
  4249. /* Apprx 30us on a 133 MHz bus */
  4250. val64 = SET_UPDT_CLICKS(10) |
  4251. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4252. writeq(val64, &bar0->stat_cfg);
  4253. do {
  4254. udelay(100);
  4255. val64 = readq(&bar0->stat_cfg);
  4256. if (!(val64 & s2BIT(0)))
  4257. break;
  4258. cnt++;
  4259. if (cnt == 5)
  4260. break; /* Updt failed */
  4261. } while (1);
  4262. }
  4263. }
  4264. /**
  4265. * s2io_get_stats - Updates the device statistics structure.
  4266. * @dev : pointer to the device structure.
  4267. * Description:
  4268. * This function updates the device statistics structure in the s2io_nic
  4269. * structure and returns a pointer to the same.
  4270. * Return value:
  4271. * pointer to the updated net_device_stats structure.
  4272. */
  4273. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4274. {
  4275. struct s2io_nic *sp = netdev_priv(dev);
  4276. struct mac_info *mac_control = &sp->mac_control;
  4277. struct stat_block *stats = mac_control->stats_info;
  4278. u64 delta;
  4279. /* Configure Stats for immediate updt */
  4280. s2io_updt_stats(sp);
  4281. /* A device reset will cause the on-adapter statistics to be zero'ed.
  4282. * This can be done while running by changing the MTU. To prevent the
  4283. * system from having the stats zero'ed, the driver keeps a copy of the
  4284. * last update to the system (which is also zero'ed on reset). This
  4285. * enables the driver to accurately know the delta between the last
  4286. * update and the current update.
  4287. */
  4288. delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  4289. le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
  4290. sp->stats.rx_packets += delta;
  4291. dev->stats.rx_packets += delta;
  4292. delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  4293. le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
  4294. sp->stats.tx_packets += delta;
  4295. dev->stats.tx_packets += delta;
  4296. delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  4297. le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
  4298. sp->stats.rx_bytes += delta;
  4299. dev->stats.rx_bytes += delta;
  4300. delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  4301. le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
  4302. sp->stats.tx_bytes += delta;
  4303. dev->stats.tx_bytes += delta;
  4304. delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
  4305. sp->stats.rx_errors += delta;
  4306. dev->stats.rx_errors += delta;
  4307. delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  4308. le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
  4309. sp->stats.tx_errors += delta;
  4310. dev->stats.tx_errors += delta;
  4311. delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
  4312. sp->stats.rx_dropped += delta;
  4313. dev->stats.rx_dropped += delta;
  4314. delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
  4315. sp->stats.tx_dropped += delta;
  4316. dev->stats.tx_dropped += delta;
  4317. /* The adapter MAC interprets pause frames as multicast packets, but
  4318. * does not pass them up. This erroneously increases the multicast
  4319. * packet count and needs to be deducted when the multicast frame count
  4320. * is queried.
  4321. */
  4322. delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  4323. le32_to_cpu(stats->rmac_vld_mcst_frms);
  4324. delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
  4325. delta -= sp->stats.multicast;
  4326. sp->stats.multicast += delta;
  4327. dev->stats.multicast += delta;
  4328. delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  4329. le32_to_cpu(stats->rmac_usized_frms)) +
  4330. le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
  4331. sp->stats.rx_length_errors += delta;
  4332. dev->stats.rx_length_errors += delta;
  4333. delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
  4334. sp->stats.rx_crc_errors += delta;
  4335. dev->stats.rx_crc_errors += delta;
  4336. return &dev->stats;
  4337. }
  4338. /**
  4339. * s2io_set_multicast - entry point for multicast address enable/disable.
  4340. * @dev : pointer to the device structure
  4341. * @may_sleep: parameter indicates if sleeping when waiting for command
  4342. * complete
  4343. * Description:
  4344. * This function is a driver entry point which gets called by the kernel
  4345. * whenever multicast addresses must be enabled/disabled. This also gets
  4346. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4347. * determine, if multicast address must be enabled or if promiscuous mode
  4348. * is to be disabled etc.
  4349. * Return value:
  4350. * void.
  4351. */
  4352. static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
  4353. {
  4354. int i, j, prev_cnt;
  4355. struct netdev_hw_addr *ha;
  4356. struct s2io_nic *sp = netdev_priv(dev);
  4357. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4358. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4359. 0xfeffffffffffULL;
  4360. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4361. void __iomem *add;
  4362. struct config_param *config = &sp->config;
  4363. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4364. /* Enable all Multicast addresses */
  4365. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4366. &bar0->rmac_addr_data0_mem);
  4367. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4368. &bar0->rmac_addr_data1_mem);
  4369. val64 = RMAC_ADDR_CMD_MEM_WE |
  4370. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4371. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4372. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4373. /* Wait till command completes */
  4374. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4375. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4376. S2IO_BIT_RESET, may_sleep);
  4377. sp->m_cast_flg = 1;
  4378. sp->all_multi_pos = config->max_mc_addr - 1;
  4379. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4380. /* Disable all Multicast addresses */
  4381. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4382. &bar0->rmac_addr_data0_mem);
  4383. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4384. &bar0->rmac_addr_data1_mem);
  4385. val64 = RMAC_ADDR_CMD_MEM_WE |
  4386. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4387. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4388. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4389. /* Wait till command completes */
  4390. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4391. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4392. S2IO_BIT_RESET, may_sleep);
  4393. sp->m_cast_flg = 0;
  4394. sp->all_multi_pos = 0;
  4395. }
  4396. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4397. /* Put the NIC into promiscuous mode */
  4398. add = &bar0->mac_cfg;
  4399. val64 = readq(&bar0->mac_cfg);
  4400. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4401. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4402. writel((u32)val64, add);
  4403. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4404. writel((u32) (val64 >> 32), (add + 4));
  4405. if (vlan_tag_strip != 1) {
  4406. val64 = readq(&bar0->rx_pa_cfg);
  4407. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4408. writeq(val64, &bar0->rx_pa_cfg);
  4409. sp->vlan_strip_flag = 0;
  4410. }
  4411. val64 = readq(&bar0->mac_cfg);
  4412. sp->promisc_flg = 1;
  4413. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4414. dev->name);
  4415. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4416. /* Remove the NIC from promiscuous mode */
  4417. add = &bar0->mac_cfg;
  4418. val64 = readq(&bar0->mac_cfg);
  4419. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4420. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4421. writel((u32)val64, add);
  4422. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4423. writel((u32) (val64 >> 32), (add + 4));
  4424. if (vlan_tag_strip != 0) {
  4425. val64 = readq(&bar0->rx_pa_cfg);
  4426. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4427. writeq(val64, &bar0->rx_pa_cfg);
  4428. sp->vlan_strip_flag = 1;
  4429. }
  4430. val64 = readq(&bar0->mac_cfg);
  4431. sp->promisc_flg = 0;
  4432. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
  4433. }
  4434. /* Update individual M_CAST address list */
  4435. if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
  4436. if (netdev_mc_count(dev) >
  4437. (config->max_mc_addr - config->max_mac_addr)) {
  4438. DBG_PRINT(ERR_DBG,
  4439. "%s: No more Rx filters can be added - "
  4440. "please enable ALL_MULTI instead\n",
  4441. dev->name);
  4442. return;
  4443. }
  4444. prev_cnt = sp->mc_addr_count;
  4445. sp->mc_addr_count = netdev_mc_count(dev);
  4446. /* Clear out the previous list of Mc in the H/W. */
  4447. for (i = 0; i < prev_cnt; i++) {
  4448. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4449. &bar0->rmac_addr_data0_mem);
  4450. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4451. &bar0->rmac_addr_data1_mem);
  4452. val64 = RMAC_ADDR_CMD_MEM_WE |
  4453. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4454. RMAC_ADDR_CMD_MEM_OFFSET
  4455. (config->mc_start_offset + i);
  4456. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4457. /* Wait for command completes */
  4458. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4459. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4460. S2IO_BIT_RESET, may_sleep)) {
  4461. DBG_PRINT(ERR_DBG,
  4462. "%s: Adding Multicasts failed\n",
  4463. dev->name);
  4464. return;
  4465. }
  4466. }
  4467. /* Create the new Rx filter list and update the same in H/W. */
  4468. i = 0;
  4469. netdev_for_each_mc_addr(ha, dev) {
  4470. mac_addr = 0;
  4471. for (j = 0; j < ETH_ALEN; j++) {
  4472. mac_addr |= ha->addr[j];
  4473. mac_addr <<= 8;
  4474. }
  4475. mac_addr >>= 8;
  4476. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4477. &bar0->rmac_addr_data0_mem);
  4478. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4479. &bar0->rmac_addr_data1_mem);
  4480. val64 = RMAC_ADDR_CMD_MEM_WE |
  4481. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4482. RMAC_ADDR_CMD_MEM_OFFSET
  4483. (i + config->mc_start_offset);
  4484. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4485. /* Wait for command completes */
  4486. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4487. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4488. S2IO_BIT_RESET, may_sleep)) {
  4489. DBG_PRINT(ERR_DBG,
  4490. "%s: Adding Multicasts failed\n",
  4491. dev->name);
  4492. return;
  4493. }
  4494. i++;
  4495. }
  4496. }
  4497. }
  4498. /* NDO wrapper for s2io_set_multicast */
  4499. static void s2io_ndo_set_multicast(struct net_device *dev)
  4500. {
  4501. s2io_set_multicast(dev, false);
  4502. }
  4503. /* read from CAM unicast & multicast addresses and store it in
  4504. * def_mac_addr structure
  4505. */
  4506. static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4507. {
  4508. int offset;
  4509. u64 mac_addr = 0x0;
  4510. struct config_param *config = &sp->config;
  4511. /* store unicast & multicast mac addresses */
  4512. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4513. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4514. /* if read fails disable the entry */
  4515. if (mac_addr == FAILURE)
  4516. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4517. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4518. }
  4519. }
  4520. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4521. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4522. {
  4523. int offset;
  4524. struct config_param *config = &sp->config;
  4525. /* restore unicast mac address */
  4526. for (offset = 0; offset < config->max_mac_addr; offset++)
  4527. do_s2io_prog_unicast(sp->dev,
  4528. sp->def_mac_addr[offset].mac_addr);
  4529. /* restore multicast mac address */
  4530. for (offset = config->mc_start_offset;
  4531. offset < config->max_mc_addr; offset++)
  4532. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4533. }
  4534. /* add a multicast MAC address to CAM */
  4535. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4536. {
  4537. int i;
  4538. u64 mac_addr = 0;
  4539. struct config_param *config = &sp->config;
  4540. for (i = 0; i < ETH_ALEN; i++) {
  4541. mac_addr <<= 8;
  4542. mac_addr |= addr[i];
  4543. }
  4544. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4545. return SUCCESS;
  4546. /* check if the multicast mac already preset in CAM */
  4547. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4548. u64 tmp64;
  4549. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4550. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4551. break;
  4552. if (tmp64 == mac_addr)
  4553. return SUCCESS;
  4554. }
  4555. if (i == config->max_mc_addr) {
  4556. DBG_PRINT(ERR_DBG,
  4557. "CAM full no space left for multicast MAC\n");
  4558. return FAILURE;
  4559. }
  4560. /* Update the internal structure with this new mac address */
  4561. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4562. return do_s2io_add_mac(sp, mac_addr, i);
  4563. }
  4564. /* add MAC address to CAM */
  4565. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4566. {
  4567. u64 val64;
  4568. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4569. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4570. &bar0->rmac_addr_data0_mem);
  4571. val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4572. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4573. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4574. /* Wait till command completes */
  4575. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4576. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4577. S2IO_BIT_RESET, true)) {
  4578. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4579. return FAILURE;
  4580. }
  4581. return SUCCESS;
  4582. }
  4583. /* deletes a specified unicast/multicast mac entry from CAM */
  4584. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4585. {
  4586. int offset;
  4587. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4588. struct config_param *config = &sp->config;
  4589. for (offset = 1;
  4590. offset < config->max_mc_addr; offset++) {
  4591. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4592. if (tmp64 == addr) {
  4593. /* disable the entry by writing 0xffffffffffffULL */
  4594. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4595. return FAILURE;
  4596. /* store the new mac list from CAM */
  4597. do_s2io_store_unicast_mc(sp);
  4598. return SUCCESS;
  4599. }
  4600. }
  4601. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4602. (unsigned long long)addr);
  4603. return FAILURE;
  4604. }
  4605. /* read mac entries from CAM */
  4606. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4607. {
  4608. u64 tmp64, val64;
  4609. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4610. /* read mac addr */
  4611. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4612. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4613. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4614. /* Wait till command completes */
  4615. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4616. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4617. S2IO_BIT_RESET, true)) {
  4618. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4619. return FAILURE;
  4620. }
  4621. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4622. return tmp64 >> 16;
  4623. }
  4624. /*
  4625. * s2io_set_mac_addr - driver entry point
  4626. */
  4627. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4628. {
  4629. struct sockaddr *addr = p;
  4630. if (!is_valid_ether_addr(addr->sa_data))
  4631. return -EADDRNOTAVAIL;
  4632. eth_hw_addr_set(dev, addr->sa_data);
  4633. /* store the MAC address in CAM */
  4634. return do_s2io_prog_unicast(dev, dev->dev_addr);
  4635. }
  4636. /**
  4637. * do_s2io_prog_unicast - Programs the Xframe mac address
  4638. * @dev : pointer to the device structure.
  4639. * @addr: a uchar pointer to the new mac address which is to be set.
  4640. * Description : This procedure will program the Xframe to receive
  4641. * frames with new Mac Address
  4642. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4643. * as defined in errno.h file on failure.
  4644. */
  4645. static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr)
  4646. {
  4647. struct s2io_nic *sp = netdev_priv(dev);
  4648. register u64 mac_addr = 0, perm_addr = 0;
  4649. int i;
  4650. u64 tmp64;
  4651. struct config_param *config = &sp->config;
  4652. /*
  4653. * Set the new MAC address as the new unicast filter and reflect this
  4654. * change on the device address registered with the OS. It will be
  4655. * at offset 0.
  4656. */
  4657. for (i = 0; i < ETH_ALEN; i++) {
  4658. mac_addr <<= 8;
  4659. mac_addr |= addr[i];
  4660. perm_addr <<= 8;
  4661. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4662. }
  4663. /* check if the dev_addr is different than perm_addr */
  4664. if (mac_addr == perm_addr)
  4665. return SUCCESS;
  4666. /* check if the mac already preset in CAM */
  4667. for (i = 1; i < config->max_mac_addr; i++) {
  4668. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4669. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4670. break;
  4671. if (tmp64 == mac_addr) {
  4672. DBG_PRINT(INFO_DBG,
  4673. "MAC addr:0x%llx already present in CAM\n",
  4674. (unsigned long long)mac_addr);
  4675. return SUCCESS;
  4676. }
  4677. }
  4678. if (i == config->max_mac_addr) {
  4679. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4680. return FAILURE;
  4681. }
  4682. /* Update the internal structure with this new mac address */
  4683. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4684. return do_s2io_add_mac(sp, mac_addr, i);
  4685. }
  4686. /**
  4687. * s2io_ethtool_set_link_ksettings - Sets different link parameters.
  4688. * @dev : pointer to netdev
  4689. * @cmd: pointer to the structure with parameters given by ethtool to set
  4690. * link information.
  4691. * Description:
  4692. * The function sets different link parameters provided by the user onto
  4693. * the NIC.
  4694. * Return value:
  4695. * 0 on success.
  4696. */
  4697. static int
  4698. s2io_ethtool_set_link_ksettings(struct net_device *dev,
  4699. const struct ethtool_link_ksettings *cmd)
  4700. {
  4701. struct s2io_nic *sp = netdev_priv(dev);
  4702. if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
  4703. (cmd->base.speed != SPEED_10000) ||
  4704. (cmd->base.duplex != DUPLEX_FULL))
  4705. return -EINVAL;
  4706. else {
  4707. s2io_close(sp->dev);
  4708. s2io_open(sp->dev);
  4709. }
  4710. return 0;
  4711. }
  4712. /**
  4713. * s2io_ethtool_get_link_ksettings - Return link specific information.
  4714. * @dev: pointer to netdev
  4715. * @cmd : pointer to the structure with parameters given by ethtool
  4716. * to return link information.
  4717. * Description:
  4718. * Returns link specific information like speed, duplex etc.. to ethtool.
  4719. * Return value :
  4720. * return 0 on success.
  4721. */
  4722. static int
  4723. s2io_ethtool_get_link_ksettings(struct net_device *dev,
  4724. struct ethtool_link_ksettings *cmd)
  4725. {
  4726. struct s2io_nic *sp = netdev_priv(dev);
  4727. ethtool_link_ksettings_zero_link_mode(cmd, supported);
  4728. ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
  4729. ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
  4730. ethtool_link_ksettings_zero_link_mode(cmd, advertising);
  4731. ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
  4732. ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
  4733. cmd->base.port = PORT_FIBRE;
  4734. if (netif_carrier_ok(sp->dev)) {
  4735. cmd->base.speed = SPEED_10000;
  4736. cmd->base.duplex = DUPLEX_FULL;
  4737. } else {
  4738. cmd->base.speed = SPEED_UNKNOWN;
  4739. cmd->base.duplex = DUPLEX_UNKNOWN;
  4740. }
  4741. cmd->base.autoneg = AUTONEG_DISABLE;
  4742. return 0;
  4743. }
  4744. /**
  4745. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4746. * @dev: pointer to netdev
  4747. * @info : pointer to the structure with parameters given by ethtool to
  4748. * return driver information.
  4749. * Description:
  4750. * Returns driver specefic information like name, version etc.. to ethtool.
  4751. * Return value:
  4752. * void
  4753. */
  4754. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4755. struct ethtool_drvinfo *info)
  4756. {
  4757. struct s2io_nic *sp = netdev_priv(dev);
  4758. strscpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4759. strscpy(info->version, s2io_driver_version, sizeof(info->version));
  4760. strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4761. }
  4762. /**
  4763. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4764. * @dev: pointer to netdev
  4765. * @regs : pointer to the structure with parameters given by ethtool for
  4766. * dumping the registers.
  4767. * @space: The input argument into which all the registers are dumped.
  4768. * Description:
  4769. * Dumps the entire register space of xFrame NIC into the user given
  4770. * buffer area.
  4771. * Return value :
  4772. * void .
  4773. */
  4774. static void s2io_ethtool_gregs(struct net_device *dev,
  4775. struct ethtool_regs *regs, void *space)
  4776. {
  4777. int i;
  4778. u64 reg;
  4779. u8 *reg_space = (u8 *)space;
  4780. struct s2io_nic *sp = netdev_priv(dev);
  4781. regs->len = XENA_REG_SPACE;
  4782. regs->version = sp->pdev->subsystem_device;
  4783. for (i = 0; i < regs->len; i += 8) {
  4784. reg = readq(sp->bar0 + i);
  4785. memcpy((reg_space + i), &reg, 8);
  4786. }
  4787. }
  4788. /*
  4789. * s2io_set_led - control NIC led
  4790. */
  4791. static void s2io_set_led(struct s2io_nic *sp, bool on)
  4792. {
  4793. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4794. u16 subid = sp->pdev->subsystem_device;
  4795. u64 val64;
  4796. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4797. ((subid & 0xFF) >= 0x07)) {
  4798. val64 = readq(&bar0->gpio_control);
  4799. if (on)
  4800. val64 |= GPIO_CTRL_GPIO_0;
  4801. else
  4802. val64 &= ~GPIO_CTRL_GPIO_0;
  4803. writeq(val64, &bar0->gpio_control);
  4804. } else {
  4805. val64 = readq(&bar0->adapter_control);
  4806. if (on)
  4807. val64 |= ADAPTER_LED_ON;
  4808. else
  4809. val64 &= ~ADAPTER_LED_ON;
  4810. writeq(val64, &bar0->adapter_control);
  4811. }
  4812. }
  4813. /**
  4814. * s2io_ethtool_set_led - To physically identify the nic on the system.
  4815. * @dev : network device
  4816. * @state: led setting
  4817. *
  4818. * Description: Used to physically identify the NIC on the system.
  4819. * The Link LED will blink for a time specified by the user for
  4820. * identification.
  4821. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4822. * identification is possible only if it's link is up.
  4823. */
  4824. static int s2io_ethtool_set_led(struct net_device *dev,
  4825. enum ethtool_phys_id_state state)
  4826. {
  4827. struct s2io_nic *sp = netdev_priv(dev);
  4828. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4829. u16 subid = sp->pdev->subsystem_device;
  4830. if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
  4831. u64 val64 = readq(&bar0->adapter_control);
  4832. if (!(val64 & ADAPTER_CNTL_EN)) {
  4833. pr_err("Adapter Link down, cannot blink LED\n");
  4834. return -EAGAIN;
  4835. }
  4836. }
  4837. switch (state) {
  4838. case ETHTOOL_ID_ACTIVE:
  4839. sp->adapt_ctrl_org = readq(&bar0->gpio_control);
  4840. return 1; /* cycle on/off once per second */
  4841. case ETHTOOL_ID_ON:
  4842. s2io_set_led(sp, true);
  4843. break;
  4844. case ETHTOOL_ID_OFF:
  4845. s2io_set_led(sp, false);
  4846. break;
  4847. case ETHTOOL_ID_INACTIVE:
  4848. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
  4849. writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
  4850. }
  4851. return 0;
  4852. }
  4853. static void
  4854. s2io_ethtool_gringparam(struct net_device *dev,
  4855. struct ethtool_ringparam *ering,
  4856. struct kernel_ethtool_ringparam *kernel_ering,
  4857. struct netlink_ext_ack *extack)
  4858. {
  4859. struct s2io_nic *sp = netdev_priv(dev);
  4860. int i, tx_desc_count = 0, rx_desc_count = 0;
  4861. if (sp->rxd_mode == RXD_MODE_1) {
  4862. ering->rx_max_pending = MAX_RX_DESC_1;
  4863. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4864. } else {
  4865. ering->rx_max_pending = MAX_RX_DESC_2;
  4866. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4867. }
  4868. ering->tx_max_pending = MAX_TX_DESC;
  4869. for (i = 0; i < sp->config.rx_ring_num; i++)
  4870. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4871. ering->rx_pending = rx_desc_count;
  4872. ering->rx_jumbo_pending = rx_desc_count;
  4873. for (i = 0; i < sp->config.tx_fifo_num; i++)
  4874. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4875. ering->tx_pending = tx_desc_count;
  4876. DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
  4877. }
  4878. /**
  4879. * s2io_ethtool_getpause_data -Pause frame generation and reception.
  4880. * @dev: pointer to netdev
  4881. * @ep : pointer to the structure with pause parameters given by ethtool.
  4882. * Description:
  4883. * Returns the Pause frame generation and reception capability of the NIC.
  4884. * Return value:
  4885. * void
  4886. */
  4887. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4888. struct ethtool_pauseparam *ep)
  4889. {
  4890. u64 val64;
  4891. struct s2io_nic *sp = netdev_priv(dev);
  4892. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4893. val64 = readq(&bar0->rmac_pause_cfg);
  4894. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4895. ep->tx_pause = true;
  4896. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4897. ep->rx_pause = true;
  4898. ep->autoneg = false;
  4899. }
  4900. /**
  4901. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4902. * @dev: pointer to netdev
  4903. * @ep : pointer to the structure with pause parameters given by ethtool.
  4904. * Description:
  4905. * It can be used to set or reset Pause frame generation or reception
  4906. * support of the NIC.
  4907. * Return value:
  4908. * int, returns 0 on Success
  4909. */
  4910. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4911. struct ethtool_pauseparam *ep)
  4912. {
  4913. u64 val64;
  4914. struct s2io_nic *sp = netdev_priv(dev);
  4915. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4916. val64 = readq(&bar0->rmac_pause_cfg);
  4917. if (ep->tx_pause)
  4918. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4919. else
  4920. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4921. if (ep->rx_pause)
  4922. val64 |= RMAC_PAUSE_RX_ENABLE;
  4923. else
  4924. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4925. writeq(val64, &bar0->rmac_pause_cfg);
  4926. return 0;
  4927. }
  4928. #define S2IO_DEV_ID 5
  4929. /**
  4930. * read_eeprom - reads 4 bytes of data from user given offset.
  4931. * @sp : private member of the device structure, which is a pointer to the
  4932. * s2io_nic structure.
  4933. * @off : offset at which the data must be written
  4934. * @data : Its an output parameter where the data read at the given
  4935. * offset is stored.
  4936. * Description:
  4937. * Will read 4 bytes of data from the user given offset and return the
  4938. * read data.
  4939. * NOTE: Will allow to read only part of the EEPROM visible through the
  4940. * I2C bus.
  4941. * Return value:
  4942. * -1 on failure and 0 on success.
  4943. */
  4944. static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
  4945. {
  4946. int ret = -1;
  4947. u32 exit_cnt = 0;
  4948. u64 val64;
  4949. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4950. if (sp->device_type == XFRAME_I_DEVICE) {
  4951. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  4952. I2C_CONTROL_ADDR(off) |
  4953. I2C_CONTROL_BYTE_CNT(0x3) |
  4954. I2C_CONTROL_READ |
  4955. I2C_CONTROL_CNTL_START;
  4956. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4957. while (exit_cnt < 5) {
  4958. val64 = readq(&bar0->i2c_control);
  4959. if (I2C_CONTROL_CNTL_END(val64)) {
  4960. *data = I2C_CONTROL_GET_DATA(val64);
  4961. ret = 0;
  4962. break;
  4963. }
  4964. msleep(50);
  4965. exit_cnt++;
  4966. }
  4967. }
  4968. if (sp->device_type == XFRAME_II_DEVICE) {
  4969. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4970. SPI_CONTROL_BYTECNT(0x3) |
  4971. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4972. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4973. val64 |= SPI_CONTROL_REQ;
  4974. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4975. while (exit_cnt < 5) {
  4976. val64 = readq(&bar0->spi_control);
  4977. if (val64 & SPI_CONTROL_NACK) {
  4978. ret = 1;
  4979. break;
  4980. } else if (val64 & SPI_CONTROL_DONE) {
  4981. *data = readq(&bar0->spi_data);
  4982. *data &= 0xffffff;
  4983. ret = 0;
  4984. break;
  4985. }
  4986. msleep(50);
  4987. exit_cnt++;
  4988. }
  4989. }
  4990. return ret;
  4991. }
  4992. /**
  4993. * write_eeprom - actually writes the relevant part of the data value.
  4994. * @sp : private member of the device structure, which is a pointer to the
  4995. * s2io_nic structure.
  4996. * @off : offset at which the data must be written
  4997. * @data : The data that is to be written
  4998. * @cnt : Number of bytes of the data that are actually to be written into
  4999. * the Eeprom. (max of 3)
  5000. * Description:
  5001. * Actually writes the relevant part of the data value into the Eeprom
  5002. * through the I2C bus.
  5003. * Return value:
  5004. * 0 on success, -1 on failure.
  5005. */
  5006. static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
  5007. {
  5008. int exit_cnt = 0, ret = -1;
  5009. u64 val64;
  5010. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5011. if (sp->device_type == XFRAME_I_DEVICE) {
  5012. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  5013. I2C_CONTROL_ADDR(off) |
  5014. I2C_CONTROL_BYTE_CNT(cnt) |
  5015. I2C_CONTROL_SET_DATA((u32)data) |
  5016. I2C_CONTROL_CNTL_START;
  5017. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5018. while (exit_cnt < 5) {
  5019. val64 = readq(&bar0->i2c_control);
  5020. if (I2C_CONTROL_CNTL_END(val64)) {
  5021. if (!(val64 & I2C_CONTROL_NACK))
  5022. ret = 0;
  5023. break;
  5024. }
  5025. msleep(50);
  5026. exit_cnt++;
  5027. }
  5028. }
  5029. if (sp->device_type == XFRAME_II_DEVICE) {
  5030. int write_cnt = (cnt == 8) ? 0 : cnt;
  5031. writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
  5032. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5033. SPI_CONTROL_BYTECNT(write_cnt) |
  5034. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  5035. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5036. val64 |= SPI_CONTROL_REQ;
  5037. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5038. while (exit_cnt < 5) {
  5039. val64 = readq(&bar0->spi_control);
  5040. if (val64 & SPI_CONTROL_NACK) {
  5041. ret = 1;
  5042. break;
  5043. } else if (val64 & SPI_CONTROL_DONE) {
  5044. ret = 0;
  5045. break;
  5046. }
  5047. msleep(50);
  5048. exit_cnt++;
  5049. }
  5050. }
  5051. return ret;
  5052. }
  5053. static void s2io_vpd_read(struct s2io_nic *nic)
  5054. {
  5055. u8 *vpd_data;
  5056. u8 data;
  5057. int i = 0, cnt, len, fail = 0;
  5058. int vpd_addr = 0x80;
  5059. struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
  5060. if (nic->device_type == XFRAME_II_DEVICE) {
  5061. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  5062. vpd_addr = 0x80;
  5063. } else {
  5064. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  5065. vpd_addr = 0x50;
  5066. }
  5067. strcpy(nic->serial_num, "NOT AVAILABLE");
  5068. vpd_data = kmalloc(256, GFP_KERNEL);
  5069. if (!vpd_data) {
  5070. swstats->mem_alloc_fail_cnt++;
  5071. return;
  5072. }
  5073. swstats->mem_allocated += 256;
  5074. for (i = 0; i < 256; i += 4) {
  5075. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  5076. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  5077. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  5078. for (cnt = 0; cnt < 5; cnt++) {
  5079. msleep(2);
  5080. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  5081. if (data == 0x80)
  5082. break;
  5083. }
  5084. if (cnt >= 5) {
  5085. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  5086. fail = 1;
  5087. break;
  5088. }
  5089. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  5090. (u32 *)&vpd_data[i]);
  5091. }
  5092. if (!fail) {
  5093. /* read serial number of adapter */
  5094. for (cnt = 0; cnt < 252; cnt++) {
  5095. if ((vpd_data[cnt] == 'S') &&
  5096. (vpd_data[cnt+1] == 'N')) {
  5097. len = vpd_data[cnt+2];
  5098. if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
  5099. memcpy(nic->serial_num,
  5100. &vpd_data[cnt + 3],
  5101. len);
  5102. memset(nic->serial_num+len,
  5103. 0,
  5104. VPD_STRING_LEN-len);
  5105. break;
  5106. }
  5107. }
  5108. }
  5109. }
  5110. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  5111. len = vpd_data[1];
  5112. memcpy(nic->product_name, &vpd_data[3], len);
  5113. nic->product_name[len] = 0;
  5114. }
  5115. kfree(vpd_data);
  5116. swstats->mem_freed += 256;
  5117. }
  5118. /**
  5119. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5120. * @dev: pointer to netdev
  5121. * @eeprom : pointer to the user level structure provided by ethtool,
  5122. * containing all relevant information.
  5123. * @data_buf : user defined value to be written into Eeprom.
  5124. * Description: Reads the values stored in the Eeprom at given offset
  5125. * for a given length. Stores these values int the input argument data
  5126. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5127. * Return value:
  5128. * int 0 on success
  5129. */
  5130. static int s2io_ethtool_geeprom(struct net_device *dev,
  5131. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5132. {
  5133. u32 i, valid;
  5134. u64 data;
  5135. struct s2io_nic *sp = netdev_priv(dev);
  5136. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5137. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5138. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5139. for (i = 0; i < eeprom->len; i += 4) {
  5140. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5141. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5142. return -EFAULT;
  5143. }
  5144. valid = INV(data);
  5145. memcpy((data_buf + i), &valid, 4);
  5146. }
  5147. return 0;
  5148. }
  5149. /**
  5150. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5151. * @dev: pointer to netdev
  5152. * @eeprom : pointer to the user level structure provided by ethtool,
  5153. * containing all relevant information.
  5154. * @data_buf : user defined value to be written into Eeprom.
  5155. * Description:
  5156. * Tries to write the user provided value in the Eeprom, at the offset
  5157. * given by the user.
  5158. * Return value:
  5159. * 0 on success, -EFAULT on failure.
  5160. */
  5161. static int s2io_ethtool_seeprom(struct net_device *dev,
  5162. struct ethtool_eeprom *eeprom,
  5163. u8 *data_buf)
  5164. {
  5165. int len = eeprom->len, cnt = 0;
  5166. u64 valid = 0, data;
  5167. struct s2io_nic *sp = netdev_priv(dev);
  5168. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5169. DBG_PRINT(ERR_DBG,
  5170. "ETHTOOL_WRITE_EEPROM Err: "
  5171. "Magic value is wrong, it is 0x%x should be 0x%x\n",
  5172. (sp->pdev->vendor | (sp->pdev->device << 16)),
  5173. eeprom->magic);
  5174. return -EFAULT;
  5175. }
  5176. while (len) {
  5177. data = (u32)data_buf[cnt] & 0x000000FF;
  5178. if (data)
  5179. valid = (u32)(data << 24);
  5180. else
  5181. valid = data;
  5182. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5183. DBG_PRINT(ERR_DBG,
  5184. "ETHTOOL_WRITE_EEPROM Err: "
  5185. "Cannot write into the specified offset\n");
  5186. return -EFAULT;
  5187. }
  5188. cnt++;
  5189. len--;
  5190. }
  5191. return 0;
  5192. }
  5193. /**
  5194. * s2io_register_test - reads and writes into all clock domains.
  5195. * @sp : private member of the device structure, which is a pointer to the
  5196. * s2io_nic structure.
  5197. * @data : variable that returns the result of each of the test conducted b
  5198. * by the driver.
  5199. * Description:
  5200. * Read and write into all clock domains. The NIC has 3 clock domains,
  5201. * see that registers in all the three regions are accessible.
  5202. * Return value:
  5203. * 0 on success.
  5204. */
  5205. static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
  5206. {
  5207. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5208. u64 val64 = 0, exp_val;
  5209. int fail = 0;
  5210. val64 = readq(&bar0->pif_rd_swapper_fb);
  5211. if (val64 != 0x123456789abcdefULL) {
  5212. fail = 1;
  5213. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
  5214. }
  5215. val64 = readq(&bar0->rmac_pause_cfg);
  5216. if (val64 != 0xc000ffff00000000ULL) {
  5217. fail = 1;
  5218. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
  5219. }
  5220. val64 = readq(&bar0->rx_queue_cfg);
  5221. if (sp->device_type == XFRAME_II_DEVICE)
  5222. exp_val = 0x0404040404040404ULL;
  5223. else
  5224. exp_val = 0x0808080808080808ULL;
  5225. if (val64 != exp_val) {
  5226. fail = 1;
  5227. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
  5228. }
  5229. val64 = readq(&bar0->xgxs_efifo_cfg);
  5230. if (val64 != 0x000000001923141EULL) {
  5231. fail = 1;
  5232. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
  5233. }
  5234. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5235. writeq(val64, &bar0->xmsi_data);
  5236. val64 = readq(&bar0->xmsi_data);
  5237. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5238. fail = 1;
  5239. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
  5240. }
  5241. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5242. writeq(val64, &bar0->xmsi_data);
  5243. val64 = readq(&bar0->xmsi_data);
  5244. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5245. fail = 1;
  5246. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
  5247. }
  5248. *data = fail;
  5249. return fail;
  5250. }
  5251. /**
  5252. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5253. * @sp : private member of the device structure, which is a pointer to the
  5254. * s2io_nic structure.
  5255. * @data:variable that returns the result of each of the test conducted by
  5256. * the driver.
  5257. * Description:
  5258. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5259. * register.
  5260. * Return value:
  5261. * 0 on success.
  5262. */
  5263. static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
  5264. {
  5265. int fail = 0;
  5266. u64 ret_data, org_4F0, org_7F0;
  5267. u8 saved_4F0 = 0, saved_7F0 = 0;
  5268. struct net_device *dev = sp->dev;
  5269. /* Test Write Error at offset 0 */
  5270. /* Note that SPI interface allows write access to all areas
  5271. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5272. */
  5273. if (sp->device_type == XFRAME_I_DEVICE)
  5274. if (!write_eeprom(sp, 0, 0, 3))
  5275. fail = 1;
  5276. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5277. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5278. saved_4F0 = 1;
  5279. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5280. saved_7F0 = 1;
  5281. /* Test Write at offset 4f0 */
  5282. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5283. fail = 1;
  5284. if (read_eeprom(sp, 0x4F0, &ret_data))
  5285. fail = 1;
  5286. if (ret_data != 0x012345) {
  5287. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5288. "Data written %llx Data read %llx\n",
  5289. dev->name, (unsigned long long)0x12345,
  5290. (unsigned long long)ret_data);
  5291. fail = 1;
  5292. }
  5293. /* Reset the EEPROM data go FFFF */
  5294. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5295. /* Test Write Request Error at offset 0x7c */
  5296. if (sp->device_type == XFRAME_I_DEVICE)
  5297. if (!write_eeprom(sp, 0x07C, 0, 3))
  5298. fail = 1;
  5299. /* Test Write Request at offset 0x7f0 */
  5300. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5301. fail = 1;
  5302. if (read_eeprom(sp, 0x7F0, &ret_data))
  5303. fail = 1;
  5304. if (ret_data != 0x012345) {
  5305. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5306. "Data written %llx Data read %llx\n",
  5307. dev->name, (unsigned long long)0x12345,
  5308. (unsigned long long)ret_data);
  5309. fail = 1;
  5310. }
  5311. /* Reset the EEPROM data go FFFF */
  5312. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5313. if (sp->device_type == XFRAME_I_DEVICE) {
  5314. /* Test Write Error at offset 0x80 */
  5315. if (!write_eeprom(sp, 0x080, 0, 3))
  5316. fail = 1;
  5317. /* Test Write Error at offset 0xfc */
  5318. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5319. fail = 1;
  5320. /* Test Write Error at offset 0x100 */
  5321. if (!write_eeprom(sp, 0x100, 0, 3))
  5322. fail = 1;
  5323. /* Test Write Error at offset 4ec */
  5324. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5325. fail = 1;
  5326. }
  5327. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5328. if (saved_4F0)
  5329. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5330. if (saved_7F0)
  5331. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5332. *data = fail;
  5333. return fail;
  5334. }
  5335. /**
  5336. * s2io_bist_test - invokes the MemBist test of the card .
  5337. * @sp : private member of the device structure, which is a pointer to the
  5338. * s2io_nic structure.
  5339. * @data:variable that returns the result of each of the test conducted by
  5340. * the driver.
  5341. * Description:
  5342. * This invokes the MemBist test of the card. We give around
  5343. * 2 secs time for the Test to complete. If it's still not complete
  5344. * within this peiod, we consider that the test failed.
  5345. * Return value:
  5346. * 0 on success and -1 on failure.
  5347. */
  5348. static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
  5349. {
  5350. u8 bist = 0;
  5351. int cnt = 0, ret = -1;
  5352. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5353. bist |= PCI_BIST_START;
  5354. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5355. while (cnt < 20) {
  5356. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5357. if (!(bist & PCI_BIST_START)) {
  5358. *data = (bist & PCI_BIST_CODE_MASK);
  5359. ret = 0;
  5360. break;
  5361. }
  5362. msleep(100);
  5363. cnt++;
  5364. }
  5365. return ret;
  5366. }
  5367. /**
  5368. * s2io_link_test - verifies the link state of the nic
  5369. * @sp: private member of the device structure, which is a pointer to the
  5370. * s2io_nic structure.
  5371. * @data: variable that returns the result of each of the test conducted by
  5372. * the driver.
  5373. * Description:
  5374. * The function verifies the link state of the NIC and updates the input
  5375. * argument 'data' appropriately.
  5376. * Return value:
  5377. * 0 on success.
  5378. */
  5379. static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
  5380. {
  5381. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5382. u64 val64;
  5383. val64 = readq(&bar0->adapter_status);
  5384. if (!(LINK_IS_UP(val64)))
  5385. *data = 1;
  5386. else
  5387. *data = 0;
  5388. return *data;
  5389. }
  5390. /**
  5391. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5392. * @sp: private member of the device structure, which is a pointer to the
  5393. * s2io_nic structure.
  5394. * @data: variable that returns the result of each of the test
  5395. * conducted by the driver.
  5396. * Description:
  5397. * This is one of the offline test that tests the read and write
  5398. * access to the RldRam chip on the NIC.
  5399. * Return value:
  5400. * 0 on success.
  5401. */
  5402. static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
  5403. {
  5404. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5405. u64 val64;
  5406. int cnt, iteration = 0, test_fail = 0;
  5407. val64 = readq(&bar0->adapter_control);
  5408. val64 &= ~ADAPTER_ECC_EN;
  5409. writeq(val64, &bar0->adapter_control);
  5410. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5411. val64 |= MC_RLDRAM_TEST_MODE;
  5412. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5413. val64 = readq(&bar0->mc_rldram_mrs);
  5414. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5415. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5416. val64 |= MC_RLDRAM_MRS_ENABLE;
  5417. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5418. while (iteration < 2) {
  5419. val64 = 0x55555555aaaa0000ULL;
  5420. if (iteration == 1)
  5421. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5422. writeq(val64, &bar0->mc_rldram_test_d0);
  5423. val64 = 0xaaaa5a5555550000ULL;
  5424. if (iteration == 1)
  5425. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5426. writeq(val64, &bar0->mc_rldram_test_d1);
  5427. val64 = 0x55aaaaaaaa5a0000ULL;
  5428. if (iteration == 1)
  5429. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5430. writeq(val64, &bar0->mc_rldram_test_d2);
  5431. val64 = (u64) (0x0000003ffffe0100ULL);
  5432. writeq(val64, &bar0->mc_rldram_test_add);
  5433. val64 = MC_RLDRAM_TEST_MODE |
  5434. MC_RLDRAM_TEST_WRITE |
  5435. MC_RLDRAM_TEST_GO;
  5436. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5437. for (cnt = 0; cnt < 5; cnt++) {
  5438. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5439. if (val64 & MC_RLDRAM_TEST_DONE)
  5440. break;
  5441. msleep(200);
  5442. }
  5443. if (cnt == 5)
  5444. break;
  5445. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5446. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5447. for (cnt = 0; cnt < 5; cnt++) {
  5448. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5449. if (val64 & MC_RLDRAM_TEST_DONE)
  5450. break;
  5451. msleep(500);
  5452. }
  5453. if (cnt == 5)
  5454. break;
  5455. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5456. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5457. test_fail = 1;
  5458. iteration++;
  5459. }
  5460. *data = test_fail;
  5461. /* Bring the adapter out of test mode */
  5462. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5463. return test_fail;
  5464. }
  5465. /**
  5466. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5467. * @dev: pointer to netdev
  5468. * @ethtest : pointer to a ethtool command specific structure that will be
  5469. * returned to the user.
  5470. * @data : variable that returns the result of each of the test
  5471. * conducted by the driver.
  5472. * Description:
  5473. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5474. * the health of the card.
  5475. * Return value:
  5476. * void
  5477. */
  5478. static void s2io_ethtool_test(struct net_device *dev,
  5479. struct ethtool_test *ethtest,
  5480. uint64_t *data)
  5481. {
  5482. struct s2io_nic *sp = netdev_priv(dev);
  5483. int orig_state = netif_running(sp->dev);
  5484. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5485. /* Offline Tests. */
  5486. if (orig_state)
  5487. s2io_close(sp->dev);
  5488. if (s2io_register_test(sp, &data[0]))
  5489. ethtest->flags |= ETH_TEST_FL_FAILED;
  5490. s2io_reset(sp);
  5491. if (s2io_rldram_test(sp, &data[3]))
  5492. ethtest->flags |= ETH_TEST_FL_FAILED;
  5493. s2io_reset(sp);
  5494. if (s2io_eeprom_test(sp, &data[1]))
  5495. ethtest->flags |= ETH_TEST_FL_FAILED;
  5496. if (s2io_bist_test(sp, &data[4]))
  5497. ethtest->flags |= ETH_TEST_FL_FAILED;
  5498. if (orig_state)
  5499. s2io_open(sp->dev);
  5500. data[2] = 0;
  5501. } else {
  5502. /* Online Tests. */
  5503. if (!orig_state) {
  5504. DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
  5505. dev->name);
  5506. data[0] = -1;
  5507. data[1] = -1;
  5508. data[2] = -1;
  5509. data[3] = -1;
  5510. data[4] = -1;
  5511. }
  5512. if (s2io_link_test(sp, &data[2]))
  5513. ethtest->flags |= ETH_TEST_FL_FAILED;
  5514. data[0] = 0;
  5515. data[1] = 0;
  5516. data[3] = 0;
  5517. data[4] = 0;
  5518. }
  5519. }
  5520. static void s2io_get_ethtool_stats(struct net_device *dev,
  5521. struct ethtool_stats *estats,
  5522. u64 *tmp_stats)
  5523. {
  5524. int i = 0, k;
  5525. struct s2io_nic *sp = netdev_priv(dev);
  5526. struct stat_block *stats = sp->mac_control.stats_info;
  5527. struct swStat *swstats = &stats->sw_stat;
  5528. struct xpakStat *xstats = &stats->xpak_stat;
  5529. s2io_updt_stats(sp);
  5530. tmp_stats[i++] =
  5531. (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  5532. le32_to_cpu(stats->tmac_frms);
  5533. tmp_stats[i++] =
  5534. (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  5535. le32_to_cpu(stats->tmac_data_octets);
  5536. tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
  5537. tmp_stats[i++] =
  5538. (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
  5539. le32_to_cpu(stats->tmac_mcst_frms);
  5540. tmp_stats[i++] =
  5541. (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
  5542. le32_to_cpu(stats->tmac_bcst_frms);
  5543. tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
  5544. tmp_stats[i++] =
  5545. (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
  5546. le32_to_cpu(stats->tmac_ttl_octets);
  5547. tmp_stats[i++] =
  5548. (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
  5549. le32_to_cpu(stats->tmac_ucst_frms);
  5550. tmp_stats[i++] =
  5551. (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
  5552. le32_to_cpu(stats->tmac_nucst_frms);
  5553. tmp_stats[i++] =
  5554. (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  5555. le32_to_cpu(stats->tmac_any_err_frms);
  5556. tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
  5557. tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
  5558. tmp_stats[i++] =
  5559. (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
  5560. le32_to_cpu(stats->tmac_vld_ip);
  5561. tmp_stats[i++] =
  5562. (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
  5563. le32_to_cpu(stats->tmac_drop_ip);
  5564. tmp_stats[i++] =
  5565. (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
  5566. le32_to_cpu(stats->tmac_icmp);
  5567. tmp_stats[i++] =
  5568. (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
  5569. le32_to_cpu(stats->tmac_rst_tcp);
  5570. tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
  5571. tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
  5572. le32_to_cpu(stats->tmac_udp);
  5573. tmp_stats[i++] =
  5574. (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  5575. le32_to_cpu(stats->rmac_vld_frms);
  5576. tmp_stats[i++] =
  5577. (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  5578. le32_to_cpu(stats->rmac_data_octets);
  5579. tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
  5580. tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
  5581. tmp_stats[i++] =
  5582. (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  5583. le32_to_cpu(stats->rmac_vld_mcst_frms);
  5584. tmp_stats[i++] =
  5585. (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
  5586. le32_to_cpu(stats->rmac_vld_bcst_frms);
  5587. tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
  5588. tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
  5589. tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
  5590. tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
  5591. tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
  5592. tmp_stats[i++] =
  5593. (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
  5594. le32_to_cpu(stats->rmac_ttl_octets);
  5595. tmp_stats[i++] =
  5596. (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
  5597. | le32_to_cpu(stats->rmac_accepted_ucst_frms);
  5598. tmp_stats[i++] =
  5599. (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
  5600. << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
  5601. tmp_stats[i++] =
  5602. (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
  5603. le32_to_cpu(stats->rmac_discarded_frms);
  5604. tmp_stats[i++] =
  5605. (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
  5606. << 32 | le32_to_cpu(stats->rmac_drop_events);
  5607. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
  5608. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
  5609. tmp_stats[i++] =
  5610. (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  5611. le32_to_cpu(stats->rmac_usized_frms);
  5612. tmp_stats[i++] =
  5613. (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
  5614. le32_to_cpu(stats->rmac_osized_frms);
  5615. tmp_stats[i++] =
  5616. (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
  5617. le32_to_cpu(stats->rmac_frag_frms);
  5618. tmp_stats[i++] =
  5619. (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
  5620. le32_to_cpu(stats->rmac_jabber_frms);
  5621. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
  5622. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
  5623. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
  5624. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
  5625. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
  5626. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
  5627. tmp_stats[i++] =
  5628. (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
  5629. le32_to_cpu(stats->rmac_ip);
  5630. tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
  5631. tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
  5632. tmp_stats[i++] =
  5633. (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
  5634. le32_to_cpu(stats->rmac_drop_ip);
  5635. tmp_stats[i++] =
  5636. (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
  5637. le32_to_cpu(stats->rmac_icmp);
  5638. tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
  5639. tmp_stats[i++] =
  5640. (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
  5641. le32_to_cpu(stats->rmac_udp);
  5642. tmp_stats[i++] =
  5643. (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
  5644. le32_to_cpu(stats->rmac_err_drp_udp);
  5645. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
  5646. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
  5647. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
  5648. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
  5649. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
  5650. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
  5651. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
  5652. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
  5653. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
  5654. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
  5655. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
  5656. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
  5657. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
  5658. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
  5659. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
  5660. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
  5661. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
  5662. tmp_stats[i++] =
  5663. (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
  5664. le32_to_cpu(stats->rmac_pause_cnt);
  5665. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
  5666. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
  5667. tmp_stats[i++] =
  5668. (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
  5669. le32_to_cpu(stats->rmac_accepted_ip);
  5670. tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
  5671. tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
  5672. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
  5673. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
  5674. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
  5675. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
  5676. tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
  5677. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
  5678. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
  5679. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
  5680. tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
  5681. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
  5682. tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
  5683. tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
  5684. tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
  5685. tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
  5686. tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
  5687. tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
  5688. tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
  5689. /* Enhanced statistics exist only for Hercules */
  5690. if (sp->device_type == XFRAME_II_DEVICE) {
  5691. tmp_stats[i++] =
  5692. le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
  5693. tmp_stats[i++] =
  5694. le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
  5695. tmp_stats[i++] =
  5696. le64_to_cpu(stats->rmac_ttl_8192_max_frms);
  5697. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
  5698. tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
  5699. tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
  5700. tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
  5701. tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
  5702. tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
  5703. tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
  5704. tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
  5705. tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
  5706. tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
  5707. tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
  5708. tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
  5709. tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
  5710. }
  5711. tmp_stats[i++] = 0;
  5712. tmp_stats[i++] = swstats->single_ecc_errs;
  5713. tmp_stats[i++] = swstats->double_ecc_errs;
  5714. tmp_stats[i++] = swstats->parity_err_cnt;
  5715. tmp_stats[i++] = swstats->serious_err_cnt;
  5716. tmp_stats[i++] = swstats->soft_reset_cnt;
  5717. tmp_stats[i++] = swstats->fifo_full_cnt;
  5718. for (k = 0; k < MAX_RX_RINGS; k++)
  5719. tmp_stats[i++] = swstats->ring_full_cnt[k];
  5720. tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
  5721. tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
  5722. tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
  5723. tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
  5724. tmp_stats[i++] = xstats->alarm_laser_output_power_high;
  5725. tmp_stats[i++] = xstats->alarm_laser_output_power_low;
  5726. tmp_stats[i++] = xstats->warn_transceiver_temp_high;
  5727. tmp_stats[i++] = xstats->warn_transceiver_temp_low;
  5728. tmp_stats[i++] = xstats->warn_laser_bias_current_high;
  5729. tmp_stats[i++] = xstats->warn_laser_bias_current_low;
  5730. tmp_stats[i++] = xstats->warn_laser_output_power_high;
  5731. tmp_stats[i++] = xstats->warn_laser_output_power_low;
  5732. tmp_stats[i++] = swstats->clubbed_frms_cnt;
  5733. tmp_stats[i++] = swstats->sending_both;
  5734. tmp_stats[i++] = swstats->outof_sequence_pkts;
  5735. tmp_stats[i++] = swstats->flush_max_pkts;
  5736. if (swstats->num_aggregations) {
  5737. u64 tmp = swstats->sum_avg_pkts_aggregated;
  5738. int count = 0;
  5739. /*
  5740. * Since 64-bit divide does not work on all platforms,
  5741. * do repeated subtraction.
  5742. */
  5743. while (tmp >= swstats->num_aggregations) {
  5744. tmp -= swstats->num_aggregations;
  5745. count++;
  5746. }
  5747. tmp_stats[i++] = count;
  5748. } else
  5749. tmp_stats[i++] = 0;
  5750. tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
  5751. tmp_stats[i++] = swstats->pci_map_fail_cnt;
  5752. tmp_stats[i++] = swstats->watchdog_timer_cnt;
  5753. tmp_stats[i++] = swstats->mem_allocated;
  5754. tmp_stats[i++] = swstats->mem_freed;
  5755. tmp_stats[i++] = swstats->link_up_cnt;
  5756. tmp_stats[i++] = swstats->link_down_cnt;
  5757. tmp_stats[i++] = swstats->link_up_time;
  5758. tmp_stats[i++] = swstats->link_down_time;
  5759. tmp_stats[i++] = swstats->tx_buf_abort_cnt;
  5760. tmp_stats[i++] = swstats->tx_desc_abort_cnt;
  5761. tmp_stats[i++] = swstats->tx_parity_err_cnt;
  5762. tmp_stats[i++] = swstats->tx_link_loss_cnt;
  5763. tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
  5764. tmp_stats[i++] = swstats->rx_parity_err_cnt;
  5765. tmp_stats[i++] = swstats->rx_abort_cnt;
  5766. tmp_stats[i++] = swstats->rx_parity_abort_cnt;
  5767. tmp_stats[i++] = swstats->rx_rda_fail_cnt;
  5768. tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
  5769. tmp_stats[i++] = swstats->rx_fcs_err_cnt;
  5770. tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
  5771. tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
  5772. tmp_stats[i++] = swstats->rx_unkn_err_cnt;
  5773. tmp_stats[i++] = swstats->tda_err_cnt;
  5774. tmp_stats[i++] = swstats->pfc_err_cnt;
  5775. tmp_stats[i++] = swstats->pcc_err_cnt;
  5776. tmp_stats[i++] = swstats->tti_err_cnt;
  5777. tmp_stats[i++] = swstats->tpa_err_cnt;
  5778. tmp_stats[i++] = swstats->sm_err_cnt;
  5779. tmp_stats[i++] = swstats->lso_err_cnt;
  5780. tmp_stats[i++] = swstats->mac_tmac_err_cnt;
  5781. tmp_stats[i++] = swstats->mac_rmac_err_cnt;
  5782. tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
  5783. tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
  5784. tmp_stats[i++] = swstats->rc_err_cnt;
  5785. tmp_stats[i++] = swstats->prc_pcix_err_cnt;
  5786. tmp_stats[i++] = swstats->rpa_err_cnt;
  5787. tmp_stats[i++] = swstats->rda_err_cnt;
  5788. tmp_stats[i++] = swstats->rti_err_cnt;
  5789. tmp_stats[i++] = swstats->mc_err_cnt;
  5790. }
  5791. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5792. {
  5793. return XENA_REG_SPACE;
  5794. }
  5795. static int s2io_get_eeprom_len(struct net_device *dev)
  5796. {
  5797. return XENA_EEPROM_SPACE;
  5798. }
  5799. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5800. {
  5801. struct s2io_nic *sp = netdev_priv(dev);
  5802. switch (sset) {
  5803. case ETH_SS_TEST:
  5804. return S2IO_TEST_LEN;
  5805. case ETH_SS_STATS:
  5806. switch (sp->device_type) {
  5807. case XFRAME_I_DEVICE:
  5808. return XFRAME_I_STAT_LEN;
  5809. case XFRAME_II_DEVICE:
  5810. return XFRAME_II_STAT_LEN;
  5811. default:
  5812. return 0;
  5813. }
  5814. default:
  5815. return -EOPNOTSUPP;
  5816. }
  5817. }
  5818. static void s2io_ethtool_get_strings(struct net_device *dev,
  5819. u32 stringset, u8 *data)
  5820. {
  5821. int stat_size = 0;
  5822. struct s2io_nic *sp = netdev_priv(dev);
  5823. switch (stringset) {
  5824. case ETH_SS_TEST:
  5825. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5826. break;
  5827. case ETH_SS_STATS:
  5828. stat_size = sizeof(ethtool_xena_stats_keys);
  5829. memcpy(data, &ethtool_xena_stats_keys, stat_size);
  5830. if (sp->device_type == XFRAME_II_DEVICE) {
  5831. memcpy(data + stat_size,
  5832. &ethtool_enhanced_stats_keys,
  5833. sizeof(ethtool_enhanced_stats_keys));
  5834. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5835. }
  5836. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5837. sizeof(ethtool_driver_stats_keys));
  5838. }
  5839. }
  5840. static int s2io_set_features(struct net_device *dev, netdev_features_t features)
  5841. {
  5842. struct s2io_nic *sp = netdev_priv(dev);
  5843. netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
  5844. if (changed && netif_running(dev)) {
  5845. int rc;
  5846. s2io_stop_all_tx_queue(sp);
  5847. s2io_card_down(sp);
  5848. dev->features = features;
  5849. rc = s2io_card_up(sp);
  5850. if (rc)
  5851. s2io_reset(sp);
  5852. else
  5853. s2io_start_all_tx_queue(sp);
  5854. return rc ? rc : 1;
  5855. }
  5856. return 0;
  5857. }
  5858. static const struct ethtool_ops netdev_ethtool_ops = {
  5859. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5860. .get_regs_len = s2io_ethtool_get_regs_len,
  5861. .get_regs = s2io_ethtool_gregs,
  5862. .get_link = ethtool_op_get_link,
  5863. .get_eeprom_len = s2io_get_eeprom_len,
  5864. .get_eeprom = s2io_ethtool_geeprom,
  5865. .set_eeprom = s2io_ethtool_seeprom,
  5866. .get_ringparam = s2io_ethtool_gringparam,
  5867. .get_pauseparam = s2io_ethtool_getpause_data,
  5868. .set_pauseparam = s2io_ethtool_setpause_data,
  5869. .self_test = s2io_ethtool_test,
  5870. .get_strings = s2io_ethtool_get_strings,
  5871. .set_phys_id = s2io_ethtool_set_led,
  5872. .get_ethtool_stats = s2io_get_ethtool_stats,
  5873. .get_sset_count = s2io_get_sset_count,
  5874. .get_link_ksettings = s2io_ethtool_get_link_ksettings,
  5875. .set_link_ksettings = s2io_ethtool_set_link_ksettings,
  5876. };
  5877. /**
  5878. * s2io_ioctl - Entry point for the Ioctl
  5879. * @dev : Device pointer.
  5880. * @rq : An IOCTL specefic structure, that can contain a pointer to
  5881. * a proprietary structure used to pass information to the driver.
  5882. * @cmd : This is used to distinguish between the different commands that
  5883. * can be passed to the IOCTL functions.
  5884. * Description:
  5885. * Currently there are no special functionality supported in IOCTL, hence
  5886. * function always return EOPNOTSUPPORTED
  5887. */
  5888. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5889. {
  5890. return -EOPNOTSUPP;
  5891. }
  5892. /**
  5893. * s2io_change_mtu - entry point to change MTU size for the device.
  5894. * @dev : device pointer.
  5895. * @new_mtu : the new MTU size for the device.
  5896. * Description: A driver entry point to change MTU size for the device.
  5897. * Before changing the MTU the device must be stopped.
  5898. * Return value:
  5899. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5900. * file on failure.
  5901. */
  5902. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5903. {
  5904. struct s2io_nic *sp = netdev_priv(dev);
  5905. int ret = 0;
  5906. dev->mtu = new_mtu;
  5907. if (netif_running(dev)) {
  5908. s2io_stop_all_tx_queue(sp);
  5909. s2io_card_down(sp);
  5910. ret = s2io_card_up(sp);
  5911. if (ret) {
  5912. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5913. __func__);
  5914. return ret;
  5915. }
  5916. s2io_wake_all_tx_queue(sp);
  5917. } else { /* Device is down */
  5918. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5919. u64 val64 = new_mtu;
  5920. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5921. }
  5922. return ret;
  5923. }
  5924. /**
  5925. * s2io_set_link - Set the LInk status
  5926. * @work: work struct containing a pointer to device private structure
  5927. * Description: Sets the link status for the adapter
  5928. */
  5929. static void s2io_set_link(struct work_struct *work)
  5930. {
  5931. struct s2io_nic *nic = container_of(work, struct s2io_nic,
  5932. set_link_task);
  5933. struct net_device *dev = nic->dev;
  5934. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5935. register u64 val64;
  5936. u16 subid;
  5937. rtnl_lock();
  5938. if (!netif_running(dev))
  5939. goto out_unlock;
  5940. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5941. /* The card is being reset, no point doing anything */
  5942. goto out_unlock;
  5943. }
  5944. subid = nic->pdev->subsystem_device;
  5945. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5946. /*
  5947. * Allow a small delay for the NICs self initiated
  5948. * cleanup to complete.
  5949. */
  5950. msleep(100);
  5951. }
  5952. val64 = readq(&bar0->adapter_status);
  5953. if (LINK_IS_UP(val64)) {
  5954. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5955. if (verify_xena_quiescence(nic)) {
  5956. val64 = readq(&bar0->adapter_control);
  5957. val64 |= ADAPTER_CNTL_EN;
  5958. writeq(val64, &bar0->adapter_control);
  5959. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5960. nic->device_type, subid)) {
  5961. val64 = readq(&bar0->gpio_control);
  5962. val64 |= GPIO_CTRL_GPIO_0;
  5963. writeq(val64, &bar0->gpio_control);
  5964. val64 = readq(&bar0->gpio_control);
  5965. } else {
  5966. val64 |= ADAPTER_LED_ON;
  5967. writeq(val64, &bar0->adapter_control);
  5968. }
  5969. nic->device_enabled_once = true;
  5970. } else {
  5971. DBG_PRINT(ERR_DBG,
  5972. "%s: Error: device is not Quiescent\n",
  5973. dev->name);
  5974. s2io_stop_all_tx_queue(nic);
  5975. }
  5976. }
  5977. val64 = readq(&bar0->adapter_control);
  5978. val64 |= ADAPTER_LED_ON;
  5979. writeq(val64, &bar0->adapter_control);
  5980. s2io_link(nic, LINK_UP);
  5981. } else {
  5982. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5983. subid)) {
  5984. val64 = readq(&bar0->gpio_control);
  5985. val64 &= ~GPIO_CTRL_GPIO_0;
  5986. writeq(val64, &bar0->gpio_control);
  5987. val64 = readq(&bar0->gpio_control);
  5988. }
  5989. /* turn off LED */
  5990. val64 = readq(&bar0->adapter_control);
  5991. val64 = val64 & (~ADAPTER_LED_ON);
  5992. writeq(val64, &bar0->adapter_control);
  5993. s2io_link(nic, LINK_DOWN);
  5994. }
  5995. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5996. out_unlock:
  5997. rtnl_unlock();
  5998. }
  5999. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  6000. struct buffAdd *ba,
  6001. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  6002. u64 *temp2, int size)
  6003. {
  6004. struct net_device *dev = sp->dev;
  6005. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6006. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  6007. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  6008. /* allocate skb */
  6009. if (*skb) {
  6010. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  6011. /*
  6012. * As Rx frame are not going to be processed,
  6013. * using same mapped address for the Rxd
  6014. * buffer pointer
  6015. */
  6016. rxdp1->Buffer0_ptr = *temp0;
  6017. } else {
  6018. *skb = netdev_alloc_skb(dev, size);
  6019. if (!(*skb)) {
  6020. DBG_PRINT(INFO_DBG,
  6021. "%s: Out of memory to allocate %s\n",
  6022. dev->name, "1 buf mode SKBs");
  6023. stats->mem_alloc_fail_cnt++;
  6024. return -ENOMEM ;
  6025. }
  6026. stats->mem_allocated += (*skb)->truesize;
  6027. /* storing the mapped addr in a temp variable
  6028. * such it will be used for next rxd whose
  6029. * Host Control is NULL
  6030. */
  6031. rxdp1->Buffer0_ptr = *temp0 =
  6032. dma_map_single(&sp->pdev->dev, (*skb)->data,
  6033. size - NET_IP_ALIGN,
  6034. DMA_FROM_DEVICE);
  6035. if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
  6036. goto memalloc_failed;
  6037. rxdp->Host_Control = (unsigned long) (*skb);
  6038. }
  6039. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6040. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6041. /* Two buffer Mode */
  6042. if (*skb) {
  6043. rxdp3->Buffer2_ptr = *temp2;
  6044. rxdp3->Buffer0_ptr = *temp0;
  6045. rxdp3->Buffer1_ptr = *temp1;
  6046. } else {
  6047. *skb = netdev_alloc_skb(dev, size);
  6048. if (!(*skb)) {
  6049. DBG_PRINT(INFO_DBG,
  6050. "%s: Out of memory to allocate %s\n",
  6051. dev->name,
  6052. "2 buf mode SKBs");
  6053. stats->mem_alloc_fail_cnt++;
  6054. return -ENOMEM;
  6055. }
  6056. stats->mem_allocated += (*skb)->truesize;
  6057. rxdp3->Buffer2_ptr = *temp2 =
  6058. dma_map_single(&sp->pdev->dev, (*skb)->data,
  6059. dev->mtu + 4, DMA_FROM_DEVICE);
  6060. if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
  6061. goto memalloc_failed;
  6062. rxdp3->Buffer0_ptr = *temp0 =
  6063. dma_map_single(&sp->pdev->dev, ba->ba_0,
  6064. BUF0_LEN, DMA_FROM_DEVICE);
  6065. if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
  6066. dma_unmap_single(&sp->pdev->dev,
  6067. (dma_addr_t)rxdp3->Buffer2_ptr,
  6068. dev->mtu + 4,
  6069. DMA_FROM_DEVICE);
  6070. goto memalloc_failed;
  6071. }
  6072. rxdp->Host_Control = (unsigned long) (*skb);
  6073. /* Buffer-1 will be dummy buffer not used */
  6074. rxdp3->Buffer1_ptr = *temp1 =
  6075. dma_map_single(&sp->pdev->dev, ba->ba_1,
  6076. BUF1_LEN, DMA_FROM_DEVICE);
  6077. if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
  6078. dma_unmap_single(&sp->pdev->dev,
  6079. (dma_addr_t)rxdp3->Buffer0_ptr,
  6080. BUF0_LEN, DMA_FROM_DEVICE);
  6081. dma_unmap_single(&sp->pdev->dev,
  6082. (dma_addr_t)rxdp3->Buffer2_ptr,
  6083. dev->mtu + 4,
  6084. DMA_FROM_DEVICE);
  6085. goto memalloc_failed;
  6086. }
  6087. }
  6088. }
  6089. return 0;
  6090. memalloc_failed:
  6091. stats->pci_map_fail_cnt++;
  6092. stats->mem_freed += (*skb)->truesize;
  6093. dev_kfree_skb(*skb);
  6094. return -ENOMEM;
  6095. }
  6096. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6097. int size)
  6098. {
  6099. struct net_device *dev = sp->dev;
  6100. if (sp->rxd_mode == RXD_MODE_1) {
  6101. rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  6102. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6103. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6104. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6105. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
  6106. }
  6107. }
  6108. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6109. {
  6110. int i, j, k, blk_cnt = 0, size;
  6111. struct config_param *config = &sp->config;
  6112. struct mac_info *mac_control = &sp->mac_control;
  6113. struct net_device *dev = sp->dev;
  6114. struct RxD_t *rxdp = NULL;
  6115. struct sk_buff *skb = NULL;
  6116. struct buffAdd *ba = NULL;
  6117. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6118. /* Calculate the size based on ring mode */
  6119. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6120. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6121. if (sp->rxd_mode == RXD_MODE_1)
  6122. size += NET_IP_ALIGN;
  6123. else if (sp->rxd_mode == RXD_MODE_3B)
  6124. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6125. for (i = 0; i < config->rx_ring_num; i++) {
  6126. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6127. struct ring_info *ring = &mac_control->rings[i];
  6128. blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
  6129. for (j = 0; j < blk_cnt; j++) {
  6130. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6131. rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
  6132. if (sp->rxd_mode == RXD_MODE_3B)
  6133. ba = &ring->ba[j][k];
  6134. if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
  6135. &temp0_64,
  6136. &temp1_64,
  6137. &temp2_64,
  6138. size) == -ENOMEM) {
  6139. return 0;
  6140. }
  6141. set_rxd_buffer_size(sp, rxdp, size);
  6142. dma_wmb();
  6143. /* flip the Ownership bit to Hardware */
  6144. rxdp->Control_1 |= RXD_OWN_XENA;
  6145. }
  6146. }
  6147. }
  6148. return 0;
  6149. }
  6150. static int s2io_add_isr(struct s2io_nic *sp)
  6151. {
  6152. int ret = 0;
  6153. struct net_device *dev = sp->dev;
  6154. int err = 0;
  6155. if (sp->config.intr_type == MSI_X)
  6156. ret = s2io_enable_msi_x(sp);
  6157. if (ret) {
  6158. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6159. sp->config.intr_type = INTA;
  6160. }
  6161. /*
  6162. * Store the values of the MSIX table in
  6163. * the struct s2io_nic structure
  6164. */
  6165. store_xmsi_data(sp);
  6166. /* After proper initialization of H/W, register ISR */
  6167. if (sp->config.intr_type == MSI_X) {
  6168. int i, msix_rx_cnt = 0;
  6169. for (i = 0; i < sp->num_entries; i++) {
  6170. if (sp->s2io_entries[i].in_use == MSIX_FLG) {
  6171. if (sp->s2io_entries[i].type ==
  6172. MSIX_RING_TYPE) {
  6173. snprintf(sp->desc[i],
  6174. sizeof(sp->desc[i]),
  6175. "%s:MSI-X-%d-RX",
  6176. dev->name, i);
  6177. err = request_irq(sp->entries[i].vector,
  6178. s2io_msix_ring_handle,
  6179. 0,
  6180. sp->desc[i],
  6181. sp->s2io_entries[i].arg);
  6182. } else if (sp->s2io_entries[i].type ==
  6183. MSIX_ALARM_TYPE) {
  6184. snprintf(sp->desc[i],
  6185. sizeof(sp->desc[i]),
  6186. "%s:MSI-X-%d-TX",
  6187. dev->name, i);
  6188. err = request_irq(sp->entries[i].vector,
  6189. s2io_msix_fifo_handle,
  6190. 0,
  6191. sp->desc[i],
  6192. sp->s2io_entries[i].arg);
  6193. }
  6194. /* if either data or addr is zero print it. */
  6195. if (!(sp->msix_info[i].addr &&
  6196. sp->msix_info[i].data)) {
  6197. DBG_PRINT(ERR_DBG,
  6198. "%s @Addr:0x%llx Data:0x%llx\n",
  6199. sp->desc[i],
  6200. (unsigned long long)
  6201. sp->msix_info[i].addr,
  6202. (unsigned long long)
  6203. ntohl(sp->msix_info[i].data));
  6204. } else
  6205. msix_rx_cnt++;
  6206. if (err) {
  6207. remove_msix_isr(sp);
  6208. DBG_PRINT(ERR_DBG,
  6209. "%s:MSI-X-%d registration "
  6210. "failed\n", dev->name, i);
  6211. DBG_PRINT(ERR_DBG,
  6212. "%s: Defaulting to INTA\n",
  6213. dev->name);
  6214. sp->config.intr_type = INTA;
  6215. break;
  6216. }
  6217. sp->s2io_entries[i].in_use =
  6218. MSIX_REGISTERED_SUCCESS;
  6219. }
  6220. }
  6221. if (!err) {
  6222. pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
  6223. DBG_PRINT(INFO_DBG,
  6224. "MSI-X-TX entries enabled through alarm vector\n");
  6225. }
  6226. }
  6227. if (sp->config.intr_type == INTA) {
  6228. err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6229. sp->name, dev);
  6230. if (err) {
  6231. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6232. dev->name);
  6233. return -1;
  6234. }
  6235. }
  6236. return 0;
  6237. }
  6238. static void s2io_rem_isr(struct s2io_nic *sp)
  6239. {
  6240. if (sp->config.intr_type == MSI_X)
  6241. remove_msix_isr(sp);
  6242. else
  6243. remove_inta_isr(sp);
  6244. }
  6245. static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
  6246. {
  6247. int cnt = 0;
  6248. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6249. register u64 val64 = 0;
  6250. struct config_param *config;
  6251. config = &sp->config;
  6252. if (!is_s2io_card_up(sp))
  6253. return;
  6254. del_timer_sync(&sp->alarm_timer);
  6255. /* If s2io_set_link task is executing, wait till it completes. */
  6256. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
  6257. msleep(50);
  6258. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6259. /* Disable napi */
  6260. if (sp->config.napi) {
  6261. int off = 0;
  6262. if (config->intr_type == MSI_X) {
  6263. for (; off < sp->config.rx_ring_num; off++)
  6264. napi_disable(&sp->mac_control.rings[off].napi);
  6265. }
  6266. else
  6267. napi_disable(&sp->napi);
  6268. }
  6269. /* disable Tx and Rx traffic on the NIC */
  6270. if (do_io)
  6271. stop_nic(sp);
  6272. s2io_rem_isr(sp);
  6273. /* stop the tx queue, indicate link down */
  6274. s2io_link(sp, LINK_DOWN);
  6275. /* Check if the device is Quiescent and then Reset the NIC */
  6276. while (do_io) {
  6277. /* As per the HW requirement we need to replenish the
  6278. * receive buffer to avoid the ring bump. Since there is
  6279. * no intention of processing the Rx frame at this pointwe are
  6280. * just setting the ownership bit of rxd in Each Rx
  6281. * ring to HW and set the appropriate buffer size
  6282. * based on the ring mode
  6283. */
  6284. rxd_owner_bit_reset(sp);
  6285. val64 = readq(&bar0->adapter_status);
  6286. if (verify_xena_quiescence(sp)) {
  6287. if (verify_pcc_quiescent(sp, sp->device_enabled_once))
  6288. break;
  6289. }
  6290. msleep(50);
  6291. cnt++;
  6292. if (cnt == 10) {
  6293. DBG_PRINT(ERR_DBG, "Device not Quiescent - "
  6294. "adapter status reads 0x%llx\n",
  6295. (unsigned long long)val64);
  6296. break;
  6297. }
  6298. }
  6299. if (do_io)
  6300. s2io_reset(sp);
  6301. /* Free all Tx buffers */
  6302. free_tx_buffers(sp);
  6303. /* Free all Rx buffers */
  6304. free_rx_buffers(sp);
  6305. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6306. }
  6307. static void s2io_card_down(struct s2io_nic *sp)
  6308. {
  6309. do_s2io_card_down(sp, 1);
  6310. }
  6311. static int s2io_card_up(struct s2io_nic *sp)
  6312. {
  6313. int i, ret = 0;
  6314. struct config_param *config;
  6315. struct mac_info *mac_control;
  6316. struct net_device *dev = sp->dev;
  6317. u16 interruptible;
  6318. /* Initialize the H/W I/O registers */
  6319. ret = init_nic(sp);
  6320. if (ret != 0) {
  6321. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6322. dev->name);
  6323. if (ret != -EIO)
  6324. s2io_reset(sp);
  6325. return ret;
  6326. }
  6327. /*
  6328. * Initializing the Rx buffers. For now we are considering only 1
  6329. * Rx ring and initializing buffers into 30 Rx blocks
  6330. */
  6331. config = &sp->config;
  6332. mac_control = &sp->mac_control;
  6333. for (i = 0; i < config->rx_ring_num; i++) {
  6334. struct ring_info *ring = &mac_control->rings[i];
  6335. ring->mtu = dev->mtu;
  6336. ring->lro = !!(dev->features & NETIF_F_LRO);
  6337. ret = fill_rx_buffers(sp, ring, 1);
  6338. if (ret) {
  6339. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6340. dev->name);
  6341. ret = -ENOMEM;
  6342. goto err_fill_buff;
  6343. }
  6344. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6345. ring->rx_bufs_left);
  6346. }
  6347. /* Initialise napi */
  6348. if (config->napi) {
  6349. if (config->intr_type == MSI_X) {
  6350. for (i = 0; i < sp->config.rx_ring_num; i++)
  6351. napi_enable(&sp->mac_control.rings[i].napi);
  6352. } else {
  6353. napi_enable(&sp->napi);
  6354. }
  6355. }
  6356. /* Maintain the state prior to the open */
  6357. if (sp->promisc_flg)
  6358. sp->promisc_flg = 0;
  6359. if (sp->m_cast_flg) {
  6360. sp->m_cast_flg = 0;
  6361. sp->all_multi_pos = 0;
  6362. }
  6363. /* Setting its receive mode */
  6364. s2io_set_multicast(dev, true);
  6365. if (dev->features & NETIF_F_LRO) {
  6366. /* Initialize max aggregatable pkts per session based on MTU */
  6367. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6368. /* Check if we can use (if specified) user provided value */
  6369. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6370. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6371. }
  6372. /* Enable Rx Traffic and interrupts on the NIC */
  6373. if (start_nic(sp)) {
  6374. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6375. ret = -ENODEV;
  6376. goto err_out;
  6377. }
  6378. /* Add interrupt service routine */
  6379. if (s2io_add_isr(sp) != 0) {
  6380. if (sp->config.intr_type == MSI_X)
  6381. s2io_rem_isr(sp);
  6382. ret = -ENODEV;
  6383. goto err_out;
  6384. }
  6385. timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
  6386. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  6387. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6388. /* Enable select interrupts */
  6389. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6390. if (sp->config.intr_type != INTA) {
  6391. interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
  6392. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6393. } else {
  6394. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6395. interruptible |= TX_PIC_INTR;
  6396. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6397. }
  6398. return 0;
  6399. err_out:
  6400. if (config->napi) {
  6401. if (config->intr_type == MSI_X) {
  6402. for (i = 0; i < sp->config.rx_ring_num; i++)
  6403. napi_disable(&sp->mac_control.rings[i].napi);
  6404. } else {
  6405. napi_disable(&sp->napi);
  6406. }
  6407. }
  6408. err_fill_buff:
  6409. s2io_reset(sp);
  6410. free_rx_buffers(sp);
  6411. return ret;
  6412. }
  6413. /**
  6414. * s2io_restart_nic - Resets the NIC.
  6415. * @work : work struct containing a pointer to the device private structure
  6416. * Description:
  6417. * This function is scheduled to be run by the s2io_tx_watchdog
  6418. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6419. * the run time of the watch dog routine which is run holding a
  6420. * spin lock.
  6421. */
  6422. static void s2io_restart_nic(struct work_struct *work)
  6423. {
  6424. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6425. struct net_device *dev = sp->dev;
  6426. rtnl_lock();
  6427. if (!netif_running(dev))
  6428. goto out_unlock;
  6429. s2io_card_down(sp);
  6430. if (s2io_card_up(sp)) {
  6431. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
  6432. }
  6433. s2io_wake_all_tx_queue(sp);
  6434. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
  6435. out_unlock:
  6436. rtnl_unlock();
  6437. }
  6438. /**
  6439. * s2io_tx_watchdog - Watchdog for transmit side.
  6440. * @dev : Pointer to net device structure
  6441. * @txqueue: index of the hanging queue
  6442. * Description:
  6443. * This function is triggered if the Tx Queue is stopped
  6444. * for a pre-defined amount of time when the Interface is still up.
  6445. * If the Interface is jammed in such a situation, the hardware is
  6446. * reset (by s2io_close) and restarted again (by s2io_open) to
  6447. * overcome any problem that might have been caused in the hardware.
  6448. * Return value:
  6449. * void
  6450. */
  6451. static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
  6452. {
  6453. struct s2io_nic *sp = netdev_priv(dev);
  6454. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6455. if (netif_carrier_ok(dev)) {
  6456. swstats->watchdog_timer_cnt++;
  6457. schedule_work(&sp->rst_timer_task);
  6458. swstats->soft_reset_cnt++;
  6459. }
  6460. }
  6461. /**
  6462. * rx_osm_handler - To perform some OS related operations on SKB.
  6463. * @ring_data : the ring from which this RxD was extracted.
  6464. * @rxdp: descriptor
  6465. * Description:
  6466. * This function is called by the Rx interrupt serivce routine to perform
  6467. * some OS related operations on the SKB before passing it to the upper
  6468. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6469. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6470. * to the upper layer. If the checksum is wrong, it increments the Rx
  6471. * packet error count, frees the SKB and returns error.
  6472. * Return value:
  6473. * SUCCESS on success and -1 on failure.
  6474. */
  6475. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6476. {
  6477. struct s2io_nic *sp = ring_data->nic;
  6478. struct net_device *dev = ring_data->dev;
  6479. struct sk_buff *skb = (struct sk_buff *)
  6480. ((unsigned long)rxdp->Host_Control);
  6481. int ring_no = ring_data->ring_no;
  6482. u16 l3_csum, l4_csum;
  6483. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6484. struct lro *lro;
  6485. u8 err_mask;
  6486. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6487. skb->dev = dev;
  6488. if (err) {
  6489. /* Check for parity error */
  6490. if (err & 0x1)
  6491. swstats->parity_err_cnt++;
  6492. err_mask = err >> 48;
  6493. switch (err_mask) {
  6494. case 1:
  6495. swstats->rx_parity_err_cnt++;
  6496. break;
  6497. case 2:
  6498. swstats->rx_abort_cnt++;
  6499. break;
  6500. case 3:
  6501. swstats->rx_parity_abort_cnt++;
  6502. break;
  6503. case 4:
  6504. swstats->rx_rda_fail_cnt++;
  6505. break;
  6506. case 5:
  6507. swstats->rx_unkn_prot_cnt++;
  6508. break;
  6509. case 6:
  6510. swstats->rx_fcs_err_cnt++;
  6511. break;
  6512. case 7:
  6513. swstats->rx_buf_size_err_cnt++;
  6514. break;
  6515. case 8:
  6516. swstats->rx_rxd_corrupt_cnt++;
  6517. break;
  6518. case 15:
  6519. swstats->rx_unkn_err_cnt++;
  6520. break;
  6521. }
  6522. /*
  6523. * Drop the packet if bad transfer code. Exception being
  6524. * 0x5, which could be due to unsupported IPv6 extension header.
  6525. * In this case, we let stack handle the packet.
  6526. * Note that in this case, since checksum will be incorrect,
  6527. * stack will validate the same.
  6528. */
  6529. if (err_mask != 0x5) {
  6530. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6531. dev->name, err_mask);
  6532. dev->stats.rx_crc_errors++;
  6533. swstats->mem_freed
  6534. += skb->truesize;
  6535. dev_kfree_skb(skb);
  6536. ring_data->rx_bufs_left -= 1;
  6537. rxdp->Host_Control = 0;
  6538. return 0;
  6539. }
  6540. }
  6541. rxdp->Host_Control = 0;
  6542. if (sp->rxd_mode == RXD_MODE_1) {
  6543. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6544. skb_put(skb, len);
  6545. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6546. int get_block = ring_data->rx_curr_get_info.block_index;
  6547. int get_off = ring_data->rx_curr_get_info.offset;
  6548. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6549. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6550. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6551. skb_put_data(skb, ba->ba_0, buf0_len);
  6552. skb_put(skb, buf2_len);
  6553. }
  6554. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
  6555. ((!ring_data->lro) ||
  6556. (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
  6557. (dev->features & NETIF_F_RXCSUM)) {
  6558. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6559. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6560. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6561. /*
  6562. * NIC verifies if the Checksum of the received
  6563. * frame is Ok or not and accordingly returns
  6564. * a flag in the RxD.
  6565. */
  6566. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6567. if (ring_data->lro) {
  6568. u32 tcp_len = 0;
  6569. u8 *tcp;
  6570. int ret = 0;
  6571. ret = s2io_club_tcp_session(ring_data,
  6572. skb->data, &tcp,
  6573. &tcp_len, &lro,
  6574. rxdp, sp);
  6575. switch (ret) {
  6576. case 3: /* Begin anew */
  6577. lro->parent = skb;
  6578. goto aggregate;
  6579. case 1: /* Aggregate */
  6580. lro_append_pkt(sp, lro, skb, tcp_len);
  6581. goto aggregate;
  6582. case 4: /* Flush session */
  6583. lro_append_pkt(sp, lro, skb, tcp_len);
  6584. queue_rx_frame(lro->parent,
  6585. lro->vlan_tag);
  6586. clear_lro_session(lro);
  6587. swstats->flush_max_pkts++;
  6588. goto aggregate;
  6589. case 2: /* Flush both */
  6590. lro->parent->data_len = lro->frags_len;
  6591. swstats->sending_both++;
  6592. queue_rx_frame(lro->parent,
  6593. lro->vlan_tag);
  6594. clear_lro_session(lro);
  6595. goto send_up;
  6596. case 0: /* sessions exceeded */
  6597. case -1: /* non-TCP or not L2 aggregatable */
  6598. case 5: /*
  6599. * First pkt in session not
  6600. * L3/L4 aggregatable
  6601. */
  6602. break;
  6603. default:
  6604. DBG_PRINT(ERR_DBG,
  6605. "%s: Samadhana!!\n",
  6606. __func__);
  6607. BUG();
  6608. }
  6609. }
  6610. } else {
  6611. /*
  6612. * Packet with erroneous checksum, let the
  6613. * upper layers deal with it.
  6614. */
  6615. skb_checksum_none_assert(skb);
  6616. }
  6617. } else
  6618. skb_checksum_none_assert(skb);
  6619. swstats->mem_freed += skb->truesize;
  6620. send_up:
  6621. skb_record_rx_queue(skb, ring_no);
  6622. queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
  6623. aggregate:
  6624. sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
  6625. return SUCCESS;
  6626. }
  6627. /**
  6628. * s2io_link - stops/starts the Tx queue.
  6629. * @sp : private member of the device structure, which is a pointer to the
  6630. * s2io_nic structure.
  6631. * @link : inidicates whether link is UP/DOWN.
  6632. * Description:
  6633. * This function stops/starts the Tx queue depending on whether the link
  6634. * status of the NIC is down or up. This is called by the Alarm
  6635. * interrupt handler whenever a link change interrupt comes up.
  6636. * Return value:
  6637. * void.
  6638. */
  6639. static void s2io_link(struct s2io_nic *sp, int link)
  6640. {
  6641. struct net_device *dev = sp->dev;
  6642. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6643. if (link != sp->last_link_state) {
  6644. init_tti(sp, link, false);
  6645. if (link == LINK_DOWN) {
  6646. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6647. s2io_stop_all_tx_queue(sp);
  6648. netif_carrier_off(dev);
  6649. if (swstats->link_up_cnt)
  6650. swstats->link_up_time =
  6651. jiffies - sp->start_time;
  6652. swstats->link_down_cnt++;
  6653. } else {
  6654. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6655. if (swstats->link_down_cnt)
  6656. swstats->link_down_time =
  6657. jiffies - sp->start_time;
  6658. swstats->link_up_cnt++;
  6659. netif_carrier_on(dev);
  6660. s2io_wake_all_tx_queue(sp);
  6661. }
  6662. }
  6663. sp->last_link_state = link;
  6664. sp->start_time = jiffies;
  6665. }
  6666. /**
  6667. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6668. * @sp : private member of the device structure, which is a pointer to the
  6669. * s2io_nic structure.
  6670. * Description:
  6671. * This function initializes a few of the PCI and PCI-X configuration registers
  6672. * with recommended values.
  6673. * Return value:
  6674. * void
  6675. */
  6676. static void s2io_init_pci(struct s2io_nic *sp)
  6677. {
  6678. u16 pci_cmd = 0, pcix_cmd = 0;
  6679. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6680. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6681. &(pcix_cmd));
  6682. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6683. (pcix_cmd | 1));
  6684. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6685. &(pcix_cmd));
  6686. /* Set the PErr Response bit in PCI command register. */
  6687. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6688. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6689. (pci_cmd | PCI_COMMAND_PARITY));
  6690. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6691. }
  6692. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
  6693. u8 *dev_multiq)
  6694. {
  6695. int i;
  6696. if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
  6697. DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
  6698. "(%d) not supported\n", tx_fifo_num);
  6699. if (tx_fifo_num < 1)
  6700. tx_fifo_num = 1;
  6701. else
  6702. tx_fifo_num = MAX_TX_FIFOS;
  6703. DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
  6704. }
  6705. if (multiq)
  6706. *dev_multiq = multiq;
  6707. if (tx_steering_type && (1 == tx_fifo_num)) {
  6708. if (tx_steering_type != TX_DEFAULT_STEERING)
  6709. DBG_PRINT(ERR_DBG,
  6710. "Tx steering is not supported with "
  6711. "one fifo. Disabling Tx steering.\n");
  6712. tx_steering_type = NO_STEERING;
  6713. }
  6714. if ((tx_steering_type < NO_STEERING) ||
  6715. (tx_steering_type > TX_DEFAULT_STEERING)) {
  6716. DBG_PRINT(ERR_DBG,
  6717. "Requested transmit steering not supported\n");
  6718. DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
  6719. tx_steering_type = NO_STEERING;
  6720. }
  6721. if (rx_ring_num > MAX_RX_RINGS) {
  6722. DBG_PRINT(ERR_DBG,
  6723. "Requested number of rx rings not supported\n");
  6724. DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
  6725. MAX_RX_RINGS);
  6726. rx_ring_num = MAX_RX_RINGS;
  6727. }
  6728. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6729. DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
  6730. "Defaulting to INTA\n");
  6731. *dev_intr_type = INTA;
  6732. }
  6733. if ((*dev_intr_type == MSI_X) &&
  6734. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6735. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6736. DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
  6737. "Defaulting to INTA\n");
  6738. *dev_intr_type = INTA;
  6739. }
  6740. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6741. DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
  6742. DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
  6743. rx_ring_mode = 1;
  6744. }
  6745. for (i = 0; i < MAX_RX_RINGS; i++)
  6746. if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
  6747. DBG_PRINT(ERR_DBG, "Requested rx ring size not "
  6748. "supported\nDefaulting to %d\n",
  6749. MAX_RX_BLOCKS_PER_RING);
  6750. rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
  6751. }
  6752. return SUCCESS;
  6753. }
  6754. /**
  6755. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
  6756. * @nic: device private variable
  6757. * @ds_codepoint: data
  6758. * @ring: ring index
  6759. * Description: The function configures the receive steering to
  6760. * desired receive ring.
  6761. * Return Value: SUCCESS on success and
  6762. * '-1' on failure (endian settings incorrect).
  6763. */
  6764. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6765. {
  6766. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6767. register u64 val64 = 0;
  6768. if (ds_codepoint > 63)
  6769. return FAILURE;
  6770. val64 = RTS_DS_MEM_DATA(ring);
  6771. writeq(val64, &bar0->rts_ds_mem_data);
  6772. val64 = RTS_DS_MEM_CTRL_WE |
  6773. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6774. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6775. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6776. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6777. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6778. S2IO_BIT_RESET, true);
  6779. }
  6780. static const struct net_device_ops s2io_netdev_ops = {
  6781. .ndo_open = s2io_open,
  6782. .ndo_stop = s2io_close,
  6783. .ndo_get_stats = s2io_get_stats,
  6784. .ndo_start_xmit = s2io_xmit,
  6785. .ndo_validate_addr = eth_validate_addr,
  6786. .ndo_set_rx_mode = s2io_ndo_set_multicast,
  6787. .ndo_eth_ioctl = s2io_ioctl,
  6788. .ndo_set_mac_address = s2io_set_mac_addr,
  6789. .ndo_change_mtu = s2io_change_mtu,
  6790. .ndo_set_features = s2io_set_features,
  6791. .ndo_tx_timeout = s2io_tx_watchdog,
  6792. #ifdef CONFIG_NET_POLL_CONTROLLER
  6793. .ndo_poll_controller = s2io_netpoll,
  6794. #endif
  6795. };
  6796. /**
  6797. * s2io_init_nic - Initialization of the adapter .
  6798. * @pdev : structure containing the PCI related information of the device.
  6799. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6800. * Description:
  6801. * The function initializes an adapter identified by the pci_dec structure.
  6802. * All OS related initialization including memory and device structure and
  6803. * initlaization of the device private variable is done. Also the swapper
  6804. * control register is initialized to enable read and write into the I/O
  6805. * registers of the device.
  6806. * Return value:
  6807. * returns 0 on success and negative on failure.
  6808. */
  6809. static int
  6810. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6811. {
  6812. struct s2io_nic *sp;
  6813. struct net_device *dev;
  6814. int i, j, ret;
  6815. u32 mac_up, mac_down;
  6816. u64 val64 = 0, tmp64 = 0;
  6817. struct XENA_dev_config __iomem *bar0 = NULL;
  6818. u16 subid;
  6819. struct config_param *config;
  6820. struct mac_info *mac_control;
  6821. int mode;
  6822. u8 dev_intr_type = intr_type;
  6823. u8 dev_multiq = 0;
  6824. ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
  6825. if (ret)
  6826. return ret;
  6827. ret = pci_enable_device(pdev);
  6828. if (ret) {
  6829. DBG_PRINT(ERR_DBG,
  6830. "%s: pci_enable_device failed\n", __func__);
  6831. return ret;
  6832. }
  6833. if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
  6834. DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
  6835. } else {
  6836. pci_disable_device(pdev);
  6837. return -ENOMEM;
  6838. }
  6839. ret = pci_request_regions(pdev, s2io_driver_name);
  6840. if (ret) {
  6841. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
  6842. __func__, ret);
  6843. pci_disable_device(pdev);
  6844. return -ENODEV;
  6845. }
  6846. if (dev_multiq)
  6847. dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
  6848. else
  6849. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6850. if (dev == NULL) {
  6851. pci_disable_device(pdev);
  6852. pci_release_regions(pdev);
  6853. return -ENODEV;
  6854. }
  6855. pci_set_master(pdev);
  6856. pci_set_drvdata(pdev, dev);
  6857. SET_NETDEV_DEV(dev, &pdev->dev);
  6858. /* Private member variable initialized to s2io NIC structure */
  6859. sp = netdev_priv(dev);
  6860. sp->dev = dev;
  6861. sp->pdev = pdev;
  6862. sp->device_enabled_once = false;
  6863. if (rx_ring_mode == 1)
  6864. sp->rxd_mode = RXD_MODE_1;
  6865. if (rx_ring_mode == 2)
  6866. sp->rxd_mode = RXD_MODE_3B;
  6867. sp->config.intr_type = dev_intr_type;
  6868. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6869. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6870. sp->device_type = XFRAME_II_DEVICE;
  6871. else
  6872. sp->device_type = XFRAME_I_DEVICE;
  6873. /* Initialize some PCI/PCI-X fields of the NIC. */
  6874. s2io_init_pci(sp);
  6875. /*
  6876. * Setting the device configuration parameters.
  6877. * Most of these parameters can be specified by the user during
  6878. * module insertion as they are module loadable parameters. If
  6879. * these parameters are not specified during load time, they
  6880. * are initialized with default values.
  6881. */
  6882. config = &sp->config;
  6883. mac_control = &sp->mac_control;
  6884. config->napi = napi;
  6885. config->tx_steering_type = tx_steering_type;
  6886. /* Tx side parameters. */
  6887. if (config->tx_steering_type == TX_PRIORITY_STEERING)
  6888. config->tx_fifo_num = MAX_TX_FIFOS;
  6889. else
  6890. config->tx_fifo_num = tx_fifo_num;
  6891. /* Initialize the fifos used for tx steering */
  6892. if (config->tx_fifo_num < 5) {
  6893. if (config->tx_fifo_num == 1)
  6894. sp->total_tcp_fifos = 1;
  6895. else
  6896. sp->total_tcp_fifos = config->tx_fifo_num - 1;
  6897. sp->udp_fifo_idx = config->tx_fifo_num - 1;
  6898. sp->total_udp_fifos = 1;
  6899. sp->other_fifo_idx = sp->total_tcp_fifos - 1;
  6900. } else {
  6901. sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
  6902. FIFO_OTHER_MAX_NUM);
  6903. sp->udp_fifo_idx = sp->total_tcp_fifos;
  6904. sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
  6905. sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
  6906. }
  6907. config->multiq = dev_multiq;
  6908. for (i = 0; i < config->tx_fifo_num; i++) {
  6909. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  6910. tx_cfg->fifo_len = tx_fifo_len[i];
  6911. tx_cfg->fifo_priority = i;
  6912. }
  6913. /* mapping the QoS priority to the configured fifos */
  6914. for (i = 0; i < MAX_TX_FIFOS; i++)
  6915. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
  6916. /* map the hashing selector table to the configured fifos */
  6917. for (i = 0; i < config->tx_fifo_num; i++)
  6918. sp->fifo_selector[i] = fifo_selector[i];
  6919. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6920. for (i = 0; i < config->tx_fifo_num; i++) {
  6921. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  6922. tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6923. if (tx_cfg->fifo_len < 65) {
  6924. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6925. break;
  6926. }
  6927. }
  6928. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6929. config->max_txds = MAX_SKB_FRAGS + 2;
  6930. /* Rx side parameters. */
  6931. config->rx_ring_num = rx_ring_num;
  6932. for (i = 0; i < config->rx_ring_num; i++) {
  6933. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6934. struct ring_info *ring = &mac_control->rings[i];
  6935. rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
  6936. rx_cfg->ring_priority = i;
  6937. ring->rx_bufs_left = 0;
  6938. ring->rxd_mode = sp->rxd_mode;
  6939. ring->rxd_count = rxd_count[sp->rxd_mode];
  6940. ring->pdev = sp->pdev;
  6941. ring->dev = sp->dev;
  6942. }
  6943. for (i = 0; i < rx_ring_num; i++) {
  6944. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6945. rx_cfg->ring_org = RING_ORG_BUFF1;
  6946. rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6947. }
  6948. /* Setting Mac Control parameters */
  6949. mac_control->rmac_pause_time = rmac_pause_time;
  6950. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6951. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6952. /* initialize the shared memory used by the NIC and the host */
  6953. if (init_shared_mem(sp)) {
  6954. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
  6955. ret = -ENOMEM;
  6956. goto mem_alloc_failed;
  6957. }
  6958. sp->bar0 = pci_ioremap_bar(pdev, 0);
  6959. if (!sp->bar0) {
  6960. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6961. dev->name);
  6962. ret = -ENOMEM;
  6963. goto bar0_remap_failed;
  6964. }
  6965. sp->bar1 = pci_ioremap_bar(pdev, 2);
  6966. if (!sp->bar1) {
  6967. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6968. dev->name);
  6969. ret = -ENOMEM;
  6970. goto bar1_remap_failed;
  6971. }
  6972. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6973. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6974. mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
  6975. }
  6976. /* Driver entry points */
  6977. dev->netdev_ops = &s2io_netdev_ops;
  6978. dev->ethtool_ops = &netdev_ethtool_ops;
  6979. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  6980. NETIF_F_TSO | NETIF_F_TSO6 |
  6981. NETIF_F_RXCSUM | NETIF_F_LRO;
  6982. dev->features |= dev->hw_features |
  6983. NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
  6984. NETIF_F_HIGHDMA;
  6985. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6986. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6987. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6988. pci_save_state(sp->pdev);
  6989. /* Setting swapper control on the NIC, for proper reset operation */
  6990. if (s2io_set_swapper(sp)) {
  6991. DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
  6992. dev->name);
  6993. ret = -EAGAIN;
  6994. goto set_swap_failed;
  6995. }
  6996. /* Verify if the Herc works on the slot its placed into */
  6997. if (sp->device_type & XFRAME_II_DEVICE) {
  6998. mode = s2io_verify_pci_mode(sp);
  6999. if (mode < 0) {
  7000. DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
  7001. __func__);
  7002. ret = -EBADSLT;
  7003. goto set_swap_failed;
  7004. }
  7005. }
  7006. if (sp->config.intr_type == MSI_X) {
  7007. sp->num_entries = config->rx_ring_num + 1;
  7008. ret = s2io_enable_msi_x(sp);
  7009. if (!ret) {
  7010. ret = s2io_test_msi(sp);
  7011. /* rollback MSI-X, will re-enable during add_isr() */
  7012. remove_msix_isr(sp);
  7013. }
  7014. if (ret) {
  7015. DBG_PRINT(ERR_DBG,
  7016. "MSI-X requested but failed to enable\n");
  7017. sp->config.intr_type = INTA;
  7018. }
  7019. }
  7020. if (config->intr_type == MSI_X) {
  7021. for (i = 0; i < config->rx_ring_num ; i++) {
  7022. struct ring_info *ring = &mac_control->rings[i];
  7023. netif_napi_add(dev, &ring->napi, s2io_poll_msix);
  7024. }
  7025. } else {
  7026. netif_napi_add(dev, &sp->napi, s2io_poll_inta);
  7027. }
  7028. /* Not needed for Herc */
  7029. if (sp->device_type & XFRAME_I_DEVICE) {
  7030. /*
  7031. * Fix for all "FFs" MAC address problems observed on
  7032. * Alpha platforms
  7033. */
  7034. fix_mac_address(sp);
  7035. s2io_reset(sp);
  7036. }
  7037. /*
  7038. * MAC address initialization.
  7039. * For now only one mac address will be read and used.
  7040. */
  7041. bar0 = sp->bar0;
  7042. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  7043. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  7044. writeq(val64, &bar0->rmac_addr_cmd_mem);
  7045. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  7046. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  7047. S2IO_BIT_RESET, true);
  7048. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  7049. mac_down = (u32)tmp64;
  7050. mac_up = (u32) (tmp64 >> 32);
  7051. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  7052. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  7053. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  7054. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  7055. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  7056. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  7057. /* Set the factory defined MAC address initially */
  7058. dev->addr_len = ETH_ALEN;
  7059. eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr);
  7060. /* initialize number of multicast & unicast MAC entries variables */
  7061. if (sp->device_type == XFRAME_I_DEVICE) {
  7062. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  7063. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  7064. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  7065. } else if (sp->device_type == XFRAME_II_DEVICE) {
  7066. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  7067. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  7068. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  7069. }
  7070. /* MTU range: 46 - 9600 */
  7071. dev->min_mtu = MIN_MTU;
  7072. dev->max_mtu = S2IO_JUMBO_SIZE;
  7073. /* store mac addresses from CAM to s2io_nic structure */
  7074. do_s2io_store_unicast_mc(sp);
  7075. /* Configure MSIX vector for number of rings configured plus one */
  7076. if ((sp->device_type == XFRAME_II_DEVICE) &&
  7077. (config->intr_type == MSI_X))
  7078. sp->num_entries = config->rx_ring_num + 1;
  7079. /* Store the values of the MSIX table in the s2io_nic structure */
  7080. store_xmsi_data(sp);
  7081. /* reset Nic and bring it to known state */
  7082. s2io_reset(sp);
  7083. /*
  7084. * Initialize link state flags
  7085. * and the card state parameter
  7086. */
  7087. sp->state = 0;
  7088. /* Initialize spinlocks */
  7089. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7090. struct fifo_info *fifo = &mac_control->fifos[i];
  7091. spin_lock_init(&fifo->tx_lock);
  7092. }
  7093. /*
  7094. * SXE-002: Configure link and activity LED to init state
  7095. * on driver load.
  7096. */
  7097. subid = sp->pdev->subsystem_device;
  7098. if ((subid & 0xFF) >= 0x07) {
  7099. val64 = readq(&bar0->gpio_control);
  7100. val64 |= 0x0000800000000000ULL;
  7101. writeq(val64, &bar0->gpio_control);
  7102. val64 = 0x0411040400000000ULL;
  7103. writeq(val64, (void __iomem *)bar0 + 0x2700);
  7104. val64 = readq(&bar0->gpio_control);
  7105. }
  7106. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7107. if (register_netdev(dev)) {
  7108. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7109. ret = -ENODEV;
  7110. goto register_failed;
  7111. }
  7112. s2io_vpd_read(sp);
  7113. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
  7114. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
  7115. sp->product_name, pdev->revision);
  7116. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7117. s2io_driver_version);
  7118. DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
  7119. DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
  7120. if (sp->device_type & XFRAME_II_DEVICE) {
  7121. mode = s2io_print_pci_mode(sp);
  7122. if (mode < 0) {
  7123. ret = -EBADSLT;
  7124. unregister_netdev(dev);
  7125. goto set_swap_failed;
  7126. }
  7127. }
  7128. switch (sp->rxd_mode) {
  7129. case RXD_MODE_1:
  7130. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7131. dev->name);
  7132. break;
  7133. case RXD_MODE_3B:
  7134. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7135. dev->name);
  7136. break;
  7137. }
  7138. switch (sp->config.napi) {
  7139. case 0:
  7140. DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
  7141. break;
  7142. case 1:
  7143. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7144. break;
  7145. }
  7146. DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
  7147. sp->config.tx_fifo_num);
  7148. DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
  7149. sp->config.rx_ring_num);
  7150. switch (sp->config.intr_type) {
  7151. case INTA:
  7152. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7153. break;
  7154. case MSI_X:
  7155. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7156. break;
  7157. }
  7158. if (sp->config.multiq) {
  7159. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7160. struct fifo_info *fifo = &mac_control->fifos[i];
  7161. fifo->multiq = config->multiq;
  7162. }
  7163. DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
  7164. dev->name);
  7165. } else
  7166. DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
  7167. dev->name);
  7168. switch (sp->config.tx_steering_type) {
  7169. case NO_STEERING:
  7170. DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
  7171. dev->name);
  7172. break;
  7173. case TX_PRIORITY_STEERING:
  7174. DBG_PRINT(ERR_DBG,
  7175. "%s: Priority steering enabled for transmit\n",
  7176. dev->name);
  7177. break;
  7178. case TX_DEFAULT_STEERING:
  7179. DBG_PRINT(ERR_DBG,
  7180. "%s: Default steering enabled for transmit\n",
  7181. dev->name);
  7182. }
  7183. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7184. dev->name);
  7185. /* Initialize device name */
  7186. snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
  7187. sp->product_name);
  7188. if (vlan_tag_strip)
  7189. sp->vlan_strip_flag = 1;
  7190. else
  7191. sp->vlan_strip_flag = 0;
  7192. /*
  7193. * Make Link state as off at this point, when the Link change
  7194. * interrupt comes the state will be automatically changed to
  7195. * the right state.
  7196. */
  7197. netif_carrier_off(dev);
  7198. return 0;
  7199. register_failed:
  7200. set_swap_failed:
  7201. iounmap(sp->bar1);
  7202. bar1_remap_failed:
  7203. iounmap(sp->bar0);
  7204. bar0_remap_failed:
  7205. mem_alloc_failed:
  7206. free_shared_mem(sp);
  7207. pci_disable_device(pdev);
  7208. pci_release_regions(pdev);
  7209. free_netdev(dev);
  7210. return ret;
  7211. }
  7212. /**
  7213. * s2io_rem_nic - Free the PCI device
  7214. * @pdev: structure containing the PCI related information of the device.
  7215. * Description: This function is called by the Pci subsystem to release a
  7216. * PCI device and free up all resource held up by the device. This could
  7217. * be in response to a Hot plug event or when the driver is to be removed
  7218. * from memory.
  7219. */
  7220. static void s2io_rem_nic(struct pci_dev *pdev)
  7221. {
  7222. struct net_device *dev = pci_get_drvdata(pdev);
  7223. struct s2io_nic *sp;
  7224. if (dev == NULL) {
  7225. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7226. return;
  7227. }
  7228. sp = netdev_priv(dev);
  7229. cancel_work_sync(&sp->rst_timer_task);
  7230. cancel_work_sync(&sp->set_link_task);
  7231. unregister_netdev(dev);
  7232. free_shared_mem(sp);
  7233. iounmap(sp->bar0);
  7234. iounmap(sp->bar1);
  7235. pci_release_regions(pdev);
  7236. free_netdev(dev);
  7237. pci_disable_device(pdev);
  7238. }
  7239. module_pci_driver(s2io_driver);
  7240. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7241. struct tcphdr **tcp, struct RxD_t *rxdp,
  7242. struct s2io_nic *sp)
  7243. {
  7244. int ip_off;
  7245. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7246. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7247. DBG_PRINT(INIT_DBG,
  7248. "%s: Non-TCP frames not supported for LRO\n",
  7249. __func__);
  7250. return -1;
  7251. }
  7252. /* Checking for DIX type or DIX type with VLAN */
  7253. if ((l2_type == 0) || (l2_type == 4)) {
  7254. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7255. /*
  7256. * If vlan stripping is disabled and the frame is VLAN tagged,
  7257. * shift the offset by the VLAN header size bytes.
  7258. */
  7259. if ((!sp->vlan_strip_flag) &&
  7260. (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
  7261. ip_off += HEADER_VLAN_SIZE;
  7262. } else {
  7263. /* LLC, SNAP etc are considered non-mergeable */
  7264. return -1;
  7265. }
  7266. *ip = (struct iphdr *)(buffer + ip_off);
  7267. ip_len = (u8)((*ip)->ihl);
  7268. ip_len <<= 2;
  7269. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7270. return 0;
  7271. }
  7272. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7273. struct tcphdr *tcp)
  7274. {
  7275. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7276. if ((lro->iph->saddr != ip->saddr) ||
  7277. (lro->iph->daddr != ip->daddr) ||
  7278. (lro->tcph->source != tcp->source) ||
  7279. (lro->tcph->dest != tcp->dest))
  7280. return -1;
  7281. return 0;
  7282. }
  7283. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7284. {
  7285. return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
  7286. }
  7287. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7288. struct iphdr *ip, struct tcphdr *tcp,
  7289. u32 tcp_pyld_len, u16 vlan_tag)
  7290. {
  7291. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7292. lro->l2h = l2h;
  7293. lro->iph = ip;
  7294. lro->tcph = tcp;
  7295. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7296. lro->tcp_ack = tcp->ack_seq;
  7297. lro->sg_num = 1;
  7298. lro->total_len = ntohs(ip->tot_len);
  7299. lro->frags_len = 0;
  7300. lro->vlan_tag = vlan_tag;
  7301. /*
  7302. * Check if we saw TCP timestamp.
  7303. * Other consistency checks have already been done.
  7304. */
  7305. if (tcp->doff == 8) {
  7306. __be32 *ptr;
  7307. ptr = (__be32 *)(tcp+1);
  7308. lro->saw_ts = 1;
  7309. lro->cur_tsval = ntohl(*(ptr+1));
  7310. lro->cur_tsecr = *(ptr+2);
  7311. }
  7312. lro->in_use = 1;
  7313. }
  7314. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7315. {
  7316. struct iphdr *ip = lro->iph;
  7317. struct tcphdr *tcp = lro->tcph;
  7318. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7319. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7320. /* Update L3 header */
  7321. csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
  7322. ip->tot_len = htons(lro->total_len);
  7323. /* Update L4 header */
  7324. tcp->ack_seq = lro->tcp_ack;
  7325. tcp->window = lro->window;
  7326. /* Update tsecr field if this session has timestamps enabled */
  7327. if (lro->saw_ts) {
  7328. __be32 *ptr = (__be32 *)(tcp + 1);
  7329. *(ptr+2) = lro->cur_tsecr;
  7330. }
  7331. /* Update counters required for calculation of
  7332. * average no. of packets aggregated.
  7333. */
  7334. swstats->sum_avg_pkts_aggregated += lro->sg_num;
  7335. swstats->num_aggregations++;
  7336. }
  7337. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7338. struct tcphdr *tcp, u32 l4_pyld)
  7339. {
  7340. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7341. lro->total_len += l4_pyld;
  7342. lro->frags_len += l4_pyld;
  7343. lro->tcp_next_seq += l4_pyld;
  7344. lro->sg_num++;
  7345. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7346. lro->tcp_ack = tcp->ack_seq;
  7347. lro->window = tcp->window;
  7348. if (lro->saw_ts) {
  7349. __be32 *ptr;
  7350. /* Update tsecr and tsval from this packet */
  7351. ptr = (__be32 *)(tcp+1);
  7352. lro->cur_tsval = ntohl(*(ptr+1));
  7353. lro->cur_tsecr = *(ptr + 2);
  7354. }
  7355. }
  7356. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7357. struct tcphdr *tcp, u32 tcp_pyld_len)
  7358. {
  7359. u8 *ptr;
  7360. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7361. if (!tcp_pyld_len) {
  7362. /* Runt frame or a pure ack */
  7363. return -1;
  7364. }
  7365. if (ip->ihl != 5) /* IP has options */
  7366. return -1;
  7367. /* If we see CE codepoint in IP header, packet is not mergeable */
  7368. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7369. return -1;
  7370. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7371. if (tcp->urg || tcp->psh || tcp->rst ||
  7372. tcp->syn || tcp->fin ||
  7373. tcp->ece || tcp->cwr || !tcp->ack) {
  7374. /*
  7375. * Currently recognize only the ack control word and
  7376. * any other control field being set would result in
  7377. * flushing the LRO session
  7378. */
  7379. return -1;
  7380. }
  7381. /*
  7382. * Allow only one TCP timestamp option. Don't aggregate if
  7383. * any other options are detected.
  7384. */
  7385. if (tcp->doff != 5 && tcp->doff != 8)
  7386. return -1;
  7387. if (tcp->doff == 8) {
  7388. ptr = (u8 *)(tcp + 1);
  7389. while (*ptr == TCPOPT_NOP)
  7390. ptr++;
  7391. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7392. return -1;
  7393. /* Ensure timestamp value increases monotonically */
  7394. if (l_lro)
  7395. if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
  7396. return -1;
  7397. /* timestamp echo reply should be non-zero */
  7398. if (*((__be32 *)(ptr+6)) == 0)
  7399. return -1;
  7400. }
  7401. return 0;
  7402. }
  7403. static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
  7404. u8 **tcp, u32 *tcp_len, struct lro **lro,
  7405. struct RxD_t *rxdp, struct s2io_nic *sp)
  7406. {
  7407. struct iphdr *ip;
  7408. struct tcphdr *tcph;
  7409. int ret = 0, i;
  7410. u16 vlan_tag = 0;
  7411. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7412. ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7413. rxdp, sp);
  7414. if (ret)
  7415. return ret;
  7416. DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
  7417. vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
  7418. tcph = (struct tcphdr *)*tcp;
  7419. *tcp_len = get_l4_pyld_length(ip, tcph);
  7420. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7421. struct lro *l_lro = &ring_data->lro0_n[i];
  7422. if (l_lro->in_use) {
  7423. if (check_for_socket_match(l_lro, ip, tcph))
  7424. continue;
  7425. /* Sock pair matched */
  7426. *lro = l_lro;
  7427. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7428. DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
  7429. "expected 0x%x, actual 0x%x\n",
  7430. __func__,
  7431. (*lro)->tcp_next_seq,
  7432. ntohl(tcph->seq));
  7433. swstats->outof_sequence_pkts++;
  7434. ret = 2;
  7435. break;
  7436. }
  7437. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
  7438. *tcp_len))
  7439. ret = 1; /* Aggregate */
  7440. else
  7441. ret = 2; /* Flush both */
  7442. break;
  7443. }
  7444. }
  7445. if (ret == 0) {
  7446. /* Before searching for available LRO objects,
  7447. * check if the pkt is L3/L4 aggregatable. If not
  7448. * don't create new LRO session. Just send this
  7449. * packet up.
  7450. */
  7451. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
  7452. return 5;
  7453. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7454. struct lro *l_lro = &ring_data->lro0_n[i];
  7455. if (!(l_lro->in_use)) {
  7456. *lro = l_lro;
  7457. ret = 3; /* Begin anew */
  7458. break;
  7459. }
  7460. }
  7461. }
  7462. if (ret == 0) { /* sessions exceeded */
  7463. DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
  7464. __func__);
  7465. *lro = NULL;
  7466. return ret;
  7467. }
  7468. switch (ret) {
  7469. case 3:
  7470. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
  7471. vlan_tag);
  7472. break;
  7473. case 2:
  7474. update_L3L4_header(sp, *lro);
  7475. break;
  7476. case 1:
  7477. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7478. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7479. update_L3L4_header(sp, *lro);
  7480. ret = 4; /* Flush the LRO */
  7481. }
  7482. break;
  7483. default:
  7484. DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
  7485. break;
  7486. }
  7487. return ret;
  7488. }
  7489. static void clear_lro_session(struct lro *lro)
  7490. {
  7491. static u16 lro_struct_size = sizeof(struct lro);
  7492. memset(lro, 0, lro_struct_size);
  7493. }
  7494. static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
  7495. {
  7496. struct net_device *dev = skb->dev;
  7497. struct s2io_nic *sp = netdev_priv(dev);
  7498. skb->protocol = eth_type_trans(skb, dev);
  7499. if (vlan_tag && sp->vlan_strip_flag)
  7500. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  7501. if (sp->config.napi)
  7502. netif_receive_skb(skb);
  7503. else
  7504. netif_rx(skb);
  7505. }
  7506. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7507. struct sk_buff *skb, u32 tcp_len)
  7508. {
  7509. struct sk_buff *first = lro->parent;
  7510. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7511. first->len += tcp_len;
  7512. first->data_len = lro->frags_len;
  7513. skb_pull(skb, (skb->len - tcp_len));
  7514. if (skb_shinfo(first)->frag_list)
  7515. lro->last_frag->next = skb;
  7516. else
  7517. skb_shinfo(first)->frag_list = skb;
  7518. first->truesize += skb->truesize;
  7519. lro->last_frag = skb;
  7520. swstats->clubbed_frms_cnt++;
  7521. }
  7522. /**
  7523. * s2io_io_error_detected - called when PCI error is detected
  7524. * @pdev: Pointer to PCI device
  7525. * @state: The current pci connection state
  7526. *
  7527. * This function is called after a PCI bus error affecting
  7528. * this device has been detected.
  7529. */
  7530. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7531. pci_channel_state_t state)
  7532. {
  7533. struct net_device *netdev = pci_get_drvdata(pdev);
  7534. struct s2io_nic *sp = netdev_priv(netdev);
  7535. netif_device_detach(netdev);
  7536. if (state == pci_channel_io_perm_failure)
  7537. return PCI_ERS_RESULT_DISCONNECT;
  7538. if (netif_running(netdev)) {
  7539. /* Bring down the card, while avoiding PCI I/O */
  7540. do_s2io_card_down(sp, 0);
  7541. }
  7542. pci_disable_device(pdev);
  7543. return PCI_ERS_RESULT_NEED_RESET;
  7544. }
  7545. /**
  7546. * s2io_io_slot_reset - called after the pci bus has been reset.
  7547. * @pdev: Pointer to PCI device
  7548. *
  7549. * Restart the card from scratch, as if from a cold-boot.
  7550. * At this point, the card has exprienced a hard reset,
  7551. * followed by fixups by BIOS, and has its config space
  7552. * set up identically to what it was at cold boot.
  7553. */
  7554. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7555. {
  7556. struct net_device *netdev = pci_get_drvdata(pdev);
  7557. struct s2io_nic *sp = netdev_priv(netdev);
  7558. if (pci_enable_device(pdev)) {
  7559. pr_err("Cannot re-enable PCI device after reset.\n");
  7560. return PCI_ERS_RESULT_DISCONNECT;
  7561. }
  7562. pci_set_master(pdev);
  7563. s2io_reset(sp);
  7564. return PCI_ERS_RESULT_RECOVERED;
  7565. }
  7566. /**
  7567. * s2io_io_resume - called when traffic can start flowing again.
  7568. * @pdev: Pointer to PCI device
  7569. *
  7570. * This callback is called when the error recovery driver tells
  7571. * us that its OK to resume normal operation.
  7572. */
  7573. static void s2io_io_resume(struct pci_dev *pdev)
  7574. {
  7575. struct net_device *netdev = pci_get_drvdata(pdev);
  7576. struct s2io_nic *sp = netdev_priv(netdev);
  7577. if (netif_running(netdev)) {
  7578. if (s2io_card_up(sp)) {
  7579. pr_err("Can't bring device back up after reset.\n");
  7580. return;
  7581. }
  7582. if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) {
  7583. s2io_card_down(sp);
  7584. pr_err("Can't restore mac addr after reset.\n");
  7585. return;
  7586. }
  7587. }
  7588. netif_device_attach(netdev);
  7589. netif_tx_wake_all_queues(netdev);
  7590. }