skge.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  4. * Ethernet adapters. Based on earlier sk98lin, e100 and
  5. * FreeBSD if_sk drivers.
  6. *
  7. * This driver intentionally does not support all the features
  8. * of the original driver such as link fail-over and link management because
  9. * those should be done at higher levels.
  10. *
  11. * Copyright (C) 2004, 2005 Stephen Hemminger <[email protected]>
  12. */
  13. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14. #include <linux/in.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/moduleparam.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/etherdevice.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/pci.h>
  22. #include <linux/if_vlan.h>
  23. #include <linux/ip.h>
  24. #include <linux/delay.h>
  25. #include <linux/crc32.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/sched.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mii.h>
  31. #include <linux/slab.h>
  32. #include <linux/dmi.h>
  33. #include <linux/prefetch.h>
  34. #include <asm/irq.h>
  35. #include "skge.h"
  36. #define DRV_NAME "skge"
  37. #define DRV_VERSION "1.14"
  38. #define DEFAULT_TX_RING_SIZE 128
  39. #define DEFAULT_RX_RING_SIZE 512
  40. #define MAX_TX_RING_SIZE 1024
  41. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  42. #define MAX_RX_RING_SIZE 4096
  43. #define RX_COPY_THRESHOLD 128
  44. #define RX_BUF_SIZE 1536
  45. #define PHY_RETRIES 1000
  46. #define ETH_JUMBO_MTU 9000
  47. #define TX_WATCHDOG (5 * HZ)
  48. #define BLINK_MS 250
  49. #define LINK_HZ HZ
  50. #define SKGE_EEPROM_MAGIC 0x9933aabb
  51. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  52. MODULE_AUTHOR("Stephen Hemminger <[email protected]>");
  53. MODULE_LICENSE("GPL");
  54. MODULE_VERSION(DRV_VERSION);
  55. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  56. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  57. NETIF_MSG_IFDOWN);
  58. static int debug = -1; /* defaults above */
  59. module_param(debug, int, 0);
  60. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  61. static const struct pci_device_id skge_id_table[] = {
  62. { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
  63. { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
  64. #ifdef CONFIG_SKGE_GENESIS
  65. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  66. #endif
  67. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  68. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
  69. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
  70. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
  71. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  73. { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
  74. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
  75. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  76. { 0 }
  77. };
  78. MODULE_DEVICE_TABLE(pci, skge_id_table);
  79. static int skge_up(struct net_device *dev);
  80. static int skge_down(struct net_device *dev);
  81. static void skge_phy_reset(struct skge_port *skge);
  82. static void skge_tx_clean(struct net_device *dev);
  83. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  84. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  85. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  86. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  87. static void yukon_init(struct skge_hw *hw, int port);
  88. static void genesis_mac_init(struct skge_hw *hw, int port);
  89. static void genesis_link_up(struct skge_port *skge);
  90. static void skge_set_multicast(struct net_device *dev);
  91. static irqreturn_t skge_intr(int irq, void *dev_id);
  92. /* Avoid conditionals by using array */
  93. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  94. static const int rxqaddr[] = { Q_R1, Q_R2 };
  95. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  96. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  97. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  98. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  99. static inline bool is_genesis(const struct skge_hw *hw)
  100. {
  101. #ifdef CONFIG_SKGE_GENESIS
  102. return hw->chip_id == CHIP_ID_GENESIS;
  103. #else
  104. return false;
  105. #endif
  106. }
  107. static int skge_get_regs_len(struct net_device *dev)
  108. {
  109. return 0x4000;
  110. }
  111. /*
  112. * Returns copy of whole control register region
  113. * Note: skip RAM address register because accessing it will
  114. * cause bus hangs!
  115. */
  116. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  117. void *p)
  118. {
  119. const struct skge_port *skge = netdev_priv(dev);
  120. const void __iomem *io = skge->hw->regs;
  121. regs->version = 1;
  122. memset(p, 0, regs->len);
  123. memcpy_fromio(p, io, B3_RAM_ADDR);
  124. if (regs->len > B3_RI_WTO_R1) {
  125. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  126. regs->len - B3_RI_WTO_R1);
  127. }
  128. }
  129. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  130. static u32 wol_supported(const struct skge_hw *hw)
  131. {
  132. if (is_genesis(hw))
  133. return 0;
  134. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  135. return 0;
  136. return WAKE_MAGIC | WAKE_PHY;
  137. }
  138. static void skge_wol_init(struct skge_port *skge)
  139. {
  140. struct skge_hw *hw = skge->hw;
  141. int port = skge->port;
  142. u16 ctrl;
  143. skge_write16(hw, B0_CTST, CS_RST_CLR);
  144. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  145. /* Turn on Vaux */
  146. skge_write8(hw, B0_POWER_CTRL,
  147. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  148. /* WA code for COMA mode -- clear PHY reset */
  149. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  150. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  151. u32 reg = skge_read32(hw, B2_GP_IO);
  152. reg |= GP_DIR_9;
  153. reg &= ~GP_IO_9;
  154. skge_write32(hw, B2_GP_IO, reg);
  155. }
  156. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  157. GPC_DIS_SLEEP |
  158. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  159. GPC_ANEG_1 | GPC_RST_SET);
  160. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  161. GPC_DIS_SLEEP |
  162. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  163. GPC_ANEG_1 | GPC_RST_CLR);
  164. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  165. /* Force to 10/100 skge_reset will re-enable on resume */
  166. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  167. (PHY_AN_100FULL | PHY_AN_100HALF |
  168. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  169. /* no 1000 HD/FD */
  170. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  171. gm_phy_write(hw, port, PHY_MARV_CTRL,
  172. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  173. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  174. /* Set GMAC to no flow control and auto update for speed/duplex */
  175. gma_write16(hw, port, GM_GP_CTRL,
  176. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  177. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  178. /* Set WOL address */
  179. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  180. skge->netdev->dev_addr, ETH_ALEN);
  181. /* Turn on appropriate WOL control bits */
  182. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  183. ctrl = 0;
  184. if (skge->wol & WAKE_PHY)
  185. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  186. else
  187. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  188. if (skge->wol & WAKE_MAGIC)
  189. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  190. else
  191. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  192. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  193. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  194. /* block receiver */
  195. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  196. }
  197. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  198. {
  199. struct skge_port *skge = netdev_priv(dev);
  200. wol->supported = wol_supported(skge->hw);
  201. wol->wolopts = skge->wol;
  202. }
  203. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  204. {
  205. struct skge_port *skge = netdev_priv(dev);
  206. struct skge_hw *hw = skge->hw;
  207. if ((wol->wolopts & ~wol_supported(hw)) ||
  208. !device_can_wakeup(&hw->pdev->dev))
  209. return -EOPNOTSUPP;
  210. skge->wol = wol->wolopts;
  211. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  212. return 0;
  213. }
  214. /* Determine supported/advertised modes based on hardware.
  215. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  216. */
  217. static u32 skge_supported_modes(const struct skge_hw *hw)
  218. {
  219. u32 supported;
  220. if (hw->copper) {
  221. supported = (SUPPORTED_10baseT_Half |
  222. SUPPORTED_10baseT_Full |
  223. SUPPORTED_100baseT_Half |
  224. SUPPORTED_100baseT_Full |
  225. SUPPORTED_1000baseT_Half |
  226. SUPPORTED_1000baseT_Full |
  227. SUPPORTED_Autoneg |
  228. SUPPORTED_TP);
  229. if (is_genesis(hw))
  230. supported &= ~(SUPPORTED_10baseT_Half |
  231. SUPPORTED_10baseT_Full |
  232. SUPPORTED_100baseT_Half |
  233. SUPPORTED_100baseT_Full);
  234. else if (hw->chip_id == CHIP_ID_YUKON)
  235. supported &= ~SUPPORTED_1000baseT_Half;
  236. } else
  237. supported = (SUPPORTED_1000baseT_Full |
  238. SUPPORTED_1000baseT_Half |
  239. SUPPORTED_FIBRE |
  240. SUPPORTED_Autoneg);
  241. return supported;
  242. }
  243. static int skge_get_link_ksettings(struct net_device *dev,
  244. struct ethtool_link_ksettings *cmd)
  245. {
  246. struct skge_port *skge = netdev_priv(dev);
  247. struct skge_hw *hw = skge->hw;
  248. u32 supported, advertising;
  249. supported = skge_supported_modes(hw);
  250. if (hw->copper) {
  251. cmd->base.port = PORT_TP;
  252. cmd->base.phy_address = hw->phy_addr;
  253. } else
  254. cmd->base.port = PORT_FIBRE;
  255. advertising = skge->advertising;
  256. cmd->base.autoneg = skge->autoneg;
  257. cmd->base.speed = skge->speed;
  258. cmd->base.duplex = skge->duplex;
  259. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  260. supported);
  261. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  262. advertising);
  263. return 0;
  264. }
  265. static int skge_set_link_ksettings(struct net_device *dev,
  266. const struct ethtool_link_ksettings *cmd)
  267. {
  268. struct skge_port *skge = netdev_priv(dev);
  269. const struct skge_hw *hw = skge->hw;
  270. u32 supported = skge_supported_modes(hw);
  271. int err = 0;
  272. u32 advertising;
  273. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  274. cmd->link_modes.advertising);
  275. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  276. advertising = supported;
  277. skge->duplex = -1;
  278. skge->speed = -1;
  279. } else {
  280. u32 setting;
  281. u32 speed = cmd->base.speed;
  282. switch (speed) {
  283. case SPEED_1000:
  284. if (cmd->base.duplex == DUPLEX_FULL)
  285. setting = SUPPORTED_1000baseT_Full;
  286. else if (cmd->base.duplex == DUPLEX_HALF)
  287. setting = SUPPORTED_1000baseT_Half;
  288. else
  289. return -EINVAL;
  290. break;
  291. case SPEED_100:
  292. if (cmd->base.duplex == DUPLEX_FULL)
  293. setting = SUPPORTED_100baseT_Full;
  294. else if (cmd->base.duplex == DUPLEX_HALF)
  295. setting = SUPPORTED_100baseT_Half;
  296. else
  297. return -EINVAL;
  298. break;
  299. case SPEED_10:
  300. if (cmd->base.duplex == DUPLEX_FULL)
  301. setting = SUPPORTED_10baseT_Full;
  302. else if (cmd->base.duplex == DUPLEX_HALF)
  303. setting = SUPPORTED_10baseT_Half;
  304. else
  305. return -EINVAL;
  306. break;
  307. default:
  308. return -EINVAL;
  309. }
  310. if ((setting & supported) == 0)
  311. return -EINVAL;
  312. skge->speed = speed;
  313. skge->duplex = cmd->base.duplex;
  314. }
  315. skge->autoneg = cmd->base.autoneg;
  316. skge->advertising = advertising;
  317. if (netif_running(dev)) {
  318. skge_down(dev);
  319. err = skge_up(dev);
  320. if (err) {
  321. dev_close(dev);
  322. return err;
  323. }
  324. }
  325. return 0;
  326. }
  327. static void skge_get_drvinfo(struct net_device *dev,
  328. struct ethtool_drvinfo *info)
  329. {
  330. struct skge_port *skge = netdev_priv(dev);
  331. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  332. strscpy(info->version, DRV_VERSION, sizeof(info->version));
  333. strscpy(info->bus_info, pci_name(skge->hw->pdev),
  334. sizeof(info->bus_info));
  335. }
  336. static const struct skge_stat {
  337. char name[ETH_GSTRING_LEN];
  338. u16 xmac_offset;
  339. u16 gma_offset;
  340. } skge_stats[] = {
  341. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  342. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  343. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  344. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  345. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  346. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  347. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  348. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  349. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  350. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  351. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  352. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  353. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  354. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  355. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  356. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  357. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  358. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  359. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  360. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  361. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  362. };
  363. static int skge_get_sset_count(struct net_device *dev, int sset)
  364. {
  365. switch (sset) {
  366. case ETH_SS_STATS:
  367. return ARRAY_SIZE(skge_stats);
  368. default:
  369. return -EOPNOTSUPP;
  370. }
  371. }
  372. static void skge_get_ethtool_stats(struct net_device *dev,
  373. struct ethtool_stats *stats, u64 *data)
  374. {
  375. struct skge_port *skge = netdev_priv(dev);
  376. if (is_genesis(skge->hw))
  377. genesis_get_stats(skge, data);
  378. else
  379. yukon_get_stats(skge, data);
  380. }
  381. /* Use hardware MIB variables for critical path statistics and
  382. * transmit feedback not reported at interrupt.
  383. * Other errors are accounted for in interrupt handler.
  384. */
  385. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  386. {
  387. struct skge_port *skge = netdev_priv(dev);
  388. u64 data[ARRAY_SIZE(skge_stats)];
  389. if (is_genesis(skge->hw))
  390. genesis_get_stats(skge, data);
  391. else
  392. yukon_get_stats(skge, data);
  393. dev->stats.tx_bytes = data[0];
  394. dev->stats.rx_bytes = data[1];
  395. dev->stats.tx_packets = data[2] + data[4] + data[6];
  396. dev->stats.rx_packets = data[3] + data[5] + data[7];
  397. dev->stats.multicast = data[3] + data[5];
  398. dev->stats.collisions = data[10];
  399. dev->stats.tx_aborted_errors = data[12];
  400. return &dev->stats;
  401. }
  402. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  403. {
  404. int i;
  405. switch (stringset) {
  406. case ETH_SS_STATS:
  407. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  408. memcpy(data + i * ETH_GSTRING_LEN,
  409. skge_stats[i].name, ETH_GSTRING_LEN);
  410. break;
  411. }
  412. }
  413. static void skge_get_ring_param(struct net_device *dev,
  414. struct ethtool_ringparam *p,
  415. struct kernel_ethtool_ringparam *kernel_p,
  416. struct netlink_ext_ack *extack)
  417. {
  418. struct skge_port *skge = netdev_priv(dev);
  419. p->rx_max_pending = MAX_RX_RING_SIZE;
  420. p->tx_max_pending = MAX_TX_RING_SIZE;
  421. p->rx_pending = skge->rx_ring.count;
  422. p->tx_pending = skge->tx_ring.count;
  423. }
  424. static int skge_set_ring_param(struct net_device *dev,
  425. struct ethtool_ringparam *p,
  426. struct kernel_ethtool_ringparam *kernel_p,
  427. struct netlink_ext_ack *extack)
  428. {
  429. struct skge_port *skge = netdev_priv(dev);
  430. int err = 0;
  431. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  432. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  433. return -EINVAL;
  434. skge->rx_ring.count = p->rx_pending;
  435. skge->tx_ring.count = p->tx_pending;
  436. if (netif_running(dev)) {
  437. skge_down(dev);
  438. err = skge_up(dev);
  439. if (err)
  440. dev_close(dev);
  441. }
  442. return err;
  443. }
  444. static u32 skge_get_msglevel(struct net_device *netdev)
  445. {
  446. struct skge_port *skge = netdev_priv(netdev);
  447. return skge->msg_enable;
  448. }
  449. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  450. {
  451. struct skge_port *skge = netdev_priv(netdev);
  452. skge->msg_enable = value;
  453. }
  454. static int skge_nway_reset(struct net_device *dev)
  455. {
  456. struct skge_port *skge = netdev_priv(dev);
  457. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  458. return -EINVAL;
  459. skge_phy_reset(skge);
  460. return 0;
  461. }
  462. static void skge_get_pauseparam(struct net_device *dev,
  463. struct ethtool_pauseparam *ecmd)
  464. {
  465. struct skge_port *skge = netdev_priv(dev);
  466. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  467. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  468. ecmd->tx_pause = (ecmd->rx_pause ||
  469. (skge->flow_control == FLOW_MODE_LOC_SEND));
  470. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  471. }
  472. static int skge_set_pauseparam(struct net_device *dev,
  473. struct ethtool_pauseparam *ecmd)
  474. {
  475. struct skge_port *skge = netdev_priv(dev);
  476. struct ethtool_pauseparam old;
  477. int err = 0;
  478. skge_get_pauseparam(dev, &old);
  479. if (ecmd->autoneg != old.autoneg)
  480. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  481. else {
  482. if (ecmd->rx_pause && ecmd->tx_pause)
  483. skge->flow_control = FLOW_MODE_SYMMETRIC;
  484. else if (ecmd->rx_pause && !ecmd->tx_pause)
  485. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  486. else if (!ecmd->rx_pause && ecmd->tx_pause)
  487. skge->flow_control = FLOW_MODE_LOC_SEND;
  488. else
  489. skge->flow_control = FLOW_MODE_NONE;
  490. }
  491. if (netif_running(dev)) {
  492. skge_down(dev);
  493. err = skge_up(dev);
  494. if (err) {
  495. dev_close(dev);
  496. return err;
  497. }
  498. }
  499. return 0;
  500. }
  501. /* Chip internal frequency for clock calculations */
  502. static inline u32 hwkhz(const struct skge_hw *hw)
  503. {
  504. return is_genesis(hw) ? 53125 : 78125;
  505. }
  506. /* Chip HZ to microseconds */
  507. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  508. {
  509. return (ticks * 1000) / hwkhz(hw);
  510. }
  511. /* Microseconds to chip HZ */
  512. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  513. {
  514. return hwkhz(hw) * usec / 1000;
  515. }
  516. static int skge_get_coalesce(struct net_device *dev,
  517. struct ethtool_coalesce *ecmd,
  518. struct kernel_ethtool_coalesce *kernel_coal,
  519. struct netlink_ext_ack *extack)
  520. {
  521. struct skge_port *skge = netdev_priv(dev);
  522. struct skge_hw *hw = skge->hw;
  523. int port = skge->port;
  524. ecmd->rx_coalesce_usecs = 0;
  525. ecmd->tx_coalesce_usecs = 0;
  526. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  527. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  528. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  529. if (msk & rxirqmask[port])
  530. ecmd->rx_coalesce_usecs = delay;
  531. if (msk & txirqmask[port])
  532. ecmd->tx_coalesce_usecs = delay;
  533. }
  534. return 0;
  535. }
  536. /* Note: interrupt timer is per board, but can turn on/off per port */
  537. static int skge_set_coalesce(struct net_device *dev,
  538. struct ethtool_coalesce *ecmd,
  539. struct kernel_ethtool_coalesce *kernel_coal,
  540. struct netlink_ext_ack *extack)
  541. {
  542. struct skge_port *skge = netdev_priv(dev);
  543. struct skge_hw *hw = skge->hw;
  544. int port = skge->port;
  545. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  546. u32 delay = 25;
  547. if (ecmd->rx_coalesce_usecs == 0)
  548. msk &= ~rxirqmask[port];
  549. else if (ecmd->rx_coalesce_usecs < 25 ||
  550. ecmd->rx_coalesce_usecs > 33333)
  551. return -EINVAL;
  552. else {
  553. msk |= rxirqmask[port];
  554. delay = ecmd->rx_coalesce_usecs;
  555. }
  556. if (ecmd->tx_coalesce_usecs == 0)
  557. msk &= ~txirqmask[port];
  558. else if (ecmd->tx_coalesce_usecs < 25 ||
  559. ecmd->tx_coalesce_usecs > 33333)
  560. return -EINVAL;
  561. else {
  562. msk |= txirqmask[port];
  563. delay = min(delay, ecmd->rx_coalesce_usecs);
  564. }
  565. skge_write32(hw, B2_IRQM_MSK, msk);
  566. if (msk == 0)
  567. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  568. else {
  569. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  570. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  571. }
  572. return 0;
  573. }
  574. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  575. static void skge_led(struct skge_port *skge, enum led_mode mode)
  576. {
  577. struct skge_hw *hw = skge->hw;
  578. int port = skge->port;
  579. spin_lock_bh(&hw->phy_lock);
  580. if (is_genesis(hw)) {
  581. switch (mode) {
  582. case LED_MODE_OFF:
  583. if (hw->phy_type == SK_PHY_BCOM)
  584. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  585. else {
  586. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  587. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  588. }
  589. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  590. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  591. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  592. break;
  593. case LED_MODE_ON:
  594. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  595. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  596. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  597. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  598. break;
  599. case LED_MODE_TST:
  600. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  601. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  602. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  603. if (hw->phy_type == SK_PHY_BCOM)
  604. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  605. else {
  606. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  607. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  608. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  609. }
  610. }
  611. } else {
  612. switch (mode) {
  613. case LED_MODE_OFF:
  614. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  615. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  616. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  617. PHY_M_LED_MO_10(MO_LED_OFF) |
  618. PHY_M_LED_MO_100(MO_LED_OFF) |
  619. PHY_M_LED_MO_1000(MO_LED_OFF) |
  620. PHY_M_LED_MO_RX(MO_LED_OFF));
  621. break;
  622. case LED_MODE_ON:
  623. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  624. PHY_M_LED_PULS_DUR(PULS_170MS) |
  625. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  626. PHY_M_LEDC_TX_CTRL |
  627. PHY_M_LEDC_DP_CTRL);
  628. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  629. PHY_M_LED_MO_RX(MO_LED_OFF) |
  630. (skge->speed == SPEED_100 ?
  631. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  632. break;
  633. case LED_MODE_TST:
  634. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  635. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  636. PHY_M_LED_MO_DUP(MO_LED_ON) |
  637. PHY_M_LED_MO_10(MO_LED_ON) |
  638. PHY_M_LED_MO_100(MO_LED_ON) |
  639. PHY_M_LED_MO_1000(MO_LED_ON) |
  640. PHY_M_LED_MO_RX(MO_LED_ON));
  641. }
  642. }
  643. spin_unlock_bh(&hw->phy_lock);
  644. }
  645. /* blink LED's for finding board */
  646. static int skge_set_phys_id(struct net_device *dev,
  647. enum ethtool_phys_id_state state)
  648. {
  649. struct skge_port *skge = netdev_priv(dev);
  650. switch (state) {
  651. case ETHTOOL_ID_ACTIVE:
  652. return 2; /* cycle on/off twice per second */
  653. case ETHTOOL_ID_ON:
  654. skge_led(skge, LED_MODE_TST);
  655. break;
  656. case ETHTOOL_ID_OFF:
  657. skge_led(skge, LED_MODE_OFF);
  658. break;
  659. case ETHTOOL_ID_INACTIVE:
  660. /* back to regular LED state */
  661. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  662. }
  663. return 0;
  664. }
  665. static int skge_get_eeprom_len(struct net_device *dev)
  666. {
  667. struct skge_port *skge = netdev_priv(dev);
  668. u32 reg2;
  669. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  670. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  671. }
  672. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  673. {
  674. u32 val;
  675. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  676. do {
  677. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  678. } while (!(offset & PCI_VPD_ADDR_F));
  679. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  680. return val;
  681. }
  682. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  683. {
  684. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  685. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  686. offset | PCI_VPD_ADDR_F);
  687. do {
  688. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  689. } while (offset & PCI_VPD_ADDR_F);
  690. }
  691. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  692. u8 *data)
  693. {
  694. struct skge_port *skge = netdev_priv(dev);
  695. struct pci_dev *pdev = skge->hw->pdev;
  696. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  697. int length = eeprom->len;
  698. u16 offset = eeprom->offset;
  699. if (!cap)
  700. return -EINVAL;
  701. eeprom->magic = SKGE_EEPROM_MAGIC;
  702. while (length > 0) {
  703. u32 val = skge_vpd_read(pdev, cap, offset);
  704. int n = min_t(int, length, sizeof(val));
  705. memcpy(data, &val, n);
  706. length -= n;
  707. data += n;
  708. offset += n;
  709. }
  710. return 0;
  711. }
  712. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  713. u8 *data)
  714. {
  715. struct skge_port *skge = netdev_priv(dev);
  716. struct pci_dev *pdev = skge->hw->pdev;
  717. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  718. int length = eeprom->len;
  719. u16 offset = eeprom->offset;
  720. if (!cap)
  721. return -EINVAL;
  722. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  723. return -EINVAL;
  724. while (length > 0) {
  725. u32 val;
  726. int n = min_t(int, length, sizeof(val));
  727. if (n < sizeof(val))
  728. val = skge_vpd_read(pdev, cap, offset);
  729. memcpy(&val, data, n);
  730. skge_vpd_write(pdev, cap, offset, val);
  731. length -= n;
  732. data += n;
  733. offset += n;
  734. }
  735. return 0;
  736. }
  737. static const struct ethtool_ops skge_ethtool_ops = {
  738. .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
  739. .get_drvinfo = skge_get_drvinfo,
  740. .get_regs_len = skge_get_regs_len,
  741. .get_regs = skge_get_regs,
  742. .get_wol = skge_get_wol,
  743. .set_wol = skge_set_wol,
  744. .get_msglevel = skge_get_msglevel,
  745. .set_msglevel = skge_set_msglevel,
  746. .nway_reset = skge_nway_reset,
  747. .get_link = ethtool_op_get_link,
  748. .get_eeprom_len = skge_get_eeprom_len,
  749. .get_eeprom = skge_get_eeprom,
  750. .set_eeprom = skge_set_eeprom,
  751. .get_ringparam = skge_get_ring_param,
  752. .set_ringparam = skge_set_ring_param,
  753. .get_pauseparam = skge_get_pauseparam,
  754. .set_pauseparam = skge_set_pauseparam,
  755. .get_coalesce = skge_get_coalesce,
  756. .set_coalesce = skge_set_coalesce,
  757. .get_strings = skge_get_strings,
  758. .set_phys_id = skge_set_phys_id,
  759. .get_sset_count = skge_get_sset_count,
  760. .get_ethtool_stats = skge_get_ethtool_stats,
  761. .get_link_ksettings = skge_get_link_ksettings,
  762. .set_link_ksettings = skge_set_link_ksettings,
  763. };
  764. /*
  765. * Allocate ring elements and chain them together
  766. * One-to-one association of board descriptors with ring elements
  767. */
  768. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  769. {
  770. struct skge_tx_desc *d;
  771. struct skge_element *e;
  772. int i;
  773. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  774. if (!ring->start)
  775. return -ENOMEM;
  776. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  777. e->desc = d;
  778. if (i == ring->count - 1) {
  779. e->next = ring->start;
  780. d->next_offset = base;
  781. } else {
  782. e->next = e + 1;
  783. d->next_offset = base + (i+1) * sizeof(*d);
  784. }
  785. }
  786. ring->to_use = ring->to_clean = ring->start;
  787. return 0;
  788. }
  789. /* Allocate and setup a new buffer for receiving */
  790. static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  791. struct sk_buff *skb, unsigned int bufsize)
  792. {
  793. struct skge_rx_desc *rd = e->desc;
  794. dma_addr_t map;
  795. map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
  796. DMA_FROM_DEVICE);
  797. if (dma_mapping_error(&skge->hw->pdev->dev, map))
  798. return -1;
  799. rd->dma_lo = lower_32_bits(map);
  800. rd->dma_hi = upper_32_bits(map);
  801. e->skb = skb;
  802. rd->csum1_start = ETH_HLEN;
  803. rd->csum2_start = ETH_HLEN;
  804. rd->csum1 = 0;
  805. rd->csum2 = 0;
  806. wmb();
  807. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  808. dma_unmap_addr_set(e, mapaddr, map);
  809. dma_unmap_len_set(e, maplen, bufsize);
  810. return 0;
  811. }
  812. /* Resume receiving using existing skb,
  813. * Note: DMA address is not changed by chip.
  814. * MTU not changed while receiver active.
  815. */
  816. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  817. {
  818. struct skge_rx_desc *rd = e->desc;
  819. rd->csum2 = 0;
  820. rd->csum2_start = ETH_HLEN;
  821. wmb();
  822. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  823. }
  824. /* Free all buffers in receive ring, assumes receiver stopped */
  825. static void skge_rx_clean(struct skge_port *skge)
  826. {
  827. struct skge_hw *hw = skge->hw;
  828. struct skge_ring *ring = &skge->rx_ring;
  829. struct skge_element *e;
  830. e = ring->start;
  831. do {
  832. struct skge_rx_desc *rd = e->desc;
  833. rd->control = 0;
  834. if (e->skb) {
  835. dma_unmap_single(&hw->pdev->dev,
  836. dma_unmap_addr(e, mapaddr),
  837. dma_unmap_len(e, maplen),
  838. DMA_FROM_DEVICE);
  839. dev_kfree_skb(e->skb);
  840. e->skb = NULL;
  841. }
  842. } while ((e = e->next) != ring->start);
  843. }
  844. /* Allocate buffers for receive ring
  845. * For receive: to_clean is next received frame.
  846. */
  847. static int skge_rx_fill(struct net_device *dev)
  848. {
  849. struct skge_port *skge = netdev_priv(dev);
  850. struct skge_ring *ring = &skge->rx_ring;
  851. struct skge_element *e;
  852. e = ring->start;
  853. do {
  854. struct sk_buff *skb;
  855. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  856. GFP_KERNEL);
  857. if (!skb)
  858. return -ENOMEM;
  859. skb_reserve(skb, NET_IP_ALIGN);
  860. if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
  861. dev_kfree_skb(skb);
  862. return -EIO;
  863. }
  864. } while ((e = e->next) != ring->start);
  865. ring->to_clean = ring->start;
  866. return 0;
  867. }
  868. static const char *skge_pause(enum pause_status status)
  869. {
  870. switch (status) {
  871. case FLOW_STAT_NONE:
  872. return "none";
  873. case FLOW_STAT_REM_SEND:
  874. return "rx only";
  875. case FLOW_STAT_LOC_SEND:
  876. return "tx_only";
  877. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  878. return "both";
  879. default:
  880. return "indeterminated";
  881. }
  882. }
  883. static void skge_link_up(struct skge_port *skge)
  884. {
  885. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  886. LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
  887. netif_carrier_on(skge->netdev);
  888. netif_wake_queue(skge->netdev);
  889. netif_info(skge, link, skge->netdev,
  890. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  891. skge->speed,
  892. skge->duplex == DUPLEX_FULL ? "full" : "half",
  893. skge_pause(skge->flow_status));
  894. }
  895. static void skge_link_down(struct skge_port *skge)
  896. {
  897. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
  898. netif_carrier_off(skge->netdev);
  899. netif_stop_queue(skge->netdev);
  900. netif_info(skge, link, skge->netdev, "Link is down\n");
  901. }
  902. static void xm_link_down(struct skge_hw *hw, int port)
  903. {
  904. struct net_device *dev = hw->dev[port];
  905. struct skge_port *skge = netdev_priv(dev);
  906. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  907. if (netif_carrier_ok(dev))
  908. skge_link_down(skge);
  909. }
  910. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  911. {
  912. int i;
  913. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  914. *val = xm_read16(hw, port, XM_PHY_DATA);
  915. if (hw->phy_type == SK_PHY_XMAC)
  916. goto ready;
  917. for (i = 0; i < PHY_RETRIES; i++) {
  918. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  919. goto ready;
  920. udelay(1);
  921. }
  922. return -ETIMEDOUT;
  923. ready:
  924. *val = xm_read16(hw, port, XM_PHY_DATA);
  925. return 0;
  926. }
  927. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  928. {
  929. u16 v = 0;
  930. if (__xm_phy_read(hw, port, reg, &v))
  931. pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
  932. return v;
  933. }
  934. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  935. {
  936. int i;
  937. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  938. for (i = 0; i < PHY_RETRIES; i++) {
  939. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  940. goto ready;
  941. udelay(1);
  942. }
  943. return -EIO;
  944. ready:
  945. xm_write16(hw, port, XM_PHY_DATA, val);
  946. for (i = 0; i < PHY_RETRIES; i++) {
  947. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  948. return 0;
  949. udelay(1);
  950. }
  951. return -ETIMEDOUT;
  952. }
  953. static void genesis_init(struct skge_hw *hw)
  954. {
  955. /* set blink source counter */
  956. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  957. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  958. /* configure mac arbiter */
  959. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  960. /* configure mac arbiter timeout values */
  961. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  962. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  963. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  964. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  965. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  966. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  967. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  968. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  969. /* configure packet arbiter timeout */
  970. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  971. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  972. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  973. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  974. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  975. }
  976. static void genesis_reset(struct skge_hw *hw, int port)
  977. {
  978. static const u8 zero[8] = { 0 };
  979. u32 reg;
  980. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  981. /* reset the statistics module */
  982. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  983. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  984. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  985. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  986. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  987. /* disable Broadcom PHY IRQ */
  988. if (hw->phy_type == SK_PHY_BCOM)
  989. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  990. xm_outhash(hw, port, XM_HSM, zero);
  991. /* Flush TX and RX fifo */
  992. reg = xm_read32(hw, port, XM_MODE);
  993. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  994. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  995. }
  996. /* Convert mode to MII values */
  997. static const u16 phy_pause_map[] = {
  998. [FLOW_MODE_NONE] = 0,
  999. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1000. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1001. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1002. };
  1003. /* special defines for FIBER (88E1011S only) */
  1004. static const u16 fiber_pause_map[] = {
  1005. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1006. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1007. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1008. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1009. };
  1010. /* Check status of Broadcom phy link */
  1011. static void bcom_check_link(struct skge_hw *hw, int port)
  1012. {
  1013. struct net_device *dev = hw->dev[port];
  1014. struct skge_port *skge = netdev_priv(dev);
  1015. u16 status;
  1016. /* read twice because of latch */
  1017. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1018. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1019. if ((status & PHY_ST_LSYNC) == 0) {
  1020. xm_link_down(hw, port);
  1021. return;
  1022. }
  1023. if (skge->autoneg == AUTONEG_ENABLE) {
  1024. u16 lpa, aux;
  1025. if (!(status & PHY_ST_AN_OVER))
  1026. return;
  1027. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1028. if (lpa & PHY_B_AN_RF) {
  1029. netdev_notice(dev, "remote fault\n");
  1030. return;
  1031. }
  1032. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1033. /* Check Duplex mismatch */
  1034. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1035. case PHY_B_RES_1000FD:
  1036. skge->duplex = DUPLEX_FULL;
  1037. break;
  1038. case PHY_B_RES_1000HD:
  1039. skge->duplex = DUPLEX_HALF;
  1040. break;
  1041. default:
  1042. netdev_notice(dev, "duplex mismatch\n");
  1043. return;
  1044. }
  1045. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1046. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1047. case PHY_B_AS_PAUSE_MSK:
  1048. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1049. break;
  1050. case PHY_B_AS_PRR:
  1051. skge->flow_status = FLOW_STAT_REM_SEND;
  1052. break;
  1053. case PHY_B_AS_PRT:
  1054. skge->flow_status = FLOW_STAT_LOC_SEND;
  1055. break;
  1056. default:
  1057. skge->flow_status = FLOW_STAT_NONE;
  1058. }
  1059. skge->speed = SPEED_1000;
  1060. }
  1061. if (!netif_carrier_ok(dev))
  1062. genesis_link_up(skge);
  1063. }
  1064. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1065. * Phy on for 100 or 10Mbit operation
  1066. */
  1067. static void bcom_phy_init(struct skge_port *skge)
  1068. {
  1069. struct skge_hw *hw = skge->hw;
  1070. int port = skge->port;
  1071. int i;
  1072. u16 id1, r, ext, ctl;
  1073. /* magic workaround patterns for Broadcom */
  1074. static const struct {
  1075. u16 reg;
  1076. u16 val;
  1077. } A1hack[] = {
  1078. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1079. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1080. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1081. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1082. }, C0hack[] = {
  1083. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1084. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1085. };
  1086. /* read Id from external PHY (all have the same address) */
  1087. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1088. /* Optimize MDIO transfer by suppressing preamble. */
  1089. r = xm_read16(hw, port, XM_MMU_CMD);
  1090. r |= XM_MMU_NO_PRE;
  1091. xm_write16(hw, port, XM_MMU_CMD, r);
  1092. switch (id1) {
  1093. case PHY_BCOM_ID1_C0:
  1094. /*
  1095. * Workaround BCOM Errata for the C0 type.
  1096. * Write magic patterns to reserved registers.
  1097. */
  1098. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1099. xm_phy_write(hw, port,
  1100. C0hack[i].reg, C0hack[i].val);
  1101. break;
  1102. case PHY_BCOM_ID1_A1:
  1103. /*
  1104. * Workaround BCOM Errata for the A1 type.
  1105. * Write magic patterns to reserved registers.
  1106. */
  1107. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1108. xm_phy_write(hw, port,
  1109. A1hack[i].reg, A1hack[i].val);
  1110. break;
  1111. }
  1112. /*
  1113. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1114. * Disable Power Management after reset.
  1115. */
  1116. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1117. r |= PHY_B_AC_DIS_PM;
  1118. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1119. /* Dummy read */
  1120. xm_read16(hw, port, XM_ISRC);
  1121. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1122. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1123. if (skge->autoneg == AUTONEG_ENABLE) {
  1124. /*
  1125. * Workaround BCOM Errata #1 for the C5 type.
  1126. * 1000Base-T Link Acquisition Failure in Slave Mode
  1127. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1128. */
  1129. u16 adv = PHY_B_1000C_RD;
  1130. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1131. adv |= PHY_B_1000C_AHD;
  1132. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1133. adv |= PHY_B_1000C_AFD;
  1134. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1135. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1136. } else {
  1137. if (skge->duplex == DUPLEX_FULL)
  1138. ctl |= PHY_CT_DUP_MD;
  1139. /* Force to slave */
  1140. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1141. }
  1142. /* Set autonegotiation pause parameters */
  1143. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1144. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1145. /* Handle Jumbo frames */
  1146. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1147. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1148. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1149. ext |= PHY_B_PEC_HIGH_LA;
  1150. }
  1151. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1152. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1153. /* Use link status change interrupt */
  1154. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1155. }
  1156. static void xm_phy_init(struct skge_port *skge)
  1157. {
  1158. struct skge_hw *hw = skge->hw;
  1159. int port = skge->port;
  1160. u16 ctrl = 0;
  1161. if (skge->autoneg == AUTONEG_ENABLE) {
  1162. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1163. ctrl |= PHY_X_AN_HD;
  1164. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1165. ctrl |= PHY_X_AN_FD;
  1166. ctrl |= fiber_pause_map[skge->flow_control];
  1167. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1168. /* Restart Auto-negotiation */
  1169. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1170. } else {
  1171. /* Set DuplexMode in Config register */
  1172. if (skge->duplex == DUPLEX_FULL)
  1173. ctrl |= PHY_CT_DUP_MD;
  1174. /*
  1175. * Do NOT enable Auto-negotiation here. This would hold
  1176. * the link down because no IDLEs are transmitted
  1177. */
  1178. }
  1179. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1180. /* Poll PHY for status changes */
  1181. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1182. }
  1183. static int xm_check_link(struct net_device *dev)
  1184. {
  1185. struct skge_port *skge = netdev_priv(dev);
  1186. struct skge_hw *hw = skge->hw;
  1187. int port = skge->port;
  1188. u16 status;
  1189. /* read twice because of latch */
  1190. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1191. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1192. if ((status & PHY_ST_LSYNC) == 0) {
  1193. xm_link_down(hw, port);
  1194. return 0;
  1195. }
  1196. if (skge->autoneg == AUTONEG_ENABLE) {
  1197. u16 lpa, res;
  1198. if (!(status & PHY_ST_AN_OVER))
  1199. return 0;
  1200. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1201. if (lpa & PHY_B_AN_RF) {
  1202. netdev_notice(dev, "remote fault\n");
  1203. return 0;
  1204. }
  1205. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1206. /* Check Duplex mismatch */
  1207. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1208. case PHY_X_RS_FD:
  1209. skge->duplex = DUPLEX_FULL;
  1210. break;
  1211. case PHY_X_RS_HD:
  1212. skge->duplex = DUPLEX_HALF;
  1213. break;
  1214. default:
  1215. netdev_notice(dev, "duplex mismatch\n");
  1216. return 0;
  1217. }
  1218. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1219. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1220. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1221. (lpa & PHY_X_P_SYM_MD))
  1222. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1223. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1224. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1225. /* Enable PAUSE receive, disable PAUSE transmit */
  1226. skge->flow_status = FLOW_STAT_REM_SEND;
  1227. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1228. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1229. /* Disable PAUSE receive, enable PAUSE transmit */
  1230. skge->flow_status = FLOW_STAT_LOC_SEND;
  1231. else
  1232. skge->flow_status = FLOW_STAT_NONE;
  1233. skge->speed = SPEED_1000;
  1234. }
  1235. if (!netif_carrier_ok(dev))
  1236. genesis_link_up(skge);
  1237. return 1;
  1238. }
  1239. /* Poll to check for link coming up.
  1240. *
  1241. * Since internal PHY is wired to a level triggered pin, can't
  1242. * get an interrupt when carrier is detected, need to poll for
  1243. * link coming up.
  1244. */
  1245. static void xm_link_timer(struct timer_list *t)
  1246. {
  1247. struct skge_port *skge = from_timer(skge, t, link_timer);
  1248. struct net_device *dev = skge->netdev;
  1249. struct skge_hw *hw = skge->hw;
  1250. int port = skge->port;
  1251. int i;
  1252. unsigned long flags;
  1253. if (!netif_running(dev))
  1254. return;
  1255. spin_lock_irqsave(&hw->phy_lock, flags);
  1256. /*
  1257. * Verify that the link by checking GPIO register three times.
  1258. * This pin has the signal from the link_sync pin connected to it.
  1259. */
  1260. for (i = 0; i < 3; i++) {
  1261. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1262. goto link_down;
  1263. }
  1264. /* Re-enable interrupt to detect link down */
  1265. if (xm_check_link(dev)) {
  1266. u16 msk = xm_read16(hw, port, XM_IMSK);
  1267. msk &= ~XM_IS_INP_ASS;
  1268. xm_write16(hw, port, XM_IMSK, msk);
  1269. xm_read16(hw, port, XM_ISRC);
  1270. } else {
  1271. link_down:
  1272. mod_timer(&skge->link_timer,
  1273. round_jiffies(jiffies + LINK_HZ));
  1274. }
  1275. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1276. }
  1277. static void genesis_mac_init(struct skge_hw *hw, int port)
  1278. {
  1279. struct net_device *dev = hw->dev[port];
  1280. struct skge_port *skge = netdev_priv(dev);
  1281. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1282. int i;
  1283. u32 r;
  1284. static const u8 zero[6] = { 0 };
  1285. for (i = 0; i < 10; i++) {
  1286. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1287. MFF_SET_MAC_RST);
  1288. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1289. goto reset_ok;
  1290. udelay(1);
  1291. }
  1292. netdev_warn(dev, "genesis reset failed\n");
  1293. reset_ok:
  1294. /* Unreset the XMAC. */
  1295. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1296. /*
  1297. * Perform additional initialization for external PHYs,
  1298. * namely for the 1000baseTX cards that use the XMAC's
  1299. * GMII mode.
  1300. */
  1301. if (hw->phy_type != SK_PHY_XMAC) {
  1302. /* Take external Phy out of reset */
  1303. r = skge_read32(hw, B2_GP_IO);
  1304. if (port == 0)
  1305. r |= GP_DIR_0|GP_IO_0;
  1306. else
  1307. r |= GP_DIR_2|GP_IO_2;
  1308. skge_write32(hw, B2_GP_IO, r);
  1309. /* Enable GMII interface */
  1310. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1311. }
  1312. switch (hw->phy_type) {
  1313. case SK_PHY_XMAC:
  1314. xm_phy_init(skge);
  1315. break;
  1316. case SK_PHY_BCOM:
  1317. bcom_phy_init(skge);
  1318. bcom_check_link(hw, port);
  1319. }
  1320. /* Set Station Address */
  1321. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1322. /* We don't use match addresses so clear */
  1323. for (i = 1; i < 16; i++)
  1324. xm_outaddr(hw, port, XM_EXM(i), zero);
  1325. /* Clear MIB counters */
  1326. xm_write16(hw, port, XM_STAT_CMD,
  1327. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1328. /* Clear two times according to Errata #3 */
  1329. xm_write16(hw, port, XM_STAT_CMD,
  1330. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1331. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1332. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1333. /* We don't need the FCS appended to the packet. */
  1334. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1335. if (jumbo)
  1336. r |= XM_RX_BIG_PK_OK;
  1337. if (skge->duplex == DUPLEX_HALF) {
  1338. /*
  1339. * If in manual half duplex mode the other side might be in
  1340. * full duplex mode, so ignore if a carrier extension is not seen
  1341. * on frames received
  1342. */
  1343. r |= XM_RX_DIS_CEXT;
  1344. }
  1345. xm_write16(hw, port, XM_RX_CMD, r);
  1346. /* We want short frames padded to 60 bytes. */
  1347. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1348. /* Increase threshold for jumbo frames on dual port */
  1349. if (hw->ports > 1 && jumbo)
  1350. xm_write16(hw, port, XM_TX_THR, 1020);
  1351. else
  1352. xm_write16(hw, port, XM_TX_THR, 512);
  1353. /*
  1354. * Enable the reception of all error frames. This is
  1355. * a necessary evil due to the design of the XMAC. The
  1356. * XMAC's receive FIFO is only 8K in size, however jumbo
  1357. * frames can be up to 9000 bytes in length. When bad
  1358. * frame filtering is enabled, the XMAC's RX FIFO operates
  1359. * in 'store and forward' mode. For this to work, the
  1360. * entire frame has to fit into the FIFO, but that means
  1361. * that jumbo frames larger than 8192 bytes will be
  1362. * truncated. Disabling all bad frame filtering causes
  1363. * the RX FIFO to operate in streaming mode, in which
  1364. * case the XMAC will start transferring frames out of the
  1365. * RX FIFO as soon as the FIFO threshold is reached.
  1366. */
  1367. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1368. /*
  1369. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1370. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1371. * and 'Octets Rx OK Hi Cnt Ov'.
  1372. */
  1373. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1374. /*
  1375. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1376. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1377. * and 'Octets Tx OK Hi Cnt Ov'.
  1378. */
  1379. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1380. /* Configure MAC arbiter */
  1381. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1382. /* configure timeout values */
  1383. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1384. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1385. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1386. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1387. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1388. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1389. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1390. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1391. /* Configure Rx MAC FIFO */
  1392. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1393. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1394. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1395. /* Configure Tx MAC FIFO */
  1396. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1397. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1398. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1399. if (jumbo) {
  1400. /* Enable frame flushing if jumbo frames used */
  1401. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1402. } else {
  1403. /* enable timeout timers if normal frames */
  1404. skge_write16(hw, B3_PA_CTRL,
  1405. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1406. }
  1407. }
  1408. static void genesis_stop(struct skge_port *skge)
  1409. {
  1410. struct skge_hw *hw = skge->hw;
  1411. int port = skge->port;
  1412. unsigned retries = 1000;
  1413. u16 cmd;
  1414. /* Disable Tx and Rx */
  1415. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1416. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1417. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1418. genesis_reset(hw, port);
  1419. /* Clear Tx packet arbiter timeout IRQ */
  1420. skge_write16(hw, B3_PA_CTRL,
  1421. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1422. /* Reset the MAC */
  1423. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1424. do {
  1425. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1426. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1427. break;
  1428. } while (--retries > 0);
  1429. /* For external PHYs there must be special handling */
  1430. if (hw->phy_type != SK_PHY_XMAC) {
  1431. u32 reg = skge_read32(hw, B2_GP_IO);
  1432. if (port == 0) {
  1433. reg |= GP_DIR_0;
  1434. reg &= ~GP_IO_0;
  1435. } else {
  1436. reg |= GP_DIR_2;
  1437. reg &= ~GP_IO_2;
  1438. }
  1439. skge_write32(hw, B2_GP_IO, reg);
  1440. skge_read32(hw, B2_GP_IO);
  1441. }
  1442. xm_write16(hw, port, XM_MMU_CMD,
  1443. xm_read16(hw, port, XM_MMU_CMD)
  1444. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1445. xm_read16(hw, port, XM_MMU_CMD);
  1446. }
  1447. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1448. {
  1449. struct skge_hw *hw = skge->hw;
  1450. int port = skge->port;
  1451. int i;
  1452. unsigned long timeout = jiffies + HZ;
  1453. xm_write16(hw, port,
  1454. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1455. /* wait for update to complete */
  1456. while (xm_read16(hw, port, XM_STAT_CMD)
  1457. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1458. if (time_after(jiffies, timeout))
  1459. break;
  1460. udelay(10);
  1461. }
  1462. /* special case for 64 bit octet counter */
  1463. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1464. | xm_read32(hw, port, XM_TXO_OK_LO);
  1465. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1466. | xm_read32(hw, port, XM_RXO_OK_LO);
  1467. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1468. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1469. }
  1470. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1471. {
  1472. struct net_device *dev = hw->dev[port];
  1473. struct skge_port *skge = netdev_priv(dev);
  1474. u16 status = xm_read16(hw, port, XM_ISRC);
  1475. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1476. "mac interrupt status 0x%x\n", status);
  1477. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1478. xm_link_down(hw, port);
  1479. mod_timer(&skge->link_timer, jiffies + 1);
  1480. }
  1481. if (status & XM_IS_TXF_UR) {
  1482. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1483. ++dev->stats.tx_fifo_errors;
  1484. }
  1485. }
  1486. static void genesis_link_up(struct skge_port *skge)
  1487. {
  1488. struct skge_hw *hw = skge->hw;
  1489. int port = skge->port;
  1490. u16 cmd, msk;
  1491. u32 mode;
  1492. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1493. /*
  1494. * enabling pause frame reception is required for 1000BT
  1495. * because the XMAC is not reset if the link is going down
  1496. */
  1497. if (skge->flow_status == FLOW_STAT_NONE ||
  1498. skge->flow_status == FLOW_STAT_LOC_SEND)
  1499. /* Disable Pause Frame Reception */
  1500. cmd |= XM_MMU_IGN_PF;
  1501. else
  1502. /* Enable Pause Frame Reception */
  1503. cmd &= ~XM_MMU_IGN_PF;
  1504. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1505. mode = xm_read32(hw, port, XM_MODE);
  1506. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1507. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1508. /*
  1509. * Configure Pause Frame Generation
  1510. * Use internal and external Pause Frame Generation.
  1511. * Sending pause frames is edge triggered.
  1512. * Send a Pause frame with the maximum pause time if
  1513. * internal oder external FIFO full condition occurs.
  1514. * Send a zero pause time frame to re-start transmission.
  1515. */
  1516. /* XM_PAUSE_DA = '010000C28001' (default) */
  1517. /* XM_MAC_PTIME = 0xffff (maximum) */
  1518. /* remember this value is defined in big endian (!) */
  1519. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1520. mode |= XM_PAUSE_MODE;
  1521. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1522. } else {
  1523. /*
  1524. * disable pause frame generation is required for 1000BT
  1525. * because the XMAC is not reset if the link is going down
  1526. */
  1527. /* Disable Pause Mode in Mode Register */
  1528. mode &= ~XM_PAUSE_MODE;
  1529. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1530. }
  1531. xm_write32(hw, port, XM_MODE, mode);
  1532. /* Turn on detection of Tx underrun */
  1533. msk = xm_read16(hw, port, XM_IMSK);
  1534. msk &= ~XM_IS_TXF_UR;
  1535. xm_write16(hw, port, XM_IMSK, msk);
  1536. xm_read16(hw, port, XM_ISRC);
  1537. /* get MMU Command Reg. */
  1538. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1539. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1540. cmd |= XM_MMU_GMII_FD;
  1541. /*
  1542. * Workaround BCOM Errata (#10523) for all BCom Phys
  1543. * Enable Power Management after link up
  1544. */
  1545. if (hw->phy_type == SK_PHY_BCOM) {
  1546. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1547. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1548. & ~PHY_B_AC_DIS_PM);
  1549. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1550. }
  1551. /* enable Rx/Tx */
  1552. xm_write16(hw, port, XM_MMU_CMD,
  1553. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1554. skge_link_up(skge);
  1555. }
  1556. static inline void bcom_phy_intr(struct skge_port *skge)
  1557. {
  1558. struct skge_hw *hw = skge->hw;
  1559. int port = skge->port;
  1560. u16 isrc;
  1561. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1562. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1563. "phy interrupt status 0x%x\n", isrc);
  1564. if (isrc & PHY_B_IS_PSE)
  1565. pr_err("%s: uncorrectable pair swap error\n",
  1566. hw->dev[port]->name);
  1567. /* Workaround BCom Errata:
  1568. * enable and disable loopback mode if "NO HCD" occurs.
  1569. */
  1570. if (isrc & PHY_B_IS_NO_HDCL) {
  1571. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1572. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1573. ctrl | PHY_CT_LOOP);
  1574. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1575. ctrl & ~PHY_CT_LOOP);
  1576. }
  1577. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1578. bcom_check_link(hw, port);
  1579. }
  1580. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1581. {
  1582. int i;
  1583. gma_write16(hw, port, GM_SMI_DATA, val);
  1584. gma_write16(hw, port, GM_SMI_CTRL,
  1585. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1586. for (i = 0; i < PHY_RETRIES; i++) {
  1587. udelay(1);
  1588. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1589. return 0;
  1590. }
  1591. pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
  1592. return -EIO;
  1593. }
  1594. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1595. {
  1596. int i;
  1597. gma_write16(hw, port, GM_SMI_CTRL,
  1598. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1599. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1600. for (i = 0; i < PHY_RETRIES; i++) {
  1601. udelay(1);
  1602. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1603. goto ready;
  1604. }
  1605. return -ETIMEDOUT;
  1606. ready:
  1607. *val = gma_read16(hw, port, GM_SMI_DATA);
  1608. return 0;
  1609. }
  1610. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1611. {
  1612. u16 v = 0;
  1613. if (__gm_phy_read(hw, port, reg, &v))
  1614. pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
  1615. return v;
  1616. }
  1617. /* Marvell Phy Initialization */
  1618. static void yukon_init(struct skge_hw *hw, int port)
  1619. {
  1620. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1621. u16 ctrl, ct1000, adv;
  1622. if (skge->autoneg == AUTONEG_ENABLE) {
  1623. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1624. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1625. PHY_M_EC_MAC_S_MSK);
  1626. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1627. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1628. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1629. }
  1630. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1631. if (skge->autoneg == AUTONEG_DISABLE)
  1632. ctrl &= ~PHY_CT_ANE;
  1633. ctrl |= PHY_CT_RESET;
  1634. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1635. ctrl = 0;
  1636. ct1000 = 0;
  1637. adv = PHY_AN_CSMA;
  1638. if (skge->autoneg == AUTONEG_ENABLE) {
  1639. if (hw->copper) {
  1640. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1641. ct1000 |= PHY_M_1000C_AFD;
  1642. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1643. ct1000 |= PHY_M_1000C_AHD;
  1644. if (skge->advertising & ADVERTISED_100baseT_Full)
  1645. adv |= PHY_M_AN_100_FD;
  1646. if (skge->advertising & ADVERTISED_100baseT_Half)
  1647. adv |= PHY_M_AN_100_HD;
  1648. if (skge->advertising & ADVERTISED_10baseT_Full)
  1649. adv |= PHY_M_AN_10_FD;
  1650. if (skge->advertising & ADVERTISED_10baseT_Half)
  1651. adv |= PHY_M_AN_10_HD;
  1652. /* Set Flow-control capabilities */
  1653. adv |= phy_pause_map[skge->flow_control];
  1654. } else {
  1655. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1656. adv |= PHY_M_AN_1000X_AFD;
  1657. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1658. adv |= PHY_M_AN_1000X_AHD;
  1659. adv |= fiber_pause_map[skge->flow_control];
  1660. }
  1661. /* Restart Auto-negotiation */
  1662. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1663. } else {
  1664. /* forced speed/duplex settings */
  1665. ct1000 = PHY_M_1000C_MSE;
  1666. if (skge->duplex == DUPLEX_FULL)
  1667. ctrl |= PHY_CT_DUP_MD;
  1668. switch (skge->speed) {
  1669. case SPEED_1000:
  1670. ctrl |= PHY_CT_SP1000;
  1671. break;
  1672. case SPEED_100:
  1673. ctrl |= PHY_CT_SP100;
  1674. break;
  1675. }
  1676. ctrl |= PHY_CT_RESET;
  1677. }
  1678. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1679. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1680. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1681. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1682. if (skge->autoneg == AUTONEG_ENABLE)
  1683. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1684. else
  1685. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1686. }
  1687. static void yukon_reset(struct skge_hw *hw, int port)
  1688. {
  1689. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1690. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1691. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1692. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1693. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1694. gma_write16(hw, port, GM_RX_CTRL,
  1695. gma_read16(hw, port, GM_RX_CTRL)
  1696. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1697. }
  1698. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1699. static int is_yukon_lite_a0(struct skge_hw *hw)
  1700. {
  1701. u32 reg;
  1702. int ret;
  1703. if (hw->chip_id != CHIP_ID_YUKON)
  1704. return 0;
  1705. reg = skge_read32(hw, B2_FAR);
  1706. skge_write8(hw, B2_FAR + 3, 0xff);
  1707. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1708. skge_write32(hw, B2_FAR, reg);
  1709. return ret;
  1710. }
  1711. static void yukon_mac_init(struct skge_hw *hw, int port)
  1712. {
  1713. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1714. int i;
  1715. u32 reg;
  1716. const u8 *addr = hw->dev[port]->dev_addr;
  1717. /* WA code for COMA mode -- set PHY reset */
  1718. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1719. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1720. reg = skge_read32(hw, B2_GP_IO);
  1721. reg |= GP_DIR_9 | GP_IO_9;
  1722. skge_write32(hw, B2_GP_IO, reg);
  1723. }
  1724. /* hard reset */
  1725. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1726. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1727. /* WA code for COMA mode -- clear PHY reset */
  1728. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1729. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1730. reg = skge_read32(hw, B2_GP_IO);
  1731. reg |= GP_DIR_9;
  1732. reg &= ~GP_IO_9;
  1733. skge_write32(hw, B2_GP_IO, reg);
  1734. }
  1735. /* Set hardware config mode */
  1736. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1737. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1738. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1739. /* Clear GMC reset */
  1740. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1741. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1742. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1743. if (skge->autoneg == AUTONEG_DISABLE) {
  1744. reg = GM_GPCR_AU_ALL_DIS;
  1745. gma_write16(hw, port, GM_GP_CTRL,
  1746. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1747. switch (skge->speed) {
  1748. case SPEED_1000:
  1749. reg &= ~GM_GPCR_SPEED_100;
  1750. reg |= GM_GPCR_SPEED_1000;
  1751. break;
  1752. case SPEED_100:
  1753. reg &= ~GM_GPCR_SPEED_1000;
  1754. reg |= GM_GPCR_SPEED_100;
  1755. break;
  1756. case SPEED_10:
  1757. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1758. break;
  1759. }
  1760. if (skge->duplex == DUPLEX_FULL)
  1761. reg |= GM_GPCR_DUP_FULL;
  1762. } else
  1763. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1764. switch (skge->flow_control) {
  1765. case FLOW_MODE_NONE:
  1766. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1767. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1768. break;
  1769. case FLOW_MODE_LOC_SEND:
  1770. /* disable Rx flow-control */
  1771. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1772. break;
  1773. case FLOW_MODE_SYMMETRIC:
  1774. case FLOW_MODE_SYM_OR_REM:
  1775. /* enable Tx & Rx flow-control */
  1776. break;
  1777. }
  1778. gma_write16(hw, port, GM_GP_CTRL, reg);
  1779. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1780. yukon_init(hw, port);
  1781. /* MIB clear */
  1782. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1783. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1784. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1785. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1786. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1787. /* transmit control */
  1788. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1789. /* receive control reg: unicast + multicast + no FCS */
  1790. gma_write16(hw, port, GM_RX_CTRL,
  1791. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1792. /* transmit flow control */
  1793. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1794. /* transmit parameter */
  1795. gma_write16(hw, port, GM_TX_PARAM,
  1796. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1797. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1798. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1799. /* configure the Serial Mode Register */
  1800. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1801. | GM_SMOD_VLAN_ENA
  1802. | IPG_DATA_VAL(IPG_DATA_DEF);
  1803. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1804. reg |= GM_SMOD_JUMBO_ENA;
  1805. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1806. /* physical address: used for pause frames */
  1807. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1808. /* virtual address for data */
  1809. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1810. /* enable interrupt mask for counter overflows */
  1811. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1812. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1813. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1814. /* Initialize Mac Fifo */
  1815. /* Configure Rx MAC FIFO */
  1816. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1817. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1818. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1819. if (is_yukon_lite_a0(hw))
  1820. reg &= ~GMF_RX_F_FL_ON;
  1821. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1822. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1823. /*
  1824. * because Pause Packet Truncation in GMAC is not working
  1825. * we have to increase the Flush Threshold to 64 bytes
  1826. * in order to flush pause packets in Rx FIFO on Yukon-1
  1827. */
  1828. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1829. /* Configure Tx MAC FIFO */
  1830. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1831. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1832. }
  1833. /* Go into power down mode */
  1834. static void yukon_suspend(struct skge_hw *hw, int port)
  1835. {
  1836. u16 ctrl;
  1837. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1838. ctrl |= PHY_M_PC_POL_R_DIS;
  1839. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1840. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1841. ctrl |= PHY_CT_RESET;
  1842. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1843. /* switch IEEE compatible power down mode on */
  1844. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1845. ctrl |= PHY_CT_PDOWN;
  1846. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1847. }
  1848. static void yukon_stop(struct skge_port *skge)
  1849. {
  1850. struct skge_hw *hw = skge->hw;
  1851. int port = skge->port;
  1852. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1853. yukon_reset(hw, port);
  1854. gma_write16(hw, port, GM_GP_CTRL,
  1855. gma_read16(hw, port, GM_GP_CTRL)
  1856. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1857. gma_read16(hw, port, GM_GP_CTRL);
  1858. yukon_suspend(hw, port);
  1859. /* set GPHY Control reset */
  1860. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1861. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1862. }
  1863. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1864. {
  1865. struct skge_hw *hw = skge->hw;
  1866. int port = skge->port;
  1867. int i;
  1868. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1869. | gma_read32(hw, port, GM_TXO_OK_LO);
  1870. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1871. | gma_read32(hw, port, GM_RXO_OK_LO);
  1872. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1873. data[i] = gma_read32(hw, port,
  1874. skge_stats[i].gma_offset);
  1875. }
  1876. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1877. {
  1878. struct net_device *dev = hw->dev[port];
  1879. struct skge_port *skge = netdev_priv(dev);
  1880. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1881. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1882. "mac interrupt status 0x%x\n", status);
  1883. if (status & GM_IS_RX_FF_OR) {
  1884. ++dev->stats.rx_fifo_errors;
  1885. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1886. }
  1887. if (status & GM_IS_TX_FF_UR) {
  1888. ++dev->stats.tx_fifo_errors;
  1889. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1890. }
  1891. }
  1892. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1893. {
  1894. switch (aux & PHY_M_PS_SPEED_MSK) {
  1895. case PHY_M_PS_SPEED_1000:
  1896. return SPEED_1000;
  1897. case PHY_M_PS_SPEED_100:
  1898. return SPEED_100;
  1899. default:
  1900. return SPEED_10;
  1901. }
  1902. }
  1903. static void yukon_link_up(struct skge_port *skge)
  1904. {
  1905. struct skge_hw *hw = skge->hw;
  1906. int port = skge->port;
  1907. u16 reg;
  1908. /* Enable Transmit FIFO Underrun */
  1909. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1910. reg = gma_read16(hw, port, GM_GP_CTRL);
  1911. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1912. reg |= GM_GPCR_DUP_FULL;
  1913. /* enable Rx/Tx */
  1914. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1915. gma_write16(hw, port, GM_GP_CTRL, reg);
  1916. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1917. skge_link_up(skge);
  1918. }
  1919. static void yukon_link_down(struct skge_port *skge)
  1920. {
  1921. struct skge_hw *hw = skge->hw;
  1922. int port = skge->port;
  1923. u16 ctrl;
  1924. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1925. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1926. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1927. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1928. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1929. ctrl |= PHY_M_AN_ASP;
  1930. /* restore Asymmetric Pause bit */
  1931. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1932. }
  1933. skge_link_down(skge);
  1934. yukon_init(hw, port);
  1935. }
  1936. static void yukon_phy_intr(struct skge_port *skge)
  1937. {
  1938. struct skge_hw *hw = skge->hw;
  1939. int port = skge->port;
  1940. const char *reason = NULL;
  1941. u16 istatus, phystat;
  1942. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1943. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1944. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1945. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1946. if (istatus & PHY_M_IS_AN_COMPL) {
  1947. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1948. & PHY_M_AN_RF) {
  1949. reason = "remote fault";
  1950. goto failed;
  1951. }
  1952. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1953. reason = "master/slave fault";
  1954. goto failed;
  1955. }
  1956. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1957. reason = "speed/duplex";
  1958. goto failed;
  1959. }
  1960. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1961. ? DUPLEX_FULL : DUPLEX_HALF;
  1962. skge->speed = yukon_speed(hw, phystat);
  1963. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1964. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1965. case PHY_M_PS_PAUSE_MSK:
  1966. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1967. break;
  1968. case PHY_M_PS_RX_P_EN:
  1969. skge->flow_status = FLOW_STAT_REM_SEND;
  1970. break;
  1971. case PHY_M_PS_TX_P_EN:
  1972. skge->flow_status = FLOW_STAT_LOC_SEND;
  1973. break;
  1974. default:
  1975. skge->flow_status = FLOW_STAT_NONE;
  1976. }
  1977. if (skge->flow_status == FLOW_STAT_NONE ||
  1978. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1979. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1980. else
  1981. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1982. yukon_link_up(skge);
  1983. return;
  1984. }
  1985. if (istatus & PHY_M_IS_LSP_CHANGE)
  1986. skge->speed = yukon_speed(hw, phystat);
  1987. if (istatus & PHY_M_IS_DUP_CHANGE)
  1988. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1989. if (istatus & PHY_M_IS_LST_CHANGE) {
  1990. if (phystat & PHY_M_PS_LINK_UP)
  1991. yukon_link_up(skge);
  1992. else
  1993. yukon_link_down(skge);
  1994. }
  1995. return;
  1996. failed:
  1997. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  1998. /* XXX restart autonegotiation? */
  1999. }
  2000. static void skge_phy_reset(struct skge_port *skge)
  2001. {
  2002. struct skge_hw *hw = skge->hw;
  2003. int port = skge->port;
  2004. struct net_device *dev = hw->dev[port];
  2005. netif_stop_queue(skge->netdev);
  2006. netif_carrier_off(skge->netdev);
  2007. spin_lock_bh(&hw->phy_lock);
  2008. if (is_genesis(hw)) {
  2009. genesis_reset(hw, port);
  2010. genesis_mac_init(hw, port);
  2011. } else {
  2012. yukon_reset(hw, port);
  2013. yukon_init(hw, port);
  2014. }
  2015. spin_unlock_bh(&hw->phy_lock);
  2016. skge_set_multicast(dev);
  2017. }
  2018. /* Basic MII support */
  2019. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2020. {
  2021. struct mii_ioctl_data *data = if_mii(ifr);
  2022. struct skge_port *skge = netdev_priv(dev);
  2023. struct skge_hw *hw = skge->hw;
  2024. int err = -EOPNOTSUPP;
  2025. if (!netif_running(dev))
  2026. return -ENODEV; /* Phy still in reset */
  2027. switch (cmd) {
  2028. case SIOCGMIIPHY:
  2029. data->phy_id = hw->phy_addr;
  2030. fallthrough;
  2031. case SIOCGMIIREG: {
  2032. u16 val = 0;
  2033. spin_lock_bh(&hw->phy_lock);
  2034. if (is_genesis(hw))
  2035. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2036. else
  2037. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2038. spin_unlock_bh(&hw->phy_lock);
  2039. data->val_out = val;
  2040. break;
  2041. }
  2042. case SIOCSMIIREG:
  2043. spin_lock_bh(&hw->phy_lock);
  2044. if (is_genesis(hw))
  2045. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2046. data->val_in);
  2047. else
  2048. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2049. data->val_in);
  2050. spin_unlock_bh(&hw->phy_lock);
  2051. break;
  2052. }
  2053. return err;
  2054. }
  2055. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2056. {
  2057. u32 end;
  2058. start /= 8;
  2059. len /= 8;
  2060. end = start + len - 1;
  2061. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2062. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2063. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2064. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2065. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2066. if (q == Q_R1 || q == Q_R2) {
  2067. /* Set thresholds on receive queue's */
  2068. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2069. start + (2*len)/3);
  2070. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2071. start + (len/3));
  2072. } else {
  2073. /* Enable store & forward on Tx queue's because
  2074. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2075. */
  2076. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2077. }
  2078. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2079. }
  2080. /* Setup Bus Memory Interface */
  2081. static void skge_qset(struct skge_port *skge, u16 q,
  2082. const struct skge_element *e)
  2083. {
  2084. struct skge_hw *hw = skge->hw;
  2085. u32 watermark = 0x600;
  2086. u64 base = skge->dma + (e->desc - skge->mem);
  2087. /* optimization to reduce window on 32bit/33mhz */
  2088. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2089. watermark /= 2;
  2090. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2091. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2092. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2093. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2094. }
  2095. static int skge_up(struct net_device *dev)
  2096. {
  2097. struct skge_port *skge = netdev_priv(dev);
  2098. struct skge_hw *hw = skge->hw;
  2099. int port = skge->port;
  2100. u32 chunk, ram_addr;
  2101. size_t rx_size, tx_size;
  2102. int err;
  2103. if (!is_valid_ether_addr(dev->dev_addr))
  2104. return -EINVAL;
  2105. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2106. if (dev->mtu > RX_BUF_SIZE)
  2107. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2108. else
  2109. skge->rx_buf_size = RX_BUF_SIZE;
  2110. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2111. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2112. skge->mem_size = tx_size + rx_size;
  2113. skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
  2114. &skge->dma, GFP_KERNEL);
  2115. if (!skge->mem)
  2116. return -ENOMEM;
  2117. BUG_ON(skge->dma & 7);
  2118. if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
  2119. dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
  2120. err = -EINVAL;
  2121. goto free_pci_mem;
  2122. }
  2123. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2124. if (err)
  2125. goto free_pci_mem;
  2126. err = skge_rx_fill(dev);
  2127. if (err)
  2128. goto free_rx_ring;
  2129. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2130. skge->dma + rx_size);
  2131. if (err)
  2132. goto free_rx_ring;
  2133. if (hw->ports == 1) {
  2134. err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
  2135. dev->name, hw);
  2136. if (err) {
  2137. netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
  2138. hw->pdev->irq, err);
  2139. goto free_tx_ring;
  2140. }
  2141. }
  2142. /* Initialize MAC */
  2143. netif_carrier_off(dev);
  2144. spin_lock_bh(&hw->phy_lock);
  2145. if (is_genesis(hw))
  2146. genesis_mac_init(hw, port);
  2147. else
  2148. yukon_mac_init(hw, port);
  2149. spin_unlock_bh(&hw->phy_lock);
  2150. /* Configure RAMbuffers - equally between ports and tx/rx */
  2151. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2152. ram_addr = hw->ram_offset + 2 * chunk * port;
  2153. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2154. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2155. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2156. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2157. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2158. /* Start receiver BMU */
  2159. wmb();
  2160. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2161. skge_led(skge, LED_MODE_ON);
  2162. spin_lock_irq(&hw->hw_lock);
  2163. hw->intr_mask |= portmask[port];
  2164. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2165. skge_read32(hw, B0_IMSK);
  2166. spin_unlock_irq(&hw->hw_lock);
  2167. napi_enable(&skge->napi);
  2168. skge_set_multicast(dev);
  2169. return 0;
  2170. free_tx_ring:
  2171. kfree(skge->tx_ring.start);
  2172. free_rx_ring:
  2173. skge_rx_clean(skge);
  2174. kfree(skge->rx_ring.start);
  2175. free_pci_mem:
  2176. dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
  2177. skge->dma);
  2178. skge->mem = NULL;
  2179. return err;
  2180. }
  2181. /* stop receiver */
  2182. static void skge_rx_stop(struct skge_hw *hw, int port)
  2183. {
  2184. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2185. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2186. RB_RST_SET|RB_DIS_OP_MD);
  2187. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2188. }
  2189. static int skge_down(struct net_device *dev)
  2190. {
  2191. struct skge_port *skge = netdev_priv(dev);
  2192. struct skge_hw *hw = skge->hw;
  2193. int port = skge->port;
  2194. if (!skge->mem)
  2195. return 0;
  2196. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2197. netif_tx_disable(dev);
  2198. if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
  2199. del_timer_sync(&skge->link_timer);
  2200. napi_disable(&skge->napi);
  2201. netif_carrier_off(dev);
  2202. spin_lock_irq(&hw->hw_lock);
  2203. hw->intr_mask &= ~portmask[port];
  2204. skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
  2205. skge_read32(hw, B0_IMSK);
  2206. spin_unlock_irq(&hw->hw_lock);
  2207. if (hw->ports == 1)
  2208. free_irq(hw->pdev->irq, hw);
  2209. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
  2210. if (is_genesis(hw))
  2211. genesis_stop(skge);
  2212. else
  2213. yukon_stop(skge);
  2214. /* Stop transmitter */
  2215. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2216. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2217. RB_RST_SET|RB_DIS_OP_MD);
  2218. /* Disable Force Sync bit and Enable Alloc bit */
  2219. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2220. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2221. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2222. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2223. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2224. /* Reset PCI FIFO */
  2225. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2226. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2227. /* Reset the RAM Buffer async Tx queue */
  2228. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2229. skge_rx_stop(hw, port);
  2230. if (is_genesis(hw)) {
  2231. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2232. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2233. } else {
  2234. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2235. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2236. }
  2237. skge_led(skge, LED_MODE_OFF);
  2238. netif_tx_lock_bh(dev);
  2239. skge_tx_clean(dev);
  2240. netif_tx_unlock_bh(dev);
  2241. skge_rx_clean(skge);
  2242. kfree(skge->rx_ring.start);
  2243. kfree(skge->tx_ring.start);
  2244. dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
  2245. skge->dma);
  2246. skge->mem = NULL;
  2247. return 0;
  2248. }
  2249. static inline int skge_avail(const struct skge_ring *ring)
  2250. {
  2251. smp_mb();
  2252. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2253. + (ring->to_clean - ring->to_use) - 1;
  2254. }
  2255. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2256. struct net_device *dev)
  2257. {
  2258. struct skge_port *skge = netdev_priv(dev);
  2259. struct skge_hw *hw = skge->hw;
  2260. struct skge_element *e;
  2261. struct skge_tx_desc *td;
  2262. int i;
  2263. u32 control, len;
  2264. dma_addr_t map;
  2265. if (skb_padto(skb, ETH_ZLEN))
  2266. return NETDEV_TX_OK;
  2267. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2268. return NETDEV_TX_BUSY;
  2269. e = skge->tx_ring.to_use;
  2270. td = e->desc;
  2271. BUG_ON(td->control & BMU_OWN);
  2272. e->skb = skb;
  2273. len = skb_headlen(skb);
  2274. map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
  2275. if (dma_mapping_error(&hw->pdev->dev, map))
  2276. goto mapping_error;
  2277. dma_unmap_addr_set(e, mapaddr, map);
  2278. dma_unmap_len_set(e, maplen, len);
  2279. td->dma_lo = lower_32_bits(map);
  2280. td->dma_hi = upper_32_bits(map);
  2281. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2282. const int offset = skb_checksum_start_offset(skb);
  2283. /* This seems backwards, but it is what the sk98lin
  2284. * does. Looks like hardware is wrong?
  2285. */
  2286. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2287. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2288. control = BMU_TCP_CHECK;
  2289. else
  2290. control = BMU_UDP_CHECK;
  2291. td->csum_offs = 0;
  2292. td->csum_start = offset;
  2293. td->csum_write = offset + skb->csum_offset;
  2294. } else
  2295. control = BMU_CHECK;
  2296. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2297. control |= BMU_EOF | BMU_IRQ_EOF;
  2298. else {
  2299. struct skge_tx_desc *tf = td;
  2300. control |= BMU_STFWD;
  2301. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2302. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2303. map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
  2304. skb_frag_size(frag), DMA_TO_DEVICE);
  2305. if (dma_mapping_error(&hw->pdev->dev, map))
  2306. goto mapping_unwind;
  2307. e = e->next;
  2308. e->skb = skb;
  2309. tf = e->desc;
  2310. BUG_ON(tf->control & BMU_OWN);
  2311. tf->dma_lo = lower_32_bits(map);
  2312. tf->dma_hi = upper_32_bits(map);
  2313. dma_unmap_addr_set(e, mapaddr, map);
  2314. dma_unmap_len_set(e, maplen, skb_frag_size(frag));
  2315. tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
  2316. }
  2317. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2318. }
  2319. /* Make sure all the descriptors written */
  2320. wmb();
  2321. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2322. wmb();
  2323. netdev_sent_queue(dev, skb->len);
  2324. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2325. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2326. "tx queued, slot %td, len %d\n",
  2327. e - skge->tx_ring.start, skb->len);
  2328. skge->tx_ring.to_use = e->next;
  2329. smp_wmb();
  2330. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2331. netdev_dbg(dev, "transmit queue full\n");
  2332. netif_stop_queue(dev);
  2333. }
  2334. return NETDEV_TX_OK;
  2335. mapping_unwind:
  2336. e = skge->tx_ring.to_use;
  2337. dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
  2338. dma_unmap_len(e, maplen), DMA_TO_DEVICE);
  2339. while (i-- > 0) {
  2340. e = e->next;
  2341. dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
  2342. dma_unmap_len(e, maplen), DMA_TO_DEVICE);
  2343. }
  2344. mapping_error:
  2345. if (net_ratelimit())
  2346. dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
  2347. dev_kfree_skb_any(skb);
  2348. return NETDEV_TX_OK;
  2349. }
  2350. /* Free resources associated with this reing element */
  2351. static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
  2352. u32 control)
  2353. {
  2354. /* skb header vs. fragment */
  2355. if (control & BMU_STF)
  2356. dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
  2357. dma_unmap_len(e, maplen), DMA_TO_DEVICE);
  2358. else
  2359. dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
  2360. dma_unmap_len(e, maplen), DMA_TO_DEVICE);
  2361. }
  2362. /* Free all buffers in transmit ring */
  2363. static void skge_tx_clean(struct net_device *dev)
  2364. {
  2365. struct skge_port *skge = netdev_priv(dev);
  2366. struct skge_element *e;
  2367. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2368. struct skge_tx_desc *td = e->desc;
  2369. skge_tx_unmap(skge->hw->pdev, e, td->control);
  2370. if (td->control & BMU_EOF)
  2371. dev_kfree_skb(e->skb);
  2372. td->control = 0;
  2373. }
  2374. netdev_reset_queue(dev);
  2375. skge->tx_ring.to_clean = e;
  2376. }
  2377. static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
  2378. {
  2379. struct skge_port *skge = netdev_priv(dev);
  2380. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2381. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2382. skge_tx_clean(dev);
  2383. netif_wake_queue(dev);
  2384. }
  2385. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2386. {
  2387. int err;
  2388. if (!netif_running(dev)) {
  2389. dev->mtu = new_mtu;
  2390. return 0;
  2391. }
  2392. skge_down(dev);
  2393. dev->mtu = new_mtu;
  2394. err = skge_up(dev);
  2395. if (err)
  2396. dev_close(dev);
  2397. return err;
  2398. }
  2399. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2400. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2401. {
  2402. u32 crc, bit;
  2403. crc = ether_crc_le(ETH_ALEN, addr);
  2404. bit = ~crc & 0x3f;
  2405. filter[bit/8] |= 1 << (bit%8);
  2406. }
  2407. static void genesis_set_multicast(struct net_device *dev)
  2408. {
  2409. struct skge_port *skge = netdev_priv(dev);
  2410. struct skge_hw *hw = skge->hw;
  2411. int port = skge->port;
  2412. struct netdev_hw_addr *ha;
  2413. u32 mode;
  2414. u8 filter[8];
  2415. mode = xm_read32(hw, port, XM_MODE);
  2416. mode |= XM_MD_ENA_HASH;
  2417. if (dev->flags & IFF_PROMISC)
  2418. mode |= XM_MD_ENA_PROM;
  2419. else
  2420. mode &= ~XM_MD_ENA_PROM;
  2421. if (dev->flags & IFF_ALLMULTI)
  2422. memset(filter, 0xff, sizeof(filter));
  2423. else {
  2424. memset(filter, 0, sizeof(filter));
  2425. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2426. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2427. genesis_add_filter(filter, pause_mc_addr);
  2428. netdev_for_each_mc_addr(ha, dev)
  2429. genesis_add_filter(filter, ha->addr);
  2430. }
  2431. xm_write32(hw, port, XM_MODE, mode);
  2432. xm_outhash(hw, port, XM_HSM, filter);
  2433. }
  2434. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2435. {
  2436. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2437. filter[bit / 8] |= 1 << (bit % 8);
  2438. }
  2439. static void yukon_set_multicast(struct net_device *dev)
  2440. {
  2441. struct skge_port *skge = netdev_priv(dev);
  2442. struct skge_hw *hw = skge->hw;
  2443. int port = skge->port;
  2444. struct netdev_hw_addr *ha;
  2445. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2446. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2447. u16 reg;
  2448. u8 filter[8];
  2449. memset(filter, 0, sizeof(filter));
  2450. reg = gma_read16(hw, port, GM_RX_CTRL);
  2451. reg |= GM_RXCR_UCF_ENA;
  2452. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2453. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2454. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2455. memset(filter, 0xff, sizeof(filter));
  2456. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2457. reg &= ~GM_RXCR_MCF_ENA;
  2458. else {
  2459. reg |= GM_RXCR_MCF_ENA;
  2460. if (rx_pause)
  2461. yukon_add_filter(filter, pause_mc_addr);
  2462. netdev_for_each_mc_addr(ha, dev)
  2463. yukon_add_filter(filter, ha->addr);
  2464. }
  2465. gma_write16(hw, port, GM_MC_ADDR_H1,
  2466. (u16)filter[0] | ((u16)filter[1] << 8));
  2467. gma_write16(hw, port, GM_MC_ADDR_H2,
  2468. (u16)filter[2] | ((u16)filter[3] << 8));
  2469. gma_write16(hw, port, GM_MC_ADDR_H3,
  2470. (u16)filter[4] | ((u16)filter[5] << 8));
  2471. gma_write16(hw, port, GM_MC_ADDR_H4,
  2472. (u16)filter[6] | ((u16)filter[7] << 8));
  2473. gma_write16(hw, port, GM_RX_CTRL, reg);
  2474. }
  2475. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2476. {
  2477. if (is_genesis(hw))
  2478. return status >> XMR_FS_LEN_SHIFT;
  2479. else
  2480. return status >> GMR_FS_LEN_SHIFT;
  2481. }
  2482. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2483. {
  2484. if (is_genesis(hw))
  2485. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2486. else
  2487. return (status & GMR_FS_ANY_ERR) ||
  2488. (status & GMR_FS_RX_OK) == 0;
  2489. }
  2490. static void skge_set_multicast(struct net_device *dev)
  2491. {
  2492. struct skge_port *skge = netdev_priv(dev);
  2493. if (is_genesis(skge->hw))
  2494. genesis_set_multicast(dev);
  2495. else
  2496. yukon_set_multicast(dev);
  2497. }
  2498. /* Get receive buffer from descriptor.
  2499. * Handles copy of small buffers and reallocation failures
  2500. */
  2501. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2502. struct skge_element *e,
  2503. u32 control, u32 status, u16 csum)
  2504. {
  2505. struct skge_port *skge = netdev_priv(dev);
  2506. struct sk_buff *skb;
  2507. u16 len = control & BMU_BBC;
  2508. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2509. "rx slot %td status 0x%x len %d\n",
  2510. e - skge->rx_ring.start, status, len);
  2511. if (len > skge->rx_buf_size)
  2512. goto error;
  2513. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2514. goto error;
  2515. if (bad_phy_status(skge->hw, status))
  2516. goto error;
  2517. if (phy_length(skge->hw, status) != len)
  2518. goto error;
  2519. if (len < RX_COPY_THRESHOLD) {
  2520. skb = netdev_alloc_skb_ip_align(dev, len);
  2521. if (!skb)
  2522. goto resubmit;
  2523. dma_sync_single_for_cpu(&skge->hw->pdev->dev,
  2524. dma_unmap_addr(e, mapaddr),
  2525. dma_unmap_len(e, maplen),
  2526. DMA_FROM_DEVICE);
  2527. skb_copy_from_linear_data(e->skb, skb->data, len);
  2528. dma_sync_single_for_device(&skge->hw->pdev->dev,
  2529. dma_unmap_addr(e, mapaddr),
  2530. dma_unmap_len(e, maplen),
  2531. DMA_FROM_DEVICE);
  2532. skge_rx_reuse(e, skge->rx_buf_size);
  2533. } else {
  2534. struct skge_element ee;
  2535. struct sk_buff *nskb;
  2536. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2537. if (!nskb)
  2538. goto resubmit;
  2539. ee = *e;
  2540. skb = ee.skb;
  2541. prefetch(skb->data);
  2542. if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
  2543. dev_kfree_skb(nskb);
  2544. goto resubmit;
  2545. }
  2546. dma_unmap_single(&skge->hw->pdev->dev,
  2547. dma_unmap_addr(&ee, mapaddr),
  2548. dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
  2549. }
  2550. skb_put(skb, len);
  2551. if (dev->features & NETIF_F_RXCSUM) {
  2552. skb->csum = le16_to_cpu(csum);
  2553. skb->ip_summed = CHECKSUM_COMPLETE;
  2554. }
  2555. skb->protocol = eth_type_trans(skb, dev);
  2556. return skb;
  2557. error:
  2558. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2559. "rx err, slot %td control 0x%x status 0x%x\n",
  2560. e - skge->rx_ring.start, control, status);
  2561. if (is_genesis(skge->hw)) {
  2562. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2563. dev->stats.rx_length_errors++;
  2564. if (status & XMR_FS_FRA_ERR)
  2565. dev->stats.rx_frame_errors++;
  2566. if (status & XMR_FS_FCS_ERR)
  2567. dev->stats.rx_crc_errors++;
  2568. } else {
  2569. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2570. dev->stats.rx_length_errors++;
  2571. if (status & GMR_FS_FRAGMENT)
  2572. dev->stats.rx_frame_errors++;
  2573. if (status & GMR_FS_CRC_ERR)
  2574. dev->stats.rx_crc_errors++;
  2575. }
  2576. resubmit:
  2577. skge_rx_reuse(e, skge->rx_buf_size);
  2578. return NULL;
  2579. }
  2580. /* Free all buffers in Tx ring which are no longer owned by device */
  2581. static void skge_tx_done(struct net_device *dev)
  2582. {
  2583. struct skge_port *skge = netdev_priv(dev);
  2584. struct skge_ring *ring = &skge->tx_ring;
  2585. struct skge_element *e;
  2586. unsigned int bytes_compl = 0, pkts_compl = 0;
  2587. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2588. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2589. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2590. if (control & BMU_OWN)
  2591. break;
  2592. skge_tx_unmap(skge->hw->pdev, e, control);
  2593. if (control & BMU_EOF) {
  2594. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2595. "tx done slot %td\n",
  2596. e - skge->tx_ring.start);
  2597. pkts_compl++;
  2598. bytes_compl += e->skb->len;
  2599. dev_consume_skb_any(e->skb);
  2600. }
  2601. }
  2602. netdev_completed_queue(dev, pkts_compl, bytes_compl);
  2603. skge->tx_ring.to_clean = e;
  2604. /* Can run lockless until we need to synchronize to restart queue. */
  2605. smp_mb();
  2606. if (unlikely(netif_queue_stopped(dev) &&
  2607. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2608. netif_tx_lock(dev);
  2609. if (unlikely(netif_queue_stopped(dev) &&
  2610. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2611. netif_wake_queue(dev);
  2612. }
  2613. netif_tx_unlock(dev);
  2614. }
  2615. }
  2616. static int skge_poll(struct napi_struct *napi, int budget)
  2617. {
  2618. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2619. struct net_device *dev = skge->netdev;
  2620. struct skge_hw *hw = skge->hw;
  2621. struct skge_ring *ring = &skge->rx_ring;
  2622. struct skge_element *e;
  2623. int work_done = 0;
  2624. skge_tx_done(dev);
  2625. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2626. for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
  2627. struct skge_rx_desc *rd = e->desc;
  2628. struct sk_buff *skb;
  2629. u32 control;
  2630. rmb();
  2631. control = rd->control;
  2632. if (control & BMU_OWN)
  2633. break;
  2634. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2635. if (likely(skb)) {
  2636. napi_gro_receive(napi, skb);
  2637. ++work_done;
  2638. }
  2639. }
  2640. ring->to_clean = e;
  2641. /* restart receiver */
  2642. wmb();
  2643. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2644. if (work_done < budget && napi_complete_done(napi, work_done)) {
  2645. unsigned long flags;
  2646. spin_lock_irqsave(&hw->hw_lock, flags);
  2647. hw->intr_mask |= napimask[skge->port];
  2648. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2649. skge_read32(hw, B0_IMSK);
  2650. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2651. }
  2652. return work_done;
  2653. }
  2654. /* Parity errors seem to happen when Genesis is connected to a switch
  2655. * with no other ports present. Heartbeat error??
  2656. */
  2657. static void skge_mac_parity(struct skge_hw *hw, int port)
  2658. {
  2659. struct net_device *dev = hw->dev[port];
  2660. ++dev->stats.tx_heartbeat_errors;
  2661. if (is_genesis(hw))
  2662. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2663. MFF_CLR_PERR);
  2664. else
  2665. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2666. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2667. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2668. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2669. }
  2670. static void skge_mac_intr(struct skge_hw *hw, int port)
  2671. {
  2672. if (is_genesis(hw))
  2673. genesis_mac_intr(hw, port);
  2674. else
  2675. yukon_mac_intr(hw, port);
  2676. }
  2677. /* Handle device specific framing and timeout interrupts */
  2678. static void skge_error_irq(struct skge_hw *hw)
  2679. {
  2680. struct pci_dev *pdev = hw->pdev;
  2681. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2682. if (is_genesis(hw)) {
  2683. /* clear xmac errors */
  2684. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2685. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2686. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2687. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2688. } else {
  2689. /* Timestamp (unused) overflow */
  2690. if (hwstatus & IS_IRQ_TIST_OV)
  2691. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2692. }
  2693. if (hwstatus & IS_RAM_RD_PAR) {
  2694. dev_err(&pdev->dev, "Ram read data parity error\n");
  2695. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2696. }
  2697. if (hwstatus & IS_RAM_WR_PAR) {
  2698. dev_err(&pdev->dev, "Ram write data parity error\n");
  2699. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2700. }
  2701. if (hwstatus & IS_M1_PAR_ERR)
  2702. skge_mac_parity(hw, 0);
  2703. if (hwstatus & IS_M2_PAR_ERR)
  2704. skge_mac_parity(hw, 1);
  2705. if (hwstatus & IS_R1_PAR_ERR) {
  2706. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2707. hw->dev[0]->name);
  2708. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2709. }
  2710. if (hwstatus & IS_R2_PAR_ERR) {
  2711. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2712. hw->dev[1]->name);
  2713. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2714. }
  2715. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2716. u16 pci_status, pci_cmd;
  2717. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2718. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2719. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2720. pci_cmd, pci_status);
  2721. /* Write the error bits back to clear them. */
  2722. pci_status &= PCI_STATUS_ERROR_BITS;
  2723. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2724. pci_write_config_word(pdev, PCI_COMMAND,
  2725. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2726. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2727. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2728. /* if error still set then just ignore it */
  2729. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2730. if (hwstatus & IS_IRQ_STAT) {
  2731. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2732. hw->intr_mask &= ~IS_HW_ERR;
  2733. }
  2734. }
  2735. }
  2736. /*
  2737. * Interrupt from PHY are handled in tasklet (softirq)
  2738. * because accessing phy registers requires spin wait which might
  2739. * cause excess interrupt latency.
  2740. */
  2741. static void skge_extirq(struct tasklet_struct *t)
  2742. {
  2743. struct skge_hw *hw = from_tasklet(hw, t, phy_task);
  2744. int port;
  2745. for (port = 0; port < hw->ports; port++) {
  2746. struct net_device *dev = hw->dev[port];
  2747. if (netif_running(dev)) {
  2748. struct skge_port *skge = netdev_priv(dev);
  2749. spin_lock(&hw->phy_lock);
  2750. if (!is_genesis(hw))
  2751. yukon_phy_intr(skge);
  2752. else if (hw->phy_type == SK_PHY_BCOM)
  2753. bcom_phy_intr(skge);
  2754. spin_unlock(&hw->phy_lock);
  2755. }
  2756. }
  2757. spin_lock_irq(&hw->hw_lock);
  2758. hw->intr_mask |= IS_EXT_REG;
  2759. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2760. skge_read32(hw, B0_IMSK);
  2761. spin_unlock_irq(&hw->hw_lock);
  2762. }
  2763. static irqreturn_t skge_intr(int irq, void *dev_id)
  2764. {
  2765. struct skge_hw *hw = dev_id;
  2766. u32 status;
  2767. int handled = 0;
  2768. spin_lock(&hw->hw_lock);
  2769. /* Reading this register masks IRQ */
  2770. status = skge_read32(hw, B0_SP_ISRC);
  2771. if (status == 0 || status == ~0)
  2772. goto out;
  2773. handled = 1;
  2774. status &= hw->intr_mask;
  2775. if (status & IS_EXT_REG) {
  2776. hw->intr_mask &= ~IS_EXT_REG;
  2777. tasklet_schedule(&hw->phy_task);
  2778. }
  2779. if (status & (IS_XA1_F|IS_R1_F)) {
  2780. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2781. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2782. napi_schedule(&skge->napi);
  2783. }
  2784. if (status & IS_PA_TO_TX1)
  2785. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2786. if (status & IS_PA_TO_RX1) {
  2787. ++hw->dev[0]->stats.rx_over_errors;
  2788. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2789. }
  2790. if (status & IS_MAC1)
  2791. skge_mac_intr(hw, 0);
  2792. if (hw->dev[1]) {
  2793. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2794. if (status & (IS_XA2_F|IS_R2_F)) {
  2795. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2796. napi_schedule(&skge->napi);
  2797. }
  2798. if (status & IS_PA_TO_RX2) {
  2799. ++hw->dev[1]->stats.rx_over_errors;
  2800. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2801. }
  2802. if (status & IS_PA_TO_TX2)
  2803. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2804. if (status & IS_MAC2)
  2805. skge_mac_intr(hw, 1);
  2806. }
  2807. if (status & IS_HW_ERR)
  2808. skge_error_irq(hw);
  2809. out:
  2810. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2811. skge_read32(hw, B0_IMSK);
  2812. spin_unlock(&hw->hw_lock);
  2813. return IRQ_RETVAL(handled);
  2814. }
  2815. #ifdef CONFIG_NET_POLL_CONTROLLER
  2816. static void skge_netpoll(struct net_device *dev)
  2817. {
  2818. struct skge_port *skge = netdev_priv(dev);
  2819. disable_irq(dev->irq);
  2820. skge_intr(dev->irq, skge->hw);
  2821. enable_irq(dev->irq);
  2822. }
  2823. #endif
  2824. static int skge_set_mac_address(struct net_device *dev, void *p)
  2825. {
  2826. struct skge_port *skge = netdev_priv(dev);
  2827. struct skge_hw *hw = skge->hw;
  2828. unsigned port = skge->port;
  2829. const struct sockaddr *addr = p;
  2830. u16 ctrl;
  2831. if (!is_valid_ether_addr(addr->sa_data))
  2832. return -EADDRNOTAVAIL;
  2833. eth_hw_addr_set(dev, addr->sa_data);
  2834. if (!netif_running(dev)) {
  2835. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2836. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2837. } else {
  2838. /* disable Rx */
  2839. spin_lock_bh(&hw->phy_lock);
  2840. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2841. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2842. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2843. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2844. if (is_genesis(hw))
  2845. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2846. else {
  2847. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2848. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2849. }
  2850. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2851. spin_unlock_bh(&hw->phy_lock);
  2852. }
  2853. return 0;
  2854. }
  2855. static const struct {
  2856. u8 id;
  2857. const char *name;
  2858. } skge_chips[] = {
  2859. { CHIP_ID_GENESIS, "Genesis" },
  2860. { CHIP_ID_YUKON, "Yukon" },
  2861. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2862. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2863. };
  2864. static const char *skge_board_name(const struct skge_hw *hw)
  2865. {
  2866. int i;
  2867. static char buf[16];
  2868. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2869. if (skge_chips[i].id == hw->chip_id)
  2870. return skge_chips[i].name;
  2871. snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
  2872. return buf;
  2873. }
  2874. /*
  2875. * Setup the board data structure, but don't bring up
  2876. * the port(s)
  2877. */
  2878. static int skge_reset(struct skge_hw *hw)
  2879. {
  2880. u32 reg;
  2881. u16 ctst, pci_status;
  2882. u8 t8, mac_cfg, pmd_type;
  2883. int i;
  2884. ctst = skge_read16(hw, B0_CTST);
  2885. /* do a SW reset */
  2886. skge_write8(hw, B0_CTST, CS_RST_SET);
  2887. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2888. /* clear PCI errors, if any */
  2889. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2890. skge_write8(hw, B2_TST_CTRL2, 0);
  2891. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2892. pci_write_config_word(hw->pdev, PCI_STATUS,
  2893. pci_status | PCI_STATUS_ERROR_BITS);
  2894. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2895. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2896. /* restore CLK_RUN bits (for Yukon-Lite) */
  2897. skge_write16(hw, B0_CTST,
  2898. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2899. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2900. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2901. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2902. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2903. switch (hw->chip_id) {
  2904. case CHIP_ID_GENESIS:
  2905. #ifdef CONFIG_SKGE_GENESIS
  2906. switch (hw->phy_type) {
  2907. case SK_PHY_XMAC:
  2908. hw->phy_addr = PHY_ADDR_XMAC;
  2909. break;
  2910. case SK_PHY_BCOM:
  2911. hw->phy_addr = PHY_ADDR_BCOM;
  2912. break;
  2913. default:
  2914. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2915. hw->phy_type);
  2916. return -EOPNOTSUPP;
  2917. }
  2918. break;
  2919. #else
  2920. dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
  2921. return -EOPNOTSUPP;
  2922. #endif
  2923. case CHIP_ID_YUKON:
  2924. case CHIP_ID_YUKON_LITE:
  2925. case CHIP_ID_YUKON_LP:
  2926. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2927. hw->copper = 1;
  2928. hw->phy_addr = PHY_ADDR_MARV;
  2929. break;
  2930. default:
  2931. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2932. hw->chip_id);
  2933. return -EOPNOTSUPP;
  2934. }
  2935. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2936. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2937. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2938. /* read the adapters RAM size */
  2939. t8 = skge_read8(hw, B2_E_0);
  2940. if (is_genesis(hw)) {
  2941. if (t8 == 3) {
  2942. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2943. hw->ram_size = 0x100000;
  2944. hw->ram_offset = 0x80000;
  2945. } else
  2946. hw->ram_size = t8 * 512;
  2947. } else if (t8 == 0)
  2948. hw->ram_size = 0x20000;
  2949. else
  2950. hw->ram_size = t8 * 4096;
  2951. hw->intr_mask = IS_HW_ERR;
  2952. /* Use PHY IRQ for all but fiber based Genesis board */
  2953. if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
  2954. hw->intr_mask |= IS_EXT_REG;
  2955. if (is_genesis(hw))
  2956. genesis_init(hw);
  2957. else {
  2958. /* switch power to VCC (WA for VAUX problem) */
  2959. skge_write8(hw, B0_POWER_CTRL,
  2960. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2961. /* avoid boards with stuck Hardware error bits */
  2962. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2963. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2964. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2965. hw->intr_mask &= ~IS_HW_ERR;
  2966. }
  2967. /* Clear PHY COMA */
  2968. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2969. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2970. reg &= ~PCI_PHY_COMA;
  2971. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2972. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2973. for (i = 0; i < hw->ports; i++) {
  2974. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2975. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2976. }
  2977. }
  2978. /* turn off hardware timer (unused) */
  2979. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2980. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2981. skge_write8(hw, B0_LED, LED_STAT_ON);
  2982. /* enable the Tx Arbiters */
  2983. for (i = 0; i < hw->ports; i++)
  2984. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2985. /* Initialize ram interface */
  2986. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2987. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2988. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2989. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2990. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2991. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2992. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2993. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2994. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2995. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2996. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2997. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2998. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2999. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  3000. /* Set interrupt moderation for Transmit only
  3001. * Receive interrupts avoided by NAPI
  3002. */
  3003. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  3004. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  3005. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  3006. /* Leave irq disabled until first port is brought up. */
  3007. skge_write32(hw, B0_IMSK, 0);
  3008. for (i = 0; i < hw->ports; i++) {
  3009. if (is_genesis(hw))
  3010. genesis_reset(hw, i);
  3011. else
  3012. yukon_reset(hw, i);
  3013. }
  3014. return 0;
  3015. }
  3016. #ifdef CONFIG_SKGE_DEBUG
  3017. static struct dentry *skge_debug;
  3018. static int skge_debug_show(struct seq_file *seq, void *v)
  3019. {
  3020. struct net_device *dev = seq->private;
  3021. const struct skge_port *skge = netdev_priv(dev);
  3022. const struct skge_hw *hw = skge->hw;
  3023. const struct skge_element *e;
  3024. if (!netif_running(dev))
  3025. return -ENETDOWN;
  3026. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  3027. skge_read32(hw, B0_IMSK));
  3028. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  3029. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  3030. const struct skge_tx_desc *t = e->desc;
  3031. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  3032. t->control, t->dma_hi, t->dma_lo, t->status,
  3033. t->csum_offs, t->csum_write, t->csum_start);
  3034. }
  3035. seq_puts(seq, "\nRx Ring:\n");
  3036. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  3037. const struct skge_rx_desc *r = e->desc;
  3038. if (r->control & BMU_OWN)
  3039. break;
  3040. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3041. r->control, r->dma_hi, r->dma_lo, r->status,
  3042. r->timestamp, r->csum1, r->csum1_start);
  3043. }
  3044. return 0;
  3045. }
  3046. DEFINE_SHOW_ATTRIBUTE(skge_debug);
  3047. /*
  3048. * Use network device events to create/remove/rename
  3049. * debugfs file entries
  3050. */
  3051. static int skge_device_event(struct notifier_block *unused,
  3052. unsigned long event, void *ptr)
  3053. {
  3054. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  3055. struct skge_port *skge;
  3056. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3057. goto done;
  3058. skge = netdev_priv(dev);
  3059. switch (event) {
  3060. case NETDEV_CHANGENAME:
  3061. if (skge->debugfs)
  3062. skge->debugfs = debugfs_rename(skge_debug,
  3063. skge->debugfs,
  3064. skge_debug, dev->name);
  3065. break;
  3066. case NETDEV_GOING_DOWN:
  3067. debugfs_remove(skge->debugfs);
  3068. skge->debugfs = NULL;
  3069. break;
  3070. case NETDEV_UP:
  3071. skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
  3072. dev, &skge_debug_fops);
  3073. break;
  3074. }
  3075. done:
  3076. return NOTIFY_DONE;
  3077. }
  3078. static struct notifier_block skge_notifier = {
  3079. .notifier_call = skge_device_event,
  3080. };
  3081. static __init void skge_debug_init(void)
  3082. {
  3083. skge_debug = debugfs_create_dir("skge", NULL);
  3084. register_netdevice_notifier(&skge_notifier);
  3085. }
  3086. static __exit void skge_debug_cleanup(void)
  3087. {
  3088. if (skge_debug) {
  3089. unregister_netdevice_notifier(&skge_notifier);
  3090. debugfs_remove(skge_debug);
  3091. skge_debug = NULL;
  3092. }
  3093. }
  3094. #else
  3095. #define skge_debug_init()
  3096. #define skge_debug_cleanup()
  3097. #endif
  3098. static const struct net_device_ops skge_netdev_ops = {
  3099. .ndo_open = skge_up,
  3100. .ndo_stop = skge_down,
  3101. .ndo_start_xmit = skge_xmit_frame,
  3102. .ndo_eth_ioctl = skge_ioctl,
  3103. .ndo_get_stats = skge_get_stats,
  3104. .ndo_tx_timeout = skge_tx_timeout,
  3105. .ndo_change_mtu = skge_change_mtu,
  3106. .ndo_validate_addr = eth_validate_addr,
  3107. .ndo_set_rx_mode = skge_set_multicast,
  3108. .ndo_set_mac_address = skge_set_mac_address,
  3109. #ifdef CONFIG_NET_POLL_CONTROLLER
  3110. .ndo_poll_controller = skge_netpoll,
  3111. #endif
  3112. };
  3113. /* Initialize network device */
  3114. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3115. int highmem)
  3116. {
  3117. struct skge_port *skge;
  3118. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3119. u8 addr[ETH_ALEN];
  3120. if (!dev)
  3121. return NULL;
  3122. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3123. dev->netdev_ops = &skge_netdev_ops;
  3124. dev->ethtool_ops = &skge_ethtool_ops;
  3125. dev->watchdog_timeo = TX_WATCHDOG;
  3126. dev->irq = hw->pdev->irq;
  3127. /* MTU range: 60 - 9000 */
  3128. dev->min_mtu = ETH_ZLEN;
  3129. dev->max_mtu = ETH_JUMBO_MTU;
  3130. if (highmem)
  3131. dev->features |= NETIF_F_HIGHDMA;
  3132. skge = netdev_priv(dev);
  3133. netif_napi_add(dev, &skge->napi, skge_poll);
  3134. skge->netdev = dev;
  3135. skge->hw = hw;
  3136. skge->msg_enable = netif_msg_init(debug, default_msg);
  3137. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3138. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3139. /* Auto speed and flow control */
  3140. skge->autoneg = AUTONEG_ENABLE;
  3141. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3142. skge->duplex = -1;
  3143. skge->speed = -1;
  3144. skge->advertising = skge_supported_modes(hw);
  3145. if (device_can_wakeup(&hw->pdev->dev)) {
  3146. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3147. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3148. }
  3149. hw->dev[port] = dev;
  3150. skge->port = port;
  3151. /* Only used for Genesis XMAC */
  3152. if (is_genesis(hw))
  3153. timer_setup(&skge->link_timer, xm_link_timer, 0);
  3154. else {
  3155. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  3156. NETIF_F_RXCSUM;
  3157. dev->features |= dev->hw_features;
  3158. }
  3159. /* read the mac address */
  3160. memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3161. eth_hw_addr_set(dev, addr);
  3162. return dev;
  3163. }
  3164. static void skge_show_addr(struct net_device *dev)
  3165. {
  3166. const struct skge_port *skge = netdev_priv(dev);
  3167. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3168. }
  3169. static int only_32bit_dma;
  3170. static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  3171. {
  3172. struct net_device *dev, *dev1;
  3173. struct skge_hw *hw;
  3174. int err, using_dac = 0;
  3175. err = pci_enable_device(pdev);
  3176. if (err) {
  3177. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3178. goto err_out;
  3179. }
  3180. err = pci_request_regions(pdev, DRV_NAME);
  3181. if (err) {
  3182. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3183. goto err_out_disable_pdev;
  3184. }
  3185. pci_set_master(pdev);
  3186. if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  3187. using_dac = 1;
  3188. err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
  3189. } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
  3190. using_dac = 0;
  3191. err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  3192. }
  3193. if (err) {
  3194. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3195. goto err_out_free_regions;
  3196. }
  3197. #ifdef __BIG_ENDIAN
  3198. /* byte swap descriptors in hardware */
  3199. {
  3200. u32 reg;
  3201. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3202. reg |= PCI_REV_DESC;
  3203. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3204. }
  3205. #endif
  3206. err = -ENOMEM;
  3207. /* space for skge@pci:0000:04:00.0 */
  3208. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3209. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3210. if (!hw)
  3211. goto err_out_free_regions;
  3212. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3213. hw->pdev = pdev;
  3214. spin_lock_init(&hw->hw_lock);
  3215. spin_lock_init(&hw->phy_lock);
  3216. tasklet_setup(&hw->phy_task, skge_extirq);
  3217. hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
  3218. if (!hw->regs) {
  3219. dev_err(&pdev->dev, "cannot map device registers\n");
  3220. goto err_out_free_hw;
  3221. }
  3222. err = skge_reset(hw);
  3223. if (err)
  3224. goto err_out_iounmap;
  3225. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3226. DRV_VERSION,
  3227. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3228. skge_board_name(hw), hw->chip_rev);
  3229. dev = skge_devinit(hw, 0, using_dac);
  3230. if (!dev) {
  3231. err = -ENOMEM;
  3232. goto err_out_led_off;
  3233. }
  3234. /* Some motherboards are broken and has zero in ROM. */
  3235. if (!is_valid_ether_addr(dev->dev_addr))
  3236. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3237. err = register_netdev(dev);
  3238. if (err) {
  3239. dev_err(&pdev->dev, "cannot register net device\n");
  3240. goto err_out_free_netdev;
  3241. }
  3242. skge_show_addr(dev);
  3243. if (hw->ports > 1) {
  3244. dev1 = skge_devinit(hw, 1, using_dac);
  3245. if (!dev1) {
  3246. err = -ENOMEM;
  3247. goto err_out_unregister;
  3248. }
  3249. err = register_netdev(dev1);
  3250. if (err) {
  3251. dev_err(&pdev->dev, "cannot register second net device\n");
  3252. goto err_out_free_dev1;
  3253. }
  3254. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
  3255. hw->irq_name, hw);
  3256. if (err) {
  3257. dev_err(&pdev->dev, "cannot assign irq %d\n",
  3258. pdev->irq);
  3259. goto err_out_unregister_dev1;
  3260. }
  3261. skge_show_addr(dev1);
  3262. }
  3263. pci_set_drvdata(pdev, hw);
  3264. return 0;
  3265. err_out_unregister_dev1:
  3266. unregister_netdev(dev1);
  3267. err_out_free_dev1:
  3268. free_netdev(dev1);
  3269. err_out_unregister:
  3270. unregister_netdev(dev);
  3271. err_out_free_netdev:
  3272. free_netdev(dev);
  3273. err_out_led_off:
  3274. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3275. err_out_iounmap:
  3276. iounmap(hw->regs);
  3277. err_out_free_hw:
  3278. kfree(hw);
  3279. err_out_free_regions:
  3280. pci_release_regions(pdev);
  3281. err_out_disable_pdev:
  3282. pci_disable_device(pdev);
  3283. err_out:
  3284. return err;
  3285. }
  3286. static void skge_remove(struct pci_dev *pdev)
  3287. {
  3288. struct skge_hw *hw = pci_get_drvdata(pdev);
  3289. struct net_device *dev0, *dev1;
  3290. if (!hw)
  3291. return;
  3292. dev1 = hw->dev[1];
  3293. if (dev1)
  3294. unregister_netdev(dev1);
  3295. dev0 = hw->dev[0];
  3296. unregister_netdev(dev0);
  3297. tasklet_kill(&hw->phy_task);
  3298. spin_lock_irq(&hw->hw_lock);
  3299. hw->intr_mask = 0;
  3300. if (hw->ports > 1) {
  3301. skge_write32(hw, B0_IMSK, 0);
  3302. skge_read32(hw, B0_IMSK);
  3303. }
  3304. spin_unlock_irq(&hw->hw_lock);
  3305. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3306. skge_write8(hw, B0_CTST, CS_RST_SET);
  3307. if (hw->ports > 1)
  3308. free_irq(pdev->irq, hw);
  3309. pci_release_regions(pdev);
  3310. pci_disable_device(pdev);
  3311. if (dev1)
  3312. free_netdev(dev1);
  3313. free_netdev(dev0);
  3314. iounmap(hw->regs);
  3315. kfree(hw);
  3316. }
  3317. #ifdef CONFIG_PM_SLEEP
  3318. static int skge_suspend(struct device *dev)
  3319. {
  3320. struct skge_hw *hw = dev_get_drvdata(dev);
  3321. int i;
  3322. if (!hw)
  3323. return 0;
  3324. for (i = 0; i < hw->ports; i++) {
  3325. struct net_device *dev = hw->dev[i];
  3326. struct skge_port *skge = netdev_priv(dev);
  3327. if (netif_running(dev))
  3328. skge_down(dev);
  3329. if (skge->wol)
  3330. skge_wol_init(skge);
  3331. }
  3332. skge_write32(hw, B0_IMSK, 0);
  3333. return 0;
  3334. }
  3335. static int skge_resume(struct device *dev)
  3336. {
  3337. struct skge_hw *hw = dev_get_drvdata(dev);
  3338. int i, err;
  3339. if (!hw)
  3340. return 0;
  3341. err = skge_reset(hw);
  3342. if (err)
  3343. goto out;
  3344. for (i = 0; i < hw->ports; i++) {
  3345. struct net_device *dev = hw->dev[i];
  3346. if (netif_running(dev)) {
  3347. err = skge_up(dev);
  3348. if (err) {
  3349. netdev_err(dev, "could not up: %d\n", err);
  3350. dev_close(dev);
  3351. goto out;
  3352. }
  3353. }
  3354. }
  3355. out:
  3356. return err;
  3357. }
  3358. static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
  3359. #define SKGE_PM_OPS (&skge_pm_ops)
  3360. #else
  3361. #define SKGE_PM_OPS NULL
  3362. #endif /* CONFIG_PM_SLEEP */
  3363. static void skge_shutdown(struct pci_dev *pdev)
  3364. {
  3365. struct skge_hw *hw = pci_get_drvdata(pdev);
  3366. int i;
  3367. if (!hw)
  3368. return;
  3369. for (i = 0; i < hw->ports; i++) {
  3370. struct net_device *dev = hw->dev[i];
  3371. struct skge_port *skge = netdev_priv(dev);
  3372. if (skge->wol)
  3373. skge_wol_init(skge);
  3374. }
  3375. pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
  3376. pci_set_power_state(pdev, PCI_D3hot);
  3377. }
  3378. static struct pci_driver skge_driver = {
  3379. .name = DRV_NAME,
  3380. .id_table = skge_id_table,
  3381. .probe = skge_probe,
  3382. .remove = skge_remove,
  3383. .shutdown = skge_shutdown,
  3384. .driver.pm = SKGE_PM_OPS,
  3385. };
  3386. static const struct dmi_system_id skge_32bit_dma_boards[] = {
  3387. {
  3388. .ident = "Gigabyte nForce boards",
  3389. .matches = {
  3390. DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
  3391. DMI_MATCH(DMI_BOARD_NAME, "nForce"),
  3392. },
  3393. },
  3394. {
  3395. .ident = "ASUS P5NSLI",
  3396. .matches = {
  3397. DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
  3398. DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
  3399. },
  3400. },
  3401. {
  3402. .ident = "FUJITSU SIEMENS A8NE-FM",
  3403. .matches = {
  3404. DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
  3405. DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
  3406. },
  3407. },
  3408. {}
  3409. };
  3410. static int __init skge_init_module(void)
  3411. {
  3412. if (dmi_check_system(skge_32bit_dma_boards))
  3413. only_32bit_dma = 1;
  3414. skge_debug_init();
  3415. return pci_register_driver(&skge_driver);
  3416. }
  3417. static void __exit skge_cleanup_module(void)
  3418. {
  3419. pci_unregister_driver(&skge_driver);
  3420. skge_debug_cleanup();
  3421. }
  3422. module_init(skge_init_module);
  3423. module_exit(skge_cleanup_module);