korina.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. ([email protected])
  5. * Copyright 2006 Felix Fietkau <[email protected]>
  6. * Copyright 2008 Florian Fainelli <[email protected]>
  7. * Copyright 2017 Roman Yeryomin <[email protected]>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2 of the License, or (at your
  12. * option) any later version.
  13. *
  14. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  15. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  16. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  17. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  18. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  19. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  20. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  21. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  22. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  23. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24. *
  25. * You should have received a copy of the GNU General Public License along
  26. * with this program; if not, write to the Free Software Foundation, Inc.,
  27. * 675 Mass Ave, Cambridge, MA 02139, USA.
  28. *
  29. * Writing to a DMA status register:
  30. *
  31. * When writing to the status register, you should mask the bit you have
  32. * been testing the status register with. Both Tx and Rx DMA registers
  33. * should stick to this procedure.
  34. */
  35. #include <linux/module.h>
  36. #include <linux/kernel.h>
  37. #include <linux/moduleparam.h>
  38. #include <linux/sched.h>
  39. #include <linux/ctype.h>
  40. #include <linux/types.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/ioport.h>
  43. #include <linux/iopoll.h>
  44. #include <linux/in.h>
  45. #include <linux/of_device.h>
  46. #include <linux/of_net.h>
  47. #include <linux/slab.h>
  48. #include <linux/string.h>
  49. #include <linux/delay.h>
  50. #include <linux/netdevice.h>
  51. #include <linux/etherdevice.h>
  52. #include <linux/skbuff.h>
  53. #include <linux/errno.h>
  54. #include <linux/platform_device.h>
  55. #include <linux/mii.h>
  56. #include <linux/ethtool.h>
  57. #include <linux/crc32.h>
  58. #include <linux/pgtable.h>
  59. #include <linux/clk.h>
  60. #define DRV_NAME "korina"
  61. #define DRV_VERSION "0.20"
  62. #define DRV_RELDATE "15Sep2017"
  63. struct eth_regs {
  64. u32 ethintfc;
  65. u32 ethfifott;
  66. u32 etharc;
  67. u32 ethhash0;
  68. u32 ethhash1;
  69. u32 ethu0[4]; /* Reserved. */
  70. u32 ethpfs;
  71. u32 ethmcp;
  72. u32 eth_u1[10]; /* Reserved. */
  73. u32 ethspare;
  74. u32 eth_u2[42]; /* Reserved. */
  75. u32 ethsal0;
  76. u32 ethsah0;
  77. u32 ethsal1;
  78. u32 ethsah1;
  79. u32 ethsal2;
  80. u32 ethsah2;
  81. u32 ethsal3;
  82. u32 ethsah3;
  83. u32 ethrbc;
  84. u32 ethrpc;
  85. u32 ethrupc;
  86. u32 ethrfc;
  87. u32 ethtbc;
  88. u32 ethgpf;
  89. u32 eth_u9[50]; /* Reserved. */
  90. u32 ethmac1;
  91. u32 ethmac2;
  92. u32 ethipgt;
  93. u32 ethipgr;
  94. u32 ethclrt;
  95. u32 ethmaxf;
  96. u32 eth_u10; /* Reserved. */
  97. u32 ethmtest;
  98. u32 miimcfg;
  99. u32 miimcmd;
  100. u32 miimaddr;
  101. u32 miimwtd;
  102. u32 miimrdd;
  103. u32 miimind;
  104. u32 eth_u11; /* Reserved. */
  105. u32 eth_u12; /* Reserved. */
  106. u32 ethcfsa0;
  107. u32 ethcfsa1;
  108. u32 ethcfsa2;
  109. };
  110. /* Ethernet interrupt registers */
  111. #define ETH_INT_FC_EN BIT(0)
  112. #define ETH_INT_FC_ITS BIT(1)
  113. #define ETH_INT_FC_RIP BIT(2)
  114. #define ETH_INT_FC_JAM BIT(3)
  115. #define ETH_INT_FC_OVR BIT(4)
  116. #define ETH_INT_FC_UND BIT(5)
  117. #define ETH_INT_FC_IOC 0x000000c0
  118. /* Ethernet FIFO registers */
  119. #define ETH_FIFI_TT_TTH_BIT 0
  120. #define ETH_FIFO_TT_TTH 0x0000007f
  121. /* Ethernet ARC/multicast registers */
  122. #define ETH_ARC_PRO BIT(0)
  123. #define ETH_ARC_AM BIT(1)
  124. #define ETH_ARC_AFM BIT(2)
  125. #define ETH_ARC_AB BIT(3)
  126. /* Ethernet SAL registers */
  127. #define ETH_SAL_BYTE_5 0x000000ff
  128. #define ETH_SAL_BYTE_4 0x0000ff00
  129. #define ETH_SAL_BYTE_3 0x00ff0000
  130. #define ETH_SAL_BYTE_2 0xff000000
  131. /* Ethernet SAH registers */
  132. #define ETH_SAH_BYTE1 0x000000ff
  133. #define ETH_SAH_BYTE0 0x0000ff00
  134. /* Ethernet GPF register */
  135. #define ETH_GPF_PTV 0x0000ffff
  136. /* Ethernet PFG register */
  137. #define ETH_PFS_PFD BIT(0)
  138. /* Ethernet CFSA[0-3] registers */
  139. #define ETH_CFSA0_CFSA4 0x000000ff
  140. #define ETH_CFSA0_CFSA5 0x0000ff00
  141. #define ETH_CFSA1_CFSA2 0x000000ff
  142. #define ETH_CFSA1_CFSA3 0x0000ff00
  143. #define ETH_CFSA1_CFSA0 0x000000ff
  144. #define ETH_CFSA1_CFSA1 0x0000ff00
  145. /* Ethernet MAC1 registers */
  146. #define ETH_MAC1_RE BIT(0)
  147. #define ETH_MAC1_PAF BIT(1)
  148. #define ETH_MAC1_RFC BIT(2)
  149. #define ETH_MAC1_TFC BIT(3)
  150. #define ETH_MAC1_LB BIT(4)
  151. #define ETH_MAC1_MR BIT(31)
  152. /* Ethernet MAC2 registers */
  153. #define ETH_MAC2_FD BIT(0)
  154. #define ETH_MAC2_FLC BIT(1)
  155. #define ETH_MAC2_HFE BIT(2)
  156. #define ETH_MAC2_DC BIT(3)
  157. #define ETH_MAC2_CEN BIT(4)
  158. #define ETH_MAC2_PE BIT(5)
  159. #define ETH_MAC2_VPE BIT(6)
  160. #define ETH_MAC2_APE BIT(7)
  161. #define ETH_MAC2_PPE BIT(8)
  162. #define ETH_MAC2_LPE BIT(9)
  163. #define ETH_MAC2_NB BIT(12)
  164. #define ETH_MAC2_BP BIT(13)
  165. #define ETH_MAC2_ED BIT(14)
  166. /* Ethernet IPGT register */
  167. #define ETH_IPGT 0x0000007f
  168. /* Ethernet IPGR registers */
  169. #define ETH_IPGR_IPGR2 0x0000007f
  170. #define ETH_IPGR_IPGR1 0x00007f00
  171. /* Ethernet CLRT registers */
  172. #define ETH_CLRT_MAX_RET 0x0000000f
  173. #define ETH_CLRT_COL_WIN 0x00003f00
  174. /* Ethernet MAXF register */
  175. #define ETH_MAXF 0x0000ffff
  176. /* Ethernet test registers */
  177. #define ETH_TEST_REG BIT(2)
  178. #define ETH_MCP_DIV 0x000000ff
  179. /* MII registers */
  180. #define ETH_MII_CFG_RSVD 0x0000000c
  181. #define ETH_MII_CMD_RD BIT(0)
  182. #define ETH_MII_CMD_SCN BIT(1)
  183. #define ETH_MII_REG_ADDR 0x0000001f
  184. #define ETH_MII_PHY_ADDR 0x00001f00
  185. #define ETH_MII_WTD_DATA 0x0000ffff
  186. #define ETH_MII_RDD_DATA 0x0000ffff
  187. #define ETH_MII_IND_BSY BIT(0)
  188. #define ETH_MII_IND_SCN BIT(1)
  189. #define ETH_MII_IND_NV BIT(2)
  190. /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
  191. #define ETH_RX_FD BIT(0)
  192. #define ETH_RX_LD BIT(1)
  193. #define ETH_RX_ROK BIT(2)
  194. #define ETH_RX_FM BIT(3)
  195. #define ETH_RX_MP BIT(4)
  196. #define ETH_RX_BP BIT(5)
  197. #define ETH_RX_VLT BIT(6)
  198. #define ETH_RX_CF BIT(7)
  199. #define ETH_RX_OVR BIT(8)
  200. #define ETH_RX_CRC BIT(9)
  201. #define ETH_RX_CV BIT(10)
  202. #define ETH_RX_DB BIT(11)
  203. #define ETH_RX_LE BIT(12)
  204. #define ETH_RX_LOR BIT(13)
  205. #define ETH_RX_CES BIT(14)
  206. #define ETH_RX_LEN_BIT 16
  207. #define ETH_RX_LEN 0xffff0000
  208. #define ETH_TX_FD BIT(0)
  209. #define ETH_TX_LD BIT(1)
  210. #define ETH_TX_OEN BIT(2)
  211. #define ETH_TX_PEN BIT(3)
  212. #define ETH_TX_CEN BIT(4)
  213. #define ETH_TX_HEN BIT(5)
  214. #define ETH_TX_TOK BIT(6)
  215. #define ETH_TX_MP BIT(7)
  216. #define ETH_TX_BP BIT(8)
  217. #define ETH_TX_UND BIT(9)
  218. #define ETH_TX_OF BIT(10)
  219. #define ETH_TX_ED BIT(11)
  220. #define ETH_TX_EC BIT(12)
  221. #define ETH_TX_LC BIT(13)
  222. #define ETH_TX_TD BIT(14)
  223. #define ETH_TX_CRC BIT(15)
  224. #define ETH_TX_LE BIT(16)
  225. #define ETH_TX_CC 0x001E0000
  226. /* DMA descriptor (in physical memory). */
  227. struct dma_desc {
  228. u32 control; /* Control. use DMAD_* */
  229. u32 ca; /* Current Address. */
  230. u32 devcs; /* Device control and status. */
  231. u32 link; /* Next descriptor in chain. */
  232. };
  233. #define DMA_DESC_COUNT_BIT 0
  234. #define DMA_DESC_COUNT_MSK 0x0003ffff
  235. #define DMA_DESC_DS_BIT 20
  236. #define DMA_DESC_DS_MSK 0x00300000
  237. #define DMA_DESC_DEV_CMD_BIT 22
  238. #define DMA_DESC_DEV_CMD_MSK 0x01c00000
  239. /* DMA descriptors interrupts */
  240. #define DMA_DESC_COF BIT(25) /* Chain on finished */
  241. #define DMA_DESC_COD BIT(26) /* Chain on done */
  242. #define DMA_DESC_IOF BIT(27) /* Interrupt on finished */
  243. #define DMA_DESC_IOD BIT(28) /* Interrupt on done */
  244. #define DMA_DESC_TERM BIT(29) /* Terminated */
  245. #define DMA_DESC_DONE BIT(30) /* Done */
  246. #define DMA_DESC_FINI BIT(31) /* Finished */
  247. /* DMA register (within Internal Register Map). */
  248. struct dma_reg {
  249. u32 dmac; /* Control. */
  250. u32 dmas; /* Status. */
  251. u32 dmasm; /* Mask. */
  252. u32 dmadptr; /* Descriptor pointer. */
  253. u32 dmandptr; /* Next descriptor pointer. */
  254. };
  255. /* DMA channels specific registers */
  256. #define DMA_CHAN_RUN_BIT BIT(0)
  257. #define DMA_CHAN_DONE_BIT BIT(1)
  258. #define DMA_CHAN_MODE_BIT BIT(2)
  259. #define DMA_CHAN_MODE_MSK 0x0000000c
  260. #define DMA_CHAN_MODE_AUTO 0
  261. #define DMA_CHAN_MODE_BURST 1
  262. #define DMA_CHAN_MODE_XFRT 2
  263. #define DMA_CHAN_MODE_RSVD 3
  264. #define DMA_CHAN_ACT_BIT BIT(4)
  265. /* DMA status registers */
  266. #define DMA_STAT_FINI BIT(0)
  267. #define DMA_STAT_DONE BIT(1)
  268. #define DMA_STAT_CHAIN BIT(2)
  269. #define DMA_STAT_ERR BIT(3)
  270. #define DMA_STAT_HALT BIT(4)
  271. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  272. ((dev)->dev_addr[1]))
  273. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  274. ((dev)->dev_addr[3] << 16) | \
  275. ((dev)->dev_addr[4] << 8) | \
  276. ((dev)->dev_addr[5]))
  277. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  278. /* the following must be powers of two */
  279. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  280. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  281. /* KORINA_RBSIZE is the hardware's default maximum receive
  282. * frame size in bytes. Having this hardcoded means that there
  283. * is no support for MTU sizes greater than 1500. */
  284. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  285. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  286. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  287. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  288. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  289. #define TX_TIMEOUT (6000 * HZ / 1000)
  290. enum chain_status {
  291. desc_filled,
  292. desc_is_empty
  293. };
  294. #define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK)
  295. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  296. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  297. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  298. /* Information that need to be kept for each board. */
  299. struct korina_private {
  300. struct eth_regs __iomem *eth_regs;
  301. struct dma_reg __iomem *rx_dma_regs;
  302. struct dma_reg __iomem *tx_dma_regs;
  303. struct dma_desc *td_ring; /* transmit descriptor ring */
  304. struct dma_desc *rd_ring; /* receive descriptor ring */
  305. dma_addr_t td_dma;
  306. dma_addr_t rd_dma;
  307. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  308. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  309. dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
  310. dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
  311. int rx_next_done;
  312. int rx_chain_head;
  313. int rx_chain_tail;
  314. enum chain_status rx_chain_status;
  315. int tx_next_done;
  316. int tx_chain_head;
  317. int tx_chain_tail;
  318. enum chain_status tx_chain_status;
  319. int tx_count;
  320. int tx_full;
  321. int rx_irq;
  322. int tx_irq;
  323. spinlock_t lock; /* NIC xmit lock */
  324. int dma_halt_cnt;
  325. int dma_run_cnt;
  326. struct napi_struct napi;
  327. struct timer_list media_check_timer;
  328. struct mii_if_info mii_if;
  329. struct work_struct restart_task;
  330. struct net_device *dev;
  331. struct device *dmadev;
  332. int mii_clock_freq;
  333. };
  334. static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
  335. {
  336. return lp->td_dma + (idx * sizeof(struct dma_desc));
  337. }
  338. static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
  339. {
  340. return lp->rd_dma + (idx * sizeof(struct dma_desc));
  341. }
  342. static inline void korina_abort_dma(struct net_device *dev,
  343. struct dma_reg *ch)
  344. {
  345. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  346. writel(0x10, &ch->dmac);
  347. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  348. netif_trans_update(dev);
  349. writel(0, &ch->dmas);
  350. }
  351. writel(0, &ch->dmadptr);
  352. writel(0, &ch->dmandptr);
  353. }
  354. static void korina_abort_tx(struct net_device *dev)
  355. {
  356. struct korina_private *lp = netdev_priv(dev);
  357. korina_abort_dma(dev, lp->tx_dma_regs);
  358. }
  359. static void korina_abort_rx(struct net_device *dev)
  360. {
  361. struct korina_private *lp = netdev_priv(dev);
  362. korina_abort_dma(dev, lp->rx_dma_regs);
  363. }
  364. /* transmit packet */
  365. static netdev_tx_t korina_send_packet(struct sk_buff *skb,
  366. struct net_device *dev)
  367. {
  368. struct korina_private *lp = netdev_priv(dev);
  369. u32 chain_prev, chain_next;
  370. unsigned long flags;
  371. struct dma_desc *td;
  372. dma_addr_t ca;
  373. u32 length;
  374. int idx;
  375. spin_lock_irqsave(&lp->lock, flags);
  376. idx = lp->tx_chain_tail;
  377. td = &lp->td_ring[idx];
  378. /* stop queue when full, drop pkts if queue already full */
  379. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  380. lp->tx_full = 1;
  381. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  382. netif_stop_queue(dev);
  383. else
  384. goto drop_packet;
  385. }
  386. lp->tx_count++;
  387. lp->tx_skb[idx] = skb;
  388. length = skb->len;
  389. /* Setup the transmit descriptor. */
  390. ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
  391. if (dma_mapping_error(lp->dmadev, ca))
  392. goto drop_packet;
  393. lp->tx_skb_dma[idx] = ca;
  394. td->ca = ca;
  395. chain_prev = (idx - 1) & KORINA_TDS_MASK;
  396. chain_next = (idx + 1) & KORINA_TDS_MASK;
  397. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  398. if (lp->tx_chain_status == desc_is_empty) {
  399. /* Update tail */
  400. td->control = DMA_COUNT(length) |
  401. DMA_DESC_COF | DMA_DESC_IOF;
  402. /* Move tail */
  403. lp->tx_chain_tail = chain_next;
  404. /* Write to NDPTR */
  405. writel(korina_tx_dma(lp, lp->tx_chain_head),
  406. &lp->tx_dma_regs->dmandptr);
  407. /* Move head to tail */
  408. lp->tx_chain_head = lp->tx_chain_tail;
  409. } else {
  410. /* Update tail */
  411. td->control = DMA_COUNT(length) |
  412. DMA_DESC_COF | DMA_DESC_IOF;
  413. /* Link to prev */
  414. lp->td_ring[chain_prev].control &=
  415. ~DMA_DESC_COF;
  416. /* Link to prev */
  417. lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
  418. /* Move tail */
  419. lp->tx_chain_tail = chain_next;
  420. /* Write to NDPTR */
  421. writel(korina_tx_dma(lp, lp->tx_chain_head),
  422. &lp->tx_dma_regs->dmandptr);
  423. /* Move head to tail */
  424. lp->tx_chain_head = lp->tx_chain_tail;
  425. lp->tx_chain_status = desc_is_empty;
  426. }
  427. } else {
  428. if (lp->tx_chain_status == desc_is_empty) {
  429. /* Update tail */
  430. td->control = DMA_COUNT(length) |
  431. DMA_DESC_COF | DMA_DESC_IOF;
  432. /* Move tail */
  433. lp->tx_chain_tail = chain_next;
  434. lp->tx_chain_status = desc_filled;
  435. } else {
  436. /* Update tail */
  437. td->control = DMA_COUNT(length) |
  438. DMA_DESC_COF | DMA_DESC_IOF;
  439. lp->td_ring[chain_prev].control &=
  440. ~DMA_DESC_COF;
  441. lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
  442. lp->tx_chain_tail = chain_next;
  443. }
  444. }
  445. netif_trans_update(dev);
  446. spin_unlock_irqrestore(&lp->lock, flags);
  447. return NETDEV_TX_OK;
  448. drop_packet:
  449. dev->stats.tx_dropped++;
  450. dev_kfree_skb_any(skb);
  451. spin_unlock_irqrestore(&lp->lock, flags);
  452. return NETDEV_TX_OK;
  453. }
  454. static int korina_mdio_wait(struct korina_private *lp)
  455. {
  456. u32 value;
  457. return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
  458. value, value & ETH_MII_IND_BSY,
  459. 1, 1000);
  460. }
  461. static int korina_mdio_read(struct net_device *dev, int phy, int reg)
  462. {
  463. struct korina_private *lp = netdev_priv(dev);
  464. int ret;
  465. ret = korina_mdio_wait(lp);
  466. if (ret < 0)
  467. return ret;
  468. writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
  469. writel(1, &lp->eth_regs->miimcmd);
  470. ret = korina_mdio_wait(lp);
  471. if (ret < 0)
  472. return ret;
  473. if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
  474. return -EINVAL;
  475. ret = readl(&lp->eth_regs->miimrdd);
  476. writel(0, &lp->eth_regs->miimcmd);
  477. return ret;
  478. }
  479. static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
  480. {
  481. struct korina_private *lp = netdev_priv(dev);
  482. if (korina_mdio_wait(lp))
  483. return;
  484. writel(0, &lp->eth_regs->miimcmd);
  485. writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
  486. writel(val, &lp->eth_regs->miimwtd);
  487. }
  488. /* Ethernet Rx DMA interrupt */
  489. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  490. {
  491. struct net_device *dev = dev_id;
  492. struct korina_private *lp = netdev_priv(dev);
  493. u32 dmas, dmasm;
  494. irqreturn_t retval;
  495. dmas = readl(&lp->rx_dma_regs->dmas);
  496. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  497. dmasm = readl(&lp->rx_dma_regs->dmasm);
  498. writel(dmasm | (DMA_STAT_DONE |
  499. DMA_STAT_HALT | DMA_STAT_ERR),
  500. &lp->rx_dma_regs->dmasm);
  501. napi_schedule(&lp->napi);
  502. if (dmas & DMA_STAT_ERR)
  503. printk(KERN_ERR "%s: DMA error\n", dev->name);
  504. retval = IRQ_HANDLED;
  505. } else
  506. retval = IRQ_NONE;
  507. return retval;
  508. }
  509. static int korina_rx(struct net_device *dev, int limit)
  510. {
  511. struct korina_private *lp = netdev_priv(dev);
  512. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  513. struct sk_buff *skb, *skb_new;
  514. u32 devcs, pkt_len, dmas;
  515. dma_addr_t ca;
  516. int count;
  517. for (count = 0; count < limit; count++) {
  518. skb = lp->rx_skb[lp->rx_next_done];
  519. skb_new = NULL;
  520. devcs = rd->devcs;
  521. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  522. break;
  523. /* check that this is a whole packet
  524. * WARNING: DMA_FD bit incorrectly set
  525. * in Rc32434 (errata ref #077) */
  526. if (!(devcs & ETH_RX_LD))
  527. goto next;
  528. if (!(devcs & ETH_RX_ROK)) {
  529. /* Update statistics counters */
  530. dev->stats.rx_errors++;
  531. dev->stats.rx_dropped++;
  532. if (devcs & ETH_RX_CRC)
  533. dev->stats.rx_crc_errors++;
  534. if (devcs & ETH_RX_LE)
  535. dev->stats.rx_length_errors++;
  536. if (devcs & ETH_RX_OVR)
  537. dev->stats.rx_fifo_errors++;
  538. if (devcs & ETH_RX_CV)
  539. dev->stats.rx_frame_errors++;
  540. if (devcs & ETH_RX_CES)
  541. dev->stats.rx_frame_errors++;
  542. goto next;
  543. }
  544. /* Malloc up new buffer. */
  545. skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  546. if (!skb_new)
  547. break;
  548. ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
  549. DMA_FROM_DEVICE);
  550. if (dma_mapping_error(lp->dmadev, ca)) {
  551. dev_kfree_skb_any(skb_new);
  552. break;
  553. }
  554. pkt_len = RCVPKT_LENGTH(devcs);
  555. dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
  556. pkt_len, DMA_FROM_DEVICE);
  557. /* Do not count the CRC */
  558. skb_put(skb, pkt_len - 4);
  559. skb->protocol = eth_type_trans(skb, dev);
  560. /* Pass the packet to upper layers */
  561. napi_gro_receive(&lp->napi, skb);
  562. dev->stats.rx_packets++;
  563. dev->stats.rx_bytes += pkt_len;
  564. /* Update the mcast stats */
  565. if (devcs & ETH_RX_MP)
  566. dev->stats.multicast++;
  567. lp->rx_skb[lp->rx_next_done] = skb_new;
  568. lp->rx_skb_dma[lp->rx_next_done] = ca;
  569. next:
  570. rd->devcs = 0;
  571. /* Restore descriptor's curr_addr */
  572. rd->ca = lp->rx_skb_dma[lp->rx_next_done];
  573. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  574. DMA_DESC_COD | DMA_DESC_IOD;
  575. lp->rd_ring[(lp->rx_next_done - 1) &
  576. KORINA_RDS_MASK].control &=
  577. ~DMA_DESC_COD;
  578. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  579. rd = &lp->rd_ring[lp->rx_next_done];
  580. writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  581. }
  582. dmas = readl(&lp->rx_dma_regs->dmas);
  583. if (dmas & DMA_STAT_HALT) {
  584. writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
  585. &lp->rx_dma_regs->dmas);
  586. lp->dma_halt_cnt++;
  587. rd->devcs = 0;
  588. rd->ca = lp->rx_skb_dma[lp->rx_next_done];
  589. writel(korina_rx_dma(lp, rd - lp->rd_ring),
  590. &lp->rx_dma_regs->dmandptr);
  591. }
  592. return count;
  593. }
  594. static int korina_poll(struct napi_struct *napi, int budget)
  595. {
  596. struct korina_private *lp =
  597. container_of(napi, struct korina_private, napi);
  598. struct net_device *dev = lp->dev;
  599. int work_done;
  600. work_done = korina_rx(dev, budget);
  601. if (work_done < budget) {
  602. napi_complete_done(napi, work_done);
  603. writel(readl(&lp->rx_dma_regs->dmasm) &
  604. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  605. &lp->rx_dma_regs->dmasm);
  606. }
  607. return work_done;
  608. }
  609. /*
  610. * Set or clear the multicast filter for this adaptor.
  611. */
  612. static void korina_multicast_list(struct net_device *dev)
  613. {
  614. struct korina_private *lp = netdev_priv(dev);
  615. unsigned long flags;
  616. struct netdev_hw_addr *ha;
  617. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  618. /* Set promiscuous mode */
  619. if (dev->flags & IFF_PROMISC)
  620. recognise |= ETH_ARC_PRO;
  621. else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
  622. /* All multicast and broadcast */
  623. recognise |= ETH_ARC_AM;
  624. /* Build the hash table */
  625. if (netdev_mc_count(dev) > 4) {
  626. u16 hash_table[4] = { 0 };
  627. u32 crc;
  628. netdev_for_each_mc_addr(ha, dev) {
  629. crc = ether_crc_le(6, ha->addr);
  630. crc >>= 26;
  631. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  632. }
  633. /* Accept filtered multicast */
  634. recognise |= ETH_ARC_AFM;
  635. /* Fill the MAC hash tables with their values */
  636. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  637. &lp->eth_regs->ethhash0);
  638. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  639. &lp->eth_regs->ethhash1);
  640. }
  641. spin_lock_irqsave(&lp->lock, flags);
  642. writel(recognise, &lp->eth_regs->etharc);
  643. spin_unlock_irqrestore(&lp->lock, flags);
  644. }
  645. static void korina_tx(struct net_device *dev)
  646. {
  647. struct korina_private *lp = netdev_priv(dev);
  648. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  649. u32 devcs;
  650. u32 dmas;
  651. spin_lock(&lp->lock);
  652. /* Process all desc that are done */
  653. while (IS_DMA_FINISHED(td->control)) {
  654. if (lp->tx_full == 1) {
  655. netif_wake_queue(dev);
  656. lp->tx_full = 0;
  657. }
  658. devcs = lp->td_ring[lp->tx_next_done].devcs;
  659. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  660. (ETH_TX_FD | ETH_TX_LD)) {
  661. dev->stats.tx_errors++;
  662. dev->stats.tx_dropped++;
  663. /* Should never happen */
  664. printk(KERN_ERR "%s: split tx ignored\n",
  665. dev->name);
  666. } else if (devcs & ETH_TX_TOK) {
  667. dev->stats.tx_packets++;
  668. dev->stats.tx_bytes +=
  669. lp->tx_skb[lp->tx_next_done]->len;
  670. } else {
  671. dev->stats.tx_errors++;
  672. dev->stats.tx_dropped++;
  673. /* Underflow */
  674. if (devcs & ETH_TX_UND)
  675. dev->stats.tx_fifo_errors++;
  676. /* Oversized frame */
  677. if (devcs & ETH_TX_OF)
  678. dev->stats.tx_aborted_errors++;
  679. /* Excessive deferrals */
  680. if (devcs & ETH_TX_ED)
  681. dev->stats.tx_carrier_errors++;
  682. /* Collisions: medium busy */
  683. if (devcs & ETH_TX_EC)
  684. dev->stats.collisions++;
  685. /* Late collision */
  686. if (devcs & ETH_TX_LC)
  687. dev->stats.tx_window_errors++;
  688. }
  689. /* We must always free the original skb */
  690. if (lp->tx_skb[lp->tx_next_done]) {
  691. dma_unmap_single(lp->dmadev,
  692. lp->tx_skb_dma[lp->tx_next_done],
  693. lp->tx_skb[lp->tx_next_done]->len,
  694. DMA_TO_DEVICE);
  695. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  696. lp->tx_skb[lp->tx_next_done] = NULL;
  697. }
  698. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  699. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  700. lp->td_ring[lp->tx_next_done].link = 0;
  701. lp->td_ring[lp->tx_next_done].ca = 0;
  702. lp->tx_count--;
  703. /* Go on to next transmission */
  704. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  705. td = &lp->td_ring[lp->tx_next_done];
  706. }
  707. /* Clear the DMA status register */
  708. dmas = readl(&lp->tx_dma_regs->dmas);
  709. writel(~dmas, &lp->tx_dma_regs->dmas);
  710. writel(readl(&lp->tx_dma_regs->dmasm) &
  711. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  712. &lp->tx_dma_regs->dmasm);
  713. spin_unlock(&lp->lock);
  714. }
  715. static irqreturn_t
  716. korina_tx_dma_interrupt(int irq, void *dev_id)
  717. {
  718. struct net_device *dev = dev_id;
  719. struct korina_private *lp = netdev_priv(dev);
  720. u32 dmas, dmasm;
  721. irqreturn_t retval;
  722. dmas = readl(&lp->tx_dma_regs->dmas);
  723. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  724. dmasm = readl(&lp->tx_dma_regs->dmasm);
  725. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  726. &lp->tx_dma_regs->dmasm);
  727. korina_tx(dev);
  728. if (lp->tx_chain_status == desc_filled &&
  729. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  730. writel(korina_tx_dma(lp, lp->tx_chain_head),
  731. &lp->tx_dma_regs->dmandptr);
  732. lp->tx_chain_status = desc_is_empty;
  733. lp->tx_chain_head = lp->tx_chain_tail;
  734. netif_trans_update(dev);
  735. }
  736. if (dmas & DMA_STAT_ERR)
  737. printk(KERN_ERR "%s: DMA error\n", dev->name);
  738. retval = IRQ_HANDLED;
  739. } else
  740. retval = IRQ_NONE;
  741. return retval;
  742. }
  743. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  744. {
  745. struct korina_private *lp = netdev_priv(dev);
  746. mii_check_media(&lp->mii_if, 1, init_media);
  747. if (lp->mii_if.full_duplex)
  748. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  749. &lp->eth_regs->ethmac2);
  750. else
  751. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  752. &lp->eth_regs->ethmac2);
  753. }
  754. static void korina_poll_media(struct timer_list *t)
  755. {
  756. struct korina_private *lp = from_timer(lp, t, media_check_timer);
  757. struct net_device *dev = lp->dev;
  758. korina_check_media(dev, 0);
  759. mod_timer(&lp->media_check_timer, jiffies + HZ);
  760. }
  761. static void korina_set_carrier(struct mii_if_info *mii)
  762. {
  763. if (mii->force_media) {
  764. /* autoneg is off: Link is always assumed to be up */
  765. if (!netif_carrier_ok(mii->dev))
  766. netif_carrier_on(mii->dev);
  767. } else /* Let MMI library update carrier status */
  768. korina_check_media(mii->dev, 0);
  769. }
  770. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  771. {
  772. struct korina_private *lp = netdev_priv(dev);
  773. struct mii_ioctl_data *data = if_mii(rq);
  774. int rc;
  775. if (!netif_running(dev))
  776. return -EINVAL;
  777. spin_lock_irq(&lp->lock);
  778. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  779. spin_unlock_irq(&lp->lock);
  780. korina_set_carrier(&lp->mii_if);
  781. return rc;
  782. }
  783. /* ethtool helpers */
  784. static void netdev_get_drvinfo(struct net_device *dev,
  785. struct ethtool_drvinfo *info)
  786. {
  787. struct korina_private *lp = netdev_priv(dev);
  788. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  789. strscpy(info->version, DRV_VERSION, sizeof(info->version));
  790. strscpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
  791. }
  792. static int netdev_get_link_ksettings(struct net_device *dev,
  793. struct ethtool_link_ksettings *cmd)
  794. {
  795. struct korina_private *lp = netdev_priv(dev);
  796. spin_lock_irq(&lp->lock);
  797. mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
  798. spin_unlock_irq(&lp->lock);
  799. return 0;
  800. }
  801. static int netdev_set_link_ksettings(struct net_device *dev,
  802. const struct ethtool_link_ksettings *cmd)
  803. {
  804. struct korina_private *lp = netdev_priv(dev);
  805. int rc;
  806. spin_lock_irq(&lp->lock);
  807. rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
  808. spin_unlock_irq(&lp->lock);
  809. korina_set_carrier(&lp->mii_if);
  810. return rc;
  811. }
  812. static u32 netdev_get_link(struct net_device *dev)
  813. {
  814. struct korina_private *lp = netdev_priv(dev);
  815. return mii_link_ok(&lp->mii_if);
  816. }
  817. static const struct ethtool_ops netdev_ethtool_ops = {
  818. .get_drvinfo = netdev_get_drvinfo,
  819. .get_link = netdev_get_link,
  820. .get_link_ksettings = netdev_get_link_ksettings,
  821. .set_link_ksettings = netdev_set_link_ksettings,
  822. };
  823. static int korina_alloc_ring(struct net_device *dev)
  824. {
  825. struct korina_private *lp = netdev_priv(dev);
  826. struct sk_buff *skb;
  827. dma_addr_t ca;
  828. int i;
  829. /* Initialize the transmit descriptors */
  830. for (i = 0; i < KORINA_NUM_TDS; i++) {
  831. lp->td_ring[i].control = DMA_DESC_IOF;
  832. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  833. lp->td_ring[i].ca = 0;
  834. lp->td_ring[i].link = 0;
  835. }
  836. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  837. lp->tx_full = lp->tx_count = 0;
  838. lp->tx_chain_status = desc_is_empty;
  839. /* Initialize the receive descriptors */
  840. for (i = 0; i < KORINA_NUM_RDS; i++) {
  841. skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  842. if (!skb)
  843. return -ENOMEM;
  844. lp->rx_skb[i] = skb;
  845. lp->rd_ring[i].control = DMA_DESC_IOD |
  846. DMA_COUNT(KORINA_RBSIZE);
  847. lp->rd_ring[i].devcs = 0;
  848. ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
  849. DMA_FROM_DEVICE);
  850. if (dma_mapping_error(lp->dmadev, ca))
  851. return -ENOMEM;
  852. lp->rd_ring[i].ca = ca;
  853. lp->rx_skb_dma[i] = ca;
  854. lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
  855. }
  856. /* loop back receive descriptors, so the last
  857. * descriptor points to the first one */
  858. lp->rd_ring[i - 1].link = lp->rd_dma;
  859. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  860. lp->rx_next_done = 0;
  861. lp->rx_chain_head = 0;
  862. lp->rx_chain_tail = 0;
  863. lp->rx_chain_status = desc_is_empty;
  864. return 0;
  865. }
  866. static void korina_free_ring(struct net_device *dev)
  867. {
  868. struct korina_private *lp = netdev_priv(dev);
  869. int i;
  870. for (i = 0; i < KORINA_NUM_RDS; i++) {
  871. lp->rd_ring[i].control = 0;
  872. if (lp->rx_skb[i]) {
  873. dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
  874. KORINA_RBSIZE, DMA_FROM_DEVICE);
  875. dev_kfree_skb_any(lp->rx_skb[i]);
  876. lp->rx_skb[i] = NULL;
  877. }
  878. }
  879. for (i = 0; i < KORINA_NUM_TDS; i++) {
  880. lp->td_ring[i].control = 0;
  881. if (lp->tx_skb[i]) {
  882. dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
  883. lp->tx_skb[i]->len, DMA_TO_DEVICE);
  884. dev_kfree_skb_any(lp->tx_skb[i]);
  885. lp->tx_skb[i] = NULL;
  886. }
  887. }
  888. }
  889. /*
  890. * Initialize the RC32434 ethernet controller.
  891. */
  892. static int korina_init(struct net_device *dev)
  893. {
  894. struct korina_private *lp = netdev_priv(dev);
  895. /* Disable DMA */
  896. korina_abort_tx(dev);
  897. korina_abort_rx(dev);
  898. /* reset ethernet logic */
  899. writel(0, &lp->eth_regs->ethintfc);
  900. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  901. netif_trans_update(dev);
  902. /* Enable Ethernet Interface */
  903. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  904. /* Allocate rings */
  905. if (korina_alloc_ring(dev)) {
  906. printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
  907. korina_free_ring(dev);
  908. return -ENOMEM;
  909. }
  910. writel(0, &lp->rx_dma_regs->dmas);
  911. /* Start Rx DMA */
  912. writel(0, &lp->rx_dma_regs->dmandptr);
  913. writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
  914. writel(readl(&lp->tx_dma_regs->dmasm) &
  915. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  916. &lp->tx_dma_regs->dmasm);
  917. writel(readl(&lp->rx_dma_regs->dmasm) &
  918. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  919. &lp->rx_dma_regs->dmasm);
  920. /* Accept only packets destined for this Ethernet device address */
  921. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  922. /* Set all Ether station address registers to their initial values */
  923. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  924. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  925. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  926. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  927. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  928. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  929. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  930. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  931. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  932. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  933. &lp->eth_regs->ethmac2);
  934. /* Back to back inter-packet-gap */
  935. writel(0x15, &lp->eth_regs->ethipgt);
  936. /* Non - Back to back inter-packet-gap */
  937. writel(0x12, &lp->eth_regs->ethipgr);
  938. /* Management Clock Prescaler Divisor
  939. * Clock independent setting */
  940. writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
  941. &lp->eth_regs->ethmcp);
  942. writel(0, &lp->eth_regs->miimcfg);
  943. /* don't transmit until fifo contains 48b */
  944. writel(48, &lp->eth_regs->ethfifott);
  945. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  946. korina_check_media(dev, 1);
  947. napi_enable(&lp->napi);
  948. netif_start_queue(dev);
  949. return 0;
  950. }
  951. /*
  952. * Restart the RC32434 ethernet controller.
  953. */
  954. static void korina_restart_task(struct work_struct *work)
  955. {
  956. struct korina_private *lp = container_of(work,
  957. struct korina_private, restart_task);
  958. struct net_device *dev = lp->dev;
  959. /*
  960. * Disable interrupts
  961. */
  962. disable_irq(lp->rx_irq);
  963. disable_irq(lp->tx_irq);
  964. writel(readl(&lp->tx_dma_regs->dmasm) |
  965. DMA_STAT_FINI | DMA_STAT_ERR,
  966. &lp->tx_dma_regs->dmasm);
  967. writel(readl(&lp->rx_dma_regs->dmasm) |
  968. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  969. &lp->rx_dma_regs->dmasm);
  970. napi_disable(&lp->napi);
  971. korina_free_ring(dev);
  972. if (korina_init(dev) < 0) {
  973. printk(KERN_ERR "%s: cannot restart device\n", dev->name);
  974. return;
  975. }
  976. korina_multicast_list(dev);
  977. enable_irq(lp->tx_irq);
  978. enable_irq(lp->rx_irq);
  979. }
  980. static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
  981. {
  982. struct korina_private *lp = netdev_priv(dev);
  983. schedule_work(&lp->restart_task);
  984. }
  985. #ifdef CONFIG_NET_POLL_CONTROLLER
  986. static void korina_poll_controller(struct net_device *dev)
  987. {
  988. disable_irq(dev->irq);
  989. korina_tx_dma_interrupt(dev->irq, dev);
  990. enable_irq(dev->irq);
  991. }
  992. #endif
  993. static int korina_open(struct net_device *dev)
  994. {
  995. struct korina_private *lp = netdev_priv(dev);
  996. int ret;
  997. /* Initialize */
  998. ret = korina_init(dev);
  999. if (ret < 0) {
  1000. printk(KERN_ERR "%s: cannot open device\n", dev->name);
  1001. goto out;
  1002. }
  1003. /* Install the interrupt handler
  1004. * that handles the Done Finished */
  1005. ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
  1006. 0, "Korina ethernet Rx", dev);
  1007. if (ret < 0) {
  1008. printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
  1009. dev->name, lp->rx_irq);
  1010. goto err_release;
  1011. }
  1012. ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
  1013. 0, "Korina ethernet Tx", dev);
  1014. if (ret < 0) {
  1015. printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
  1016. dev->name, lp->tx_irq);
  1017. goto err_free_rx_irq;
  1018. }
  1019. mod_timer(&lp->media_check_timer, jiffies + 1);
  1020. out:
  1021. return ret;
  1022. err_free_rx_irq:
  1023. free_irq(lp->rx_irq, dev);
  1024. err_release:
  1025. korina_free_ring(dev);
  1026. goto out;
  1027. }
  1028. static int korina_close(struct net_device *dev)
  1029. {
  1030. struct korina_private *lp = netdev_priv(dev);
  1031. u32 tmp;
  1032. del_timer(&lp->media_check_timer);
  1033. /* Disable interrupts */
  1034. disable_irq(lp->rx_irq);
  1035. disable_irq(lp->tx_irq);
  1036. korina_abort_tx(dev);
  1037. tmp = readl(&lp->tx_dma_regs->dmasm);
  1038. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  1039. writel(tmp, &lp->tx_dma_regs->dmasm);
  1040. korina_abort_rx(dev);
  1041. tmp = readl(&lp->rx_dma_regs->dmasm);
  1042. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  1043. writel(tmp, &lp->rx_dma_regs->dmasm);
  1044. napi_disable(&lp->napi);
  1045. cancel_work_sync(&lp->restart_task);
  1046. korina_free_ring(dev);
  1047. free_irq(lp->rx_irq, dev);
  1048. free_irq(lp->tx_irq, dev);
  1049. return 0;
  1050. }
  1051. static const struct net_device_ops korina_netdev_ops = {
  1052. .ndo_open = korina_open,
  1053. .ndo_stop = korina_close,
  1054. .ndo_start_xmit = korina_send_packet,
  1055. .ndo_set_rx_mode = korina_multicast_list,
  1056. .ndo_tx_timeout = korina_tx_timeout,
  1057. .ndo_eth_ioctl = korina_ioctl,
  1058. .ndo_validate_addr = eth_validate_addr,
  1059. .ndo_set_mac_address = eth_mac_addr,
  1060. #ifdef CONFIG_NET_POLL_CONTROLLER
  1061. .ndo_poll_controller = korina_poll_controller,
  1062. #endif
  1063. };
  1064. static int korina_probe(struct platform_device *pdev)
  1065. {
  1066. u8 *mac_addr = dev_get_platdata(&pdev->dev);
  1067. struct korina_private *lp;
  1068. struct net_device *dev;
  1069. struct clk *clk;
  1070. void __iomem *p;
  1071. int rc;
  1072. dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
  1073. if (!dev)
  1074. return -ENOMEM;
  1075. SET_NETDEV_DEV(dev, &pdev->dev);
  1076. lp = netdev_priv(dev);
  1077. if (mac_addr)
  1078. eth_hw_addr_set(dev, mac_addr);
  1079. else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
  1080. eth_hw_addr_random(dev);
  1081. clk = devm_clk_get_optional_enabled(&pdev->dev, "mdioclk");
  1082. if (IS_ERR(clk))
  1083. return PTR_ERR(clk);
  1084. if (clk) {
  1085. lp->mii_clock_freq = clk_get_rate(clk);
  1086. } else {
  1087. lp->mii_clock_freq = 200000000; /* max possible input clk */
  1088. }
  1089. lp->rx_irq = platform_get_irq_byname(pdev, "rx");
  1090. lp->tx_irq = platform_get_irq_byname(pdev, "tx");
  1091. p = devm_platform_ioremap_resource_byname(pdev, "emac");
  1092. if (IS_ERR(p)) {
  1093. printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
  1094. return PTR_ERR(p);
  1095. }
  1096. lp->eth_regs = p;
  1097. p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
  1098. if (IS_ERR(p)) {
  1099. printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
  1100. return PTR_ERR(p);
  1101. }
  1102. lp->rx_dma_regs = p;
  1103. p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
  1104. if (IS_ERR(p)) {
  1105. printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
  1106. return PTR_ERR(p);
  1107. }
  1108. lp->tx_dma_regs = p;
  1109. lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
  1110. &lp->td_dma, GFP_KERNEL);
  1111. if (!lp->td_ring)
  1112. return -ENOMEM;
  1113. lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
  1114. &lp->rd_dma, GFP_KERNEL);
  1115. if (!lp->rd_ring)
  1116. return -ENOMEM;
  1117. spin_lock_init(&lp->lock);
  1118. /* just use the rx dma irq */
  1119. dev->irq = lp->rx_irq;
  1120. lp->dev = dev;
  1121. lp->dmadev = &pdev->dev;
  1122. dev->netdev_ops = &korina_netdev_ops;
  1123. dev->ethtool_ops = &netdev_ethtool_ops;
  1124. dev->watchdog_timeo = TX_TIMEOUT;
  1125. netif_napi_add(dev, &lp->napi, korina_poll);
  1126. lp->mii_if.dev = dev;
  1127. lp->mii_if.mdio_read = korina_mdio_read;
  1128. lp->mii_if.mdio_write = korina_mdio_write;
  1129. lp->mii_if.phy_id = 1;
  1130. lp->mii_if.phy_id_mask = 0x1f;
  1131. lp->mii_if.reg_num_mask = 0x1f;
  1132. platform_set_drvdata(pdev, dev);
  1133. rc = register_netdev(dev);
  1134. if (rc < 0) {
  1135. printk(KERN_ERR DRV_NAME
  1136. ": cannot register net device: %d\n", rc);
  1137. return rc;
  1138. }
  1139. timer_setup(&lp->media_check_timer, korina_poll_media, 0);
  1140. INIT_WORK(&lp->restart_task, korina_restart_task);
  1141. printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
  1142. dev->name);
  1143. return rc;
  1144. }
  1145. static int korina_remove(struct platform_device *pdev)
  1146. {
  1147. struct net_device *dev = platform_get_drvdata(pdev);
  1148. unregister_netdev(dev);
  1149. return 0;
  1150. }
  1151. #ifdef CONFIG_OF
  1152. static const struct of_device_id korina_match[] = {
  1153. {
  1154. .compatible = "idt,3243x-emac",
  1155. },
  1156. { }
  1157. };
  1158. MODULE_DEVICE_TABLE(of, korina_match);
  1159. #endif
  1160. static struct platform_driver korina_driver = {
  1161. .driver = {
  1162. .name = "korina",
  1163. .of_match_table = of_match_ptr(korina_match),
  1164. },
  1165. .probe = korina_probe,
  1166. .remove = korina_remove,
  1167. };
  1168. module_platform_driver(korina_driver);
  1169. MODULE_AUTHOR("Philip Rischel <[email protected]>");
  1170. MODULE_AUTHOR("Felix Fietkau <[email protected]>");
  1171. MODULE_AUTHOR("Florian Fainelli <[email protected]>");
  1172. MODULE_AUTHOR("Roman Yeryomin <[email protected]>");
  1173. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1174. MODULE_LICENSE("GPL");