fec_main.c 113 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  4. * Copyright (c) 1997 Dan Malek ([email protected])
  5. *
  6. * Right now, I am very wasteful with the buffers. I allocate memory
  7. * pages and then divide them into 2K frame buffers. This way I know I
  8. * have buffers large enough to hold one frame within one buffer descriptor.
  9. * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10. * will be much more memory efficient and will easily handle lots of
  11. * small packets.
  12. *
  13. * Much better multiple PHY support by Magnus Damm.
  14. * Copyright (c) 2000 Ericsson Radio Systems AB.
  15. *
  16. * Support for FEC controller of ColdFire processors.
  17. * Copyright (c) 2001-2005 Greg Ungerer ([email protected])
  18. *
  19. * Bug fixes and cleanup by Philippe De Muyter ([email protected])
  20. * Copyright (c) 2004-2006 Macq Electronique SA.
  21. *
  22. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/string.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/ptrace.h>
  29. #include <linux/errno.h>
  30. #include <linux/ioport.h>
  31. #include <linux/slab.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/delay.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/in.h>
  38. #include <linux/ip.h>
  39. #include <net/ip.h>
  40. #include <net/selftests.h>
  41. #include <net/tso.h>
  42. #include <linux/tcp.h>
  43. #include <linux/udp.h>
  44. #include <linux/icmp.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/workqueue.h>
  47. #include <linux/bitops.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/clk.h>
  51. #include <linux/crc32.h>
  52. #include <linux/platform_device.h>
  53. #include <linux/mdio.h>
  54. #include <linux/phy.h>
  55. #include <linux/fec.h>
  56. #include <linux/of.h>
  57. #include <linux/of_device.h>
  58. #include <linux/of_gpio.h>
  59. #include <linux/of_mdio.h>
  60. #include <linux/of_net.h>
  61. #include <linux/regulator/consumer.h>
  62. #include <linux/if_vlan.h>
  63. #include <linux/pinctrl/consumer.h>
  64. #include <linux/prefetch.h>
  65. #include <linux/mfd/syscon.h>
  66. #include <linux/regmap.h>
  67. #include <soc/imx/cpuidle.h>
  68. #include <linux/filter.h>
  69. #include <linux/bpf.h>
  70. #include <asm/cacheflush.h>
  71. #include "fec.h"
  72. static void set_multicast_list(struct net_device *ndev);
  73. static void fec_enet_itr_coal_set(struct net_device *ndev);
  74. #define DRIVER_NAME "fec"
  75. static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  76. /* Pause frame feild and FIFO threshold */
  77. #define FEC_ENET_FCE (1 << 5)
  78. #define FEC_ENET_RSEM_V 0x84
  79. #define FEC_ENET_RSFL_V 16
  80. #define FEC_ENET_RAEM_V 0x8
  81. #define FEC_ENET_RAFL_V 0x8
  82. #define FEC_ENET_OPD_V 0xFFF0
  83. #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
  84. struct fec_devinfo {
  85. u32 quirks;
  86. };
  87. static const struct fec_devinfo fec_imx25_info = {
  88. .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  89. FEC_QUIRK_HAS_FRREG,
  90. };
  91. static const struct fec_devinfo fec_imx27_info = {
  92. .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
  93. };
  94. static const struct fec_devinfo fec_imx28_info = {
  95. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
  96. FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
  97. FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
  98. FEC_QUIRK_NO_HARD_RESET,
  99. };
  100. static const struct fec_devinfo fec_imx6q_info = {
  101. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  102. FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
  103. FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
  104. FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
  105. FEC_QUIRK_HAS_PMQOS,
  106. };
  107. static const struct fec_devinfo fec_mvf600_info = {
  108. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
  109. };
  110. static const struct fec_devinfo fec_imx6x_info = {
  111. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  112. FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
  113. FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
  114. FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
  115. FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
  116. FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
  117. };
  118. static const struct fec_devinfo fec_imx6ul_info = {
  119. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  120. FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
  121. FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
  122. FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
  123. FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
  124. };
  125. static const struct fec_devinfo fec_imx8mq_info = {
  126. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  127. FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
  128. FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
  129. FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
  130. FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
  131. FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
  132. FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
  133. };
  134. static const struct fec_devinfo fec_imx8qm_info = {
  135. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  136. FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
  137. FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
  138. FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
  139. FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
  140. FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
  141. FEC_QUIRK_DELAYED_CLKS_SUPPORT,
  142. };
  143. static const struct fec_devinfo fec_s32v234_info = {
  144. .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  145. FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
  146. FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
  147. FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
  148. };
  149. static struct platform_device_id fec_devtype[] = {
  150. {
  151. /* keep it for coldfire */
  152. .name = DRIVER_NAME,
  153. .driver_data = 0,
  154. }, {
  155. .name = "imx25-fec",
  156. .driver_data = (kernel_ulong_t)&fec_imx25_info,
  157. }, {
  158. .name = "imx27-fec",
  159. .driver_data = (kernel_ulong_t)&fec_imx27_info,
  160. }, {
  161. .name = "imx28-fec",
  162. .driver_data = (kernel_ulong_t)&fec_imx28_info,
  163. }, {
  164. .name = "imx6q-fec",
  165. .driver_data = (kernel_ulong_t)&fec_imx6q_info,
  166. }, {
  167. .name = "mvf600-fec",
  168. .driver_data = (kernel_ulong_t)&fec_mvf600_info,
  169. }, {
  170. .name = "imx6sx-fec",
  171. .driver_data = (kernel_ulong_t)&fec_imx6x_info,
  172. }, {
  173. .name = "imx6ul-fec",
  174. .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
  175. }, {
  176. .name = "imx8mq-fec",
  177. .driver_data = (kernel_ulong_t)&fec_imx8mq_info,
  178. }, {
  179. .name = "imx8qm-fec",
  180. .driver_data = (kernel_ulong_t)&fec_imx8qm_info,
  181. }, {
  182. .name = "s32v234-fec",
  183. .driver_data = (kernel_ulong_t)&fec_s32v234_info,
  184. }, {
  185. /* sentinel */
  186. }
  187. };
  188. MODULE_DEVICE_TABLE(platform, fec_devtype);
  189. enum imx_fec_type {
  190. IMX25_FEC = 1, /* runs on i.mx25/50/53 */
  191. IMX27_FEC, /* runs on i.mx27/35/51 */
  192. IMX28_FEC,
  193. IMX6Q_FEC,
  194. MVF600_FEC,
  195. IMX6SX_FEC,
  196. IMX6UL_FEC,
  197. IMX8MQ_FEC,
  198. IMX8QM_FEC,
  199. S32V234_FEC,
  200. };
  201. static const struct of_device_id fec_dt_ids[] = {
  202. { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
  203. { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
  204. { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
  205. { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
  206. { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
  207. { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
  208. { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
  209. { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
  210. { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
  211. { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
  212. { /* sentinel */ }
  213. };
  214. MODULE_DEVICE_TABLE(of, fec_dt_ids);
  215. static unsigned char macaddr[ETH_ALEN];
  216. module_param_array(macaddr, byte, NULL, 0);
  217. MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
  218. #if defined(CONFIG_M5272)
  219. /*
  220. * Some hardware gets it MAC address out of local flash memory.
  221. * if this is non-zero then assume it is the address to get MAC from.
  222. */
  223. #if defined(CONFIG_NETtel)
  224. #define FEC_FLASHMAC 0xf0006006
  225. #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
  226. #define FEC_FLASHMAC 0xf0006000
  227. #elif defined(CONFIG_CANCam)
  228. #define FEC_FLASHMAC 0xf0020000
  229. #elif defined (CONFIG_M5272C3)
  230. #define FEC_FLASHMAC (0xffe04000 + 4)
  231. #elif defined(CONFIG_MOD5272)
  232. #define FEC_FLASHMAC 0xffc0406b
  233. #else
  234. #define FEC_FLASHMAC 0
  235. #endif
  236. #endif /* CONFIG_M5272 */
  237. /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
  238. *
  239. * 2048 byte skbufs are allocated. However, alignment requirements
  240. * varies between FEC variants. Worst case is 64, so round down by 64.
  241. */
  242. #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
  243. #define PKT_MINBUF_SIZE 64
  244. /* FEC receive acceleration */
  245. #define FEC_RACC_IPDIS (1 << 1)
  246. #define FEC_RACC_PRODIS (1 << 2)
  247. #define FEC_RACC_SHIFT16 BIT(7)
  248. #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
  249. /* MIB Control Register */
  250. #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
  251. /*
  252. * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
  253. * size bits. Other FEC hardware does not, so we need to take that into
  254. * account when setting it.
  255. */
  256. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  257. defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
  258. defined(CONFIG_ARM64)
  259. #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
  260. #else
  261. #define OPT_FRAME_SIZE 0
  262. #endif
  263. /* FEC MII MMFR bits definition */
  264. #define FEC_MMFR_ST (1 << 30)
  265. #define FEC_MMFR_ST_C45 (0)
  266. #define FEC_MMFR_OP_READ (2 << 28)
  267. #define FEC_MMFR_OP_READ_C45 (3 << 28)
  268. #define FEC_MMFR_OP_WRITE (1 << 28)
  269. #define FEC_MMFR_OP_ADDR_WRITE (0)
  270. #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
  271. #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
  272. #define FEC_MMFR_TA (2 << 16)
  273. #define FEC_MMFR_DATA(v) (v & 0xffff)
  274. /* FEC ECR bits definition */
  275. #define FEC_ECR_MAGICEN (1 << 2)
  276. #define FEC_ECR_SLEEP (1 << 3)
  277. #define FEC_MII_TIMEOUT 30000 /* us */
  278. /* Transmitter timeout */
  279. #define TX_TIMEOUT (2 * HZ)
  280. #define FEC_PAUSE_FLAG_AUTONEG 0x1
  281. #define FEC_PAUSE_FLAG_ENABLE 0x2
  282. #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
  283. #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
  284. #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
  285. #define COPYBREAK_DEFAULT 256
  286. /* Max number of allowed TCP segments for software TSO */
  287. #define FEC_MAX_TSO_SEGS 100
  288. #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
  289. #define IS_TSO_HEADER(txq, addr) \
  290. ((addr >= txq->tso_hdrs_dma) && \
  291. (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
  292. static int mii_cnt;
  293. static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
  294. struct bufdesc_prop *bd)
  295. {
  296. return (bdp >= bd->last) ? bd->base
  297. : (struct bufdesc *)(((void *)bdp) + bd->dsize);
  298. }
  299. static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
  300. struct bufdesc_prop *bd)
  301. {
  302. return (bdp <= bd->base) ? bd->last
  303. : (struct bufdesc *)(((void *)bdp) - bd->dsize);
  304. }
  305. static int fec_enet_get_bd_index(struct bufdesc *bdp,
  306. struct bufdesc_prop *bd)
  307. {
  308. return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
  309. }
  310. static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
  311. {
  312. int entries;
  313. entries = (((const char *)txq->dirty_tx -
  314. (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
  315. return entries >= 0 ? entries : entries + txq->bd.ring_size;
  316. }
  317. static void swap_buffer(void *bufaddr, int len)
  318. {
  319. int i;
  320. unsigned int *buf = bufaddr;
  321. for (i = 0; i < len; i += 4, buf++)
  322. swab32s(buf);
  323. }
  324. static void swap_buffer2(void *dst_buf, void *src_buf, int len)
  325. {
  326. int i;
  327. unsigned int *src = src_buf;
  328. unsigned int *dst = dst_buf;
  329. for (i = 0; i < len; i += 4, src++, dst++)
  330. *dst = swab32p(src);
  331. }
  332. static void fec_dump(struct net_device *ndev)
  333. {
  334. struct fec_enet_private *fep = netdev_priv(ndev);
  335. struct bufdesc *bdp;
  336. struct fec_enet_priv_tx_q *txq;
  337. int index = 0;
  338. netdev_info(ndev, "TX ring dump\n");
  339. pr_info("Nr SC addr len SKB\n");
  340. txq = fep->tx_queue[0];
  341. bdp = txq->bd.base;
  342. do {
  343. pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
  344. index,
  345. bdp == txq->bd.cur ? 'S' : ' ',
  346. bdp == txq->dirty_tx ? 'H' : ' ',
  347. fec16_to_cpu(bdp->cbd_sc),
  348. fec32_to_cpu(bdp->cbd_bufaddr),
  349. fec16_to_cpu(bdp->cbd_datlen),
  350. txq->tx_skbuff[index]);
  351. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  352. index++;
  353. } while (bdp != txq->bd.base);
  354. }
  355. static inline bool is_ipv4_pkt(struct sk_buff *skb)
  356. {
  357. return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
  358. }
  359. static int
  360. fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
  361. {
  362. /* Only run for packets requiring a checksum. */
  363. if (skb->ip_summed != CHECKSUM_PARTIAL)
  364. return 0;
  365. if (unlikely(skb_cow_head(skb, 0)))
  366. return -1;
  367. if (is_ipv4_pkt(skb))
  368. ip_hdr(skb)->check = 0;
  369. *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
  370. return 0;
  371. }
  372. static int
  373. fec_enet_create_page_pool(struct fec_enet_private *fep,
  374. struct fec_enet_priv_rx_q *rxq, int size)
  375. {
  376. struct page_pool_params pp_params = {
  377. .order = 0,
  378. .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
  379. .pool_size = size,
  380. .nid = dev_to_node(&fep->pdev->dev),
  381. .dev = &fep->pdev->dev,
  382. .dma_dir = DMA_FROM_DEVICE,
  383. .offset = FEC_ENET_XDP_HEADROOM,
  384. .max_len = FEC_ENET_RX_FRSIZE,
  385. };
  386. int err;
  387. rxq->page_pool = page_pool_create(&pp_params);
  388. if (IS_ERR(rxq->page_pool)) {
  389. err = PTR_ERR(rxq->page_pool);
  390. rxq->page_pool = NULL;
  391. return err;
  392. }
  393. err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
  394. if (err < 0)
  395. goto err_free_pp;
  396. err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
  397. rxq->page_pool);
  398. if (err)
  399. goto err_unregister_rxq;
  400. return 0;
  401. err_unregister_rxq:
  402. xdp_rxq_info_unreg(&rxq->xdp_rxq);
  403. err_free_pp:
  404. page_pool_destroy(rxq->page_pool);
  405. rxq->page_pool = NULL;
  406. return err;
  407. }
  408. static struct bufdesc *
  409. fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
  410. struct sk_buff *skb,
  411. struct net_device *ndev)
  412. {
  413. struct fec_enet_private *fep = netdev_priv(ndev);
  414. struct bufdesc *bdp = txq->bd.cur;
  415. struct bufdesc_ex *ebdp;
  416. int nr_frags = skb_shinfo(skb)->nr_frags;
  417. int frag, frag_len;
  418. unsigned short status;
  419. unsigned int estatus = 0;
  420. skb_frag_t *this_frag;
  421. unsigned int index;
  422. void *bufaddr;
  423. dma_addr_t addr;
  424. int i;
  425. for (frag = 0; frag < nr_frags; frag++) {
  426. this_frag = &skb_shinfo(skb)->frags[frag];
  427. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  428. ebdp = (struct bufdesc_ex *)bdp;
  429. status = fec16_to_cpu(bdp->cbd_sc);
  430. status &= ~BD_ENET_TX_STATS;
  431. status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
  432. frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
  433. /* Handle the last BD specially */
  434. if (frag == nr_frags - 1) {
  435. status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
  436. if (fep->bufdesc_ex) {
  437. estatus |= BD_ENET_TX_INT;
  438. if (unlikely(skb_shinfo(skb)->tx_flags &
  439. SKBTX_HW_TSTAMP && fep->hwts_tx_en))
  440. estatus |= BD_ENET_TX_TS;
  441. }
  442. }
  443. if (fep->bufdesc_ex) {
  444. if (fep->quirks & FEC_QUIRK_HAS_AVB)
  445. estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
  446. if (skb->ip_summed == CHECKSUM_PARTIAL)
  447. estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
  448. ebdp->cbd_bdu = 0;
  449. ebdp->cbd_esc = cpu_to_fec32(estatus);
  450. }
  451. bufaddr = skb_frag_address(this_frag);
  452. index = fec_enet_get_bd_index(bdp, &txq->bd);
  453. if (((unsigned long) bufaddr) & fep->tx_align ||
  454. fep->quirks & FEC_QUIRK_SWAP_FRAME) {
  455. memcpy(txq->tx_bounce[index], bufaddr, frag_len);
  456. bufaddr = txq->tx_bounce[index];
  457. if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
  458. swap_buffer(bufaddr, frag_len);
  459. }
  460. addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
  461. DMA_TO_DEVICE);
  462. if (dma_mapping_error(&fep->pdev->dev, addr)) {
  463. if (net_ratelimit())
  464. netdev_err(ndev, "Tx DMA memory map failed\n");
  465. goto dma_mapping_error;
  466. }
  467. bdp->cbd_bufaddr = cpu_to_fec32(addr);
  468. bdp->cbd_datlen = cpu_to_fec16(frag_len);
  469. /* Make sure the updates to rest of the descriptor are
  470. * performed before transferring ownership.
  471. */
  472. wmb();
  473. bdp->cbd_sc = cpu_to_fec16(status);
  474. }
  475. return bdp;
  476. dma_mapping_error:
  477. bdp = txq->bd.cur;
  478. for (i = 0; i < frag; i++) {
  479. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  480. dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
  481. fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
  482. }
  483. return ERR_PTR(-ENOMEM);
  484. }
  485. static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
  486. struct sk_buff *skb, struct net_device *ndev)
  487. {
  488. struct fec_enet_private *fep = netdev_priv(ndev);
  489. int nr_frags = skb_shinfo(skb)->nr_frags;
  490. struct bufdesc *bdp, *last_bdp;
  491. void *bufaddr;
  492. dma_addr_t addr;
  493. unsigned short status;
  494. unsigned short buflen;
  495. unsigned int estatus = 0;
  496. unsigned int index;
  497. int entries_free;
  498. entries_free = fec_enet_get_free_txdesc_num(txq);
  499. if (entries_free < MAX_SKB_FRAGS + 1) {
  500. dev_kfree_skb_any(skb);
  501. if (net_ratelimit())
  502. netdev_err(ndev, "NOT enough BD for SG!\n");
  503. return NETDEV_TX_OK;
  504. }
  505. /* Protocol checksum off-load for TCP and UDP. */
  506. if (fec_enet_clear_csum(skb, ndev)) {
  507. dev_kfree_skb_any(skb);
  508. return NETDEV_TX_OK;
  509. }
  510. /* Fill in a Tx ring entry */
  511. bdp = txq->bd.cur;
  512. last_bdp = bdp;
  513. status = fec16_to_cpu(bdp->cbd_sc);
  514. status &= ~BD_ENET_TX_STATS;
  515. /* Set buffer length and buffer pointer */
  516. bufaddr = skb->data;
  517. buflen = skb_headlen(skb);
  518. index = fec_enet_get_bd_index(bdp, &txq->bd);
  519. if (((unsigned long) bufaddr) & fep->tx_align ||
  520. fep->quirks & FEC_QUIRK_SWAP_FRAME) {
  521. memcpy(txq->tx_bounce[index], skb->data, buflen);
  522. bufaddr = txq->tx_bounce[index];
  523. if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
  524. swap_buffer(bufaddr, buflen);
  525. }
  526. /* Push the data cache so the CPM does not get stale memory data. */
  527. addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
  528. if (dma_mapping_error(&fep->pdev->dev, addr)) {
  529. dev_kfree_skb_any(skb);
  530. if (net_ratelimit())
  531. netdev_err(ndev, "Tx DMA memory map failed\n");
  532. return NETDEV_TX_OK;
  533. }
  534. if (nr_frags) {
  535. last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
  536. if (IS_ERR(last_bdp)) {
  537. dma_unmap_single(&fep->pdev->dev, addr,
  538. buflen, DMA_TO_DEVICE);
  539. dev_kfree_skb_any(skb);
  540. return NETDEV_TX_OK;
  541. }
  542. } else {
  543. status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
  544. if (fep->bufdesc_ex) {
  545. estatus = BD_ENET_TX_INT;
  546. if (unlikely(skb_shinfo(skb)->tx_flags &
  547. SKBTX_HW_TSTAMP && fep->hwts_tx_en))
  548. estatus |= BD_ENET_TX_TS;
  549. }
  550. }
  551. bdp->cbd_bufaddr = cpu_to_fec32(addr);
  552. bdp->cbd_datlen = cpu_to_fec16(buflen);
  553. if (fep->bufdesc_ex) {
  554. struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
  555. if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
  556. fep->hwts_tx_en))
  557. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  558. if (fep->quirks & FEC_QUIRK_HAS_AVB)
  559. estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
  560. if (skb->ip_summed == CHECKSUM_PARTIAL)
  561. estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
  562. ebdp->cbd_bdu = 0;
  563. ebdp->cbd_esc = cpu_to_fec32(estatus);
  564. }
  565. index = fec_enet_get_bd_index(last_bdp, &txq->bd);
  566. /* Save skb pointer */
  567. txq->tx_skbuff[index] = skb;
  568. /* Make sure the updates to rest of the descriptor are performed before
  569. * transferring ownership.
  570. */
  571. wmb();
  572. /* Send it on its way. Tell FEC it's ready, interrupt when done,
  573. * it's the last BD of the frame, and to put the CRC on the end.
  574. */
  575. status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
  576. bdp->cbd_sc = cpu_to_fec16(status);
  577. /* If this was the last BD in the ring, start at the beginning again. */
  578. bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
  579. skb_tx_timestamp(skb);
  580. /* Make sure the update to bdp and tx_skbuff are performed before
  581. * txq->bd.cur.
  582. */
  583. wmb();
  584. txq->bd.cur = bdp;
  585. /* Trigger transmission start */
  586. writel(0, txq->bd.reg_desc_active);
  587. return 0;
  588. }
  589. static int
  590. fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
  591. struct net_device *ndev,
  592. struct bufdesc *bdp, int index, char *data,
  593. int size, bool last_tcp, bool is_last)
  594. {
  595. struct fec_enet_private *fep = netdev_priv(ndev);
  596. struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
  597. unsigned short status;
  598. unsigned int estatus = 0;
  599. dma_addr_t addr;
  600. status = fec16_to_cpu(bdp->cbd_sc);
  601. status &= ~BD_ENET_TX_STATS;
  602. status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
  603. if (((unsigned long) data) & fep->tx_align ||
  604. fep->quirks & FEC_QUIRK_SWAP_FRAME) {
  605. memcpy(txq->tx_bounce[index], data, size);
  606. data = txq->tx_bounce[index];
  607. if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
  608. swap_buffer(data, size);
  609. }
  610. addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
  611. if (dma_mapping_error(&fep->pdev->dev, addr)) {
  612. dev_kfree_skb_any(skb);
  613. if (net_ratelimit())
  614. netdev_err(ndev, "Tx DMA memory map failed\n");
  615. return NETDEV_TX_OK;
  616. }
  617. bdp->cbd_datlen = cpu_to_fec16(size);
  618. bdp->cbd_bufaddr = cpu_to_fec32(addr);
  619. if (fep->bufdesc_ex) {
  620. if (fep->quirks & FEC_QUIRK_HAS_AVB)
  621. estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
  622. if (skb->ip_summed == CHECKSUM_PARTIAL)
  623. estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
  624. ebdp->cbd_bdu = 0;
  625. ebdp->cbd_esc = cpu_to_fec32(estatus);
  626. }
  627. /* Handle the last BD specially */
  628. if (last_tcp)
  629. status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
  630. if (is_last) {
  631. status |= BD_ENET_TX_INTR;
  632. if (fep->bufdesc_ex)
  633. ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
  634. }
  635. bdp->cbd_sc = cpu_to_fec16(status);
  636. return 0;
  637. }
  638. static int
  639. fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
  640. struct sk_buff *skb, struct net_device *ndev,
  641. struct bufdesc *bdp, int index)
  642. {
  643. struct fec_enet_private *fep = netdev_priv(ndev);
  644. int hdr_len = skb_tcp_all_headers(skb);
  645. struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
  646. void *bufaddr;
  647. unsigned long dmabuf;
  648. unsigned short status;
  649. unsigned int estatus = 0;
  650. status = fec16_to_cpu(bdp->cbd_sc);
  651. status &= ~BD_ENET_TX_STATS;
  652. status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
  653. bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
  654. dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
  655. if (((unsigned long)bufaddr) & fep->tx_align ||
  656. fep->quirks & FEC_QUIRK_SWAP_FRAME) {
  657. memcpy(txq->tx_bounce[index], skb->data, hdr_len);
  658. bufaddr = txq->tx_bounce[index];
  659. if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
  660. swap_buffer(bufaddr, hdr_len);
  661. dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
  662. hdr_len, DMA_TO_DEVICE);
  663. if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
  664. dev_kfree_skb_any(skb);
  665. if (net_ratelimit())
  666. netdev_err(ndev, "Tx DMA memory map failed\n");
  667. return NETDEV_TX_OK;
  668. }
  669. }
  670. bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
  671. bdp->cbd_datlen = cpu_to_fec16(hdr_len);
  672. if (fep->bufdesc_ex) {
  673. if (fep->quirks & FEC_QUIRK_HAS_AVB)
  674. estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
  675. if (skb->ip_summed == CHECKSUM_PARTIAL)
  676. estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
  677. ebdp->cbd_bdu = 0;
  678. ebdp->cbd_esc = cpu_to_fec32(estatus);
  679. }
  680. bdp->cbd_sc = cpu_to_fec16(status);
  681. return 0;
  682. }
  683. static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
  684. struct sk_buff *skb,
  685. struct net_device *ndev)
  686. {
  687. struct fec_enet_private *fep = netdev_priv(ndev);
  688. int hdr_len, total_len, data_left;
  689. struct bufdesc *bdp = txq->bd.cur;
  690. struct tso_t tso;
  691. unsigned int index = 0;
  692. int ret;
  693. if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
  694. dev_kfree_skb_any(skb);
  695. if (net_ratelimit())
  696. netdev_err(ndev, "NOT enough BD for TSO!\n");
  697. return NETDEV_TX_OK;
  698. }
  699. /* Protocol checksum off-load for TCP and UDP. */
  700. if (fec_enet_clear_csum(skb, ndev)) {
  701. dev_kfree_skb_any(skb);
  702. return NETDEV_TX_OK;
  703. }
  704. /* Initialize the TSO handler, and prepare the first payload */
  705. hdr_len = tso_start(skb, &tso);
  706. total_len = skb->len - hdr_len;
  707. while (total_len > 0) {
  708. char *hdr;
  709. index = fec_enet_get_bd_index(bdp, &txq->bd);
  710. data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  711. total_len -= data_left;
  712. /* prepare packet headers: MAC + IP + TCP */
  713. hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
  714. tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
  715. ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
  716. if (ret)
  717. goto err_release;
  718. while (data_left > 0) {
  719. int size;
  720. size = min_t(int, tso.size, data_left);
  721. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  722. index = fec_enet_get_bd_index(bdp, &txq->bd);
  723. ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
  724. bdp, index,
  725. tso.data, size,
  726. size == data_left,
  727. total_len == 0);
  728. if (ret)
  729. goto err_release;
  730. data_left -= size;
  731. tso_build_data(skb, &tso, size);
  732. }
  733. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  734. }
  735. /* Save skb pointer */
  736. txq->tx_skbuff[index] = skb;
  737. skb_tx_timestamp(skb);
  738. txq->bd.cur = bdp;
  739. /* Trigger transmission start */
  740. if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
  741. !readl(txq->bd.reg_desc_active) ||
  742. !readl(txq->bd.reg_desc_active) ||
  743. !readl(txq->bd.reg_desc_active) ||
  744. !readl(txq->bd.reg_desc_active))
  745. writel(0, txq->bd.reg_desc_active);
  746. return 0;
  747. err_release:
  748. /* TODO: Release all used data descriptors for TSO */
  749. return ret;
  750. }
  751. static netdev_tx_t
  752. fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  753. {
  754. struct fec_enet_private *fep = netdev_priv(ndev);
  755. int entries_free;
  756. unsigned short queue;
  757. struct fec_enet_priv_tx_q *txq;
  758. struct netdev_queue *nq;
  759. int ret;
  760. queue = skb_get_queue_mapping(skb);
  761. txq = fep->tx_queue[queue];
  762. nq = netdev_get_tx_queue(ndev, queue);
  763. if (skb_is_gso(skb))
  764. ret = fec_enet_txq_submit_tso(txq, skb, ndev);
  765. else
  766. ret = fec_enet_txq_submit_skb(txq, skb, ndev);
  767. if (ret)
  768. return ret;
  769. entries_free = fec_enet_get_free_txdesc_num(txq);
  770. if (entries_free <= txq->tx_stop_threshold)
  771. netif_tx_stop_queue(nq);
  772. return NETDEV_TX_OK;
  773. }
  774. /* Init RX & TX buffer descriptors
  775. */
  776. static void fec_enet_bd_init(struct net_device *dev)
  777. {
  778. struct fec_enet_private *fep = netdev_priv(dev);
  779. struct fec_enet_priv_tx_q *txq;
  780. struct fec_enet_priv_rx_q *rxq;
  781. struct bufdesc *bdp;
  782. unsigned int i;
  783. unsigned int q;
  784. for (q = 0; q < fep->num_rx_queues; q++) {
  785. /* Initialize the receive buffer descriptors. */
  786. rxq = fep->rx_queue[q];
  787. bdp = rxq->bd.base;
  788. for (i = 0; i < rxq->bd.ring_size; i++) {
  789. /* Initialize the BD for every fragment in the page. */
  790. if (bdp->cbd_bufaddr)
  791. bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
  792. else
  793. bdp->cbd_sc = cpu_to_fec16(0);
  794. bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
  795. }
  796. /* Set the last buffer to wrap */
  797. bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
  798. bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
  799. rxq->bd.cur = rxq->bd.base;
  800. }
  801. for (q = 0; q < fep->num_tx_queues; q++) {
  802. /* ...and the same for transmit */
  803. txq = fep->tx_queue[q];
  804. bdp = txq->bd.base;
  805. txq->bd.cur = bdp;
  806. for (i = 0; i < txq->bd.ring_size; i++) {
  807. /* Initialize the BD for every fragment in the page. */
  808. bdp->cbd_sc = cpu_to_fec16(0);
  809. if (bdp->cbd_bufaddr &&
  810. !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
  811. dma_unmap_single(&fep->pdev->dev,
  812. fec32_to_cpu(bdp->cbd_bufaddr),
  813. fec16_to_cpu(bdp->cbd_datlen),
  814. DMA_TO_DEVICE);
  815. if (txq->tx_skbuff[i]) {
  816. dev_kfree_skb_any(txq->tx_skbuff[i]);
  817. txq->tx_skbuff[i] = NULL;
  818. }
  819. bdp->cbd_bufaddr = cpu_to_fec32(0);
  820. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  821. }
  822. /* Set the last buffer to wrap */
  823. bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
  824. bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
  825. txq->dirty_tx = bdp;
  826. }
  827. }
  828. static void fec_enet_active_rxring(struct net_device *ndev)
  829. {
  830. struct fec_enet_private *fep = netdev_priv(ndev);
  831. int i;
  832. for (i = 0; i < fep->num_rx_queues; i++)
  833. writel(0, fep->rx_queue[i]->bd.reg_desc_active);
  834. }
  835. static void fec_enet_enable_ring(struct net_device *ndev)
  836. {
  837. struct fec_enet_private *fep = netdev_priv(ndev);
  838. struct fec_enet_priv_tx_q *txq;
  839. struct fec_enet_priv_rx_q *rxq;
  840. int i;
  841. for (i = 0; i < fep->num_rx_queues; i++) {
  842. rxq = fep->rx_queue[i];
  843. writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
  844. writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
  845. /* enable DMA1/2 */
  846. if (i)
  847. writel(RCMR_MATCHEN | RCMR_CMP(i),
  848. fep->hwp + FEC_RCMR(i));
  849. }
  850. for (i = 0; i < fep->num_tx_queues; i++) {
  851. txq = fep->tx_queue[i];
  852. writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
  853. /* enable DMA1/2 */
  854. if (i)
  855. writel(DMA_CLASS_EN | IDLE_SLOPE(i),
  856. fep->hwp + FEC_DMA_CFG(i));
  857. }
  858. }
  859. static void fec_enet_reset_skb(struct net_device *ndev)
  860. {
  861. struct fec_enet_private *fep = netdev_priv(ndev);
  862. struct fec_enet_priv_tx_q *txq;
  863. int i, j;
  864. for (i = 0; i < fep->num_tx_queues; i++) {
  865. txq = fep->tx_queue[i];
  866. for (j = 0; j < txq->bd.ring_size; j++) {
  867. if (txq->tx_skbuff[j]) {
  868. dev_kfree_skb_any(txq->tx_skbuff[j]);
  869. txq->tx_skbuff[j] = NULL;
  870. }
  871. }
  872. }
  873. }
  874. /*
  875. * This function is called to start or restart the FEC during a link
  876. * change, transmit timeout, or to reconfigure the FEC. The network
  877. * packet processing for this device must be stopped before this call.
  878. */
  879. static void
  880. fec_restart(struct net_device *ndev)
  881. {
  882. struct fec_enet_private *fep = netdev_priv(ndev);
  883. u32 temp_mac[2];
  884. u32 rcntl = OPT_FRAME_SIZE | 0x04;
  885. u32 ecntl = 0x2; /* ETHEREN */
  886. /* Whack a reset. We should wait for this.
  887. * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
  888. * instead of reset MAC itself.
  889. */
  890. if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
  891. ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
  892. writel(0, fep->hwp + FEC_ECNTRL);
  893. } else {
  894. writel(1, fep->hwp + FEC_ECNTRL);
  895. udelay(10);
  896. }
  897. /*
  898. * enet-mac reset will reset mac address registers too,
  899. * so need to reconfigure it.
  900. */
  901. memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
  902. writel((__force u32)cpu_to_be32(temp_mac[0]),
  903. fep->hwp + FEC_ADDR_LOW);
  904. writel((__force u32)cpu_to_be32(temp_mac[1]),
  905. fep->hwp + FEC_ADDR_HIGH);
  906. /* Clear any outstanding interrupt, except MDIO. */
  907. writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
  908. fec_enet_bd_init(ndev);
  909. fec_enet_enable_ring(ndev);
  910. /* Reset tx SKB buffers. */
  911. fec_enet_reset_skb(ndev);
  912. /* Enable MII mode */
  913. if (fep->full_duplex == DUPLEX_FULL) {
  914. /* FD enable */
  915. writel(0x04, fep->hwp + FEC_X_CNTRL);
  916. } else {
  917. /* No Rcv on Xmit */
  918. rcntl |= 0x02;
  919. writel(0x0, fep->hwp + FEC_X_CNTRL);
  920. }
  921. /* Set MII speed */
  922. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  923. #if !defined(CONFIG_M5272)
  924. if (fep->quirks & FEC_QUIRK_HAS_RACC) {
  925. u32 val = readl(fep->hwp + FEC_RACC);
  926. /* align IP header */
  927. val |= FEC_RACC_SHIFT16;
  928. if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
  929. /* set RX checksum */
  930. val |= FEC_RACC_OPTIONS;
  931. else
  932. val &= ~FEC_RACC_OPTIONS;
  933. writel(val, fep->hwp + FEC_RACC);
  934. writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
  935. }
  936. #endif
  937. /*
  938. * The phy interface and speed need to get configured
  939. * differently on enet-mac.
  940. */
  941. if (fep->quirks & FEC_QUIRK_ENET_MAC) {
  942. /* Enable flow control and length check */
  943. rcntl |= 0x40000000 | 0x00000020;
  944. /* RGMII, RMII or MII */
  945. if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
  946. fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  947. fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
  948. fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
  949. rcntl |= (1 << 6);
  950. else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
  951. rcntl |= (1 << 8);
  952. else
  953. rcntl &= ~(1 << 8);
  954. /* 1G, 100M or 10M */
  955. if (ndev->phydev) {
  956. if (ndev->phydev->speed == SPEED_1000)
  957. ecntl |= (1 << 5);
  958. else if (ndev->phydev->speed == SPEED_100)
  959. rcntl &= ~(1 << 9);
  960. else
  961. rcntl |= (1 << 9);
  962. }
  963. } else {
  964. #ifdef FEC_MIIGSK_ENR
  965. if (fep->quirks & FEC_QUIRK_USE_GASKET) {
  966. u32 cfgr;
  967. /* disable the gasket and wait */
  968. writel(0, fep->hwp + FEC_MIIGSK_ENR);
  969. while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
  970. udelay(1);
  971. /*
  972. * configure the gasket:
  973. * RMII, 50 MHz, no loopback, no echo
  974. * MII, 25 MHz, no loopback, no echo
  975. */
  976. cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
  977. ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
  978. if (ndev->phydev && ndev->phydev->speed == SPEED_10)
  979. cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
  980. writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
  981. /* re-enable the gasket */
  982. writel(2, fep->hwp + FEC_MIIGSK_ENR);
  983. }
  984. #endif
  985. }
  986. #if !defined(CONFIG_M5272)
  987. /* enable pause frame*/
  988. if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
  989. ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
  990. ndev->phydev && ndev->phydev->pause)) {
  991. rcntl |= FEC_ENET_FCE;
  992. /* set FIFO threshold parameter to reduce overrun */
  993. writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
  994. writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
  995. writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
  996. writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
  997. /* OPD */
  998. writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
  999. } else {
  1000. rcntl &= ~FEC_ENET_FCE;
  1001. }
  1002. #endif /* !defined(CONFIG_M5272) */
  1003. writel(rcntl, fep->hwp + FEC_R_CNTRL);
  1004. /* Setup multicast filter. */
  1005. set_multicast_list(ndev);
  1006. #ifndef CONFIG_M5272
  1007. writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
  1008. writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
  1009. #endif
  1010. if (fep->quirks & FEC_QUIRK_ENET_MAC) {
  1011. /* enable ENET endian swap */
  1012. ecntl |= (1 << 8);
  1013. /* enable ENET store and forward mode */
  1014. writel(1 << 8, fep->hwp + FEC_X_WMRK);
  1015. }
  1016. if (fep->bufdesc_ex)
  1017. ecntl |= (1 << 4);
  1018. if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
  1019. fep->rgmii_txc_dly)
  1020. ecntl |= FEC_ENET_TXC_DLY;
  1021. if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
  1022. fep->rgmii_rxc_dly)
  1023. ecntl |= FEC_ENET_RXC_DLY;
  1024. #ifndef CONFIG_M5272
  1025. /* Enable the MIB statistic event counters */
  1026. writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
  1027. #endif
  1028. /* And last, enable the transmit and receive processing */
  1029. writel(ecntl, fep->hwp + FEC_ECNTRL);
  1030. fec_enet_active_rxring(ndev);
  1031. if (fep->bufdesc_ex)
  1032. fec_ptp_start_cyclecounter(ndev);
  1033. /* Enable interrupts we wish to service */
  1034. if (fep->link)
  1035. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  1036. else
  1037. writel(0, fep->hwp + FEC_IMASK);
  1038. /* Init the interrupt coalescing */
  1039. if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
  1040. fec_enet_itr_coal_set(ndev);
  1041. }
  1042. static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
  1043. {
  1044. if (!(of_machine_is_compatible("fsl,imx8qm") ||
  1045. of_machine_is_compatible("fsl,imx8qxp") ||
  1046. of_machine_is_compatible("fsl,imx8dxl")))
  1047. return 0;
  1048. return imx_scu_get_handle(&fep->ipc_handle);
  1049. }
  1050. static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
  1051. {
  1052. struct device_node *np = fep->pdev->dev.of_node;
  1053. u32 rsrc_id, val;
  1054. int idx;
  1055. if (!np || !fep->ipc_handle)
  1056. return;
  1057. idx = of_alias_get_id(np, "ethernet");
  1058. if (idx < 0)
  1059. idx = 0;
  1060. rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
  1061. val = enabled ? 1 : 0;
  1062. imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
  1063. }
  1064. static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
  1065. {
  1066. struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
  1067. struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
  1068. if (stop_gpr->gpr) {
  1069. if (enabled)
  1070. regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
  1071. BIT(stop_gpr->bit),
  1072. BIT(stop_gpr->bit));
  1073. else
  1074. regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
  1075. BIT(stop_gpr->bit), 0);
  1076. } else if (pdata && pdata->sleep_mode_enable) {
  1077. pdata->sleep_mode_enable(enabled);
  1078. } else {
  1079. fec_enet_ipg_stop_set(fep, enabled);
  1080. }
  1081. }
  1082. static void fec_irqs_disable(struct net_device *ndev)
  1083. {
  1084. struct fec_enet_private *fep = netdev_priv(ndev);
  1085. writel(0, fep->hwp + FEC_IMASK);
  1086. }
  1087. static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
  1088. {
  1089. struct fec_enet_private *fep = netdev_priv(ndev);
  1090. writel(0, fep->hwp + FEC_IMASK);
  1091. writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
  1092. }
  1093. static void
  1094. fec_stop(struct net_device *ndev)
  1095. {
  1096. struct fec_enet_private *fep = netdev_priv(ndev);
  1097. u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
  1098. u32 val;
  1099. /* We cannot expect a graceful transmit stop without link !!! */
  1100. if (fep->link) {
  1101. writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
  1102. udelay(10);
  1103. if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
  1104. netdev_err(ndev, "Graceful transmit stop did not complete!\n");
  1105. }
  1106. /* Whack a reset. We should wait for this.
  1107. * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
  1108. * instead of reset MAC itself.
  1109. */
  1110. if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
  1111. if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
  1112. writel(0, fep->hwp + FEC_ECNTRL);
  1113. } else {
  1114. writel(1, fep->hwp + FEC_ECNTRL);
  1115. udelay(10);
  1116. }
  1117. } else {
  1118. val = readl(fep->hwp + FEC_ECNTRL);
  1119. val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
  1120. writel(val, fep->hwp + FEC_ECNTRL);
  1121. }
  1122. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  1123. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  1124. /* We have to keep ENET enabled to have MII interrupt stay working */
  1125. if (fep->quirks & FEC_QUIRK_ENET_MAC &&
  1126. !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
  1127. writel(2, fep->hwp + FEC_ECNTRL);
  1128. writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
  1129. }
  1130. }
  1131. static void
  1132. fec_timeout(struct net_device *ndev, unsigned int txqueue)
  1133. {
  1134. struct fec_enet_private *fep = netdev_priv(ndev);
  1135. fec_dump(ndev);
  1136. ndev->stats.tx_errors++;
  1137. schedule_work(&fep->tx_timeout_work);
  1138. }
  1139. static void fec_enet_timeout_work(struct work_struct *work)
  1140. {
  1141. struct fec_enet_private *fep =
  1142. container_of(work, struct fec_enet_private, tx_timeout_work);
  1143. struct net_device *ndev = fep->netdev;
  1144. rtnl_lock();
  1145. if (netif_device_present(ndev) || netif_running(ndev)) {
  1146. napi_disable(&fep->napi);
  1147. netif_tx_lock_bh(ndev);
  1148. fec_restart(ndev);
  1149. netif_tx_wake_all_queues(ndev);
  1150. netif_tx_unlock_bh(ndev);
  1151. napi_enable(&fep->napi);
  1152. }
  1153. rtnl_unlock();
  1154. }
  1155. static void
  1156. fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
  1157. struct skb_shared_hwtstamps *hwtstamps)
  1158. {
  1159. unsigned long flags;
  1160. u64 ns;
  1161. spin_lock_irqsave(&fep->tmreg_lock, flags);
  1162. ns = timecounter_cyc2time(&fep->tc, ts);
  1163. spin_unlock_irqrestore(&fep->tmreg_lock, flags);
  1164. memset(hwtstamps, 0, sizeof(*hwtstamps));
  1165. hwtstamps->hwtstamp = ns_to_ktime(ns);
  1166. }
  1167. static void
  1168. fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
  1169. {
  1170. struct fec_enet_private *fep;
  1171. struct bufdesc *bdp;
  1172. unsigned short status;
  1173. struct sk_buff *skb;
  1174. struct fec_enet_priv_tx_q *txq;
  1175. struct netdev_queue *nq;
  1176. int index = 0;
  1177. int entries_free;
  1178. fep = netdev_priv(ndev);
  1179. txq = fep->tx_queue[queue_id];
  1180. /* get next bdp of dirty_tx */
  1181. nq = netdev_get_tx_queue(ndev, queue_id);
  1182. bdp = txq->dirty_tx;
  1183. /* get next bdp of dirty_tx */
  1184. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  1185. while (bdp != READ_ONCE(txq->bd.cur)) {
  1186. /* Order the load of bd.cur and cbd_sc */
  1187. rmb();
  1188. status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
  1189. if (status & BD_ENET_TX_READY)
  1190. break;
  1191. index = fec_enet_get_bd_index(bdp, &txq->bd);
  1192. skb = txq->tx_skbuff[index];
  1193. txq->tx_skbuff[index] = NULL;
  1194. if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
  1195. dma_unmap_single(&fep->pdev->dev,
  1196. fec32_to_cpu(bdp->cbd_bufaddr),
  1197. fec16_to_cpu(bdp->cbd_datlen),
  1198. DMA_TO_DEVICE);
  1199. bdp->cbd_bufaddr = cpu_to_fec32(0);
  1200. if (!skb)
  1201. goto skb_done;
  1202. /* Check for errors. */
  1203. if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  1204. BD_ENET_TX_RL | BD_ENET_TX_UN |
  1205. BD_ENET_TX_CSL)) {
  1206. ndev->stats.tx_errors++;
  1207. if (status & BD_ENET_TX_HB) /* No heartbeat */
  1208. ndev->stats.tx_heartbeat_errors++;
  1209. if (status & BD_ENET_TX_LC) /* Late collision */
  1210. ndev->stats.tx_window_errors++;
  1211. if (status & BD_ENET_TX_RL) /* Retrans limit */
  1212. ndev->stats.tx_aborted_errors++;
  1213. if (status & BD_ENET_TX_UN) /* Underrun */
  1214. ndev->stats.tx_fifo_errors++;
  1215. if (status & BD_ENET_TX_CSL) /* Carrier lost */
  1216. ndev->stats.tx_carrier_errors++;
  1217. } else {
  1218. ndev->stats.tx_packets++;
  1219. ndev->stats.tx_bytes += skb->len;
  1220. }
  1221. /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
  1222. * are to time stamp the packet, so we still need to check time
  1223. * stamping enabled flag.
  1224. */
  1225. if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
  1226. fep->hwts_tx_en) &&
  1227. fep->bufdesc_ex) {
  1228. struct skb_shared_hwtstamps shhwtstamps;
  1229. struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
  1230. fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
  1231. skb_tstamp_tx(skb, &shhwtstamps);
  1232. }
  1233. /* Deferred means some collisions occurred during transmit,
  1234. * but we eventually sent the packet OK.
  1235. */
  1236. if (status & BD_ENET_TX_DEF)
  1237. ndev->stats.collisions++;
  1238. /* Free the sk buffer associated with this last transmit */
  1239. dev_kfree_skb_any(skb);
  1240. skb_done:
  1241. /* Make sure the update to bdp and tx_skbuff are performed
  1242. * before dirty_tx
  1243. */
  1244. wmb();
  1245. txq->dirty_tx = bdp;
  1246. /* Update pointer to next buffer descriptor to be transmitted */
  1247. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  1248. /* Since we have freed up a buffer, the ring is no longer full
  1249. */
  1250. if (netif_tx_queue_stopped(nq)) {
  1251. entries_free = fec_enet_get_free_txdesc_num(txq);
  1252. if (entries_free >= txq->tx_wake_threshold)
  1253. netif_tx_wake_queue(nq);
  1254. }
  1255. }
  1256. /* ERR006358: Keep the transmitter going */
  1257. if (bdp != txq->bd.cur &&
  1258. readl(txq->bd.reg_desc_active) == 0)
  1259. writel(0, txq->bd.reg_desc_active);
  1260. }
  1261. static void fec_enet_tx(struct net_device *ndev)
  1262. {
  1263. struct fec_enet_private *fep = netdev_priv(ndev);
  1264. int i;
  1265. /* Make sure that AVB queues are processed first. */
  1266. for (i = fep->num_tx_queues - 1; i >= 0; i--)
  1267. fec_enet_tx_queue(ndev, i);
  1268. }
  1269. static int __maybe_unused
  1270. fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
  1271. {
  1272. struct fec_enet_private *fep = netdev_priv(ndev);
  1273. int off;
  1274. off = ((unsigned long)skb->data) & fep->rx_align;
  1275. if (off)
  1276. skb_reserve(skb, fep->rx_align + 1 - off);
  1277. bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
  1278. if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
  1279. if (net_ratelimit())
  1280. netdev_err(ndev, "Rx DMA memory map failed\n");
  1281. return -ENOMEM;
  1282. }
  1283. return 0;
  1284. }
  1285. static bool __maybe_unused
  1286. fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
  1287. struct bufdesc *bdp, u32 length, bool swap)
  1288. {
  1289. struct fec_enet_private *fep = netdev_priv(ndev);
  1290. struct sk_buff *new_skb;
  1291. if (length > fep->rx_copybreak)
  1292. return false;
  1293. new_skb = netdev_alloc_skb(ndev, length);
  1294. if (!new_skb)
  1295. return false;
  1296. dma_sync_single_for_cpu(&fep->pdev->dev,
  1297. fec32_to_cpu(bdp->cbd_bufaddr),
  1298. FEC_ENET_RX_FRSIZE - fep->rx_align,
  1299. DMA_FROM_DEVICE);
  1300. if (!swap)
  1301. memcpy(new_skb->data, (*skb)->data, length);
  1302. else
  1303. swap_buffer2(new_skb->data, (*skb)->data, length);
  1304. *skb = new_skb;
  1305. return true;
  1306. }
  1307. static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
  1308. struct bufdesc *bdp, int index)
  1309. {
  1310. struct page *new_page;
  1311. dma_addr_t phys_addr;
  1312. new_page = page_pool_dev_alloc_pages(rxq->page_pool);
  1313. WARN_ON(!new_page);
  1314. rxq->rx_skb_info[index].page = new_page;
  1315. rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
  1316. phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
  1317. bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
  1318. }
  1319. /* During a receive, the bd_rx.cur points to the current incoming buffer.
  1320. * When we update through the ring, if the next incoming buffer has
  1321. * not been given to the system, we just set the empty indicator,
  1322. * effectively tossing the packet.
  1323. */
  1324. static int
  1325. fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
  1326. {
  1327. struct fec_enet_private *fep = netdev_priv(ndev);
  1328. struct fec_enet_priv_rx_q *rxq;
  1329. struct bufdesc *bdp;
  1330. unsigned short status;
  1331. struct sk_buff *skb;
  1332. ushort pkt_len;
  1333. __u8 *data;
  1334. int pkt_received = 0;
  1335. struct bufdesc_ex *ebdp = NULL;
  1336. bool vlan_packet_rcvd = false;
  1337. u16 vlan_tag;
  1338. int index = 0;
  1339. bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
  1340. struct page *page;
  1341. #ifdef CONFIG_M532x
  1342. flush_cache_all();
  1343. #endif
  1344. rxq = fep->rx_queue[queue_id];
  1345. /* First, grab all of the stats for the incoming packet.
  1346. * These get messed up if we get called due to a busy condition.
  1347. */
  1348. bdp = rxq->bd.cur;
  1349. while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
  1350. if (pkt_received >= budget)
  1351. break;
  1352. pkt_received++;
  1353. writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
  1354. /* Check for errors. */
  1355. status ^= BD_ENET_RX_LAST;
  1356. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
  1357. BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
  1358. BD_ENET_RX_CL)) {
  1359. ndev->stats.rx_errors++;
  1360. if (status & BD_ENET_RX_OV) {
  1361. /* FIFO overrun */
  1362. ndev->stats.rx_fifo_errors++;
  1363. goto rx_processing_done;
  1364. }
  1365. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
  1366. | BD_ENET_RX_LAST)) {
  1367. /* Frame too long or too short. */
  1368. ndev->stats.rx_length_errors++;
  1369. if (status & BD_ENET_RX_LAST)
  1370. netdev_err(ndev, "rcv is not +last\n");
  1371. }
  1372. if (status & BD_ENET_RX_CR) /* CRC Error */
  1373. ndev->stats.rx_crc_errors++;
  1374. /* Report late collisions as a frame error. */
  1375. if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  1376. ndev->stats.rx_frame_errors++;
  1377. goto rx_processing_done;
  1378. }
  1379. /* Process the incoming frame. */
  1380. ndev->stats.rx_packets++;
  1381. pkt_len = fec16_to_cpu(bdp->cbd_datlen);
  1382. ndev->stats.rx_bytes += pkt_len;
  1383. index = fec_enet_get_bd_index(bdp, &rxq->bd);
  1384. page = rxq->rx_skb_info[index].page;
  1385. dma_sync_single_for_cpu(&fep->pdev->dev,
  1386. fec32_to_cpu(bdp->cbd_bufaddr),
  1387. pkt_len,
  1388. DMA_FROM_DEVICE);
  1389. prefetch(page_address(page));
  1390. fec_enet_update_cbd(rxq, bdp, index);
  1391. /* The packet length includes FCS, but we don't want to
  1392. * include that when passing upstream as it messes up
  1393. * bridging applications.
  1394. */
  1395. skb = build_skb(page_address(page), PAGE_SIZE);
  1396. if (unlikely(!skb)) {
  1397. page_pool_recycle_direct(rxq->page_pool, page);
  1398. ndev->stats.rx_dropped++;
  1399. netdev_err_once(ndev, "build_skb failed!\n");
  1400. goto rx_processing_done;
  1401. }
  1402. skb_reserve(skb, FEC_ENET_XDP_HEADROOM);
  1403. skb_put(skb, pkt_len - 4);
  1404. skb_mark_for_recycle(skb);
  1405. data = skb->data;
  1406. if (need_swap)
  1407. swap_buffer(data, pkt_len);
  1408. #if !defined(CONFIG_M5272)
  1409. if (fep->quirks & FEC_QUIRK_HAS_RACC)
  1410. data = skb_pull_inline(skb, 2);
  1411. #endif
  1412. /* Extract the enhanced buffer descriptor */
  1413. ebdp = NULL;
  1414. if (fep->bufdesc_ex)
  1415. ebdp = (struct bufdesc_ex *)bdp;
  1416. /* If this is a VLAN packet remove the VLAN Tag */
  1417. vlan_packet_rcvd = false;
  1418. if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  1419. fep->bufdesc_ex &&
  1420. (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
  1421. /* Push and remove the vlan tag */
  1422. struct vlan_hdr *vlan_header =
  1423. (struct vlan_hdr *) (data + ETH_HLEN);
  1424. vlan_tag = ntohs(vlan_header->h_vlan_TCI);
  1425. vlan_packet_rcvd = true;
  1426. memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
  1427. skb_pull(skb, VLAN_HLEN);
  1428. }
  1429. skb->protocol = eth_type_trans(skb, ndev);
  1430. /* Get receive timestamp from the skb */
  1431. if (fep->hwts_rx_en && fep->bufdesc_ex)
  1432. fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
  1433. skb_hwtstamps(skb));
  1434. if (fep->bufdesc_ex &&
  1435. (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
  1436. if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
  1437. /* don't check it */
  1438. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1439. } else {
  1440. skb_checksum_none_assert(skb);
  1441. }
  1442. }
  1443. /* Handle received VLAN packets */
  1444. if (vlan_packet_rcvd)
  1445. __vlan_hwaccel_put_tag(skb,
  1446. htons(ETH_P_8021Q),
  1447. vlan_tag);
  1448. skb_record_rx_queue(skb, queue_id);
  1449. napi_gro_receive(&fep->napi, skb);
  1450. rx_processing_done:
  1451. /* Clear the status flags for this buffer */
  1452. status &= ~BD_ENET_RX_STATS;
  1453. /* Mark the buffer empty */
  1454. status |= BD_ENET_RX_EMPTY;
  1455. if (fep->bufdesc_ex) {
  1456. struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
  1457. ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
  1458. ebdp->cbd_prot = 0;
  1459. ebdp->cbd_bdu = 0;
  1460. }
  1461. /* Make sure the updates to rest of the descriptor are
  1462. * performed before transferring ownership.
  1463. */
  1464. wmb();
  1465. bdp->cbd_sc = cpu_to_fec16(status);
  1466. /* Update BD pointer to next entry */
  1467. bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
  1468. /* Doing this here will keep the FEC running while we process
  1469. * incoming frames. On a heavily loaded network, we should be
  1470. * able to keep up at the expense of system resources.
  1471. */
  1472. writel(0, rxq->bd.reg_desc_active);
  1473. }
  1474. rxq->bd.cur = bdp;
  1475. return pkt_received;
  1476. }
  1477. static int fec_enet_rx(struct net_device *ndev, int budget)
  1478. {
  1479. struct fec_enet_private *fep = netdev_priv(ndev);
  1480. int i, done = 0;
  1481. /* Make sure that AVB queues are processed first. */
  1482. for (i = fep->num_rx_queues - 1; i >= 0; i--)
  1483. done += fec_enet_rx_queue(ndev, budget - done, i);
  1484. return done;
  1485. }
  1486. static bool fec_enet_collect_events(struct fec_enet_private *fep)
  1487. {
  1488. uint int_events;
  1489. int_events = readl(fep->hwp + FEC_IEVENT);
  1490. /* Don't clear MDIO events, we poll for those */
  1491. int_events &= ~FEC_ENET_MII;
  1492. writel(int_events, fep->hwp + FEC_IEVENT);
  1493. return int_events != 0;
  1494. }
  1495. static irqreturn_t
  1496. fec_enet_interrupt(int irq, void *dev_id)
  1497. {
  1498. struct net_device *ndev = dev_id;
  1499. struct fec_enet_private *fep = netdev_priv(ndev);
  1500. irqreturn_t ret = IRQ_NONE;
  1501. if (fec_enet_collect_events(fep) && fep->link) {
  1502. ret = IRQ_HANDLED;
  1503. if (napi_schedule_prep(&fep->napi)) {
  1504. /* Disable interrupts */
  1505. writel(0, fep->hwp + FEC_IMASK);
  1506. __napi_schedule(&fep->napi);
  1507. }
  1508. }
  1509. return ret;
  1510. }
  1511. static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
  1512. {
  1513. struct net_device *ndev = napi->dev;
  1514. struct fec_enet_private *fep = netdev_priv(ndev);
  1515. int done = 0;
  1516. do {
  1517. done += fec_enet_rx(ndev, budget - done);
  1518. fec_enet_tx(ndev);
  1519. } while ((done < budget) && fec_enet_collect_events(fep));
  1520. if (done < budget) {
  1521. napi_complete_done(napi, done);
  1522. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  1523. }
  1524. return done;
  1525. }
  1526. /* ------------------------------------------------------------------------- */
  1527. static int fec_get_mac(struct net_device *ndev)
  1528. {
  1529. struct fec_enet_private *fep = netdev_priv(ndev);
  1530. unsigned char *iap, tmpaddr[ETH_ALEN];
  1531. int ret;
  1532. /*
  1533. * try to get mac address in following order:
  1534. *
  1535. * 1) module parameter via kernel command line in form
  1536. * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
  1537. */
  1538. iap = macaddr;
  1539. /*
  1540. * 2) from device tree data
  1541. */
  1542. if (!is_valid_ether_addr(iap)) {
  1543. struct device_node *np = fep->pdev->dev.of_node;
  1544. if (np) {
  1545. ret = of_get_mac_address(np, tmpaddr);
  1546. if (!ret)
  1547. iap = tmpaddr;
  1548. else if (ret == -EPROBE_DEFER)
  1549. return ret;
  1550. }
  1551. }
  1552. /*
  1553. * 3) from flash or fuse (via platform data)
  1554. */
  1555. if (!is_valid_ether_addr(iap)) {
  1556. #ifdef CONFIG_M5272
  1557. if (FEC_FLASHMAC)
  1558. iap = (unsigned char *)FEC_FLASHMAC;
  1559. #else
  1560. struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
  1561. if (pdata)
  1562. iap = (unsigned char *)&pdata->mac;
  1563. #endif
  1564. }
  1565. /*
  1566. * 4) FEC mac registers set by bootloader
  1567. */
  1568. if (!is_valid_ether_addr(iap)) {
  1569. *((__be32 *) &tmpaddr[0]) =
  1570. cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
  1571. *((__be16 *) &tmpaddr[4]) =
  1572. cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
  1573. iap = &tmpaddr[0];
  1574. }
  1575. /*
  1576. * 5) random mac address
  1577. */
  1578. if (!is_valid_ether_addr(iap)) {
  1579. /* Report it and use a random ethernet address instead */
  1580. dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
  1581. eth_hw_addr_random(ndev);
  1582. dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
  1583. ndev->dev_addr);
  1584. return 0;
  1585. }
  1586. /* Adjust MAC if using macaddr */
  1587. eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
  1588. return 0;
  1589. }
  1590. /* ------------------------------------------------------------------------- */
  1591. /*
  1592. * Phy section
  1593. */
  1594. static void fec_enet_adjust_link(struct net_device *ndev)
  1595. {
  1596. struct fec_enet_private *fep = netdev_priv(ndev);
  1597. struct phy_device *phy_dev = ndev->phydev;
  1598. int status_change = 0;
  1599. /*
  1600. * If the netdev is down, or is going down, we're not interested
  1601. * in link state events, so just mark our idea of the link as down
  1602. * and ignore the event.
  1603. */
  1604. if (!netif_running(ndev) || !netif_device_present(ndev)) {
  1605. fep->link = 0;
  1606. } else if (phy_dev->link) {
  1607. if (!fep->link) {
  1608. fep->link = phy_dev->link;
  1609. status_change = 1;
  1610. }
  1611. if (fep->full_duplex != phy_dev->duplex) {
  1612. fep->full_duplex = phy_dev->duplex;
  1613. status_change = 1;
  1614. }
  1615. if (phy_dev->speed != fep->speed) {
  1616. fep->speed = phy_dev->speed;
  1617. status_change = 1;
  1618. }
  1619. /* if any of the above changed restart the FEC */
  1620. if (status_change) {
  1621. napi_disable(&fep->napi);
  1622. netif_tx_lock_bh(ndev);
  1623. fec_restart(ndev);
  1624. netif_tx_wake_all_queues(ndev);
  1625. netif_tx_unlock_bh(ndev);
  1626. napi_enable(&fep->napi);
  1627. }
  1628. } else {
  1629. if (fep->link) {
  1630. napi_disable(&fep->napi);
  1631. netif_tx_lock_bh(ndev);
  1632. fec_stop(ndev);
  1633. netif_tx_unlock_bh(ndev);
  1634. napi_enable(&fep->napi);
  1635. fep->link = phy_dev->link;
  1636. status_change = 1;
  1637. }
  1638. }
  1639. if (status_change)
  1640. phy_print_status(phy_dev);
  1641. }
  1642. static int fec_enet_mdio_wait(struct fec_enet_private *fep)
  1643. {
  1644. uint ievent;
  1645. int ret;
  1646. ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
  1647. ievent & FEC_ENET_MII, 2, 30000);
  1648. if (!ret)
  1649. writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
  1650. return ret;
  1651. }
  1652. static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  1653. {
  1654. struct fec_enet_private *fep = bus->priv;
  1655. struct device *dev = &fep->pdev->dev;
  1656. int ret = 0, frame_start, frame_addr, frame_op;
  1657. bool is_c45 = !!(regnum & MII_ADDR_C45);
  1658. ret = pm_runtime_resume_and_get(dev);
  1659. if (ret < 0)
  1660. return ret;
  1661. if (is_c45) {
  1662. frame_start = FEC_MMFR_ST_C45;
  1663. /* write address */
  1664. frame_addr = (regnum >> 16);
  1665. writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
  1666. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
  1667. FEC_MMFR_TA | (regnum & 0xFFFF),
  1668. fep->hwp + FEC_MII_DATA);
  1669. /* wait for end of transfer */
  1670. ret = fec_enet_mdio_wait(fep);
  1671. if (ret) {
  1672. netdev_err(fep->netdev, "MDIO address write timeout\n");
  1673. goto out;
  1674. }
  1675. frame_op = FEC_MMFR_OP_READ_C45;
  1676. } else {
  1677. /* C22 read */
  1678. frame_op = FEC_MMFR_OP_READ;
  1679. frame_start = FEC_MMFR_ST;
  1680. frame_addr = regnum;
  1681. }
  1682. /* start a read op */
  1683. writel(frame_start | frame_op |
  1684. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
  1685. FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
  1686. /* wait for end of transfer */
  1687. ret = fec_enet_mdio_wait(fep);
  1688. if (ret) {
  1689. netdev_err(fep->netdev, "MDIO read timeout\n");
  1690. goto out;
  1691. }
  1692. ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
  1693. out:
  1694. pm_runtime_mark_last_busy(dev);
  1695. pm_runtime_put_autosuspend(dev);
  1696. return ret;
  1697. }
  1698. static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
  1699. u16 value)
  1700. {
  1701. struct fec_enet_private *fep = bus->priv;
  1702. struct device *dev = &fep->pdev->dev;
  1703. int ret, frame_start, frame_addr;
  1704. bool is_c45 = !!(regnum & MII_ADDR_C45);
  1705. ret = pm_runtime_resume_and_get(dev);
  1706. if (ret < 0)
  1707. return ret;
  1708. if (is_c45) {
  1709. frame_start = FEC_MMFR_ST_C45;
  1710. /* write address */
  1711. frame_addr = (regnum >> 16);
  1712. writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
  1713. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
  1714. FEC_MMFR_TA | (regnum & 0xFFFF),
  1715. fep->hwp + FEC_MII_DATA);
  1716. /* wait for end of transfer */
  1717. ret = fec_enet_mdio_wait(fep);
  1718. if (ret) {
  1719. netdev_err(fep->netdev, "MDIO address write timeout\n");
  1720. goto out;
  1721. }
  1722. } else {
  1723. /* C22 write */
  1724. frame_start = FEC_MMFR_ST;
  1725. frame_addr = regnum;
  1726. }
  1727. /* start a write op */
  1728. writel(frame_start | FEC_MMFR_OP_WRITE |
  1729. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
  1730. FEC_MMFR_TA | FEC_MMFR_DATA(value),
  1731. fep->hwp + FEC_MII_DATA);
  1732. /* wait for end of transfer */
  1733. ret = fec_enet_mdio_wait(fep);
  1734. if (ret)
  1735. netdev_err(fep->netdev, "MDIO write timeout\n");
  1736. out:
  1737. pm_runtime_mark_last_busy(dev);
  1738. pm_runtime_put_autosuspend(dev);
  1739. return ret;
  1740. }
  1741. static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
  1742. {
  1743. struct fec_enet_private *fep = netdev_priv(ndev);
  1744. struct phy_device *phy_dev = ndev->phydev;
  1745. if (phy_dev) {
  1746. phy_reset_after_clk_enable(phy_dev);
  1747. } else if (fep->phy_node) {
  1748. /*
  1749. * If the PHY still is not bound to the MAC, but there is
  1750. * OF PHY node and a matching PHY device instance already,
  1751. * use the OF PHY node to obtain the PHY device instance,
  1752. * and then use that PHY device instance when triggering
  1753. * the PHY reset.
  1754. */
  1755. phy_dev = of_phy_find_device(fep->phy_node);
  1756. phy_reset_after_clk_enable(phy_dev);
  1757. put_device(&phy_dev->mdio.dev);
  1758. }
  1759. }
  1760. static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
  1761. {
  1762. struct fec_enet_private *fep = netdev_priv(ndev);
  1763. int ret;
  1764. if (enable) {
  1765. ret = clk_prepare_enable(fep->clk_enet_out);
  1766. if (ret)
  1767. return ret;
  1768. if (fep->clk_ptp) {
  1769. mutex_lock(&fep->ptp_clk_mutex);
  1770. ret = clk_prepare_enable(fep->clk_ptp);
  1771. if (ret) {
  1772. mutex_unlock(&fep->ptp_clk_mutex);
  1773. goto failed_clk_ptp;
  1774. } else {
  1775. fep->ptp_clk_on = true;
  1776. }
  1777. mutex_unlock(&fep->ptp_clk_mutex);
  1778. }
  1779. ret = clk_prepare_enable(fep->clk_ref);
  1780. if (ret)
  1781. goto failed_clk_ref;
  1782. ret = clk_prepare_enable(fep->clk_2x_txclk);
  1783. if (ret)
  1784. goto failed_clk_2x_txclk;
  1785. fec_enet_phy_reset_after_clk_enable(ndev);
  1786. } else {
  1787. clk_disable_unprepare(fep->clk_enet_out);
  1788. if (fep->clk_ptp) {
  1789. mutex_lock(&fep->ptp_clk_mutex);
  1790. clk_disable_unprepare(fep->clk_ptp);
  1791. fep->ptp_clk_on = false;
  1792. mutex_unlock(&fep->ptp_clk_mutex);
  1793. }
  1794. clk_disable_unprepare(fep->clk_ref);
  1795. clk_disable_unprepare(fep->clk_2x_txclk);
  1796. }
  1797. return 0;
  1798. failed_clk_2x_txclk:
  1799. if (fep->clk_ref)
  1800. clk_disable_unprepare(fep->clk_ref);
  1801. failed_clk_ref:
  1802. if (fep->clk_ptp) {
  1803. mutex_lock(&fep->ptp_clk_mutex);
  1804. clk_disable_unprepare(fep->clk_ptp);
  1805. fep->ptp_clk_on = false;
  1806. mutex_unlock(&fep->ptp_clk_mutex);
  1807. }
  1808. failed_clk_ptp:
  1809. clk_disable_unprepare(fep->clk_enet_out);
  1810. return ret;
  1811. }
  1812. static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
  1813. struct device_node *np)
  1814. {
  1815. u32 rgmii_tx_delay, rgmii_rx_delay;
  1816. /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
  1817. if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
  1818. if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
  1819. dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
  1820. return -EINVAL;
  1821. } else if (rgmii_tx_delay == 2000) {
  1822. fep->rgmii_txc_dly = true;
  1823. }
  1824. }
  1825. /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
  1826. if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
  1827. if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
  1828. dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
  1829. return -EINVAL;
  1830. } else if (rgmii_rx_delay == 2000) {
  1831. fep->rgmii_rxc_dly = true;
  1832. }
  1833. }
  1834. return 0;
  1835. }
  1836. static int fec_enet_mii_probe(struct net_device *ndev)
  1837. {
  1838. struct fec_enet_private *fep = netdev_priv(ndev);
  1839. struct phy_device *phy_dev = NULL;
  1840. char mdio_bus_id[MII_BUS_ID_SIZE];
  1841. char phy_name[MII_BUS_ID_SIZE + 3];
  1842. int phy_id;
  1843. int dev_id = fep->dev_id;
  1844. if (fep->phy_node) {
  1845. phy_dev = of_phy_connect(ndev, fep->phy_node,
  1846. &fec_enet_adjust_link, 0,
  1847. fep->phy_interface);
  1848. if (!phy_dev) {
  1849. netdev_err(ndev, "Unable to connect to phy\n");
  1850. return -ENODEV;
  1851. }
  1852. } else {
  1853. /* check for attached phy */
  1854. for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
  1855. if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
  1856. continue;
  1857. if (dev_id--)
  1858. continue;
  1859. strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
  1860. break;
  1861. }
  1862. if (phy_id >= PHY_MAX_ADDR) {
  1863. netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
  1864. strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
  1865. phy_id = 0;
  1866. }
  1867. snprintf(phy_name, sizeof(phy_name),
  1868. PHY_ID_FMT, mdio_bus_id, phy_id);
  1869. phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
  1870. fep->phy_interface);
  1871. }
  1872. if (IS_ERR(phy_dev)) {
  1873. netdev_err(ndev, "could not attach to PHY\n");
  1874. return PTR_ERR(phy_dev);
  1875. }
  1876. /* mask with MAC supported features */
  1877. if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
  1878. phy_set_max_speed(phy_dev, 1000);
  1879. phy_remove_link_mode(phy_dev,
  1880. ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
  1881. #if !defined(CONFIG_M5272)
  1882. phy_support_sym_pause(phy_dev);
  1883. #endif
  1884. }
  1885. else
  1886. phy_set_max_speed(phy_dev, 100);
  1887. fep->link = 0;
  1888. fep->full_duplex = 0;
  1889. phy_dev->mac_managed_pm = 1;
  1890. phy_attached_info(phy_dev);
  1891. return 0;
  1892. }
  1893. static int fec_enet_mii_init(struct platform_device *pdev)
  1894. {
  1895. static struct mii_bus *fec0_mii_bus;
  1896. struct net_device *ndev = platform_get_drvdata(pdev);
  1897. struct fec_enet_private *fep = netdev_priv(ndev);
  1898. bool suppress_preamble = false;
  1899. struct device_node *node;
  1900. int err = -ENXIO;
  1901. u32 mii_speed, holdtime;
  1902. u32 bus_freq;
  1903. /*
  1904. * The i.MX28 dual fec interfaces are not equal.
  1905. * Here are the differences:
  1906. *
  1907. * - fec0 supports MII & RMII modes while fec1 only supports RMII
  1908. * - fec0 acts as the 1588 time master while fec1 is slave
  1909. * - external phys can only be configured by fec0
  1910. *
  1911. * That is to say fec1 can not work independently. It only works
  1912. * when fec0 is working. The reason behind this design is that the
  1913. * second interface is added primarily for Switch mode.
  1914. *
  1915. * Because of the last point above, both phys are attached on fec0
  1916. * mdio interface in board design, and need to be configured by
  1917. * fec0 mii_bus.
  1918. */
  1919. if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
  1920. /* fec1 uses fec0 mii_bus */
  1921. if (mii_cnt && fec0_mii_bus) {
  1922. fep->mii_bus = fec0_mii_bus;
  1923. mii_cnt++;
  1924. return 0;
  1925. }
  1926. return -ENOENT;
  1927. }
  1928. bus_freq = 2500000; /* 2.5MHz by default */
  1929. node = of_get_child_by_name(pdev->dev.of_node, "mdio");
  1930. if (node) {
  1931. of_property_read_u32(node, "clock-frequency", &bus_freq);
  1932. suppress_preamble = of_property_read_bool(node,
  1933. "suppress-preamble");
  1934. }
  1935. /*
  1936. * Set MII speed (= clk_get_rate() / 2 * phy_speed)
  1937. *
  1938. * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
  1939. * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
  1940. * Reference Manual has an error on this, and gets fixed on i.MX6Q
  1941. * document.
  1942. */
  1943. mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
  1944. if (fep->quirks & FEC_QUIRK_ENET_MAC)
  1945. mii_speed--;
  1946. if (mii_speed > 63) {
  1947. dev_err(&pdev->dev,
  1948. "fec clock (%lu) too fast to get right mii speed\n",
  1949. clk_get_rate(fep->clk_ipg));
  1950. err = -EINVAL;
  1951. goto err_out;
  1952. }
  1953. /*
  1954. * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
  1955. * MII_SPEED) register that defines the MDIO output hold time. Earlier
  1956. * versions are RAZ there, so just ignore the difference and write the
  1957. * register always.
  1958. * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
  1959. * HOLDTIME + 1 is the number of clk cycles the fec is holding the
  1960. * output.
  1961. * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
  1962. * Given that ceil(clkrate / 5000000) <= 64, the calculation for
  1963. * holdtime cannot result in a value greater than 3.
  1964. */
  1965. holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
  1966. fep->phy_speed = mii_speed << 1 | holdtime << 8;
  1967. if (suppress_preamble)
  1968. fep->phy_speed |= BIT(7);
  1969. if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
  1970. /* Clear MMFR to avoid to generate MII event by writing MSCR.
  1971. * MII event generation condition:
  1972. * - writing MSCR:
  1973. * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
  1974. * mscr_reg_data_in[7:0] != 0
  1975. * - writing MMFR:
  1976. * - mscr[7:0]_not_zero
  1977. */
  1978. writel(0, fep->hwp + FEC_MII_DATA);
  1979. }
  1980. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  1981. /* Clear any pending transaction complete indication */
  1982. writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
  1983. fep->mii_bus = mdiobus_alloc();
  1984. if (fep->mii_bus == NULL) {
  1985. err = -ENOMEM;
  1986. goto err_out;
  1987. }
  1988. fep->mii_bus->name = "fec_enet_mii_bus";
  1989. fep->mii_bus->read = fec_enet_mdio_read;
  1990. fep->mii_bus->write = fec_enet_mdio_write;
  1991. snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1992. pdev->name, fep->dev_id + 1);
  1993. fep->mii_bus->priv = fep;
  1994. fep->mii_bus->parent = &pdev->dev;
  1995. err = of_mdiobus_register(fep->mii_bus, node);
  1996. if (err)
  1997. goto err_out_free_mdiobus;
  1998. of_node_put(node);
  1999. mii_cnt++;
  2000. /* save fec0 mii_bus */
  2001. if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
  2002. fec0_mii_bus = fep->mii_bus;
  2003. return 0;
  2004. err_out_free_mdiobus:
  2005. mdiobus_free(fep->mii_bus);
  2006. err_out:
  2007. of_node_put(node);
  2008. return err;
  2009. }
  2010. static void fec_enet_mii_remove(struct fec_enet_private *fep)
  2011. {
  2012. if (--mii_cnt == 0) {
  2013. mdiobus_unregister(fep->mii_bus);
  2014. mdiobus_free(fep->mii_bus);
  2015. }
  2016. }
  2017. static void fec_enet_get_drvinfo(struct net_device *ndev,
  2018. struct ethtool_drvinfo *info)
  2019. {
  2020. struct fec_enet_private *fep = netdev_priv(ndev);
  2021. strscpy(info->driver, fep->pdev->dev.driver->name,
  2022. sizeof(info->driver));
  2023. strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
  2024. }
  2025. static int fec_enet_get_regs_len(struct net_device *ndev)
  2026. {
  2027. struct fec_enet_private *fep = netdev_priv(ndev);
  2028. struct resource *r;
  2029. int s = 0;
  2030. r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
  2031. if (r)
  2032. s = resource_size(r);
  2033. return s;
  2034. }
  2035. /* List of registers that can be safety be read to dump them with ethtool */
  2036. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  2037. defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
  2038. defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
  2039. static __u32 fec_enet_register_version = 2;
  2040. static u32 fec_enet_register_offset[] = {
  2041. FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
  2042. FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
  2043. FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
  2044. FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
  2045. FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
  2046. FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
  2047. FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
  2048. FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
  2049. FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
  2050. FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
  2051. FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
  2052. FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
  2053. RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
  2054. RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
  2055. RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
  2056. RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
  2057. RMON_T_P_GTE2048, RMON_T_OCTETS,
  2058. IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
  2059. IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
  2060. IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
  2061. RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
  2062. RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
  2063. RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
  2064. RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
  2065. RMON_R_P_GTE2048, RMON_R_OCTETS,
  2066. IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
  2067. IEEE_R_FDXFC, IEEE_R_OCTETS_OK
  2068. };
  2069. /* for i.MX6ul */
  2070. static u32 fec_enet_register_offset_6ul[] = {
  2071. FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
  2072. FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
  2073. FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
  2074. FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
  2075. FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
  2076. FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
  2077. FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
  2078. RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
  2079. RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
  2080. RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
  2081. RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
  2082. RMON_T_P_GTE2048, RMON_T_OCTETS,
  2083. IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
  2084. IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
  2085. IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
  2086. RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
  2087. RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
  2088. RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
  2089. RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
  2090. RMON_R_P_GTE2048, RMON_R_OCTETS,
  2091. IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
  2092. IEEE_R_FDXFC, IEEE_R_OCTETS_OK
  2093. };
  2094. #else
  2095. static __u32 fec_enet_register_version = 1;
  2096. static u32 fec_enet_register_offset[] = {
  2097. FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
  2098. FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
  2099. FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
  2100. FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
  2101. FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
  2102. FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
  2103. FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
  2104. FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
  2105. FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
  2106. };
  2107. #endif
  2108. static void fec_enet_get_regs(struct net_device *ndev,
  2109. struct ethtool_regs *regs, void *regbuf)
  2110. {
  2111. struct fec_enet_private *fep = netdev_priv(ndev);
  2112. u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
  2113. struct device *dev = &fep->pdev->dev;
  2114. u32 *buf = (u32 *)regbuf;
  2115. u32 i, off;
  2116. int ret;
  2117. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  2118. defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
  2119. defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
  2120. u32 *reg_list;
  2121. u32 reg_cnt;
  2122. if (!of_machine_is_compatible("fsl,imx6ul")) {
  2123. reg_list = fec_enet_register_offset;
  2124. reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
  2125. } else {
  2126. reg_list = fec_enet_register_offset_6ul;
  2127. reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
  2128. }
  2129. #else
  2130. /* coldfire */
  2131. static u32 *reg_list = fec_enet_register_offset;
  2132. static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
  2133. #endif
  2134. ret = pm_runtime_resume_and_get(dev);
  2135. if (ret < 0)
  2136. return;
  2137. regs->version = fec_enet_register_version;
  2138. memset(buf, 0, regs->len);
  2139. for (i = 0; i < reg_cnt; i++) {
  2140. off = reg_list[i];
  2141. if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
  2142. !(fep->quirks & FEC_QUIRK_HAS_FRREG))
  2143. continue;
  2144. off >>= 2;
  2145. buf[off] = readl(&theregs[off]);
  2146. }
  2147. pm_runtime_mark_last_busy(dev);
  2148. pm_runtime_put_autosuspend(dev);
  2149. }
  2150. static int fec_enet_get_ts_info(struct net_device *ndev,
  2151. struct ethtool_ts_info *info)
  2152. {
  2153. struct fec_enet_private *fep = netdev_priv(ndev);
  2154. if (fep->bufdesc_ex) {
  2155. info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
  2156. SOF_TIMESTAMPING_RX_SOFTWARE |
  2157. SOF_TIMESTAMPING_SOFTWARE |
  2158. SOF_TIMESTAMPING_TX_HARDWARE |
  2159. SOF_TIMESTAMPING_RX_HARDWARE |
  2160. SOF_TIMESTAMPING_RAW_HARDWARE;
  2161. if (fep->ptp_clock)
  2162. info->phc_index = ptp_clock_index(fep->ptp_clock);
  2163. else
  2164. info->phc_index = -1;
  2165. info->tx_types = (1 << HWTSTAMP_TX_OFF) |
  2166. (1 << HWTSTAMP_TX_ON);
  2167. info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
  2168. (1 << HWTSTAMP_FILTER_ALL);
  2169. return 0;
  2170. } else {
  2171. return ethtool_op_get_ts_info(ndev, info);
  2172. }
  2173. }
  2174. #if !defined(CONFIG_M5272)
  2175. static void fec_enet_get_pauseparam(struct net_device *ndev,
  2176. struct ethtool_pauseparam *pause)
  2177. {
  2178. struct fec_enet_private *fep = netdev_priv(ndev);
  2179. pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
  2180. pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
  2181. pause->rx_pause = pause->tx_pause;
  2182. }
  2183. static int fec_enet_set_pauseparam(struct net_device *ndev,
  2184. struct ethtool_pauseparam *pause)
  2185. {
  2186. struct fec_enet_private *fep = netdev_priv(ndev);
  2187. if (!ndev->phydev)
  2188. return -ENODEV;
  2189. if (pause->tx_pause != pause->rx_pause) {
  2190. netdev_info(ndev,
  2191. "hardware only support enable/disable both tx and rx");
  2192. return -EINVAL;
  2193. }
  2194. fep->pause_flag = 0;
  2195. /* tx pause must be same as rx pause */
  2196. fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
  2197. fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
  2198. phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
  2199. pause->autoneg);
  2200. if (pause->autoneg) {
  2201. if (netif_running(ndev))
  2202. fec_stop(ndev);
  2203. phy_start_aneg(ndev->phydev);
  2204. }
  2205. if (netif_running(ndev)) {
  2206. napi_disable(&fep->napi);
  2207. netif_tx_lock_bh(ndev);
  2208. fec_restart(ndev);
  2209. netif_tx_wake_all_queues(ndev);
  2210. netif_tx_unlock_bh(ndev);
  2211. napi_enable(&fep->napi);
  2212. }
  2213. return 0;
  2214. }
  2215. static const struct fec_stat {
  2216. char name[ETH_GSTRING_LEN];
  2217. u16 offset;
  2218. } fec_stats[] = {
  2219. /* RMON TX */
  2220. { "tx_dropped", RMON_T_DROP },
  2221. { "tx_packets", RMON_T_PACKETS },
  2222. { "tx_broadcast", RMON_T_BC_PKT },
  2223. { "tx_multicast", RMON_T_MC_PKT },
  2224. { "tx_crc_errors", RMON_T_CRC_ALIGN },
  2225. { "tx_undersize", RMON_T_UNDERSIZE },
  2226. { "tx_oversize", RMON_T_OVERSIZE },
  2227. { "tx_fragment", RMON_T_FRAG },
  2228. { "tx_jabber", RMON_T_JAB },
  2229. { "tx_collision", RMON_T_COL },
  2230. { "tx_64byte", RMON_T_P64 },
  2231. { "tx_65to127byte", RMON_T_P65TO127 },
  2232. { "tx_128to255byte", RMON_T_P128TO255 },
  2233. { "tx_256to511byte", RMON_T_P256TO511 },
  2234. { "tx_512to1023byte", RMON_T_P512TO1023 },
  2235. { "tx_1024to2047byte", RMON_T_P1024TO2047 },
  2236. { "tx_GTE2048byte", RMON_T_P_GTE2048 },
  2237. { "tx_octets", RMON_T_OCTETS },
  2238. /* IEEE TX */
  2239. { "IEEE_tx_drop", IEEE_T_DROP },
  2240. { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
  2241. { "IEEE_tx_1col", IEEE_T_1COL },
  2242. { "IEEE_tx_mcol", IEEE_T_MCOL },
  2243. { "IEEE_tx_def", IEEE_T_DEF },
  2244. { "IEEE_tx_lcol", IEEE_T_LCOL },
  2245. { "IEEE_tx_excol", IEEE_T_EXCOL },
  2246. { "IEEE_tx_macerr", IEEE_T_MACERR },
  2247. { "IEEE_tx_cserr", IEEE_T_CSERR },
  2248. { "IEEE_tx_sqe", IEEE_T_SQE },
  2249. { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
  2250. { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
  2251. /* RMON RX */
  2252. { "rx_packets", RMON_R_PACKETS },
  2253. { "rx_broadcast", RMON_R_BC_PKT },
  2254. { "rx_multicast", RMON_R_MC_PKT },
  2255. { "rx_crc_errors", RMON_R_CRC_ALIGN },
  2256. { "rx_undersize", RMON_R_UNDERSIZE },
  2257. { "rx_oversize", RMON_R_OVERSIZE },
  2258. { "rx_fragment", RMON_R_FRAG },
  2259. { "rx_jabber", RMON_R_JAB },
  2260. { "rx_64byte", RMON_R_P64 },
  2261. { "rx_65to127byte", RMON_R_P65TO127 },
  2262. { "rx_128to255byte", RMON_R_P128TO255 },
  2263. { "rx_256to511byte", RMON_R_P256TO511 },
  2264. { "rx_512to1023byte", RMON_R_P512TO1023 },
  2265. { "rx_1024to2047byte", RMON_R_P1024TO2047 },
  2266. { "rx_GTE2048byte", RMON_R_P_GTE2048 },
  2267. { "rx_octets", RMON_R_OCTETS },
  2268. /* IEEE RX */
  2269. { "IEEE_rx_drop", IEEE_R_DROP },
  2270. { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
  2271. { "IEEE_rx_crc", IEEE_R_CRC },
  2272. { "IEEE_rx_align", IEEE_R_ALIGN },
  2273. { "IEEE_rx_macerr", IEEE_R_MACERR },
  2274. { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
  2275. { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
  2276. };
  2277. #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
  2278. static void fec_enet_update_ethtool_stats(struct net_device *dev)
  2279. {
  2280. struct fec_enet_private *fep = netdev_priv(dev);
  2281. int i;
  2282. for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
  2283. fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
  2284. }
  2285. static void fec_enet_get_ethtool_stats(struct net_device *dev,
  2286. struct ethtool_stats *stats, u64 *data)
  2287. {
  2288. struct fec_enet_private *fep = netdev_priv(dev);
  2289. if (netif_running(dev))
  2290. fec_enet_update_ethtool_stats(dev);
  2291. memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
  2292. }
  2293. static void fec_enet_get_strings(struct net_device *netdev,
  2294. u32 stringset, u8 *data)
  2295. {
  2296. int i;
  2297. switch (stringset) {
  2298. case ETH_SS_STATS:
  2299. for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
  2300. memcpy(data + i * ETH_GSTRING_LEN,
  2301. fec_stats[i].name, ETH_GSTRING_LEN);
  2302. break;
  2303. case ETH_SS_TEST:
  2304. net_selftest_get_strings(data);
  2305. break;
  2306. }
  2307. }
  2308. static int fec_enet_get_sset_count(struct net_device *dev, int sset)
  2309. {
  2310. switch (sset) {
  2311. case ETH_SS_STATS:
  2312. return ARRAY_SIZE(fec_stats);
  2313. case ETH_SS_TEST:
  2314. return net_selftest_get_count();
  2315. default:
  2316. return -EOPNOTSUPP;
  2317. }
  2318. }
  2319. static void fec_enet_clear_ethtool_stats(struct net_device *dev)
  2320. {
  2321. struct fec_enet_private *fep = netdev_priv(dev);
  2322. int i;
  2323. /* Disable MIB statistics counters */
  2324. writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
  2325. for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
  2326. writel(0, fep->hwp + fec_stats[i].offset);
  2327. /* Don't disable MIB statistics counters */
  2328. writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
  2329. }
  2330. #else /* !defined(CONFIG_M5272) */
  2331. #define FEC_STATS_SIZE 0
  2332. static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
  2333. {
  2334. }
  2335. static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
  2336. {
  2337. }
  2338. #endif /* !defined(CONFIG_M5272) */
  2339. /* ITR clock source is enet system clock (clk_ahb).
  2340. * TCTT unit is cycle_ns * 64 cycle
  2341. * So, the ICTT value = X us / (cycle_ns * 64)
  2342. */
  2343. static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
  2344. {
  2345. struct fec_enet_private *fep = netdev_priv(ndev);
  2346. return us * (fep->itr_clk_rate / 64000) / 1000;
  2347. }
  2348. /* Set threshold for interrupt coalescing */
  2349. static void fec_enet_itr_coal_set(struct net_device *ndev)
  2350. {
  2351. struct fec_enet_private *fep = netdev_priv(ndev);
  2352. int rx_itr, tx_itr;
  2353. /* Must be greater than zero to avoid unpredictable behavior */
  2354. if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
  2355. !fep->tx_time_itr || !fep->tx_pkts_itr)
  2356. return;
  2357. /* Select enet system clock as Interrupt Coalescing
  2358. * timer Clock Source
  2359. */
  2360. rx_itr = FEC_ITR_CLK_SEL;
  2361. tx_itr = FEC_ITR_CLK_SEL;
  2362. /* set ICFT and ICTT */
  2363. rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
  2364. rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
  2365. tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
  2366. tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
  2367. rx_itr |= FEC_ITR_EN;
  2368. tx_itr |= FEC_ITR_EN;
  2369. writel(tx_itr, fep->hwp + FEC_TXIC0);
  2370. writel(rx_itr, fep->hwp + FEC_RXIC0);
  2371. if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
  2372. writel(tx_itr, fep->hwp + FEC_TXIC1);
  2373. writel(rx_itr, fep->hwp + FEC_RXIC1);
  2374. writel(tx_itr, fep->hwp + FEC_TXIC2);
  2375. writel(rx_itr, fep->hwp + FEC_RXIC2);
  2376. }
  2377. }
  2378. static int fec_enet_get_coalesce(struct net_device *ndev,
  2379. struct ethtool_coalesce *ec,
  2380. struct kernel_ethtool_coalesce *kernel_coal,
  2381. struct netlink_ext_ack *extack)
  2382. {
  2383. struct fec_enet_private *fep = netdev_priv(ndev);
  2384. if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
  2385. return -EOPNOTSUPP;
  2386. ec->rx_coalesce_usecs = fep->rx_time_itr;
  2387. ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
  2388. ec->tx_coalesce_usecs = fep->tx_time_itr;
  2389. ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
  2390. return 0;
  2391. }
  2392. static int fec_enet_set_coalesce(struct net_device *ndev,
  2393. struct ethtool_coalesce *ec,
  2394. struct kernel_ethtool_coalesce *kernel_coal,
  2395. struct netlink_ext_ack *extack)
  2396. {
  2397. struct fec_enet_private *fep = netdev_priv(ndev);
  2398. struct device *dev = &fep->pdev->dev;
  2399. unsigned int cycle;
  2400. if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
  2401. return -EOPNOTSUPP;
  2402. if (ec->rx_max_coalesced_frames > 255) {
  2403. dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
  2404. return -EINVAL;
  2405. }
  2406. if (ec->tx_max_coalesced_frames > 255) {
  2407. dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
  2408. return -EINVAL;
  2409. }
  2410. cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
  2411. if (cycle > 0xFFFF) {
  2412. dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
  2413. return -EINVAL;
  2414. }
  2415. cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
  2416. if (cycle > 0xFFFF) {
  2417. dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
  2418. return -EINVAL;
  2419. }
  2420. fep->rx_time_itr = ec->rx_coalesce_usecs;
  2421. fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
  2422. fep->tx_time_itr = ec->tx_coalesce_usecs;
  2423. fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
  2424. fec_enet_itr_coal_set(ndev);
  2425. return 0;
  2426. }
  2427. static int fec_enet_get_tunable(struct net_device *netdev,
  2428. const struct ethtool_tunable *tuna,
  2429. void *data)
  2430. {
  2431. struct fec_enet_private *fep = netdev_priv(netdev);
  2432. int ret = 0;
  2433. switch (tuna->id) {
  2434. case ETHTOOL_RX_COPYBREAK:
  2435. *(u32 *)data = fep->rx_copybreak;
  2436. break;
  2437. default:
  2438. ret = -EINVAL;
  2439. break;
  2440. }
  2441. return ret;
  2442. }
  2443. static int fec_enet_set_tunable(struct net_device *netdev,
  2444. const struct ethtool_tunable *tuna,
  2445. const void *data)
  2446. {
  2447. struct fec_enet_private *fep = netdev_priv(netdev);
  2448. int ret = 0;
  2449. switch (tuna->id) {
  2450. case ETHTOOL_RX_COPYBREAK:
  2451. fep->rx_copybreak = *(u32 *)data;
  2452. break;
  2453. default:
  2454. ret = -EINVAL;
  2455. break;
  2456. }
  2457. return ret;
  2458. }
  2459. /* LPI Sleep Ts count base on tx clk (clk_ref).
  2460. * The lpi sleep cnt value = X us / (cycle_ns).
  2461. */
  2462. static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
  2463. {
  2464. struct fec_enet_private *fep = netdev_priv(ndev);
  2465. return us * (fep->clk_ref_rate / 1000) / 1000;
  2466. }
  2467. static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
  2468. {
  2469. struct fec_enet_private *fep = netdev_priv(ndev);
  2470. struct ethtool_eee *p = &fep->eee;
  2471. unsigned int sleep_cycle, wake_cycle;
  2472. int ret = 0;
  2473. if (enable) {
  2474. ret = phy_init_eee(ndev->phydev, false);
  2475. if (ret)
  2476. return ret;
  2477. sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
  2478. wake_cycle = sleep_cycle;
  2479. } else {
  2480. sleep_cycle = 0;
  2481. wake_cycle = 0;
  2482. }
  2483. p->tx_lpi_enabled = enable;
  2484. p->eee_enabled = enable;
  2485. p->eee_active = enable;
  2486. writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
  2487. writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
  2488. return 0;
  2489. }
  2490. static int
  2491. fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
  2492. {
  2493. struct fec_enet_private *fep = netdev_priv(ndev);
  2494. struct ethtool_eee *p = &fep->eee;
  2495. if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
  2496. return -EOPNOTSUPP;
  2497. if (!netif_running(ndev))
  2498. return -ENETDOWN;
  2499. edata->eee_enabled = p->eee_enabled;
  2500. edata->eee_active = p->eee_active;
  2501. edata->tx_lpi_timer = p->tx_lpi_timer;
  2502. edata->tx_lpi_enabled = p->tx_lpi_enabled;
  2503. return phy_ethtool_get_eee(ndev->phydev, edata);
  2504. }
  2505. static int
  2506. fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
  2507. {
  2508. struct fec_enet_private *fep = netdev_priv(ndev);
  2509. struct ethtool_eee *p = &fep->eee;
  2510. int ret = 0;
  2511. if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
  2512. return -EOPNOTSUPP;
  2513. if (!netif_running(ndev))
  2514. return -ENETDOWN;
  2515. p->tx_lpi_timer = edata->tx_lpi_timer;
  2516. if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
  2517. !edata->tx_lpi_timer)
  2518. ret = fec_enet_eee_mode_set(ndev, false);
  2519. else
  2520. ret = fec_enet_eee_mode_set(ndev, true);
  2521. if (ret)
  2522. return ret;
  2523. return phy_ethtool_set_eee(ndev->phydev, edata);
  2524. }
  2525. static void
  2526. fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  2527. {
  2528. struct fec_enet_private *fep = netdev_priv(ndev);
  2529. if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
  2530. wol->supported = WAKE_MAGIC;
  2531. wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
  2532. } else {
  2533. wol->supported = wol->wolopts = 0;
  2534. }
  2535. }
  2536. static int
  2537. fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  2538. {
  2539. struct fec_enet_private *fep = netdev_priv(ndev);
  2540. if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
  2541. return -EINVAL;
  2542. if (wol->wolopts & ~WAKE_MAGIC)
  2543. return -EINVAL;
  2544. device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
  2545. if (device_may_wakeup(&ndev->dev))
  2546. fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
  2547. else
  2548. fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
  2549. return 0;
  2550. }
  2551. static const struct ethtool_ops fec_enet_ethtool_ops = {
  2552. .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
  2553. ETHTOOL_COALESCE_MAX_FRAMES,
  2554. .get_drvinfo = fec_enet_get_drvinfo,
  2555. .get_regs_len = fec_enet_get_regs_len,
  2556. .get_regs = fec_enet_get_regs,
  2557. .nway_reset = phy_ethtool_nway_reset,
  2558. .get_link = ethtool_op_get_link,
  2559. .get_coalesce = fec_enet_get_coalesce,
  2560. .set_coalesce = fec_enet_set_coalesce,
  2561. #ifndef CONFIG_M5272
  2562. .get_pauseparam = fec_enet_get_pauseparam,
  2563. .set_pauseparam = fec_enet_set_pauseparam,
  2564. .get_strings = fec_enet_get_strings,
  2565. .get_ethtool_stats = fec_enet_get_ethtool_stats,
  2566. .get_sset_count = fec_enet_get_sset_count,
  2567. #endif
  2568. .get_ts_info = fec_enet_get_ts_info,
  2569. .get_tunable = fec_enet_get_tunable,
  2570. .set_tunable = fec_enet_set_tunable,
  2571. .get_wol = fec_enet_get_wol,
  2572. .set_wol = fec_enet_set_wol,
  2573. .get_eee = fec_enet_get_eee,
  2574. .set_eee = fec_enet_set_eee,
  2575. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  2576. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  2577. .self_test = net_selftest,
  2578. };
  2579. static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
  2580. {
  2581. struct fec_enet_private *fep = netdev_priv(ndev);
  2582. struct phy_device *phydev = ndev->phydev;
  2583. if (!netif_running(ndev))
  2584. return -EINVAL;
  2585. if (!phydev)
  2586. return -ENODEV;
  2587. if (fep->bufdesc_ex) {
  2588. bool use_fec_hwts = !phy_has_hwtstamp(phydev);
  2589. if (cmd == SIOCSHWTSTAMP) {
  2590. if (use_fec_hwts)
  2591. return fec_ptp_set(ndev, rq);
  2592. fec_ptp_disable_hwts(ndev);
  2593. } else if (cmd == SIOCGHWTSTAMP) {
  2594. if (use_fec_hwts)
  2595. return fec_ptp_get(ndev, rq);
  2596. }
  2597. }
  2598. return phy_mii_ioctl(phydev, rq, cmd);
  2599. }
  2600. static void fec_enet_free_buffers(struct net_device *ndev)
  2601. {
  2602. struct fec_enet_private *fep = netdev_priv(ndev);
  2603. unsigned int i;
  2604. struct sk_buff *skb;
  2605. struct fec_enet_priv_tx_q *txq;
  2606. struct fec_enet_priv_rx_q *rxq;
  2607. unsigned int q;
  2608. for (q = 0; q < fep->num_rx_queues; q++) {
  2609. rxq = fep->rx_queue[q];
  2610. for (i = 0; i < rxq->bd.ring_size; i++)
  2611. page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
  2612. if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
  2613. xdp_rxq_info_unreg(&rxq->xdp_rxq);
  2614. page_pool_destroy(rxq->page_pool);
  2615. rxq->page_pool = NULL;
  2616. }
  2617. for (q = 0; q < fep->num_tx_queues; q++) {
  2618. txq = fep->tx_queue[q];
  2619. for (i = 0; i < txq->bd.ring_size; i++) {
  2620. kfree(txq->tx_bounce[i]);
  2621. txq->tx_bounce[i] = NULL;
  2622. skb = txq->tx_skbuff[i];
  2623. txq->tx_skbuff[i] = NULL;
  2624. dev_kfree_skb(skb);
  2625. }
  2626. }
  2627. }
  2628. static void fec_enet_free_queue(struct net_device *ndev)
  2629. {
  2630. struct fec_enet_private *fep = netdev_priv(ndev);
  2631. int i;
  2632. struct fec_enet_priv_tx_q *txq;
  2633. for (i = 0; i < fep->num_tx_queues; i++)
  2634. if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
  2635. txq = fep->tx_queue[i];
  2636. dma_free_coherent(&fep->pdev->dev,
  2637. txq->bd.ring_size * TSO_HEADER_SIZE,
  2638. txq->tso_hdrs,
  2639. txq->tso_hdrs_dma);
  2640. }
  2641. for (i = 0; i < fep->num_rx_queues; i++)
  2642. kfree(fep->rx_queue[i]);
  2643. for (i = 0; i < fep->num_tx_queues; i++)
  2644. kfree(fep->tx_queue[i]);
  2645. }
  2646. static int fec_enet_alloc_queue(struct net_device *ndev)
  2647. {
  2648. struct fec_enet_private *fep = netdev_priv(ndev);
  2649. int i;
  2650. int ret = 0;
  2651. struct fec_enet_priv_tx_q *txq;
  2652. for (i = 0; i < fep->num_tx_queues; i++) {
  2653. txq = kzalloc(sizeof(*txq), GFP_KERNEL);
  2654. if (!txq) {
  2655. ret = -ENOMEM;
  2656. goto alloc_failed;
  2657. }
  2658. fep->tx_queue[i] = txq;
  2659. txq->bd.ring_size = TX_RING_SIZE;
  2660. fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
  2661. txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
  2662. txq->tx_wake_threshold =
  2663. (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
  2664. txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
  2665. txq->bd.ring_size * TSO_HEADER_SIZE,
  2666. &txq->tso_hdrs_dma,
  2667. GFP_KERNEL);
  2668. if (!txq->tso_hdrs) {
  2669. ret = -ENOMEM;
  2670. goto alloc_failed;
  2671. }
  2672. }
  2673. for (i = 0; i < fep->num_rx_queues; i++) {
  2674. fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
  2675. GFP_KERNEL);
  2676. if (!fep->rx_queue[i]) {
  2677. ret = -ENOMEM;
  2678. goto alloc_failed;
  2679. }
  2680. fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
  2681. fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
  2682. }
  2683. return ret;
  2684. alloc_failed:
  2685. fec_enet_free_queue(ndev);
  2686. return ret;
  2687. }
  2688. static int
  2689. fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
  2690. {
  2691. struct fec_enet_private *fep = netdev_priv(ndev);
  2692. struct fec_enet_priv_rx_q *rxq;
  2693. dma_addr_t phys_addr;
  2694. struct bufdesc *bdp;
  2695. struct page *page;
  2696. int i, err;
  2697. rxq = fep->rx_queue[queue];
  2698. bdp = rxq->bd.base;
  2699. err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
  2700. if (err < 0) {
  2701. netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
  2702. return err;
  2703. }
  2704. for (i = 0; i < rxq->bd.ring_size; i++) {
  2705. page = page_pool_dev_alloc_pages(rxq->page_pool);
  2706. if (!page)
  2707. goto err_alloc;
  2708. phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
  2709. bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
  2710. rxq->rx_skb_info[i].page = page;
  2711. rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
  2712. bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
  2713. if (fep->bufdesc_ex) {
  2714. struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
  2715. ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
  2716. }
  2717. bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
  2718. }
  2719. /* Set the last buffer to wrap. */
  2720. bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
  2721. bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
  2722. return 0;
  2723. err_alloc:
  2724. fec_enet_free_buffers(ndev);
  2725. return -ENOMEM;
  2726. }
  2727. static int
  2728. fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
  2729. {
  2730. struct fec_enet_private *fep = netdev_priv(ndev);
  2731. unsigned int i;
  2732. struct bufdesc *bdp;
  2733. struct fec_enet_priv_tx_q *txq;
  2734. txq = fep->tx_queue[queue];
  2735. bdp = txq->bd.base;
  2736. for (i = 0; i < txq->bd.ring_size; i++) {
  2737. txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
  2738. if (!txq->tx_bounce[i])
  2739. goto err_alloc;
  2740. bdp->cbd_sc = cpu_to_fec16(0);
  2741. bdp->cbd_bufaddr = cpu_to_fec32(0);
  2742. if (fep->bufdesc_ex) {
  2743. struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
  2744. ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
  2745. }
  2746. bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
  2747. }
  2748. /* Set the last buffer to wrap. */
  2749. bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
  2750. bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
  2751. return 0;
  2752. err_alloc:
  2753. fec_enet_free_buffers(ndev);
  2754. return -ENOMEM;
  2755. }
  2756. static int fec_enet_alloc_buffers(struct net_device *ndev)
  2757. {
  2758. struct fec_enet_private *fep = netdev_priv(ndev);
  2759. unsigned int i;
  2760. for (i = 0; i < fep->num_rx_queues; i++)
  2761. if (fec_enet_alloc_rxq_buffers(ndev, i))
  2762. return -ENOMEM;
  2763. for (i = 0; i < fep->num_tx_queues; i++)
  2764. if (fec_enet_alloc_txq_buffers(ndev, i))
  2765. return -ENOMEM;
  2766. return 0;
  2767. }
  2768. static int
  2769. fec_enet_open(struct net_device *ndev)
  2770. {
  2771. struct fec_enet_private *fep = netdev_priv(ndev);
  2772. int ret;
  2773. bool reset_again;
  2774. ret = pm_runtime_resume_and_get(&fep->pdev->dev);
  2775. if (ret < 0)
  2776. return ret;
  2777. pinctrl_pm_select_default_state(&fep->pdev->dev);
  2778. ret = fec_enet_clk_enable(ndev, true);
  2779. if (ret)
  2780. goto clk_enable;
  2781. /* During the first fec_enet_open call the PHY isn't probed at this
  2782. * point. Therefore the phy_reset_after_clk_enable() call within
  2783. * fec_enet_clk_enable() fails. As we need this reset in order to be
  2784. * sure the PHY is working correctly we check if we need to reset again
  2785. * later when the PHY is probed
  2786. */
  2787. if (ndev->phydev && ndev->phydev->drv)
  2788. reset_again = false;
  2789. else
  2790. reset_again = true;
  2791. /* I should reset the ring buffers here, but I don't yet know
  2792. * a simple way to do that.
  2793. */
  2794. ret = fec_enet_alloc_buffers(ndev);
  2795. if (ret)
  2796. goto err_enet_alloc;
  2797. /* Init MAC prior to mii bus probe */
  2798. fec_restart(ndev);
  2799. /* Call phy_reset_after_clk_enable() again if it failed during
  2800. * phy_reset_after_clk_enable() before because the PHY wasn't probed.
  2801. */
  2802. if (reset_again)
  2803. fec_enet_phy_reset_after_clk_enable(ndev);
  2804. /* Probe and connect to PHY when open the interface */
  2805. ret = fec_enet_mii_probe(ndev);
  2806. if (ret)
  2807. goto err_enet_mii_probe;
  2808. if (fep->quirks & FEC_QUIRK_ERR006687)
  2809. imx6q_cpuidle_fec_irqs_used();
  2810. if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
  2811. cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
  2812. napi_enable(&fep->napi);
  2813. phy_start(ndev->phydev);
  2814. netif_tx_start_all_queues(ndev);
  2815. device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
  2816. FEC_WOL_FLAG_ENABLE);
  2817. return 0;
  2818. err_enet_mii_probe:
  2819. fec_enet_free_buffers(ndev);
  2820. err_enet_alloc:
  2821. fec_enet_clk_enable(ndev, false);
  2822. clk_enable:
  2823. pm_runtime_mark_last_busy(&fep->pdev->dev);
  2824. pm_runtime_put_autosuspend(&fep->pdev->dev);
  2825. pinctrl_pm_select_sleep_state(&fep->pdev->dev);
  2826. return ret;
  2827. }
  2828. static int
  2829. fec_enet_close(struct net_device *ndev)
  2830. {
  2831. struct fec_enet_private *fep = netdev_priv(ndev);
  2832. phy_stop(ndev->phydev);
  2833. if (netif_device_present(ndev)) {
  2834. napi_disable(&fep->napi);
  2835. netif_tx_disable(ndev);
  2836. fec_stop(ndev);
  2837. }
  2838. phy_disconnect(ndev->phydev);
  2839. if (fep->quirks & FEC_QUIRK_ERR006687)
  2840. imx6q_cpuidle_fec_irqs_unused();
  2841. fec_enet_update_ethtool_stats(ndev);
  2842. fec_enet_clk_enable(ndev, false);
  2843. if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
  2844. cpu_latency_qos_remove_request(&fep->pm_qos_req);
  2845. pinctrl_pm_select_sleep_state(&fep->pdev->dev);
  2846. pm_runtime_mark_last_busy(&fep->pdev->dev);
  2847. pm_runtime_put_autosuspend(&fep->pdev->dev);
  2848. fec_enet_free_buffers(ndev);
  2849. return 0;
  2850. }
  2851. /* Set or clear the multicast filter for this adaptor.
  2852. * Skeleton taken from sunlance driver.
  2853. * The CPM Ethernet implementation allows Multicast as well as individual
  2854. * MAC address filtering. Some of the drivers check to make sure it is
  2855. * a group multicast address, and discard those that are not. I guess I
  2856. * will do the same for now, but just remove the test if you want
  2857. * individual filtering as well (do the upper net layers want or support
  2858. * this kind of feature?).
  2859. */
  2860. #define FEC_HASH_BITS 6 /* #bits in hash */
  2861. static void set_multicast_list(struct net_device *ndev)
  2862. {
  2863. struct fec_enet_private *fep = netdev_priv(ndev);
  2864. struct netdev_hw_addr *ha;
  2865. unsigned int crc, tmp;
  2866. unsigned char hash;
  2867. unsigned int hash_high = 0, hash_low = 0;
  2868. if (ndev->flags & IFF_PROMISC) {
  2869. tmp = readl(fep->hwp + FEC_R_CNTRL);
  2870. tmp |= 0x8;
  2871. writel(tmp, fep->hwp + FEC_R_CNTRL);
  2872. return;
  2873. }
  2874. tmp = readl(fep->hwp + FEC_R_CNTRL);
  2875. tmp &= ~0x8;
  2876. writel(tmp, fep->hwp + FEC_R_CNTRL);
  2877. if (ndev->flags & IFF_ALLMULTI) {
  2878. /* Catch all multicast addresses, so set the
  2879. * filter to all 1's
  2880. */
  2881. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  2882. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  2883. return;
  2884. }
  2885. /* Add the addresses in hash register */
  2886. netdev_for_each_mc_addr(ha, ndev) {
  2887. /* calculate crc32 value of mac address */
  2888. crc = ether_crc_le(ndev->addr_len, ha->addr);
  2889. /* only upper 6 bits (FEC_HASH_BITS) are used
  2890. * which point to specific bit in the hash registers
  2891. */
  2892. hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
  2893. if (hash > 31)
  2894. hash_high |= 1 << (hash - 32);
  2895. else
  2896. hash_low |= 1 << hash;
  2897. }
  2898. writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  2899. writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  2900. }
  2901. /* Set a MAC change in hardware. */
  2902. static int
  2903. fec_set_mac_address(struct net_device *ndev, void *p)
  2904. {
  2905. struct fec_enet_private *fep = netdev_priv(ndev);
  2906. struct sockaddr *addr = p;
  2907. if (addr) {
  2908. if (!is_valid_ether_addr(addr->sa_data))
  2909. return -EADDRNOTAVAIL;
  2910. eth_hw_addr_set(ndev, addr->sa_data);
  2911. }
  2912. /* Add netif status check here to avoid system hang in below case:
  2913. * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
  2914. * After ethx down, fec all clocks are gated off and then register
  2915. * access causes system hang.
  2916. */
  2917. if (!netif_running(ndev))
  2918. return 0;
  2919. writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
  2920. (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
  2921. fep->hwp + FEC_ADDR_LOW);
  2922. writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
  2923. fep->hwp + FEC_ADDR_HIGH);
  2924. return 0;
  2925. }
  2926. #ifdef CONFIG_NET_POLL_CONTROLLER
  2927. /**
  2928. * fec_poll_controller - FEC Poll controller function
  2929. * @dev: The FEC network adapter
  2930. *
  2931. * Polled functionality used by netconsole and others in non interrupt mode
  2932. *
  2933. */
  2934. static void fec_poll_controller(struct net_device *dev)
  2935. {
  2936. int i;
  2937. struct fec_enet_private *fep = netdev_priv(dev);
  2938. for (i = 0; i < FEC_IRQ_NUM; i++) {
  2939. if (fep->irq[i] > 0) {
  2940. disable_irq(fep->irq[i]);
  2941. fec_enet_interrupt(fep->irq[i], dev);
  2942. enable_irq(fep->irq[i]);
  2943. }
  2944. }
  2945. }
  2946. #endif
  2947. static inline void fec_enet_set_netdev_features(struct net_device *netdev,
  2948. netdev_features_t features)
  2949. {
  2950. struct fec_enet_private *fep = netdev_priv(netdev);
  2951. netdev_features_t changed = features ^ netdev->features;
  2952. netdev->features = features;
  2953. /* Receive checksum has been changed */
  2954. if (changed & NETIF_F_RXCSUM) {
  2955. if (features & NETIF_F_RXCSUM)
  2956. fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
  2957. else
  2958. fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
  2959. }
  2960. }
  2961. static int fec_set_features(struct net_device *netdev,
  2962. netdev_features_t features)
  2963. {
  2964. struct fec_enet_private *fep = netdev_priv(netdev);
  2965. netdev_features_t changed = features ^ netdev->features;
  2966. if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
  2967. napi_disable(&fep->napi);
  2968. netif_tx_lock_bh(netdev);
  2969. fec_stop(netdev);
  2970. fec_enet_set_netdev_features(netdev, features);
  2971. fec_restart(netdev);
  2972. netif_tx_wake_all_queues(netdev);
  2973. netif_tx_unlock_bh(netdev);
  2974. napi_enable(&fep->napi);
  2975. } else {
  2976. fec_enet_set_netdev_features(netdev, features);
  2977. }
  2978. return 0;
  2979. }
  2980. static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
  2981. {
  2982. struct vlan_ethhdr *vhdr;
  2983. unsigned short vlan_TCI = 0;
  2984. if (skb->protocol == htons(ETH_P_ALL)) {
  2985. vhdr = (struct vlan_ethhdr *)(skb->data);
  2986. vlan_TCI = ntohs(vhdr->h_vlan_TCI);
  2987. }
  2988. return vlan_TCI;
  2989. }
  2990. static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
  2991. struct net_device *sb_dev)
  2992. {
  2993. struct fec_enet_private *fep = netdev_priv(ndev);
  2994. u16 vlan_tag;
  2995. if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
  2996. return netdev_pick_tx(ndev, skb, NULL);
  2997. vlan_tag = fec_enet_get_raw_vlan_tci(skb);
  2998. if (!vlan_tag)
  2999. return vlan_tag;
  3000. return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
  3001. }
  3002. static const struct net_device_ops fec_netdev_ops = {
  3003. .ndo_open = fec_enet_open,
  3004. .ndo_stop = fec_enet_close,
  3005. .ndo_start_xmit = fec_enet_start_xmit,
  3006. .ndo_select_queue = fec_enet_select_queue,
  3007. .ndo_set_rx_mode = set_multicast_list,
  3008. .ndo_validate_addr = eth_validate_addr,
  3009. .ndo_tx_timeout = fec_timeout,
  3010. .ndo_set_mac_address = fec_set_mac_address,
  3011. .ndo_eth_ioctl = fec_enet_ioctl,
  3012. #ifdef CONFIG_NET_POLL_CONTROLLER
  3013. .ndo_poll_controller = fec_poll_controller,
  3014. #endif
  3015. .ndo_set_features = fec_set_features,
  3016. };
  3017. static const unsigned short offset_des_active_rxq[] = {
  3018. FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
  3019. };
  3020. static const unsigned short offset_des_active_txq[] = {
  3021. FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
  3022. };
  3023. /*
  3024. * XXX: We need to clean up on failure exits here.
  3025. *
  3026. */
  3027. static int fec_enet_init(struct net_device *ndev)
  3028. {
  3029. struct fec_enet_private *fep = netdev_priv(ndev);
  3030. struct bufdesc *cbd_base;
  3031. dma_addr_t bd_dma;
  3032. int bd_size;
  3033. unsigned int i;
  3034. unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
  3035. sizeof(struct bufdesc);
  3036. unsigned dsize_log2 = __fls(dsize);
  3037. int ret;
  3038. WARN_ON(dsize != (1 << dsize_log2));
  3039. #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
  3040. fep->rx_align = 0xf;
  3041. fep->tx_align = 0xf;
  3042. #else
  3043. fep->rx_align = 0x3;
  3044. fep->tx_align = 0x3;
  3045. #endif
  3046. fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
  3047. fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
  3048. fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
  3049. fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
  3050. /* Check mask of the streaming and coherent API */
  3051. ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
  3052. if (ret < 0) {
  3053. dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
  3054. return ret;
  3055. }
  3056. ret = fec_enet_alloc_queue(ndev);
  3057. if (ret)
  3058. return ret;
  3059. bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
  3060. /* Allocate memory for buffer descriptors. */
  3061. cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
  3062. GFP_KERNEL);
  3063. if (!cbd_base) {
  3064. ret = -ENOMEM;
  3065. goto free_queue_mem;
  3066. }
  3067. /* Get the Ethernet address */
  3068. ret = fec_get_mac(ndev);
  3069. if (ret)
  3070. goto free_queue_mem;
  3071. /* make sure MAC we just acquired is programmed into the hw */
  3072. fec_set_mac_address(ndev, NULL);
  3073. /* Set receive and transmit descriptor base. */
  3074. for (i = 0; i < fep->num_rx_queues; i++) {
  3075. struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
  3076. unsigned size = dsize * rxq->bd.ring_size;
  3077. rxq->bd.qid = i;
  3078. rxq->bd.base = cbd_base;
  3079. rxq->bd.cur = cbd_base;
  3080. rxq->bd.dma = bd_dma;
  3081. rxq->bd.dsize = dsize;
  3082. rxq->bd.dsize_log2 = dsize_log2;
  3083. rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
  3084. bd_dma += size;
  3085. cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
  3086. rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
  3087. }
  3088. for (i = 0; i < fep->num_tx_queues; i++) {
  3089. struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
  3090. unsigned size = dsize * txq->bd.ring_size;
  3091. txq->bd.qid = i;
  3092. txq->bd.base = cbd_base;
  3093. txq->bd.cur = cbd_base;
  3094. txq->bd.dma = bd_dma;
  3095. txq->bd.dsize = dsize;
  3096. txq->bd.dsize_log2 = dsize_log2;
  3097. txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
  3098. bd_dma += size;
  3099. cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
  3100. txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
  3101. }
  3102. /* The FEC Ethernet specific entries in the device structure */
  3103. ndev->watchdog_timeo = TX_TIMEOUT;
  3104. ndev->netdev_ops = &fec_netdev_ops;
  3105. ndev->ethtool_ops = &fec_enet_ethtool_ops;
  3106. writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
  3107. netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
  3108. if (fep->quirks & FEC_QUIRK_HAS_VLAN)
  3109. /* enable hw VLAN support */
  3110. ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
  3111. if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
  3112. netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
  3113. /* enable hw accelerator */
  3114. ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
  3115. | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
  3116. fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
  3117. }
  3118. if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
  3119. fep->tx_align = 0;
  3120. fep->rx_align = 0x3f;
  3121. }
  3122. ndev->hw_features = ndev->features;
  3123. fec_restart(ndev);
  3124. if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
  3125. fec_enet_clear_ethtool_stats(ndev);
  3126. else
  3127. fec_enet_update_ethtool_stats(ndev);
  3128. return 0;
  3129. free_queue_mem:
  3130. fec_enet_free_queue(ndev);
  3131. return ret;
  3132. }
  3133. #ifdef CONFIG_OF
  3134. static int fec_reset_phy(struct platform_device *pdev)
  3135. {
  3136. int err, phy_reset;
  3137. bool active_high = false;
  3138. int msec = 1, phy_post_delay = 0;
  3139. struct device_node *np = pdev->dev.of_node;
  3140. if (!np)
  3141. return 0;
  3142. err = of_property_read_u32(np, "phy-reset-duration", &msec);
  3143. /* A sane reset duration should not be longer than 1s */
  3144. if (!err && msec > 1000)
  3145. msec = 1;
  3146. phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
  3147. if (phy_reset == -EPROBE_DEFER)
  3148. return phy_reset;
  3149. else if (!gpio_is_valid(phy_reset))
  3150. return 0;
  3151. err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
  3152. /* valid reset duration should be less than 1s */
  3153. if (!err && phy_post_delay > 1000)
  3154. return -EINVAL;
  3155. active_high = of_property_read_bool(np, "phy-reset-active-high");
  3156. err = devm_gpio_request_one(&pdev->dev, phy_reset,
  3157. active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
  3158. "phy-reset");
  3159. if (err) {
  3160. dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
  3161. return err;
  3162. }
  3163. if (msec > 20)
  3164. msleep(msec);
  3165. else
  3166. usleep_range(msec * 1000, msec * 1000 + 1000);
  3167. gpio_set_value_cansleep(phy_reset, !active_high);
  3168. if (!phy_post_delay)
  3169. return 0;
  3170. if (phy_post_delay > 20)
  3171. msleep(phy_post_delay);
  3172. else
  3173. usleep_range(phy_post_delay * 1000,
  3174. phy_post_delay * 1000 + 1000);
  3175. return 0;
  3176. }
  3177. #else /* CONFIG_OF */
  3178. static int fec_reset_phy(struct platform_device *pdev)
  3179. {
  3180. /*
  3181. * In case of platform probe, the reset has been done
  3182. * by machine code.
  3183. */
  3184. return 0;
  3185. }
  3186. #endif /* CONFIG_OF */
  3187. static void
  3188. fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
  3189. {
  3190. struct device_node *np = pdev->dev.of_node;
  3191. *num_tx = *num_rx = 1;
  3192. if (!np || !of_device_is_available(np))
  3193. return;
  3194. /* parse the num of tx and rx queues */
  3195. of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
  3196. of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
  3197. if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
  3198. dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
  3199. *num_tx);
  3200. *num_tx = 1;
  3201. return;
  3202. }
  3203. if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
  3204. dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
  3205. *num_rx);
  3206. *num_rx = 1;
  3207. return;
  3208. }
  3209. }
  3210. static int fec_enet_get_irq_cnt(struct platform_device *pdev)
  3211. {
  3212. int irq_cnt = platform_irq_count(pdev);
  3213. if (irq_cnt > FEC_IRQ_NUM)
  3214. irq_cnt = FEC_IRQ_NUM; /* last for pps */
  3215. else if (irq_cnt == 2)
  3216. irq_cnt = 1; /* last for pps */
  3217. else if (irq_cnt <= 0)
  3218. irq_cnt = 1; /* At least 1 irq is needed */
  3219. return irq_cnt;
  3220. }
  3221. static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
  3222. {
  3223. struct net_device *ndev = platform_get_drvdata(pdev);
  3224. struct fec_enet_private *fep = netdev_priv(ndev);
  3225. if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
  3226. fep->wake_irq = fep->irq[2];
  3227. else
  3228. fep->wake_irq = fep->irq[0];
  3229. }
  3230. static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
  3231. struct device_node *np)
  3232. {
  3233. struct device_node *gpr_np;
  3234. u32 out_val[3];
  3235. int ret = 0;
  3236. gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
  3237. if (!gpr_np)
  3238. return 0;
  3239. ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
  3240. ARRAY_SIZE(out_val));
  3241. if (ret) {
  3242. dev_dbg(&fep->pdev->dev, "no stop mode property\n");
  3243. goto out;
  3244. }
  3245. fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
  3246. if (IS_ERR(fep->stop_gpr.gpr)) {
  3247. dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
  3248. ret = PTR_ERR(fep->stop_gpr.gpr);
  3249. fep->stop_gpr.gpr = NULL;
  3250. goto out;
  3251. }
  3252. fep->stop_gpr.reg = out_val[1];
  3253. fep->stop_gpr.bit = out_val[2];
  3254. out:
  3255. of_node_put(gpr_np);
  3256. return ret;
  3257. }
  3258. static int
  3259. fec_probe(struct platform_device *pdev)
  3260. {
  3261. struct fec_enet_private *fep;
  3262. struct fec_platform_data *pdata;
  3263. phy_interface_t interface;
  3264. struct net_device *ndev;
  3265. int i, irq, ret = 0;
  3266. const struct of_device_id *of_id;
  3267. static int dev_id;
  3268. struct device_node *np = pdev->dev.of_node, *phy_node;
  3269. int num_tx_qs;
  3270. int num_rx_qs;
  3271. char irq_name[8];
  3272. int irq_cnt;
  3273. struct fec_devinfo *dev_info;
  3274. fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
  3275. /* Init network device */
  3276. ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
  3277. FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
  3278. if (!ndev)
  3279. return -ENOMEM;
  3280. SET_NETDEV_DEV(ndev, &pdev->dev);
  3281. /* setup board info structure */
  3282. fep = netdev_priv(ndev);
  3283. of_id = of_match_device(fec_dt_ids, &pdev->dev);
  3284. if (of_id)
  3285. pdev->id_entry = of_id->data;
  3286. dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
  3287. if (dev_info)
  3288. fep->quirks = dev_info->quirks;
  3289. fep->netdev = ndev;
  3290. fep->num_rx_queues = num_rx_qs;
  3291. fep->num_tx_queues = num_tx_qs;
  3292. #if !defined(CONFIG_M5272)
  3293. /* default enable pause frame auto negotiation */
  3294. if (fep->quirks & FEC_QUIRK_HAS_GBIT)
  3295. fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
  3296. #endif
  3297. /* Select default pin state */
  3298. pinctrl_pm_select_default_state(&pdev->dev);
  3299. fep->hwp = devm_platform_ioremap_resource(pdev, 0);
  3300. if (IS_ERR(fep->hwp)) {
  3301. ret = PTR_ERR(fep->hwp);
  3302. goto failed_ioremap;
  3303. }
  3304. fep->pdev = pdev;
  3305. fep->dev_id = dev_id++;
  3306. platform_set_drvdata(pdev, ndev);
  3307. if ((of_machine_is_compatible("fsl,imx6q") ||
  3308. of_machine_is_compatible("fsl,imx6dl")) &&
  3309. !of_property_read_bool(np, "fsl,err006687-workaround-present"))
  3310. fep->quirks |= FEC_QUIRK_ERR006687;
  3311. ret = fec_enet_ipc_handle_init(fep);
  3312. if (ret)
  3313. goto failed_ipc_init;
  3314. if (of_get_property(np, "fsl,magic-packet", NULL))
  3315. fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
  3316. ret = fec_enet_init_stop_mode(fep, np);
  3317. if (ret)
  3318. goto failed_stop_mode;
  3319. phy_node = of_parse_phandle(np, "phy-handle", 0);
  3320. if (!phy_node && of_phy_is_fixed_link(np)) {
  3321. ret = of_phy_register_fixed_link(np);
  3322. if (ret < 0) {
  3323. dev_err(&pdev->dev,
  3324. "broken fixed-link specification\n");
  3325. goto failed_phy;
  3326. }
  3327. phy_node = of_node_get(np);
  3328. }
  3329. fep->phy_node = phy_node;
  3330. ret = of_get_phy_mode(pdev->dev.of_node, &interface);
  3331. if (ret) {
  3332. pdata = dev_get_platdata(&pdev->dev);
  3333. if (pdata)
  3334. fep->phy_interface = pdata->phy;
  3335. else
  3336. fep->phy_interface = PHY_INTERFACE_MODE_MII;
  3337. } else {
  3338. fep->phy_interface = interface;
  3339. }
  3340. ret = fec_enet_parse_rgmii_delay(fep, np);
  3341. if (ret)
  3342. goto failed_rgmii_delay;
  3343. fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
  3344. if (IS_ERR(fep->clk_ipg)) {
  3345. ret = PTR_ERR(fep->clk_ipg);
  3346. goto failed_clk;
  3347. }
  3348. fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  3349. if (IS_ERR(fep->clk_ahb)) {
  3350. ret = PTR_ERR(fep->clk_ahb);
  3351. goto failed_clk;
  3352. }
  3353. fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
  3354. /* enet_out is optional, depends on board */
  3355. fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
  3356. if (IS_ERR(fep->clk_enet_out)) {
  3357. ret = PTR_ERR(fep->clk_enet_out);
  3358. goto failed_clk;
  3359. }
  3360. fep->ptp_clk_on = false;
  3361. mutex_init(&fep->ptp_clk_mutex);
  3362. /* clk_ref is optional, depends on board */
  3363. fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
  3364. if (IS_ERR(fep->clk_ref)) {
  3365. ret = PTR_ERR(fep->clk_ref);
  3366. goto failed_clk;
  3367. }
  3368. fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
  3369. /* clk_2x_txclk is optional, depends on board */
  3370. if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
  3371. fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
  3372. if (IS_ERR(fep->clk_2x_txclk))
  3373. fep->clk_2x_txclk = NULL;
  3374. }
  3375. fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
  3376. fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
  3377. if (IS_ERR(fep->clk_ptp)) {
  3378. fep->clk_ptp = NULL;
  3379. fep->bufdesc_ex = false;
  3380. }
  3381. ret = fec_enet_clk_enable(ndev, true);
  3382. if (ret)
  3383. goto failed_clk;
  3384. ret = clk_prepare_enable(fep->clk_ipg);
  3385. if (ret)
  3386. goto failed_clk_ipg;
  3387. ret = clk_prepare_enable(fep->clk_ahb);
  3388. if (ret)
  3389. goto failed_clk_ahb;
  3390. fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
  3391. if (!IS_ERR(fep->reg_phy)) {
  3392. ret = regulator_enable(fep->reg_phy);
  3393. if (ret) {
  3394. dev_err(&pdev->dev,
  3395. "Failed to enable phy regulator: %d\n", ret);
  3396. goto failed_regulator;
  3397. }
  3398. } else {
  3399. if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
  3400. ret = -EPROBE_DEFER;
  3401. goto failed_regulator;
  3402. }
  3403. fep->reg_phy = NULL;
  3404. }
  3405. pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
  3406. pm_runtime_use_autosuspend(&pdev->dev);
  3407. pm_runtime_get_noresume(&pdev->dev);
  3408. pm_runtime_set_active(&pdev->dev);
  3409. pm_runtime_enable(&pdev->dev);
  3410. ret = fec_reset_phy(pdev);
  3411. if (ret)
  3412. goto failed_reset;
  3413. irq_cnt = fec_enet_get_irq_cnt(pdev);
  3414. if (fep->bufdesc_ex)
  3415. fec_ptp_init(pdev, irq_cnt);
  3416. ret = fec_enet_init(ndev);
  3417. if (ret)
  3418. goto failed_init;
  3419. for (i = 0; i < irq_cnt; i++) {
  3420. snprintf(irq_name, sizeof(irq_name), "int%d", i);
  3421. irq = platform_get_irq_byname_optional(pdev, irq_name);
  3422. if (irq < 0)
  3423. irq = platform_get_irq(pdev, i);
  3424. if (irq < 0) {
  3425. ret = irq;
  3426. goto failed_irq;
  3427. }
  3428. ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
  3429. 0, pdev->name, ndev);
  3430. if (ret)
  3431. goto failed_irq;
  3432. fep->irq[i] = irq;
  3433. }
  3434. /* Decide which interrupt line is wakeup capable */
  3435. fec_enet_get_wakeup_irq(pdev);
  3436. ret = fec_enet_mii_init(pdev);
  3437. if (ret)
  3438. goto failed_mii_init;
  3439. /* Carrier starts down, phylib will bring it up */
  3440. netif_carrier_off(ndev);
  3441. fec_enet_clk_enable(ndev, false);
  3442. pinctrl_pm_select_sleep_state(&pdev->dev);
  3443. ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
  3444. ret = register_netdev(ndev);
  3445. if (ret)
  3446. goto failed_register;
  3447. device_init_wakeup(&ndev->dev, fep->wol_flag &
  3448. FEC_WOL_HAS_MAGIC_PACKET);
  3449. if (fep->bufdesc_ex && fep->ptp_clock)
  3450. netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
  3451. fep->rx_copybreak = COPYBREAK_DEFAULT;
  3452. INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
  3453. pm_runtime_mark_last_busy(&pdev->dev);
  3454. pm_runtime_put_autosuspend(&pdev->dev);
  3455. return 0;
  3456. failed_register:
  3457. fec_enet_mii_remove(fep);
  3458. failed_mii_init:
  3459. failed_irq:
  3460. failed_init:
  3461. fec_ptp_stop(pdev);
  3462. failed_reset:
  3463. pm_runtime_put_noidle(&pdev->dev);
  3464. pm_runtime_disable(&pdev->dev);
  3465. if (fep->reg_phy)
  3466. regulator_disable(fep->reg_phy);
  3467. failed_regulator:
  3468. clk_disable_unprepare(fep->clk_ahb);
  3469. failed_clk_ahb:
  3470. clk_disable_unprepare(fep->clk_ipg);
  3471. failed_clk_ipg:
  3472. fec_enet_clk_enable(ndev, false);
  3473. failed_clk:
  3474. failed_rgmii_delay:
  3475. if (of_phy_is_fixed_link(np))
  3476. of_phy_deregister_fixed_link(np);
  3477. of_node_put(phy_node);
  3478. failed_stop_mode:
  3479. failed_ipc_init:
  3480. failed_phy:
  3481. dev_id--;
  3482. failed_ioremap:
  3483. free_netdev(ndev);
  3484. return ret;
  3485. }
  3486. static int
  3487. fec_drv_remove(struct platform_device *pdev)
  3488. {
  3489. struct net_device *ndev = platform_get_drvdata(pdev);
  3490. struct fec_enet_private *fep = netdev_priv(ndev);
  3491. struct device_node *np = pdev->dev.of_node;
  3492. int ret;
  3493. ret = pm_runtime_get_sync(&pdev->dev);
  3494. if (ret < 0)
  3495. dev_err(&pdev->dev,
  3496. "Failed to resume device in remove callback (%pe)\n",
  3497. ERR_PTR(ret));
  3498. cancel_work_sync(&fep->tx_timeout_work);
  3499. fec_ptp_stop(pdev);
  3500. unregister_netdev(ndev);
  3501. fec_enet_mii_remove(fep);
  3502. if (fep->reg_phy)
  3503. regulator_disable(fep->reg_phy);
  3504. if (of_phy_is_fixed_link(np))
  3505. of_phy_deregister_fixed_link(np);
  3506. of_node_put(fep->phy_node);
  3507. /* After pm_runtime_get_sync() failed, the clks are still off, so skip
  3508. * disabling them again.
  3509. */
  3510. if (ret >= 0) {
  3511. clk_disable_unprepare(fep->clk_ahb);
  3512. clk_disable_unprepare(fep->clk_ipg);
  3513. }
  3514. pm_runtime_put_noidle(&pdev->dev);
  3515. pm_runtime_disable(&pdev->dev);
  3516. free_netdev(ndev);
  3517. return 0;
  3518. }
  3519. static int __maybe_unused fec_suspend(struct device *dev)
  3520. {
  3521. struct net_device *ndev = dev_get_drvdata(dev);
  3522. struct fec_enet_private *fep = netdev_priv(ndev);
  3523. int ret;
  3524. rtnl_lock();
  3525. if (netif_running(ndev)) {
  3526. if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
  3527. fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
  3528. phy_stop(ndev->phydev);
  3529. napi_disable(&fep->napi);
  3530. netif_tx_lock_bh(ndev);
  3531. netif_device_detach(ndev);
  3532. netif_tx_unlock_bh(ndev);
  3533. fec_stop(ndev);
  3534. if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
  3535. fec_irqs_disable(ndev);
  3536. pinctrl_pm_select_sleep_state(&fep->pdev->dev);
  3537. } else {
  3538. fec_irqs_disable_except_wakeup(ndev);
  3539. if (fep->wake_irq > 0) {
  3540. disable_irq(fep->wake_irq);
  3541. enable_irq_wake(fep->wake_irq);
  3542. }
  3543. fec_enet_stop_mode(fep, true);
  3544. }
  3545. /* It's safe to disable clocks since interrupts are masked */
  3546. fec_enet_clk_enable(ndev, false);
  3547. fep->rpm_active = !pm_runtime_status_suspended(dev);
  3548. if (fep->rpm_active) {
  3549. ret = pm_runtime_force_suspend(dev);
  3550. if (ret < 0) {
  3551. rtnl_unlock();
  3552. return ret;
  3553. }
  3554. }
  3555. }
  3556. rtnl_unlock();
  3557. if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
  3558. regulator_disable(fep->reg_phy);
  3559. /* SOC supply clock to phy, when clock is disabled, phy link down
  3560. * SOC control phy regulator, when regulator is disabled, phy link down
  3561. */
  3562. if (fep->clk_enet_out || fep->reg_phy)
  3563. fep->link = 0;
  3564. return 0;
  3565. }
  3566. static int __maybe_unused fec_resume(struct device *dev)
  3567. {
  3568. struct net_device *ndev = dev_get_drvdata(dev);
  3569. struct fec_enet_private *fep = netdev_priv(ndev);
  3570. int ret;
  3571. int val;
  3572. if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
  3573. ret = regulator_enable(fep->reg_phy);
  3574. if (ret)
  3575. return ret;
  3576. }
  3577. rtnl_lock();
  3578. if (netif_running(ndev)) {
  3579. if (fep->rpm_active)
  3580. pm_runtime_force_resume(dev);
  3581. ret = fec_enet_clk_enable(ndev, true);
  3582. if (ret) {
  3583. rtnl_unlock();
  3584. goto failed_clk;
  3585. }
  3586. if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
  3587. fec_enet_stop_mode(fep, false);
  3588. if (fep->wake_irq) {
  3589. disable_irq_wake(fep->wake_irq);
  3590. enable_irq(fep->wake_irq);
  3591. }
  3592. val = readl(fep->hwp + FEC_ECNTRL);
  3593. val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
  3594. writel(val, fep->hwp + FEC_ECNTRL);
  3595. fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
  3596. } else {
  3597. pinctrl_pm_select_default_state(&fep->pdev->dev);
  3598. }
  3599. fec_restart(ndev);
  3600. netif_tx_lock_bh(ndev);
  3601. netif_device_attach(ndev);
  3602. netif_tx_unlock_bh(ndev);
  3603. napi_enable(&fep->napi);
  3604. phy_init_hw(ndev->phydev);
  3605. phy_start(ndev->phydev);
  3606. }
  3607. rtnl_unlock();
  3608. return 0;
  3609. failed_clk:
  3610. if (fep->reg_phy)
  3611. regulator_disable(fep->reg_phy);
  3612. return ret;
  3613. }
  3614. static int __maybe_unused fec_runtime_suspend(struct device *dev)
  3615. {
  3616. struct net_device *ndev = dev_get_drvdata(dev);
  3617. struct fec_enet_private *fep = netdev_priv(ndev);
  3618. clk_disable_unprepare(fep->clk_ahb);
  3619. clk_disable_unprepare(fep->clk_ipg);
  3620. return 0;
  3621. }
  3622. static int __maybe_unused fec_runtime_resume(struct device *dev)
  3623. {
  3624. struct net_device *ndev = dev_get_drvdata(dev);
  3625. struct fec_enet_private *fep = netdev_priv(ndev);
  3626. int ret;
  3627. ret = clk_prepare_enable(fep->clk_ahb);
  3628. if (ret)
  3629. return ret;
  3630. ret = clk_prepare_enable(fep->clk_ipg);
  3631. if (ret)
  3632. goto failed_clk_ipg;
  3633. return 0;
  3634. failed_clk_ipg:
  3635. clk_disable_unprepare(fep->clk_ahb);
  3636. return ret;
  3637. }
  3638. static const struct dev_pm_ops fec_pm_ops = {
  3639. SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
  3640. SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
  3641. };
  3642. static struct platform_driver fec_driver = {
  3643. .driver = {
  3644. .name = DRIVER_NAME,
  3645. .pm = &fec_pm_ops,
  3646. .of_match_table = fec_dt_ids,
  3647. .suppress_bind_attrs = true,
  3648. },
  3649. .id_table = fec_devtype,
  3650. .probe = fec_probe,
  3651. .remove = fec_drv_remove,
  3652. };
  3653. module_platform_driver(fec_driver);
  3654. MODULE_LICENSE("GPL");