dm9000.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Davicom DM9000 Fast Ethernet driver for Linux.
  4. * Copyright (C) 1997 Sten Wang
  5. *
  6. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  7. *
  8. * Additional updates, Copyright:
  9. * Ben Dooks <[email protected]>
  10. * Sascha Hauer <[email protected]>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/ioport.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/crc32.h>
  20. #include <linux/mii.h>
  21. #include <linux/of.h>
  22. #include <linux/of_net.h>
  23. #include <linux/ethtool.h>
  24. #include <linux/dm9000.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/irq.h>
  28. #include <linux/slab.h>
  29. #include <linux/regulator/consumer.h>
  30. #include <linux/gpio/consumer.h>
  31. #include <asm/delay.h>
  32. #include <asm/irq.h>
  33. #include <asm/io.h>
  34. #include "dm9000.h"
  35. /* Board/System/Debug information/definition ---------------- */
  36. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  37. #define CARDNAME "dm9000"
  38. /*
  39. * Transmit timeout, default 5 seconds.
  40. */
  41. static int watchdog = 5000;
  42. module_param(watchdog, int, 0400);
  43. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  44. /*
  45. * Debug messages level
  46. */
  47. static int debug;
  48. module_param(debug, int, 0644);
  49. MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
  50. /* DM9000 register address locking.
  51. *
  52. * The DM9000 uses an address register to control where data written
  53. * to the data register goes. This means that the address register
  54. * must be preserved over interrupts or similar calls.
  55. *
  56. * During interrupt and other critical calls, a spinlock is used to
  57. * protect the system, but the calls themselves save the address
  58. * in the address register in case they are interrupting another
  59. * access to the device.
  60. *
  61. * For general accesses a lock is provided so that calls which are
  62. * allowed to sleep are serialised so that the address register does
  63. * not need to be saved. This lock also serves to serialise access
  64. * to the EEPROM and PHY access registers which are shared between
  65. * these two devices.
  66. */
  67. /* The driver supports the original DM9000E, and now the two newer
  68. * devices, DM9000A and DM9000B.
  69. */
  70. enum dm9000_type {
  71. TYPE_DM9000E, /* original DM9000 */
  72. TYPE_DM9000A,
  73. TYPE_DM9000B
  74. };
  75. /* Structure/enum declaration ------------------------------- */
  76. struct board_info {
  77. void __iomem *io_addr; /* Register I/O base address */
  78. void __iomem *io_data; /* Data I/O address */
  79. u16 irq; /* IRQ */
  80. u16 tx_pkt_cnt;
  81. u16 queue_pkt_len;
  82. u16 queue_start_addr;
  83. u16 queue_ip_summed;
  84. u16 dbug_cnt;
  85. u8 io_mode; /* 0:word, 2:byte */
  86. u8 phy_addr;
  87. u8 imr_all;
  88. unsigned int flags;
  89. unsigned int in_timeout:1;
  90. unsigned int in_suspend:1;
  91. unsigned int wake_supported:1;
  92. enum dm9000_type type;
  93. void (*inblk)(void __iomem *port, void *data, int length);
  94. void (*outblk)(void __iomem *port, void *data, int length);
  95. void (*dumpblk)(void __iomem *port, int length);
  96. struct device *dev; /* parent device */
  97. struct resource *addr_res; /* resources found */
  98. struct resource *data_res;
  99. struct resource *addr_req; /* resources requested */
  100. struct resource *data_req;
  101. int irq_wake;
  102. struct mutex addr_lock; /* phy and eeprom access lock */
  103. struct delayed_work phy_poll;
  104. struct net_device *ndev;
  105. spinlock_t lock;
  106. struct mii_if_info mii;
  107. u32 msg_enable;
  108. u32 wake_state;
  109. int ip_summed;
  110. struct regulator *power_supply;
  111. };
  112. /* debug code */
  113. #define dm9000_dbg(db, lev, msg...) do { \
  114. if ((lev) < debug) { \
  115. dev_dbg(db->dev, msg); \
  116. } \
  117. } while (0)
  118. static inline struct board_info *to_dm9000_board(struct net_device *dev)
  119. {
  120. return netdev_priv(dev);
  121. }
  122. /* DM9000 network board routine ---------------------------- */
  123. /*
  124. * Read a byte from I/O port
  125. */
  126. static u8
  127. ior(struct board_info *db, int reg)
  128. {
  129. writeb(reg, db->io_addr);
  130. return readb(db->io_data);
  131. }
  132. /*
  133. * Write a byte to I/O port
  134. */
  135. static void
  136. iow(struct board_info *db, int reg, int value)
  137. {
  138. writeb(reg, db->io_addr);
  139. writeb(value, db->io_data);
  140. }
  141. static void
  142. dm9000_reset(struct board_info *db)
  143. {
  144. dev_dbg(db->dev, "resetting device\n");
  145. /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
  146. * The essential point is that we have to do a double reset, and the
  147. * instruction is to set LBK into MAC internal loopback mode.
  148. */
  149. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  150. udelay(100); /* Application note says at least 20 us */
  151. if (ior(db, DM9000_NCR) & 1)
  152. dev_err(db->dev, "dm9000 did not respond to first reset\n");
  153. iow(db, DM9000_NCR, 0);
  154. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  155. udelay(100);
  156. if (ior(db, DM9000_NCR) & 1)
  157. dev_err(db->dev, "dm9000 did not respond to second reset\n");
  158. }
  159. /* routines for sending block to chip */
  160. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  161. {
  162. iowrite8_rep(reg, data, count);
  163. }
  164. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  165. {
  166. iowrite16_rep(reg, data, (count+1) >> 1);
  167. }
  168. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  169. {
  170. iowrite32_rep(reg, data, (count+3) >> 2);
  171. }
  172. /* input block from chip to memory */
  173. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  174. {
  175. ioread8_rep(reg, data, count);
  176. }
  177. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  178. {
  179. ioread16_rep(reg, data, (count+1) >> 1);
  180. }
  181. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  182. {
  183. ioread32_rep(reg, data, (count+3) >> 2);
  184. }
  185. /* dump block from chip to null */
  186. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  187. {
  188. int i;
  189. for (i = 0; i < count; i++)
  190. readb(reg);
  191. }
  192. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  193. {
  194. int i;
  195. count = (count + 1) >> 1;
  196. for (i = 0; i < count; i++)
  197. readw(reg);
  198. }
  199. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  200. {
  201. int i;
  202. count = (count + 3) >> 2;
  203. for (i = 0; i < count; i++)
  204. readl(reg);
  205. }
  206. /*
  207. * Sleep, either by using msleep() or if we are suspending, then
  208. * use mdelay() to sleep.
  209. */
  210. static void dm9000_msleep(struct board_info *db, unsigned int ms)
  211. {
  212. if (db->in_suspend || db->in_timeout)
  213. mdelay(ms);
  214. else
  215. msleep(ms);
  216. }
  217. /* Read a word from phyxcer */
  218. static int
  219. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  220. {
  221. struct board_info *db = netdev_priv(dev);
  222. unsigned long flags;
  223. unsigned int reg_save;
  224. int ret;
  225. mutex_lock(&db->addr_lock);
  226. spin_lock_irqsave(&db->lock, flags);
  227. /* Save previous register address */
  228. reg_save = readb(db->io_addr);
  229. /* Fill the phyxcer register into REG_0C */
  230. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  231. /* Issue phyxcer read command */
  232. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
  233. writeb(reg_save, db->io_addr);
  234. spin_unlock_irqrestore(&db->lock, flags);
  235. dm9000_msleep(db, 1); /* Wait read complete */
  236. spin_lock_irqsave(&db->lock, flags);
  237. reg_save = readb(db->io_addr);
  238. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  239. /* The read data keeps on REG_0D & REG_0E */
  240. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  241. /* restore the previous address */
  242. writeb(reg_save, db->io_addr);
  243. spin_unlock_irqrestore(&db->lock, flags);
  244. mutex_unlock(&db->addr_lock);
  245. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  246. return ret;
  247. }
  248. /* Write a word to phyxcer */
  249. static void
  250. dm9000_phy_write(struct net_device *dev,
  251. int phyaddr_unused, int reg, int value)
  252. {
  253. struct board_info *db = netdev_priv(dev);
  254. unsigned long flags;
  255. unsigned long reg_save;
  256. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  257. if (!db->in_timeout)
  258. mutex_lock(&db->addr_lock);
  259. spin_lock_irqsave(&db->lock, flags);
  260. /* Save previous register address */
  261. reg_save = readb(db->io_addr);
  262. /* Fill the phyxcer register into REG_0C */
  263. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  264. /* Fill the written data into REG_0D & REG_0E */
  265. iow(db, DM9000_EPDRL, value);
  266. iow(db, DM9000_EPDRH, value >> 8);
  267. /* Issue phyxcer write command */
  268. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
  269. writeb(reg_save, db->io_addr);
  270. spin_unlock_irqrestore(&db->lock, flags);
  271. dm9000_msleep(db, 1); /* Wait write complete */
  272. spin_lock_irqsave(&db->lock, flags);
  273. reg_save = readb(db->io_addr);
  274. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  275. /* restore the previous address */
  276. writeb(reg_save, db->io_addr);
  277. spin_unlock_irqrestore(&db->lock, flags);
  278. if (!db->in_timeout)
  279. mutex_unlock(&db->addr_lock);
  280. }
  281. /* dm9000_set_io
  282. *
  283. * select the specified set of io routines to use with the
  284. * device
  285. */
  286. static void dm9000_set_io(struct board_info *db, int byte_width)
  287. {
  288. /* use the size of the data resource to work out what IO
  289. * routines we want to use
  290. */
  291. switch (byte_width) {
  292. case 1:
  293. db->dumpblk = dm9000_dumpblk_8bit;
  294. db->outblk = dm9000_outblk_8bit;
  295. db->inblk = dm9000_inblk_8bit;
  296. break;
  297. case 3:
  298. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  299. fallthrough;
  300. case 2:
  301. db->dumpblk = dm9000_dumpblk_16bit;
  302. db->outblk = dm9000_outblk_16bit;
  303. db->inblk = dm9000_inblk_16bit;
  304. break;
  305. case 4:
  306. default:
  307. db->dumpblk = dm9000_dumpblk_32bit;
  308. db->outblk = dm9000_outblk_32bit;
  309. db->inblk = dm9000_inblk_32bit;
  310. break;
  311. }
  312. }
  313. static void dm9000_schedule_poll(struct board_info *db)
  314. {
  315. if (db->type == TYPE_DM9000E)
  316. schedule_delayed_work(&db->phy_poll, HZ * 2);
  317. }
  318. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  319. {
  320. struct board_info *dm = to_dm9000_board(dev);
  321. if (!netif_running(dev))
  322. return -EINVAL;
  323. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  324. }
  325. static unsigned int
  326. dm9000_read_locked(struct board_info *db, int reg)
  327. {
  328. unsigned long flags;
  329. unsigned int ret;
  330. spin_lock_irqsave(&db->lock, flags);
  331. ret = ior(db, reg);
  332. spin_unlock_irqrestore(&db->lock, flags);
  333. return ret;
  334. }
  335. static int dm9000_wait_eeprom(struct board_info *db)
  336. {
  337. unsigned int status;
  338. int timeout = 8; /* wait max 8msec */
  339. /* The DM9000 data sheets say we should be able to
  340. * poll the ERRE bit in EPCR to wait for the EEPROM
  341. * operation. From testing several chips, this bit
  342. * does not seem to work.
  343. *
  344. * We attempt to use the bit, but fall back to the
  345. * timeout (which is why we do not return an error
  346. * on expiry) to say that the EEPROM operation has
  347. * completed.
  348. */
  349. while (1) {
  350. status = dm9000_read_locked(db, DM9000_EPCR);
  351. if ((status & EPCR_ERRE) == 0)
  352. break;
  353. msleep(1);
  354. if (timeout-- < 0) {
  355. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  356. break;
  357. }
  358. }
  359. return 0;
  360. }
  361. /*
  362. * Read a word data from EEPROM
  363. */
  364. static void
  365. dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
  366. {
  367. unsigned long flags;
  368. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  369. to[0] = 0xff;
  370. to[1] = 0xff;
  371. return;
  372. }
  373. mutex_lock(&db->addr_lock);
  374. spin_lock_irqsave(&db->lock, flags);
  375. iow(db, DM9000_EPAR, offset);
  376. iow(db, DM9000_EPCR, EPCR_ERPRR);
  377. spin_unlock_irqrestore(&db->lock, flags);
  378. dm9000_wait_eeprom(db);
  379. /* delay for at-least 150uS */
  380. msleep(1);
  381. spin_lock_irqsave(&db->lock, flags);
  382. iow(db, DM9000_EPCR, 0x0);
  383. to[0] = ior(db, DM9000_EPDRL);
  384. to[1] = ior(db, DM9000_EPDRH);
  385. spin_unlock_irqrestore(&db->lock, flags);
  386. mutex_unlock(&db->addr_lock);
  387. }
  388. /*
  389. * Write a word data to SROM
  390. */
  391. static void
  392. dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
  393. {
  394. unsigned long flags;
  395. if (db->flags & DM9000_PLATF_NO_EEPROM)
  396. return;
  397. mutex_lock(&db->addr_lock);
  398. spin_lock_irqsave(&db->lock, flags);
  399. iow(db, DM9000_EPAR, offset);
  400. iow(db, DM9000_EPDRH, data[1]);
  401. iow(db, DM9000_EPDRL, data[0]);
  402. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  403. spin_unlock_irqrestore(&db->lock, flags);
  404. dm9000_wait_eeprom(db);
  405. mdelay(1); /* wait at least 150uS to clear */
  406. spin_lock_irqsave(&db->lock, flags);
  407. iow(db, DM9000_EPCR, 0);
  408. spin_unlock_irqrestore(&db->lock, flags);
  409. mutex_unlock(&db->addr_lock);
  410. }
  411. /* ethtool ops */
  412. static void dm9000_get_drvinfo(struct net_device *dev,
  413. struct ethtool_drvinfo *info)
  414. {
  415. struct board_info *dm = to_dm9000_board(dev);
  416. strscpy(info->driver, CARDNAME, sizeof(info->driver));
  417. strscpy(info->bus_info, to_platform_device(dm->dev)->name,
  418. sizeof(info->bus_info));
  419. }
  420. static u32 dm9000_get_msglevel(struct net_device *dev)
  421. {
  422. struct board_info *dm = to_dm9000_board(dev);
  423. return dm->msg_enable;
  424. }
  425. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  426. {
  427. struct board_info *dm = to_dm9000_board(dev);
  428. dm->msg_enable = value;
  429. }
  430. static int dm9000_get_link_ksettings(struct net_device *dev,
  431. struct ethtool_link_ksettings *cmd)
  432. {
  433. struct board_info *dm = to_dm9000_board(dev);
  434. mii_ethtool_get_link_ksettings(&dm->mii, cmd);
  435. return 0;
  436. }
  437. static int dm9000_set_link_ksettings(struct net_device *dev,
  438. const struct ethtool_link_ksettings *cmd)
  439. {
  440. struct board_info *dm = to_dm9000_board(dev);
  441. return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
  442. }
  443. static int dm9000_nway_reset(struct net_device *dev)
  444. {
  445. struct board_info *dm = to_dm9000_board(dev);
  446. return mii_nway_restart(&dm->mii);
  447. }
  448. static int dm9000_set_features(struct net_device *dev,
  449. netdev_features_t features)
  450. {
  451. struct board_info *dm = to_dm9000_board(dev);
  452. netdev_features_t changed = dev->features ^ features;
  453. unsigned long flags;
  454. if (!(changed & NETIF_F_RXCSUM))
  455. return 0;
  456. spin_lock_irqsave(&dm->lock, flags);
  457. iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  458. spin_unlock_irqrestore(&dm->lock, flags);
  459. return 0;
  460. }
  461. static u32 dm9000_get_link(struct net_device *dev)
  462. {
  463. struct board_info *dm = to_dm9000_board(dev);
  464. u32 ret;
  465. if (dm->flags & DM9000_PLATF_EXT_PHY)
  466. ret = mii_link_ok(&dm->mii);
  467. else
  468. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  469. return ret;
  470. }
  471. #define DM_EEPROM_MAGIC (0x444D394B)
  472. static int dm9000_get_eeprom_len(struct net_device *dev)
  473. {
  474. return 128;
  475. }
  476. static int dm9000_get_eeprom(struct net_device *dev,
  477. struct ethtool_eeprom *ee, u8 *data)
  478. {
  479. struct board_info *dm = to_dm9000_board(dev);
  480. int offset = ee->offset;
  481. int len = ee->len;
  482. int i;
  483. /* EEPROM access is aligned to two bytes */
  484. if ((len & 1) != 0 || (offset & 1) != 0)
  485. return -EINVAL;
  486. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  487. return -ENOENT;
  488. ee->magic = DM_EEPROM_MAGIC;
  489. for (i = 0; i < len; i += 2)
  490. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  491. return 0;
  492. }
  493. static int dm9000_set_eeprom(struct net_device *dev,
  494. struct ethtool_eeprom *ee, u8 *data)
  495. {
  496. struct board_info *dm = to_dm9000_board(dev);
  497. int offset = ee->offset;
  498. int len = ee->len;
  499. int done;
  500. /* EEPROM access is aligned to two bytes */
  501. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  502. return -ENOENT;
  503. if (ee->magic != DM_EEPROM_MAGIC)
  504. return -EINVAL;
  505. while (len > 0) {
  506. if (len & 1 || offset & 1) {
  507. int which = offset & 1;
  508. u8 tmp[2];
  509. dm9000_read_eeprom(dm, offset / 2, tmp);
  510. tmp[which] = *data;
  511. dm9000_write_eeprom(dm, offset / 2, tmp);
  512. done = 1;
  513. } else {
  514. dm9000_write_eeprom(dm, offset / 2, data);
  515. done = 2;
  516. }
  517. data += done;
  518. offset += done;
  519. len -= done;
  520. }
  521. return 0;
  522. }
  523. static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  524. {
  525. struct board_info *dm = to_dm9000_board(dev);
  526. memset(w, 0, sizeof(struct ethtool_wolinfo));
  527. /* note, we could probably support wake-phy too */
  528. w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
  529. w->wolopts = dm->wake_state;
  530. }
  531. static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  532. {
  533. struct board_info *dm = to_dm9000_board(dev);
  534. unsigned long flags;
  535. u32 opts = w->wolopts;
  536. u32 wcr = 0;
  537. if (!dm->wake_supported)
  538. return -EOPNOTSUPP;
  539. if (opts & ~WAKE_MAGIC)
  540. return -EINVAL;
  541. if (opts & WAKE_MAGIC)
  542. wcr |= WCR_MAGICEN;
  543. mutex_lock(&dm->addr_lock);
  544. spin_lock_irqsave(&dm->lock, flags);
  545. iow(dm, DM9000_WCR, wcr);
  546. spin_unlock_irqrestore(&dm->lock, flags);
  547. mutex_unlock(&dm->addr_lock);
  548. if (dm->wake_state != opts) {
  549. /* change in wol state, update IRQ state */
  550. if (!dm->wake_state)
  551. irq_set_irq_wake(dm->irq_wake, 1);
  552. else if (dm->wake_state && !opts)
  553. irq_set_irq_wake(dm->irq_wake, 0);
  554. }
  555. dm->wake_state = opts;
  556. return 0;
  557. }
  558. static const struct ethtool_ops dm9000_ethtool_ops = {
  559. .get_drvinfo = dm9000_get_drvinfo,
  560. .get_msglevel = dm9000_get_msglevel,
  561. .set_msglevel = dm9000_set_msglevel,
  562. .nway_reset = dm9000_nway_reset,
  563. .get_link = dm9000_get_link,
  564. .get_wol = dm9000_get_wol,
  565. .set_wol = dm9000_set_wol,
  566. .get_eeprom_len = dm9000_get_eeprom_len,
  567. .get_eeprom = dm9000_get_eeprom,
  568. .set_eeprom = dm9000_set_eeprom,
  569. .get_link_ksettings = dm9000_get_link_ksettings,
  570. .set_link_ksettings = dm9000_set_link_ksettings,
  571. };
  572. static void dm9000_show_carrier(struct board_info *db,
  573. unsigned carrier, unsigned nsr)
  574. {
  575. int lpa;
  576. struct net_device *ndev = db->ndev;
  577. struct mii_if_info *mii = &db->mii;
  578. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  579. if (carrier) {
  580. lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
  581. dev_info(db->dev,
  582. "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
  583. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  584. (ncr & NCR_FDX) ? "full" : "half", lpa);
  585. } else {
  586. dev_info(db->dev, "%s: link down\n", ndev->name);
  587. }
  588. }
  589. static void
  590. dm9000_poll_work(struct work_struct *w)
  591. {
  592. struct delayed_work *dw = to_delayed_work(w);
  593. struct board_info *db = container_of(dw, struct board_info, phy_poll);
  594. struct net_device *ndev = db->ndev;
  595. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  596. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  597. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  598. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  599. unsigned new_carrier;
  600. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  601. if (old_carrier != new_carrier) {
  602. if (netif_msg_link(db))
  603. dm9000_show_carrier(db, new_carrier, nsr);
  604. if (!new_carrier)
  605. netif_carrier_off(ndev);
  606. else
  607. netif_carrier_on(ndev);
  608. }
  609. } else
  610. mii_check_media(&db->mii, netif_msg_link(db), 0);
  611. if (netif_running(ndev))
  612. dm9000_schedule_poll(db);
  613. }
  614. /* dm9000_release_board
  615. *
  616. * release a board, and any mapped resources
  617. */
  618. static void
  619. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  620. {
  621. /* unmap our resources */
  622. iounmap(db->io_addr);
  623. iounmap(db->io_data);
  624. /* release the resources */
  625. if (db->data_req)
  626. release_resource(db->data_req);
  627. kfree(db->data_req);
  628. if (db->addr_req)
  629. release_resource(db->addr_req);
  630. kfree(db->addr_req);
  631. }
  632. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  633. {
  634. switch (type) {
  635. case TYPE_DM9000E: return 'e';
  636. case TYPE_DM9000A: return 'a';
  637. case TYPE_DM9000B: return 'b';
  638. }
  639. return '?';
  640. }
  641. /*
  642. * Set DM9000 multicast address
  643. */
  644. static void
  645. dm9000_hash_table_unlocked(struct net_device *dev)
  646. {
  647. struct board_info *db = netdev_priv(dev);
  648. struct netdev_hw_addr *ha;
  649. int i, oft;
  650. u32 hash_val;
  651. u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
  652. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  653. dm9000_dbg(db, 1, "entering %s\n", __func__);
  654. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  655. iow(db, oft, dev->dev_addr[i]);
  656. if (dev->flags & IFF_PROMISC)
  657. rcr |= RCR_PRMSC;
  658. if (dev->flags & IFF_ALLMULTI)
  659. rcr |= RCR_ALL;
  660. /* the multicast address in Hash Table : 64 bits */
  661. netdev_for_each_mc_addr(ha, dev) {
  662. hash_val = ether_crc_le(6, ha->addr) & 0x3f;
  663. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  664. }
  665. /* Write the hash table to MAC MD table */
  666. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  667. iow(db, oft++, hash_table[i]);
  668. iow(db, oft++, hash_table[i] >> 8);
  669. }
  670. iow(db, DM9000_RCR, rcr);
  671. }
  672. static void
  673. dm9000_hash_table(struct net_device *dev)
  674. {
  675. struct board_info *db = netdev_priv(dev);
  676. unsigned long flags;
  677. spin_lock_irqsave(&db->lock, flags);
  678. dm9000_hash_table_unlocked(dev);
  679. spin_unlock_irqrestore(&db->lock, flags);
  680. }
  681. static void
  682. dm9000_mask_interrupts(struct board_info *db)
  683. {
  684. iow(db, DM9000_IMR, IMR_PAR);
  685. }
  686. static void
  687. dm9000_unmask_interrupts(struct board_info *db)
  688. {
  689. iow(db, DM9000_IMR, db->imr_all);
  690. }
  691. /*
  692. * Initialize dm9000 board
  693. */
  694. static void
  695. dm9000_init_dm9000(struct net_device *dev)
  696. {
  697. struct board_info *db = netdev_priv(dev);
  698. unsigned int imr;
  699. unsigned int ncr;
  700. dm9000_dbg(db, 1, "entering %s\n", __func__);
  701. dm9000_reset(db);
  702. dm9000_mask_interrupts(db);
  703. /* I/O mode */
  704. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  705. /* Checksum mode */
  706. if (dev->hw_features & NETIF_F_RXCSUM)
  707. iow(db, DM9000_RCSR,
  708. (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  709. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  710. iow(db, DM9000_GPR, 0);
  711. /* If we are dealing with DM9000B, some extra steps are required: a
  712. * manual phy reset, and setting init params.
  713. */
  714. if (db->type == TYPE_DM9000B) {
  715. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
  716. dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
  717. }
  718. ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
  719. /* if wol is needed, then always set NCR_WAKEEN otherwise we end
  720. * up dumping the wake events if we disable this. There is already
  721. * a wake-mask in DM9000_WCR */
  722. if (db->wake_supported)
  723. ncr |= NCR_WAKEEN;
  724. iow(db, DM9000_NCR, ncr);
  725. /* Program operating register */
  726. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  727. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  728. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  729. iow(db, DM9000_SMCR, 0); /* Special Mode */
  730. /* clear TX status */
  731. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  732. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  733. /* Set address filter table */
  734. dm9000_hash_table_unlocked(dev);
  735. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  736. if (db->type != TYPE_DM9000E)
  737. imr |= IMR_LNKCHNG;
  738. db->imr_all = imr;
  739. /* Init Driver variable */
  740. db->tx_pkt_cnt = 0;
  741. db->queue_pkt_len = 0;
  742. netif_trans_update(dev);
  743. }
  744. /* Our watchdog timed out. Called by the networking layer */
  745. static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
  746. {
  747. struct board_info *db = netdev_priv(dev);
  748. u8 reg_save;
  749. unsigned long flags;
  750. /* Save previous register address */
  751. spin_lock_irqsave(&db->lock, flags);
  752. db->in_timeout = 1;
  753. reg_save = readb(db->io_addr);
  754. netif_stop_queue(dev);
  755. dm9000_init_dm9000(dev);
  756. dm9000_unmask_interrupts(db);
  757. /* We can accept TX packets again */
  758. netif_trans_update(dev); /* prevent tx timeout */
  759. netif_wake_queue(dev);
  760. /* Restore previous register address */
  761. writeb(reg_save, db->io_addr);
  762. db->in_timeout = 0;
  763. spin_unlock_irqrestore(&db->lock, flags);
  764. }
  765. static void dm9000_send_packet(struct net_device *dev,
  766. int ip_summed,
  767. u16 pkt_len)
  768. {
  769. struct board_info *dm = to_dm9000_board(dev);
  770. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  771. if (dm->ip_summed != ip_summed) {
  772. if (ip_summed == CHECKSUM_NONE)
  773. iow(dm, DM9000_TCCR, 0);
  774. else
  775. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  776. dm->ip_summed = ip_summed;
  777. }
  778. /* Set TX length to DM9000 */
  779. iow(dm, DM9000_TXPLL, pkt_len);
  780. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  781. /* Issue TX polling command */
  782. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  783. }
  784. /*
  785. * Hardware start transmission.
  786. * Send a packet to media from the upper layer.
  787. */
  788. static netdev_tx_t
  789. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  790. {
  791. unsigned long flags;
  792. struct board_info *db = netdev_priv(dev);
  793. dm9000_dbg(db, 3, "%s:\n", __func__);
  794. if (db->tx_pkt_cnt > 1)
  795. return NETDEV_TX_BUSY;
  796. spin_lock_irqsave(&db->lock, flags);
  797. /* Move data to DM9000 TX RAM */
  798. writeb(DM9000_MWCMD, db->io_addr);
  799. (db->outblk)(db->io_data, skb->data, skb->len);
  800. dev->stats.tx_bytes += skb->len;
  801. db->tx_pkt_cnt++;
  802. /* TX control: First packet immediately send, second packet queue */
  803. if (db->tx_pkt_cnt == 1) {
  804. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  805. } else {
  806. /* Second packet */
  807. db->queue_pkt_len = skb->len;
  808. db->queue_ip_summed = skb->ip_summed;
  809. netif_stop_queue(dev);
  810. }
  811. spin_unlock_irqrestore(&db->lock, flags);
  812. /* free this SKB */
  813. dev_consume_skb_any(skb);
  814. return NETDEV_TX_OK;
  815. }
  816. /*
  817. * DM9000 interrupt handler
  818. * receive the packet to upper layer, free the transmitted packet
  819. */
  820. static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
  821. {
  822. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  823. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  824. /* One packet sent complete */
  825. db->tx_pkt_cnt--;
  826. dev->stats.tx_packets++;
  827. if (netif_msg_tx_done(db))
  828. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  829. /* Queue packet check & send */
  830. if (db->tx_pkt_cnt > 0)
  831. dm9000_send_packet(dev, db->queue_ip_summed,
  832. db->queue_pkt_len);
  833. netif_wake_queue(dev);
  834. }
  835. }
  836. struct dm9000_rxhdr {
  837. u8 RxPktReady;
  838. u8 RxStatus;
  839. __le16 RxLen;
  840. } __packed;
  841. /*
  842. * Received a packet and pass to upper layer
  843. */
  844. static void
  845. dm9000_rx(struct net_device *dev)
  846. {
  847. struct board_info *db = netdev_priv(dev);
  848. struct dm9000_rxhdr rxhdr;
  849. struct sk_buff *skb;
  850. u8 rxbyte, *rdptr;
  851. bool GoodPacket;
  852. int RxLen;
  853. /* Check packet ready or not */
  854. do {
  855. ior(db, DM9000_MRCMDX); /* Dummy read */
  856. /* Get most updated data */
  857. rxbyte = readb(db->io_data);
  858. /* Status check: this byte must be 0 or 1 */
  859. if (rxbyte & DM9000_PKT_ERR) {
  860. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  861. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  862. return;
  863. }
  864. if (!(rxbyte & DM9000_PKT_RDY))
  865. return;
  866. /* A packet ready now & Get status/length */
  867. GoodPacket = true;
  868. writeb(DM9000_MRCMD, db->io_addr);
  869. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  870. RxLen = le16_to_cpu(rxhdr.RxLen);
  871. if (netif_msg_rx_status(db))
  872. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  873. rxhdr.RxStatus, RxLen);
  874. /* Packet Status check */
  875. if (RxLen < 0x40) {
  876. GoodPacket = false;
  877. if (netif_msg_rx_err(db))
  878. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  879. }
  880. if (RxLen > DM9000_PKT_MAX) {
  881. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  882. }
  883. /* rxhdr.RxStatus is identical to RSR register. */
  884. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  885. RSR_PLE | RSR_RWTO |
  886. RSR_LCS | RSR_RF)) {
  887. GoodPacket = false;
  888. if (rxhdr.RxStatus & RSR_FOE) {
  889. if (netif_msg_rx_err(db))
  890. dev_dbg(db->dev, "fifo error\n");
  891. dev->stats.rx_fifo_errors++;
  892. }
  893. if (rxhdr.RxStatus & RSR_CE) {
  894. if (netif_msg_rx_err(db))
  895. dev_dbg(db->dev, "crc error\n");
  896. dev->stats.rx_crc_errors++;
  897. }
  898. if (rxhdr.RxStatus & RSR_RF) {
  899. if (netif_msg_rx_err(db))
  900. dev_dbg(db->dev, "length error\n");
  901. dev->stats.rx_length_errors++;
  902. }
  903. }
  904. /* Move data from DM9000 */
  905. if (GoodPacket &&
  906. ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
  907. skb_reserve(skb, 2);
  908. rdptr = skb_put(skb, RxLen - 4);
  909. /* Read received packet from RX SRAM */
  910. (db->inblk)(db->io_data, rdptr, RxLen);
  911. dev->stats.rx_bytes += RxLen;
  912. /* Pass to upper layer */
  913. skb->protocol = eth_type_trans(skb, dev);
  914. if (dev->features & NETIF_F_RXCSUM) {
  915. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  916. skb->ip_summed = CHECKSUM_UNNECESSARY;
  917. else
  918. skb_checksum_none_assert(skb);
  919. }
  920. netif_rx(skb);
  921. dev->stats.rx_packets++;
  922. } else {
  923. /* need to dump the packet's data */
  924. (db->dumpblk)(db->io_data, RxLen);
  925. }
  926. } while (rxbyte & DM9000_PKT_RDY);
  927. }
  928. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  929. {
  930. struct net_device *dev = dev_id;
  931. struct board_info *db = netdev_priv(dev);
  932. int int_status;
  933. unsigned long flags;
  934. u8 reg_save;
  935. dm9000_dbg(db, 3, "entering %s\n", __func__);
  936. /* A real interrupt coming */
  937. /* holders of db->lock must always block IRQs */
  938. spin_lock_irqsave(&db->lock, flags);
  939. /* Save previous register address */
  940. reg_save = readb(db->io_addr);
  941. dm9000_mask_interrupts(db);
  942. /* Got DM9000 interrupt status */
  943. int_status = ior(db, DM9000_ISR); /* Got ISR */
  944. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  945. if (netif_msg_intr(db))
  946. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  947. /* Received the coming packet */
  948. if (int_status & ISR_PRS)
  949. dm9000_rx(dev);
  950. /* Transmit Interrupt check */
  951. if (int_status & ISR_PTS)
  952. dm9000_tx_done(dev, db);
  953. if (db->type != TYPE_DM9000E) {
  954. if (int_status & ISR_LNKCHNG) {
  955. /* fire a link-change request */
  956. schedule_delayed_work(&db->phy_poll, 1);
  957. }
  958. }
  959. dm9000_unmask_interrupts(db);
  960. /* Restore previous register address */
  961. writeb(reg_save, db->io_addr);
  962. spin_unlock_irqrestore(&db->lock, flags);
  963. return IRQ_HANDLED;
  964. }
  965. static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
  966. {
  967. struct net_device *dev = dev_id;
  968. struct board_info *db = netdev_priv(dev);
  969. unsigned long flags;
  970. unsigned nsr, wcr;
  971. spin_lock_irqsave(&db->lock, flags);
  972. nsr = ior(db, DM9000_NSR);
  973. wcr = ior(db, DM9000_WCR);
  974. dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
  975. if (nsr & NSR_WAKEST) {
  976. /* clear, so we can avoid */
  977. iow(db, DM9000_NSR, NSR_WAKEST);
  978. if (wcr & WCR_LINKST)
  979. dev_info(db->dev, "wake by link status change\n");
  980. if (wcr & WCR_SAMPLEST)
  981. dev_info(db->dev, "wake by sample packet\n");
  982. if (wcr & WCR_MAGICST)
  983. dev_info(db->dev, "wake by magic packet\n");
  984. if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
  985. dev_err(db->dev, "wake signalled with no reason? "
  986. "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
  987. }
  988. spin_unlock_irqrestore(&db->lock, flags);
  989. return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
  990. }
  991. #ifdef CONFIG_NET_POLL_CONTROLLER
  992. /*
  993. *Used by netconsole
  994. */
  995. static void dm9000_poll_controller(struct net_device *dev)
  996. {
  997. disable_irq(dev->irq);
  998. dm9000_interrupt(dev->irq, dev);
  999. enable_irq(dev->irq);
  1000. }
  1001. #endif
  1002. /*
  1003. * Open the interface.
  1004. * The interface is opened whenever "ifconfig" actives it.
  1005. */
  1006. static int
  1007. dm9000_open(struct net_device *dev)
  1008. {
  1009. struct board_info *db = netdev_priv(dev);
  1010. unsigned int irq_flags = irq_get_trigger_type(dev->irq);
  1011. if (netif_msg_ifup(db))
  1012. dev_dbg(db->dev, "enabling %s\n", dev->name);
  1013. /* If there is no IRQ type specified, tell the user that this is a
  1014. * problem
  1015. */
  1016. if (irq_flags == IRQF_TRIGGER_NONE)
  1017. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  1018. irq_flags |= IRQF_SHARED;
  1019. /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
  1020. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  1021. mdelay(1); /* delay needs by DM9000B */
  1022. /* Initialize DM9000 board */
  1023. dm9000_init_dm9000(dev);
  1024. if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
  1025. return -EAGAIN;
  1026. /* Now that we have an interrupt handler hooked up we can unmask
  1027. * our interrupts
  1028. */
  1029. dm9000_unmask_interrupts(db);
  1030. /* Init driver variable */
  1031. db->dbug_cnt = 0;
  1032. mii_check_media(&db->mii, netif_msg_link(db), 1);
  1033. netif_start_queue(dev);
  1034. /* Poll initial link status */
  1035. schedule_delayed_work(&db->phy_poll, 1);
  1036. return 0;
  1037. }
  1038. static void
  1039. dm9000_shutdown(struct net_device *dev)
  1040. {
  1041. struct board_info *db = netdev_priv(dev);
  1042. /* RESET device */
  1043. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  1044. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  1045. dm9000_mask_interrupts(db);
  1046. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  1047. }
  1048. /*
  1049. * Stop the interface.
  1050. * The interface is stopped when it is brought.
  1051. */
  1052. static int
  1053. dm9000_stop(struct net_device *ndev)
  1054. {
  1055. struct board_info *db = netdev_priv(ndev);
  1056. if (netif_msg_ifdown(db))
  1057. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  1058. cancel_delayed_work_sync(&db->phy_poll);
  1059. netif_stop_queue(ndev);
  1060. netif_carrier_off(ndev);
  1061. /* free interrupt */
  1062. free_irq(ndev->irq, ndev);
  1063. dm9000_shutdown(ndev);
  1064. return 0;
  1065. }
  1066. static const struct net_device_ops dm9000_netdev_ops = {
  1067. .ndo_open = dm9000_open,
  1068. .ndo_stop = dm9000_stop,
  1069. .ndo_start_xmit = dm9000_start_xmit,
  1070. .ndo_tx_timeout = dm9000_timeout,
  1071. .ndo_set_rx_mode = dm9000_hash_table,
  1072. .ndo_eth_ioctl = dm9000_ioctl,
  1073. .ndo_set_features = dm9000_set_features,
  1074. .ndo_validate_addr = eth_validate_addr,
  1075. .ndo_set_mac_address = eth_mac_addr,
  1076. #ifdef CONFIG_NET_POLL_CONTROLLER
  1077. .ndo_poll_controller = dm9000_poll_controller,
  1078. #endif
  1079. };
  1080. static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
  1081. {
  1082. struct dm9000_plat_data *pdata;
  1083. struct device_node *np = dev->of_node;
  1084. int ret;
  1085. if (!IS_ENABLED(CONFIG_OF) || !np)
  1086. return ERR_PTR(-ENXIO);
  1087. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  1088. if (!pdata)
  1089. return ERR_PTR(-ENOMEM);
  1090. if (of_find_property(np, "davicom,ext-phy", NULL))
  1091. pdata->flags |= DM9000_PLATF_EXT_PHY;
  1092. if (of_find_property(np, "davicom,no-eeprom", NULL))
  1093. pdata->flags |= DM9000_PLATF_NO_EEPROM;
  1094. ret = of_get_mac_address(np, pdata->dev_addr);
  1095. if (ret == -EPROBE_DEFER)
  1096. return ERR_PTR(ret);
  1097. return pdata;
  1098. }
  1099. /*
  1100. * Search DM9000 board, allocate space and register it
  1101. */
  1102. static int
  1103. dm9000_probe(struct platform_device *pdev)
  1104. {
  1105. struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
  1106. struct board_info *db; /* Point a board information structure */
  1107. struct net_device *ndev;
  1108. struct device *dev = &pdev->dev;
  1109. const unsigned char *mac_src;
  1110. int ret = 0;
  1111. int iosize;
  1112. int i;
  1113. u32 id_val;
  1114. struct gpio_desc *reset_gpio;
  1115. struct regulator *power;
  1116. bool inv_mac_addr = false;
  1117. u8 addr[ETH_ALEN];
  1118. power = devm_regulator_get(dev, "vcc");
  1119. if (IS_ERR(power)) {
  1120. if (PTR_ERR(power) == -EPROBE_DEFER)
  1121. return -EPROBE_DEFER;
  1122. dev_dbg(dev, "no regulator provided\n");
  1123. } else {
  1124. ret = regulator_enable(power);
  1125. if (ret != 0) {
  1126. dev_err(dev,
  1127. "Failed to enable power regulator: %d\n", ret);
  1128. return ret;
  1129. }
  1130. dev_dbg(dev, "regulator enabled\n");
  1131. }
  1132. reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
  1133. ret = PTR_ERR_OR_ZERO(reset_gpio);
  1134. if (ret) {
  1135. dev_err(dev, "failed to request reset gpio: %d\n", ret);
  1136. goto out_regulator_disable;
  1137. }
  1138. if (reset_gpio) {
  1139. ret = gpiod_set_consumer_name(reset_gpio, "dm9000_reset");
  1140. if (ret) {
  1141. dev_err(dev, "failed to set reset gpio name: %d\n",
  1142. ret);
  1143. goto out_regulator_disable;
  1144. }
  1145. /* According to manual PWRST# Low Period Min 1ms */
  1146. msleep(2);
  1147. gpiod_set_value_cansleep(reset_gpio, 0);
  1148. /* Needs 3ms to read eeprom when PWRST is deasserted */
  1149. msleep(4);
  1150. }
  1151. if (!pdata) {
  1152. pdata = dm9000_parse_dt(&pdev->dev);
  1153. if (IS_ERR(pdata)) {
  1154. ret = PTR_ERR(pdata);
  1155. goto out_regulator_disable;
  1156. }
  1157. }
  1158. /* Init network device */
  1159. ndev = alloc_etherdev(sizeof(struct board_info));
  1160. if (!ndev) {
  1161. ret = -ENOMEM;
  1162. goto out_regulator_disable;
  1163. }
  1164. SET_NETDEV_DEV(ndev, &pdev->dev);
  1165. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  1166. /* setup board info structure */
  1167. db = netdev_priv(ndev);
  1168. db->dev = &pdev->dev;
  1169. db->ndev = ndev;
  1170. if (!IS_ERR(power))
  1171. db->power_supply = power;
  1172. spin_lock_init(&db->lock);
  1173. mutex_init(&db->addr_lock);
  1174. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1175. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1176. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1177. if (!db->addr_res || !db->data_res) {
  1178. dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
  1179. db->addr_res, db->data_res);
  1180. ret = -ENOENT;
  1181. goto out;
  1182. }
  1183. ndev->irq = platform_get_irq(pdev, 0);
  1184. if (ndev->irq < 0) {
  1185. ret = ndev->irq;
  1186. goto out;
  1187. }
  1188. db->irq_wake = platform_get_irq_optional(pdev, 1);
  1189. if (db->irq_wake >= 0) {
  1190. dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
  1191. ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
  1192. IRQF_SHARED, dev_name(db->dev), ndev);
  1193. if (ret) {
  1194. dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
  1195. } else {
  1196. /* test to see if irq is really wakeup capable */
  1197. ret = irq_set_irq_wake(db->irq_wake, 1);
  1198. if (ret) {
  1199. dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
  1200. db->irq_wake, ret);
  1201. } else {
  1202. irq_set_irq_wake(db->irq_wake, 0);
  1203. db->wake_supported = 1;
  1204. }
  1205. }
  1206. }
  1207. iosize = resource_size(db->addr_res);
  1208. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1209. pdev->name);
  1210. if (db->addr_req == NULL) {
  1211. dev_err(db->dev, "cannot claim address reg area\n");
  1212. ret = -EIO;
  1213. goto out;
  1214. }
  1215. db->io_addr = ioremap(db->addr_res->start, iosize);
  1216. if (db->io_addr == NULL) {
  1217. dev_err(db->dev, "failed to ioremap address reg\n");
  1218. ret = -EINVAL;
  1219. goto out;
  1220. }
  1221. iosize = resource_size(db->data_res);
  1222. db->data_req = request_mem_region(db->data_res->start, iosize,
  1223. pdev->name);
  1224. if (db->data_req == NULL) {
  1225. dev_err(db->dev, "cannot claim data reg area\n");
  1226. ret = -EIO;
  1227. goto out;
  1228. }
  1229. db->io_data = ioremap(db->data_res->start, iosize);
  1230. if (db->io_data == NULL) {
  1231. dev_err(db->dev, "failed to ioremap data reg\n");
  1232. ret = -EINVAL;
  1233. goto out;
  1234. }
  1235. /* fill in parameters for net-dev structure */
  1236. ndev->base_addr = (unsigned long)db->io_addr;
  1237. /* ensure at least we have a default set of IO routines */
  1238. dm9000_set_io(db, iosize);
  1239. /* check to see if anything is being over-ridden */
  1240. if (pdata != NULL) {
  1241. /* check to see if the driver wants to over-ride the
  1242. * default IO width */
  1243. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1244. dm9000_set_io(db, 1);
  1245. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1246. dm9000_set_io(db, 2);
  1247. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1248. dm9000_set_io(db, 4);
  1249. /* check to see if there are any IO routine
  1250. * over-rides */
  1251. if (pdata->inblk != NULL)
  1252. db->inblk = pdata->inblk;
  1253. if (pdata->outblk != NULL)
  1254. db->outblk = pdata->outblk;
  1255. if (pdata->dumpblk != NULL)
  1256. db->dumpblk = pdata->dumpblk;
  1257. db->flags = pdata->flags;
  1258. }
  1259. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1260. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1261. #endif
  1262. dm9000_reset(db);
  1263. /* try multiple times, DM9000 sometimes gets the read wrong */
  1264. for (i = 0; i < 8; i++) {
  1265. id_val = ior(db, DM9000_VIDL);
  1266. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1267. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1268. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1269. if (id_val == DM9000_ID)
  1270. break;
  1271. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1272. }
  1273. if (id_val != DM9000_ID) {
  1274. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1275. ret = -ENODEV;
  1276. goto out;
  1277. }
  1278. /* Identify what type of DM9000 we are working on */
  1279. id_val = ior(db, DM9000_CHIPR);
  1280. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1281. switch (id_val) {
  1282. case CHIPR_DM9000A:
  1283. db->type = TYPE_DM9000A;
  1284. break;
  1285. case CHIPR_DM9000B:
  1286. db->type = TYPE_DM9000B;
  1287. break;
  1288. default:
  1289. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1290. db->type = TYPE_DM9000E;
  1291. }
  1292. /* dm9000a/b are capable of hardware checksum offload */
  1293. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1294. ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
  1295. ndev->features |= ndev->hw_features;
  1296. }
  1297. /* from this point we assume that we have found a DM9000 */
  1298. ndev->netdev_ops = &dm9000_netdev_ops;
  1299. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1300. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1301. db->msg_enable = NETIF_MSG_LINK;
  1302. db->mii.phy_id_mask = 0x1f;
  1303. db->mii.reg_num_mask = 0x1f;
  1304. db->mii.force_media = 0;
  1305. db->mii.full_duplex = 0;
  1306. db->mii.dev = ndev;
  1307. db->mii.mdio_read = dm9000_phy_read;
  1308. db->mii.mdio_write = dm9000_phy_write;
  1309. mac_src = "eeprom";
  1310. /* try reading the node address from the attached EEPROM */
  1311. for (i = 0; i < 6; i += 2)
  1312. dm9000_read_eeprom(db, i / 2, addr + i);
  1313. eth_hw_addr_set(ndev, addr);
  1314. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1315. mac_src = "platform data";
  1316. eth_hw_addr_set(ndev, pdata->dev_addr);
  1317. }
  1318. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1319. /* try reading from mac */
  1320. mac_src = "chip";
  1321. for (i = 0; i < 6; i++)
  1322. addr[i] = ior(db, i + DM9000_PAR);
  1323. eth_hw_addr_set(ndev, pdata->dev_addr);
  1324. }
  1325. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1326. inv_mac_addr = true;
  1327. eth_hw_addr_random(ndev);
  1328. mac_src = "random";
  1329. }
  1330. platform_set_drvdata(pdev, ndev);
  1331. ret = register_netdev(ndev);
  1332. if (ret == 0) {
  1333. if (inv_mac_addr)
  1334. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
  1335. ndev->name);
  1336. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1337. ndev->name, dm9000_type_to_char(db->type),
  1338. db->io_addr, db->io_data, ndev->irq,
  1339. ndev->dev_addr, mac_src);
  1340. }
  1341. return 0;
  1342. out:
  1343. dev_err(db->dev, "not found (%d).\n", ret);
  1344. dm9000_release_board(pdev, db);
  1345. free_netdev(ndev);
  1346. out_regulator_disable:
  1347. if (!IS_ERR(power))
  1348. regulator_disable(power);
  1349. return ret;
  1350. }
  1351. static int
  1352. dm9000_drv_suspend(struct device *dev)
  1353. {
  1354. struct net_device *ndev = dev_get_drvdata(dev);
  1355. struct board_info *db;
  1356. if (ndev) {
  1357. db = netdev_priv(ndev);
  1358. db->in_suspend = 1;
  1359. if (!netif_running(ndev))
  1360. return 0;
  1361. netif_device_detach(ndev);
  1362. /* only shutdown if not using WoL */
  1363. if (!db->wake_state)
  1364. dm9000_shutdown(ndev);
  1365. }
  1366. return 0;
  1367. }
  1368. static int
  1369. dm9000_drv_resume(struct device *dev)
  1370. {
  1371. struct net_device *ndev = dev_get_drvdata(dev);
  1372. struct board_info *db = netdev_priv(ndev);
  1373. if (ndev) {
  1374. if (netif_running(ndev)) {
  1375. /* reset if we were not in wake mode to ensure if
  1376. * the device was powered off it is in a known state */
  1377. if (!db->wake_state) {
  1378. dm9000_init_dm9000(ndev);
  1379. dm9000_unmask_interrupts(db);
  1380. }
  1381. netif_device_attach(ndev);
  1382. }
  1383. db->in_suspend = 0;
  1384. }
  1385. return 0;
  1386. }
  1387. static const struct dev_pm_ops dm9000_drv_pm_ops = {
  1388. .suspend = dm9000_drv_suspend,
  1389. .resume = dm9000_drv_resume,
  1390. };
  1391. static int
  1392. dm9000_drv_remove(struct platform_device *pdev)
  1393. {
  1394. struct net_device *ndev = platform_get_drvdata(pdev);
  1395. struct board_info *dm = to_dm9000_board(ndev);
  1396. unregister_netdev(ndev);
  1397. dm9000_release_board(pdev, dm);
  1398. free_netdev(ndev); /* free device structure */
  1399. if (dm->power_supply)
  1400. regulator_disable(dm->power_supply);
  1401. dev_dbg(&pdev->dev, "released and freed device\n");
  1402. return 0;
  1403. }
  1404. #ifdef CONFIG_OF
  1405. static const struct of_device_id dm9000_of_matches[] = {
  1406. { .compatible = "davicom,dm9000", },
  1407. { /* sentinel */ }
  1408. };
  1409. MODULE_DEVICE_TABLE(of, dm9000_of_matches);
  1410. #endif
  1411. static struct platform_driver dm9000_driver = {
  1412. .driver = {
  1413. .name = "dm9000",
  1414. .pm = &dm9000_drv_pm_ops,
  1415. .of_match_table = of_match_ptr(dm9000_of_matches),
  1416. },
  1417. .probe = dm9000_probe,
  1418. .remove = dm9000_drv_remove,
  1419. };
  1420. module_platform_driver(dm9000_driver);
  1421. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1422. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1423. MODULE_LICENSE("GPL");
  1424. MODULE_ALIAS("platform:dm9000");