slicoss.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Driver for Gigabit Ethernet adapters based on the Session Layer
  4. * Interface (SLIC) technology by Alacritech. The driver does not
  5. * support the hardware acceleration features provided by these cards.
  6. *
  7. * Copyright (C) 2016 Lino Sanfilippo <[email protected]>
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/if_ether.h>
  15. #include <linux/crc32.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/ethtool.h>
  18. #include <linux/mii.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <linux/firmware.h>
  22. #include <linux/list.h>
  23. #include <linux/u64_stats_sync.h>
  24. #include "slic.h"
  25. #define DRV_NAME "slicoss"
  26. static const struct pci_device_id slic_id_tbl[] = {
  27. { PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH,
  28. PCI_DEVICE_ID_ALACRITECH_MOJAVE) },
  29. { PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH,
  30. PCI_DEVICE_ID_ALACRITECH_OASIS) },
  31. { 0 }
  32. };
  33. static const char slic_stats_strings[][ETH_GSTRING_LEN] = {
  34. "rx_packets",
  35. "rx_bytes",
  36. "rx_multicasts",
  37. "rx_errors",
  38. "rx_buff_miss",
  39. "rx_tp_csum",
  40. "rx_tp_oflow",
  41. "rx_tp_hlen",
  42. "rx_ip_csum",
  43. "rx_ip_len",
  44. "rx_ip_hdr_len",
  45. "rx_early",
  46. "rx_buff_oflow",
  47. "rx_lcode",
  48. "rx_drbl",
  49. "rx_crc",
  50. "rx_oflow_802",
  51. "rx_uflow_802",
  52. "tx_packets",
  53. "tx_bytes",
  54. "tx_carrier",
  55. "tx_dropped",
  56. "irq_errs",
  57. };
  58. static inline int slic_next_queue_idx(unsigned int idx, unsigned int qlen)
  59. {
  60. return (idx + 1) & (qlen - 1);
  61. }
  62. static inline int slic_get_free_queue_descs(unsigned int put_idx,
  63. unsigned int done_idx,
  64. unsigned int qlen)
  65. {
  66. if (put_idx >= done_idx)
  67. return (qlen - (put_idx - done_idx) - 1);
  68. return (done_idx - put_idx - 1);
  69. }
  70. static unsigned int slic_next_compl_idx(struct slic_device *sdev)
  71. {
  72. struct slic_stat_queue *stq = &sdev->stq;
  73. unsigned int active = stq->active_array;
  74. struct slic_stat_desc *descs;
  75. struct slic_stat_desc *stat;
  76. unsigned int idx;
  77. descs = stq->descs[active];
  78. stat = &descs[stq->done_idx];
  79. if (!stat->status)
  80. return SLIC_INVALID_STAT_DESC_IDX;
  81. idx = (le32_to_cpu(stat->hnd) & 0xffff) - 1;
  82. /* reset desc */
  83. stat->hnd = 0;
  84. stat->status = 0;
  85. stq->done_idx = slic_next_queue_idx(stq->done_idx, stq->len);
  86. /* check for wraparound */
  87. if (!stq->done_idx) {
  88. dma_addr_t paddr = stq->paddr[active];
  89. slic_write(sdev, SLIC_REG_RBAR, lower_32_bits(paddr) |
  90. stq->len);
  91. /* make sure new status descriptors are immediately available */
  92. slic_flush_write(sdev);
  93. active++;
  94. active &= (SLIC_NUM_STAT_DESC_ARRAYS - 1);
  95. stq->active_array = active;
  96. }
  97. return idx;
  98. }
  99. static unsigned int slic_get_free_tx_descs(struct slic_tx_queue *txq)
  100. {
  101. /* ensure tail idx is updated */
  102. smp_mb();
  103. return slic_get_free_queue_descs(txq->put_idx, txq->done_idx, txq->len);
  104. }
  105. static unsigned int slic_get_free_rx_descs(struct slic_rx_queue *rxq)
  106. {
  107. return slic_get_free_queue_descs(rxq->put_idx, rxq->done_idx, rxq->len);
  108. }
  109. static void slic_clear_upr_list(struct slic_upr_list *upr_list)
  110. {
  111. struct slic_upr *upr;
  112. struct slic_upr *tmp;
  113. spin_lock_bh(&upr_list->lock);
  114. list_for_each_entry_safe(upr, tmp, &upr_list->list, list) {
  115. list_del(&upr->list);
  116. kfree(upr);
  117. }
  118. upr_list->pending = false;
  119. spin_unlock_bh(&upr_list->lock);
  120. }
  121. static void slic_start_upr(struct slic_device *sdev, struct slic_upr *upr)
  122. {
  123. u32 reg;
  124. reg = (upr->type == SLIC_UPR_CONFIG) ? SLIC_REG_RCONFIG :
  125. SLIC_REG_LSTAT;
  126. slic_write(sdev, reg, lower_32_bits(upr->paddr));
  127. slic_flush_write(sdev);
  128. }
  129. static void slic_queue_upr(struct slic_device *sdev, struct slic_upr *upr)
  130. {
  131. struct slic_upr_list *upr_list = &sdev->upr_list;
  132. bool pending;
  133. spin_lock_bh(&upr_list->lock);
  134. pending = upr_list->pending;
  135. INIT_LIST_HEAD(&upr->list);
  136. list_add_tail(&upr->list, &upr_list->list);
  137. upr_list->pending = true;
  138. spin_unlock_bh(&upr_list->lock);
  139. if (!pending)
  140. slic_start_upr(sdev, upr);
  141. }
  142. static struct slic_upr *slic_dequeue_upr(struct slic_device *sdev)
  143. {
  144. struct slic_upr_list *upr_list = &sdev->upr_list;
  145. struct slic_upr *next_upr = NULL;
  146. struct slic_upr *upr = NULL;
  147. spin_lock_bh(&upr_list->lock);
  148. if (!list_empty(&upr_list->list)) {
  149. upr = list_first_entry(&upr_list->list, struct slic_upr, list);
  150. list_del(&upr->list);
  151. if (list_empty(&upr_list->list))
  152. upr_list->pending = false;
  153. else
  154. next_upr = list_first_entry(&upr_list->list,
  155. struct slic_upr, list);
  156. }
  157. spin_unlock_bh(&upr_list->lock);
  158. /* trigger processing of the next upr in list */
  159. if (next_upr)
  160. slic_start_upr(sdev, next_upr);
  161. return upr;
  162. }
  163. static int slic_new_upr(struct slic_device *sdev, unsigned int type,
  164. dma_addr_t paddr)
  165. {
  166. struct slic_upr *upr;
  167. upr = kmalloc(sizeof(*upr), GFP_ATOMIC);
  168. if (!upr)
  169. return -ENOMEM;
  170. upr->type = type;
  171. upr->paddr = paddr;
  172. slic_queue_upr(sdev, upr);
  173. return 0;
  174. }
  175. static void slic_set_mcast_bit(u64 *mcmask, unsigned char const *addr)
  176. {
  177. u64 mask = *mcmask;
  178. u8 crc;
  179. /* Get the CRC polynomial for the mac address: we use bits 1-8 (lsb),
  180. * bitwise reversed, msb (= lsb bit 0 before bitrev) is automatically
  181. * discarded.
  182. */
  183. crc = ether_crc(ETH_ALEN, addr) >> 23;
  184. /* we only have space on the SLIC for 64 entries */
  185. crc &= 0x3F;
  186. mask |= (u64)1 << crc;
  187. *mcmask = mask;
  188. }
  189. /* must be called with link_lock held */
  190. static void slic_configure_rcv(struct slic_device *sdev)
  191. {
  192. u32 val;
  193. val = SLIC_GRCR_RESET | SLIC_GRCR_ADDRAEN | SLIC_GRCR_RCVEN |
  194. SLIC_GRCR_HASHSIZE << SLIC_GRCR_HASHSIZE_SHIFT | SLIC_GRCR_RCVBAD;
  195. if (sdev->duplex == DUPLEX_FULL)
  196. val |= SLIC_GRCR_CTLEN;
  197. if (sdev->promisc)
  198. val |= SLIC_GRCR_RCVALL;
  199. slic_write(sdev, SLIC_REG_WRCFG, val);
  200. }
  201. /* must be called with link_lock held */
  202. static void slic_configure_xmt(struct slic_device *sdev)
  203. {
  204. u32 val;
  205. val = SLIC_GXCR_RESET | SLIC_GXCR_XMTEN;
  206. if (sdev->duplex == DUPLEX_FULL)
  207. val |= SLIC_GXCR_PAUSEEN;
  208. slic_write(sdev, SLIC_REG_WXCFG, val);
  209. }
  210. /* must be called with link_lock held */
  211. static void slic_configure_mac(struct slic_device *sdev)
  212. {
  213. u32 val;
  214. if (sdev->speed == SPEED_1000) {
  215. val = SLIC_GMCR_GAPBB_1000 << SLIC_GMCR_GAPBB_SHIFT |
  216. SLIC_GMCR_GAPR1_1000 << SLIC_GMCR_GAPR1_SHIFT |
  217. SLIC_GMCR_GAPR2_1000 << SLIC_GMCR_GAPR2_SHIFT |
  218. SLIC_GMCR_GBIT; /* enable GMII */
  219. } else {
  220. val = SLIC_GMCR_GAPBB_100 << SLIC_GMCR_GAPBB_SHIFT |
  221. SLIC_GMCR_GAPR1_100 << SLIC_GMCR_GAPR1_SHIFT |
  222. SLIC_GMCR_GAPR2_100 << SLIC_GMCR_GAPR2_SHIFT;
  223. }
  224. if (sdev->duplex == DUPLEX_FULL)
  225. val |= SLIC_GMCR_FULLD;
  226. slic_write(sdev, SLIC_REG_WMCFG, val);
  227. }
  228. static void slic_configure_link_locked(struct slic_device *sdev, int speed,
  229. unsigned int duplex)
  230. {
  231. struct net_device *dev = sdev->netdev;
  232. if (sdev->speed == speed && sdev->duplex == duplex)
  233. return;
  234. sdev->speed = speed;
  235. sdev->duplex = duplex;
  236. if (sdev->speed == SPEED_UNKNOWN) {
  237. if (netif_carrier_ok(dev))
  238. netif_carrier_off(dev);
  239. } else {
  240. /* (re)configure link settings */
  241. slic_configure_mac(sdev);
  242. slic_configure_xmt(sdev);
  243. slic_configure_rcv(sdev);
  244. slic_flush_write(sdev);
  245. if (!netif_carrier_ok(dev))
  246. netif_carrier_on(dev);
  247. }
  248. }
  249. static void slic_configure_link(struct slic_device *sdev, int speed,
  250. unsigned int duplex)
  251. {
  252. spin_lock_bh(&sdev->link_lock);
  253. slic_configure_link_locked(sdev, speed, duplex);
  254. spin_unlock_bh(&sdev->link_lock);
  255. }
  256. static void slic_set_rx_mode(struct net_device *dev)
  257. {
  258. struct slic_device *sdev = netdev_priv(dev);
  259. struct netdev_hw_addr *hwaddr;
  260. bool set_promisc;
  261. u64 mcmask;
  262. if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
  263. /* Turn on all multicast addresses. We have to do this for
  264. * promiscuous mode as well as ALLMCAST mode (it saves the
  265. * microcode from having to keep state about the MAC
  266. * configuration).
  267. */
  268. mcmask = ~(u64)0;
  269. } else {
  270. mcmask = 0;
  271. netdev_for_each_mc_addr(hwaddr, dev) {
  272. slic_set_mcast_bit(&mcmask, hwaddr->addr);
  273. }
  274. }
  275. slic_write(sdev, SLIC_REG_MCASTLOW, lower_32_bits(mcmask));
  276. slic_write(sdev, SLIC_REG_MCASTHIGH, upper_32_bits(mcmask));
  277. set_promisc = !!(dev->flags & IFF_PROMISC);
  278. spin_lock_bh(&sdev->link_lock);
  279. if (sdev->promisc != set_promisc) {
  280. sdev->promisc = set_promisc;
  281. slic_configure_rcv(sdev);
  282. }
  283. spin_unlock_bh(&sdev->link_lock);
  284. }
  285. static void slic_xmit_complete(struct slic_device *sdev)
  286. {
  287. struct slic_tx_queue *txq = &sdev->txq;
  288. struct net_device *dev = sdev->netdev;
  289. struct slic_tx_buffer *buff;
  290. unsigned int frames = 0;
  291. unsigned int bytes = 0;
  292. unsigned int idx;
  293. /* Limit processing to SLIC_MAX_TX_COMPLETIONS frames to avoid that new
  294. * completions during processing keeps the loop running endlessly.
  295. */
  296. do {
  297. idx = slic_next_compl_idx(sdev);
  298. if (idx == SLIC_INVALID_STAT_DESC_IDX)
  299. break;
  300. txq->done_idx = idx;
  301. buff = &txq->txbuffs[idx];
  302. if (unlikely(!buff->skb)) {
  303. netdev_warn(dev,
  304. "no skb found for desc idx %i\n", idx);
  305. continue;
  306. }
  307. dma_unmap_single(&sdev->pdev->dev,
  308. dma_unmap_addr(buff, map_addr),
  309. dma_unmap_len(buff, map_len), DMA_TO_DEVICE);
  310. bytes += buff->skb->len;
  311. frames++;
  312. dev_kfree_skb_any(buff->skb);
  313. buff->skb = NULL;
  314. } while (frames < SLIC_MAX_TX_COMPLETIONS);
  315. /* make sure xmit sees the new value for done_idx */
  316. smp_wmb();
  317. u64_stats_update_begin(&sdev->stats.syncp);
  318. sdev->stats.tx_bytes += bytes;
  319. sdev->stats.tx_packets += frames;
  320. u64_stats_update_end(&sdev->stats.syncp);
  321. netif_tx_lock(dev);
  322. if (netif_queue_stopped(dev) &&
  323. (slic_get_free_tx_descs(txq) >= SLIC_MIN_TX_WAKEUP_DESCS))
  324. netif_wake_queue(dev);
  325. netif_tx_unlock(dev);
  326. }
  327. static void slic_refill_rx_queue(struct slic_device *sdev, gfp_t gfp)
  328. {
  329. const unsigned int ALIGN_MASK = SLIC_RX_BUFF_ALIGN - 1;
  330. unsigned int maplen = SLIC_RX_BUFF_SIZE;
  331. struct slic_rx_queue *rxq = &sdev->rxq;
  332. struct net_device *dev = sdev->netdev;
  333. struct slic_rx_buffer *buff;
  334. struct slic_rx_desc *desc;
  335. unsigned int misalign;
  336. unsigned int offset;
  337. struct sk_buff *skb;
  338. dma_addr_t paddr;
  339. while (slic_get_free_rx_descs(rxq) > SLIC_MAX_REQ_RX_DESCS) {
  340. skb = alloc_skb(maplen + ALIGN_MASK, gfp);
  341. if (!skb)
  342. break;
  343. paddr = dma_map_single(&sdev->pdev->dev, skb->data, maplen,
  344. DMA_FROM_DEVICE);
  345. if (dma_mapping_error(&sdev->pdev->dev, paddr)) {
  346. netdev_err(dev, "mapping rx packet failed\n");
  347. /* drop skb */
  348. dev_kfree_skb_any(skb);
  349. break;
  350. }
  351. /* ensure head buffer descriptors are 256 byte aligned */
  352. offset = 0;
  353. misalign = paddr & ALIGN_MASK;
  354. if (misalign) {
  355. offset = SLIC_RX_BUFF_ALIGN - misalign;
  356. skb_reserve(skb, offset);
  357. }
  358. /* the HW expects dma chunks for descriptor + frame data */
  359. desc = (struct slic_rx_desc *)skb->data;
  360. /* temporarily sync descriptor for CPU to clear status */
  361. dma_sync_single_for_cpu(&sdev->pdev->dev, paddr,
  362. offset + sizeof(*desc),
  363. DMA_FROM_DEVICE);
  364. desc->status = 0;
  365. /* return it to HW again */
  366. dma_sync_single_for_device(&sdev->pdev->dev, paddr,
  367. offset + sizeof(*desc),
  368. DMA_FROM_DEVICE);
  369. buff = &rxq->rxbuffs[rxq->put_idx];
  370. buff->skb = skb;
  371. dma_unmap_addr_set(buff, map_addr, paddr);
  372. dma_unmap_len_set(buff, map_len, maplen);
  373. buff->addr_offset = offset;
  374. /* complete write to descriptor before it is handed to HW */
  375. wmb();
  376. /* head buffer descriptors are placed immediately before skb */
  377. slic_write(sdev, SLIC_REG_HBAR, lower_32_bits(paddr) + offset);
  378. rxq->put_idx = slic_next_queue_idx(rxq->put_idx, rxq->len);
  379. }
  380. }
  381. static void slic_handle_frame_error(struct slic_device *sdev,
  382. struct sk_buff *skb)
  383. {
  384. struct slic_stats *stats = &sdev->stats;
  385. if (sdev->model == SLIC_MODEL_OASIS) {
  386. struct slic_rx_info_oasis *info;
  387. u32 status_b;
  388. u32 status;
  389. info = (struct slic_rx_info_oasis *)skb->data;
  390. status = le32_to_cpu(info->frame_status);
  391. status_b = le32_to_cpu(info->frame_status_b);
  392. /* transport layer */
  393. if (status_b & SLIC_VRHSTATB_TPCSUM)
  394. SLIC_INC_STATS_COUNTER(stats, rx_tpcsum);
  395. if (status & SLIC_VRHSTAT_TPOFLO)
  396. SLIC_INC_STATS_COUNTER(stats, rx_tpoflow);
  397. if (status_b & SLIC_VRHSTATB_TPHLEN)
  398. SLIC_INC_STATS_COUNTER(stats, rx_tphlen);
  399. /* ip layer */
  400. if (status_b & SLIC_VRHSTATB_IPCSUM)
  401. SLIC_INC_STATS_COUNTER(stats, rx_ipcsum);
  402. if (status_b & SLIC_VRHSTATB_IPLERR)
  403. SLIC_INC_STATS_COUNTER(stats, rx_iplen);
  404. if (status_b & SLIC_VRHSTATB_IPHERR)
  405. SLIC_INC_STATS_COUNTER(stats, rx_iphlen);
  406. /* link layer */
  407. if (status_b & SLIC_VRHSTATB_RCVE)
  408. SLIC_INC_STATS_COUNTER(stats, rx_early);
  409. if (status_b & SLIC_VRHSTATB_BUFF)
  410. SLIC_INC_STATS_COUNTER(stats, rx_buffoflow);
  411. if (status_b & SLIC_VRHSTATB_CODE)
  412. SLIC_INC_STATS_COUNTER(stats, rx_lcode);
  413. if (status_b & SLIC_VRHSTATB_DRBL)
  414. SLIC_INC_STATS_COUNTER(stats, rx_drbl);
  415. if (status_b & SLIC_VRHSTATB_CRC)
  416. SLIC_INC_STATS_COUNTER(stats, rx_crc);
  417. if (status & SLIC_VRHSTAT_802OE)
  418. SLIC_INC_STATS_COUNTER(stats, rx_oflow802);
  419. if (status_b & SLIC_VRHSTATB_802UE)
  420. SLIC_INC_STATS_COUNTER(stats, rx_uflow802);
  421. if (status_b & SLIC_VRHSTATB_CARRE)
  422. SLIC_INC_STATS_COUNTER(stats, tx_carrier);
  423. } else { /* mojave */
  424. struct slic_rx_info_mojave *info;
  425. u32 status;
  426. info = (struct slic_rx_info_mojave *)skb->data;
  427. status = le32_to_cpu(info->frame_status);
  428. /* transport layer */
  429. if (status & SLIC_VGBSTAT_XPERR) {
  430. u32 xerr = status >> SLIC_VGBSTAT_XERRSHFT;
  431. if (xerr == SLIC_VGBSTAT_XCSERR)
  432. SLIC_INC_STATS_COUNTER(stats, rx_tpcsum);
  433. if (xerr == SLIC_VGBSTAT_XUFLOW)
  434. SLIC_INC_STATS_COUNTER(stats, rx_tpoflow);
  435. if (xerr == SLIC_VGBSTAT_XHLEN)
  436. SLIC_INC_STATS_COUNTER(stats, rx_tphlen);
  437. }
  438. /* ip layer */
  439. if (status & SLIC_VGBSTAT_NETERR) {
  440. u32 nerr = status >> SLIC_VGBSTAT_NERRSHFT &
  441. SLIC_VGBSTAT_NERRMSK;
  442. if (nerr == SLIC_VGBSTAT_NCSERR)
  443. SLIC_INC_STATS_COUNTER(stats, rx_ipcsum);
  444. if (nerr == SLIC_VGBSTAT_NUFLOW)
  445. SLIC_INC_STATS_COUNTER(stats, rx_iplen);
  446. if (nerr == SLIC_VGBSTAT_NHLEN)
  447. SLIC_INC_STATS_COUNTER(stats, rx_iphlen);
  448. }
  449. /* link layer */
  450. if (status & SLIC_VGBSTAT_LNKERR) {
  451. u32 lerr = status & SLIC_VGBSTAT_LERRMSK;
  452. if (lerr == SLIC_VGBSTAT_LDEARLY)
  453. SLIC_INC_STATS_COUNTER(stats, rx_early);
  454. if (lerr == SLIC_VGBSTAT_LBOFLO)
  455. SLIC_INC_STATS_COUNTER(stats, rx_buffoflow);
  456. if (lerr == SLIC_VGBSTAT_LCODERR)
  457. SLIC_INC_STATS_COUNTER(stats, rx_lcode);
  458. if (lerr == SLIC_VGBSTAT_LDBLNBL)
  459. SLIC_INC_STATS_COUNTER(stats, rx_drbl);
  460. if (lerr == SLIC_VGBSTAT_LCRCERR)
  461. SLIC_INC_STATS_COUNTER(stats, rx_crc);
  462. if (lerr == SLIC_VGBSTAT_LOFLO)
  463. SLIC_INC_STATS_COUNTER(stats, rx_oflow802);
  464. if (lerr == SLIC_VGBSTAT_LUFLO)
  465. SLIC_INC_STATS_COUNTER(stats, rx_uflow802);
  466. }
  467. }
  468. SLIC_INC_STATS_COUNTER(stats, rx_errors);
  469. }
  470. static void slic_handle_receive(struct slic_device *sdev, unsigned int todo,
  471. unsigned int *done)
  472. {
  473. struct slic_rx_queue *rxq = &sdev->rxq;
  474. struct net_device *dev = sdev->netdev;
  475. struct slic_rx_buffer *buff;
  476. struct slic_rx_desc *desc;
  477. unsigned int frames = 0;
  478. unsigned int bytes = 0;
  479. struct sk_buff *skb;
  480. u32 status;
  481. u32 len;
  482. while (todo && (rxq->done_idx != rxq->put_idx)) {
  483. buff = &rxq->rxbuffs[rxq->done_idx];
  484. skb = buff->skb;
  485. if (!skb)
  486. break;
  487. desc = (struct slic_rx_desc *)skb->data;
  488. dma_sync_single_for_cpu(&sdev->pdev->dev,
  489. dma_unmap_addr(buff, map_addr),
  490. buff->addr_offset + sizeof(*desc),
  491. DMA_FROM_DEVICE);
  492. status = le32_to_cpu(desc->status);
  493. if (!(status & SLIC_IRHDDR_SVALID)) {
  494. dma_sync_single_for_device(&sdev->pdev->dev,
  495. dma_unmap_addr(buff,
  496. map_addr),
  497. buff->addr_offset +
  498. sizeof(*desc),
  499. DMA_FROM_DEVICE);
  500. break;
  501. }
  502. buff->skb = NULL;
  503. dma_unmap_single(&sdev->pdev->dev,
  504. dma_unmap_addr(buff, map_addr),
  505. dma_unmap_len(buff, map_len),
  506. DMA_FROM_DEVICE);
  507. /* skip rx descriptor that is placed before the frame data */
  508. skb_reserve(skb, SLIC_RX_BUFF_HDR_SIZE);
  509. if (unlikely(status & SLIC_IRHDDR_ERR)) {
  510. slic_handle_frame_error(sdev, skb);
  511. dev_kfree_skb_any(skb);
  512. } else {
  513. struct ethhdr *eh = (struct ethhdr *)skb->data;
  514. if (is_multicast_ether_addr(eh->h_dest))
  515. SLIC_INC_STATS_COUNTER(&sdev->stats, rx_mcasts);
  516. len = le32_to_cpu(desc->length) & SLIC_IRHDDR_FLEN_MSK;
  517. skb_put(skb, len);
  518. skb->protocol = eth_type_trans(skb, dev);
  519. skb->ip_summed = CHECKSUM_UNNECESSARY;
  520. napi_gro_receive(&sdev->napi, skb);
  521. bytes += len;
  522. frames++;
  523. }
  524. rxq->done_idx = slic_next_queue_idx(rxq->done_idx, rxq->len);
  525. todo--;
  526. }
  527. u64_stats_update_begin(&sdev->stats.syncp);
  528. sdev->stats.rx_bytes += bytes;
  529. sdev->stats.rx_packets += frames;
  530. u64_stats_update_end(&sdev->stats.syncp);
  531. slic_refill_rx_queue(sdev, GFP_ATOMIC);
  532. }
  533. static void slic_handle_link_irq(struct slic_device *sdev)
  534. {
  535. struct slic_shmem *sm = &sdev->shmem;
  536. struct slic_shmem_data *sm_data = sm->shmem_data;
  537. unsigned int duplex;
  538. int speed;
  539. u32 link;
  540. link = le32_to_cpu(sm_data->link);
  541. if (link & SLIC_GIG_LINKUP) {
  542. if (link & SLIC_GIG_SPEED_1000)
  543. speed = SPEED_1000;
  544. else if (link & SLIC_GIG_SPEED_100)
  545. speed = SPEED_100;
  546. else
  547. speed = SPEED_10;
  548. duplex = (link & SLIC_GIG_FULLDUPLEX) ? DUPLEX_FULL :
  549. DUPLEX_HALF;
  550. } else {
  551. duplex = DUPLEX_UNKNOWN;
  552. speed = SPEED_UNKNOWN;
  553. }
  554. slic_configure_link(sdev, speed, duplex);
  555. }
  556. static void slic_handle_upr_irq(struct slic_device *sdev, u32 irqs)
  557. {
  558. struct slic_upr *upr;
  559. /* remove upr that caused this irq (always the first entry in list) */
  560. upr = slic_dequeue_upr(sdev);
  561. if (!upr) {
  562. netdev_warn(sdev->netdev, "no upr found on list\n");
  563. return;
  564. }
  565. if (upr->type == SLIC_UPR_LSTAT) {
  566. if (unlikely(irqs & SLIC_ISR_UPCERR_MASK)) {
  567. /* try again */
  568. slic_queue_upr(sdev, upr);
  569. return;
  570. }
  571. slic_handle_link_irq(sdev);
  572. }
  573. kfree(upr);
  574. }
  575. static int slic_handle_link_change(struct slic_device *sdev)
  576. {
  577. return slic_new_upr(sdev, SLIC_UPR_LSTAT, sdev->shmem.link_paddr);
  578. }
  579. static void slic_handle_err_irq(struct slic_device *sdev, u32 isr)
  580. {
  581. struct slic_stats *stats = &sdev->stats;
  582. if (isr & SLIC_ISR_RMISS)
  583. SLIC_INC_STATS_COUNTER(stats, rx_buff_miss);
  584. if (isr & SLIC_ISR_XDROP)
  585. SLIC_INC_STATS_COUNTER(stats, tx_dropped);
  586. if (!(isr & (SLIC_ISR_RMISS | SLIC_ISR_XDROP)))
  587. SLIC_INC_STATS_COUNTER(stats, irq_errs);
  588. }
  589. static void slic_handle_irq(struct slic_device *sdev, u32 isr,
  590. unsigned int todo, unsigned int *done)
  591. {
  592. if (isr & SLIC_ISR_ERR)
  593. slic_handle_err_irq(sdev, isr);
  594. if (isr & SLIC_ISR_LEVENT)
  595. slic_handle_link_change(sdev);
  596. if (isr & SLIC_ISR_UPC_MASK)
  597. slic_handle_upr_irq(sdev, isr);
  598. if (isr & SLIC_ISR_RCV)
  599. slic_handle_receive(sdev, todo, done);
  600. if (isr & SLIC_ISR_CMD)
  601. slic_xmit_complete(sdev);
  602. }
  603. static int slic_poll(struct napi_struct *napi, int todo)
  604. {
  605. struct slic_device *sdev = container_of(napi, struct slic_device, napi);
  606. struct slic_shmem *sm = &sdev->shmem;
  607. struct slic_shmem_data *sm_data = sm->shmem_data;
  608. u32 isr = le32_to_cpu(sm_data->isr);
  609. int done = 0;
  610. slic_handle_irq(sdev, isr, todo, &done);
  611. if (done < todo) {
  612. napi_complete_done(napi, done);
  613. /* reenable irqs */
  614. sm_data->isr = 0;
  615. /* make sure sm_data->isr is cleard before irqs are reenabled */
  616. wmb();
  617. slic_write(sdev, SLIC_REG_ISR, 0);
  618. slic_flush_write(sdev);
  619. }
  620. return done;
  621. }
  622. static irqreturn_t slic_irq(int irq, void *dev_id)
  623. {
  624. struct slic_device *sdev = dev_id;
  625. struct slic_shmem *sm = &sdev->shmem;
  626. struct slic_shmem_data *sm_data = sm->shmem_data;
  627. slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_MASK);
  628. slic_flush_write(sdev);
  629. /* make sure sm_data->isr is read after ICR_INT_MASK is set */
  630. wmb();
  631. if (!sm_data->isr) {
  632. dma_rmb();
  633. /* spurious interrupt */
  634. slic_write(sdev, SLIC_REG_ISR, 0);
  635. slic_flush_write(sdev);
  636. return IRQ_NONE;
  637. }
  638. napi_schedule_irqoff(&sdev->napi);
  639. return IRQ_HANDLED;
  640. }
  641. static void slic_card_reset(struct slic_device *sdev)
  642. {
  643. u16 cmd;
  644. slic_write(sdev, SLIC_REG_RESET, SLIC_RESET_MAGIC);
  645. /* flush write by means of config space */
  646. pci_read_config_word(sdev->pdev, PCI_COMMAND, &cmd);
  647. mdelay(1);
  648. }
  649. static int slic_init_stat_queue(struct slic_device *sdev)
  650. {
  651. const unsigned int DESC_ALIGN_MASK = SLIC_STATS_DESC_ALIGN - 1;
  652. struct slic_stat_queue *stq = &sdev->stq;
  653. struct slic_stat_desc *descs;
  654. unsigned int misalign;
  655. unsigned int offset;
  656. dma_addr_t paddr;
  657. size_t size;
  658. int err;
  659. int i;
  660. stq->len = SLIC_NUM_STAT_DESCS;
  661. stq->active_array = 0;
  662. stq->done_idx = 0;
  663. size = stq->len * sizeof(*descs) + DESC_ALIGN_MASK;
  664. for (i = 0; i < SLIC_NUM_STAT_DESC_ARRAYS; i++) {
  665. descs = dma_alloc_coherent(&sdev->pdev->dev, size, &paddr,
  666. GFP_KERNEL);
  667. if (!descs) {
  668. netdev_err(sdev->netdev,
  669. "failed to allocate status descriptors\n");
  670. err = -ENOMEM;
  671. goto free_descs;
  672. }
  673. /* ensure correct alignment */
  674. offset = 0;
  675. misalign = paddr & DESC_ALIGN_MASK;
  676. if (misalign) {
  677. offset = SLIC_STATS_DESC_ALIGN - misalign;
  678. descs += offset;
  679. paddr += offset;
  680. }
  681. slic_write(sdev, SLIC_REG_RBAR, lower_32_bits(paddr) |
  682. stq->len);
  683. stq->descs[i] = descs;
  684. stq->paddr[i] = paddr;
  685. stq->addr_offset[i] = offset;
  686. }
  687. stq->mem_size = size;
  688. return 0;
  689. free_descs:
  690. while (i--) {
  691. dma_free_coherent(&sdev->pdev->dev, stq->mem_size,
  692. stq->descs[i] - stq->addr_offset[i],
  693. stq->paddr[i] - stq->addr_offset[i]);
  694. }
  695. return err;
  696. }
  697. static void slic_free_stat_queue(struct slic_device *sdev)
  698. {
  699. struct slic_stat_queue *stq = &sdev->stq;
  700. int i;
  701. for (i = 0; i < SLIC_NUM_STAT_DESC_ARRAYS; i++) {
  702. dma_free_coherent(&sdev->pdev->dev, stq->mem_size,
  703. stq->descs[i] - stq->addr_offset[i],
  704. stq->paddr[i] - stq->addr_offset[i]);
  705. }
  706. }
  707. static int slic_init_tx_queue(struct slic_device *sdev)
  708. {
  709. struct slic_tx_queue *txq = &sdev->txq;
  710. struct slic_tx_buffer *buff;
  711. struct slic_tx_desc *desc;
  712. unsigned int i;
  713. int err;
  714. txq->len = SLIC_NUM_TX_DESCS;
  715. txq->put_idx = 0;
  716. txq->done_idx = 0;
  717. txq->txbuffs = kcalloc(txq->len, sizeof(*buff), GFP_KERNEL);
  718. if (!txq->txbuffs)
  719. return -ENOMEM;
  720. txq->dma_pool = dma_pool_create("slic_pool", &sdev->pdev->dev,
  721. sizeof(*desc), SLIC_TX_DESC_ALIGN,
  722. 4096);
  723. if (!txq->dma_pool) {
  724. err = -ENOMEM;
  725. netdev_err(sdev->netdev, "failed to create dma pool\n");
  726. goto free_buffs;
  727. }
  728. for (i = 0; i < txq->len; i++) {
  729. buff = &txq->txbuffs[i];
  730. desc = dma_pool_zalloc(txq->dma_pool, GFP_KERNEL,
  731. &buff->desc_paddr);
  732. if (!desc) {
  733. netdev_err(sdev->netdev,
  734. "failed to alloc pool chunk (%i)\n", i);
  735. err = -ENOMEM;
  736. goto free_descs;
  737. }
  738. desc->hnd = cpu_to_le32((u32)(i + 1));
  739. desc->cmd = SLIC_CMD_XMT_REQ;
  740. desc->flags = 0;
  741. desc->type = cpu_to_le32(SLIC_CMD_TYPE_DUMB);
  742. buff->desc = desc;
  743. }
  744. return 0;
  745. free_descs:
  746. while (i--) {
  747. buff = &txq->txbuffs[i];
  748. dma_pool_free(txq->dma_pool, buff->desc, buff->desc_paddr);
  749. }
  750. dma_pool_destroy(txq->dma_pool);
  751. free_buffs:
  752. kfree(txq->txbuffs);
  753. return err;
  754. }
  755. static void slic_free_tx_queue(struct slic_device *sdev)
  756. {
  757. struct slic_tx_queue *txq = &sdev->txq;
  758. struct slic_tx_buffer *buff;
  759. unsigned int i;
  760. for (i = 0; i < txq->len; i++) {
  761. buff = &txq->txbuffs[i];
  762. dma_pool_free(txq->dma_pool, buff->desc, buff->desc_paddr);
  763. if (!buff->skb)
  764. continue;
  765. dma_unmap_single(&sdev->pdev->dev,
  766. dma_unmap_addr(buff, map_addr),
  767. dma_unmap_len(buff, map_len), DMA_TO_DEVICE);
  768. consume_skb(buff->skb);
  769. }
  770. dma_pool_destroy(txq->dma_pool);
  771. kfree(txq->txbuffs);
  772. }
  773. static int slic_init_rx_queue(struct slic_device *sdev)
  774. {
  775. struct slic_rx_queue *rxq = &sdev->rxq;
  776. struct slic_rx_buffer *buff;
  777. rxq->len = SLIC_NUM_RX_LES;
  778. rxq->done_idx = 0;
  779. rxq->put_idx = 0;
  780. buff = kcalloc(rxq->len, sizeof(*buff), GFP_KERNEL);
  781. if (!buff)
  782. return -ENOMEM;
  783. rxq->rxbuffs = buff;
  784. slic_refill_rx_queue(sdev, GFP_KERNEL);
  785. return 0;
  786. }
  787. static void slic_free_rx_queue(struct slic_device *sdev)
  788. {
  789. struct slic_rx_queue *rxq = &sdev->rxq;
  790. struct slic_rx_buffer *buff;
  791. unsigned int i;
  792. /* free rx buffers */
  793. for (i = 0; i < rxq->len; i++) {
  794. buff = &rxq->rxbuffs[i];
  795. if (!buff->skb)
  796. continue;
  797. dma_unmap_single(&sdev->pdev->dev,
  798. dma_unmap_addr(buff, map_addr),
  799. dma_unmap_len(buff, map_len),
  800. DMA_FROM_DEVICE);
  801. consume_skb(buff->skb);
  802. }
  803. kfree(rxq->rxbuffs);
  804. }
  805. static void slic_set_link_autoneg(struct slic_device *sdev)
  806. {
  807. unsigned int subid = sdev->pdev->subsystem_device;
  808. u32 val;
  809. if (sdev->is_fiber) {
  810. /* We've got a fiber gigabit interface, and register 4 is
  811. * different in fiber mode than in copper mode.
  812. */
  813. /* advertise FD only @1000 Mb */
  814. val = MII_ADVERTISE << 16 | ADVERTISE_1000XFULL |
  815. ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  816. /* enable PAUSE frames */
  817. slic_write(sdev, SLIC_REG_WPHY, val);
  818. /* reset phy, enable auto-neg */
  819. val = MII_BMCR << 16 | BMCR_RESET | BMCR_ANENABLE |
  820. BMCR_ANRESTART;
  821. slic_write(sdev, SLIC_REG_WPHY, val);
  822. } else { /* copper gigabit */
  823. /* We've got a copper gigabit interface, and register 4 is
  824. * different in copper mode than in fiber mode.
  825. */
  826. /* advertise 10/100 Mb modes */
  827. val = MII_ADVERTISE << 16 | ADVERTISE_100FULL |
  828. ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF;
  829. /* enable PAUSE frames */
  830. val |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  831. /* required by the Cicada PHY */
  832. val |= ADVERTISE_CSMA;
  833. slic_write(sdev, SLIC_REG_WPHY, val);
  834. /* advertise FD only @1000 Mb */
  835. val = MII_CTRL1000 << 16 | ADVERTISE_1000FULL;
  836. slic_write(sdev, SLIC_REG_WPHY, val);
  837. if (subid != PCI_SUBDEVICE_ID_ALACRITECH_CICADA) {
  838. /* if a Marvell PHY enable auto crossover */
  839. val = SLIC_MIICR_REG_16 | SLIC_MRV_REG16_XOVERON;
  840. slic_write(sdev, SLIC_REG_WPHY, val);
  841. /* reset phy, enable auto-neg */
  842. val = MII_BMCR << 16 | BMCR_RESET | BMCR_ANENABLE |
  843. BMCR_ANRESTART;
  844. slic_write(sdev, SLIC_REG_WPHY, val);
  845. } else {
  846. /* enable and restart auto-neg (don't reset) */
  847. val = MII_BMCR << 16 | BMCR_ANENABLE | BMCR_ANRESTART;
  848. slic_write(sdev, SLIC_REG_WPHY, val);
  849. }
  850. }
  851. }
  852. static void slic_set_mac_address(struct slic_device *sdev)
  853. {
  854. const u8 *addr = sdev->netdev->dev_addr;
  855. u32 val;
  856. val = addr[5] | addr[4] << 8 | addr[3] << 16 | addr[2] << 24;
  857. slic_write(sdev, SLIC_REG_WRADDRAL, val);
  858. slic_write(sdev, SLIC_REG_WRADDRBL, val);
  859. val = addr[0] << 8 | addr[1];
  860. slic_write(sdev, SLIC_REG_WRADDRAH, val);
  861. slic_write(sdev, SLIC_REG_WRADDRBH, val);
  862. slic_flush_write(sdev);
  863. }
  864. static u32 slic_read_dword_from_firmware(const struct firmware *fw, int *offset)
  865. {
  866. int idx = *offset;
  867. __le32 val;
  868. memcpy(&val, fw->data + *offset, sizeof(val));
  869. idx += 4;
  870. *offset = idx;
  871. return le32_to_cpu(val);
  872. }
  873. MODULE_FIRMWARE(SLIC_RCV_FIRMWARE_MOJAVE);
  874. MODULE_FIRMWARE(SLIC_RCV_FIRMWARE_OASIS);
  875. static int slic_load_rcvseq_firmware(struct slic_device *sdev)
  876. {
  877. const struct firmware *fw;
  878. const char *file;
  879. u32 codelen;
  880. int idx = 0;
  881. u32 instr;
  882. u32 addr;
  883. int err;
  884. file = (sdev->model == SLIC_MODEL_OASIS) ? SLIC_RCV_FIRMWARE_OASIS :
  885. SLIC_RCV_FIRMWARE_MOJAVE;
  886. err = request_firmware(&fw, file, &sdev->pdev->dev);
  887. if (err) {
  888. dev_err(&sdev->pdev->dev,
  889. "failed to load receive sequencer firmware %s\n", file);
  890. return err;
  891. }
  892. /* Do an initial sanity check concerning firmware size now. A further
  893. * check follows below.
  894. */
  895. if (fw->size < SLIC_FIRMWARE_MIN_SIZE) {
  896. dev_err(&sdev->pdev->dev,
  897. "invalid firmware size %zu (min %u expected)\n",
  898. fw->size, SLIC_FIRMWARE_MIN_SIZE);
  899. err = -EINVAL;
  900. goto release;
  901. }
  902. codelen = slic_read_dword_from_firmware(fw, &idx);
  903. /* do another sanity check against firmware size */
  904. if ((codelen + 4) > fw->size) {
  905. dev_err(&sdev->pdev->dev,
  906. "invalid rcv-sequencer firmware size %zu\n", fw->size);
  907. err = -EINVAL;
  908. goto release;
  909. }
  910. /* download sequencer code to card */
  911. slic_write(sdev, SLIC_REG_RCV_WCS, SLIC_RCVWCS_BEGIN);
  912. for (addr = 0; addr < codelen; addr++) {
  913. __le32 val;
  914. /* write out instruction address */
  915. slic_write(sdev, SLIC_REG_RCV_WCS, addr);
  916. instr = slic_read_dword_from_firmware(fw, &idx);
  917. /* write out the instruction data low addr */
  918. slic_write(sdev, SLIC_REG_RCV_WCS, instr);
  919. val = (__le32)fw->data[idx];
  920. instr = le32_to_cpu(val);
  921. idx++;
  922. /* write out the instruction data high addr */
  923. slic_write(sdev, SLIC_REG_RCV_WCS, instr);
  924. }
  925. /* finish download */
  926. slic_write(sdev, SLIC_REG_RCV_WCS, SLIC_RCVWCS_FINISH);
  927. slic_flush_write(sdev);
  928. release:
  929. release_firmware(fw);
  930. return err;
  931. }
  932. MODULE_FIRMWARE(SLIC_FIRMWARE_MOJAVE);
  933. MODULE_FIRMWARE(SLIC_FIRMWARE_OASIS);
  934. static int slic_load_firmware(struct slic_device *sdev)
  935. {
  936. u32 sectstart[SLIC_FIRMWARE_MAX_SECTIONS];
  937. u32 sectsize[SLIC_FIRMWARE_MAX_SECTIONS];
  938. const struct firmware *fw;
  939. unsigned int datalen;
  940. const char *file;
  941. int code_start;
  942. unsigned int i;
  943. u32 numsects;
  944. int idx = 0;
  945. u32 sect;
  946. u32 instr;
  947. u32 addr;
  948. u32 base;
  949. int err;
  950. file = (sdev->model == SLIC_MODEL_OASIS) ? SLIC_FIRMWARE_OASIS :
  951. SLIC_FIRMWARE_MOJAVE;
  952. err = request_firmware(&fw, file, &sdev->pdev->dev);
  953. if (err) {
  954. dev_err(&sdev->pdev->dev, "failed to load firmware %s\n", file);
  955. return err;
  956. }
  957. /* Do an initial sanity check concerning firmware size now. A further
  958. * check follows below.
  959. */
  960. if (fw->size < SLIC_FIRMWARE_MIN_SIZE) {
  961. dev_err(&sdev->pdev->dev,
  962. "invalid firmware size %zu (min is %u)\n", fw->size,
  963. SLIC_FIRMWARE_MIN_SIZE);
  964. err = -EINVAL;
  965. goto release;
  966. }
  967. numsects = slic_read_dword_from_firmware(fw, &idx);
  968. if (numsects == 0 || numsects > SLIC_FIRMWARE_MAX_SECTIONS) {
  969. dev_err(&sdev->pdev->dev,
  970. "invalid number of sections in firmware: %u", numsects);
  971. err = -EINVAL;
  972. goto release;
  973. }
  974. datalen = numsects * 8 + 4;
  975. for (i = 0; i < numsects; i++) {
  976. sectsize[i] = slic_read_dword_from_firmware(fw, &idx);
  977. datalen += sectsize[i];
  978. }
  979. /* do another sanity check against firmware size */
  980. if (datalen > fw->size) {
  981. dev_err(&sdev->pdev->dev,
  982. "invalid firmware size %zu (expected >= %u)\n",
  983. fw->size, datalen);
  984. err = -EINVAL;
  985. goto release;
  986. }
  987. /* get sections */
  988. for (i = 0; i < numsects; i++)
  989. sectstart[i] = slic_read_dword_from_firmware(fw, &idx);
  990. code_start = idx;
  991. instr = slic_read_dword_from_firmware(fw, &idx);
  992. for (sect = 0; sect < numsects; sect++) {
  993. unsigned int ssize = sectsize[sect] >> 3;
  994. base = sectstart[sect];
  995. for (addr = 0; addr < ssize; addr++) {
  996. /* write out instruction address */
  997. slic_write(sdev, SLIC_REG_WCS, base + addr);
  998. /* write out instruction to low addr */
  999. slic_write(sdev, SLIC_REG_WCS, instr);
  1000. instr = slic_read_dword_from_firmware(fw, &idx);
  1001. /* write out instruction to high addr */
  1002. slic_write(sdev, SLIC_REG_WCS, instr);
  1003. instr = slic_read_dword_from_firmware(fw, &idx);
  1004. }
  1005. }
  1006. idx = code_start;
  1007. for (sect = 0; sect < numsects; sect++) {
  1008. unsigned int ssize = sectsize[sect] >> 3;
  1009. instr = slic_read_dword_from_firmware(fw, &idx);
  1010. base = sectstart[sect];
  1011. if (base < 0x8000)
  1012. continue;
  1013. for (addr = 0; addr < ssize; addr++) {
  1014. /* write out instruction address */
  1015. slic_write(sdev, SLIC_REG_WCS,
  1016. SLIC_WCS_COMPARE | (base + addr));
  1017. /* write out instruction to low addr */
  1018. slic_write(sdev, SLIC_REG_WCS, instr);
  1019. instr = slic_read_dword_from_firmware(fw, &idx);
  1020. /* write out instruction to high addr */
  1021. slic_write(sdev, SLIC_REG_WCS, instr);
  1022. instr = slic_read_dword_from_firmware(fw, &idx);
  1023. }
  1024. }
  1025. slic_flush_write(sdev);
  1026. mdelay(10);
  1027. /* everything OK, kick off the card */
  1028. slic_write(sdev, SLIC_REG_WCS, SLIC_WCS_START);
  1029. slic_flush_write(sdev);
  1030. /* wait long enough for ucode to init card and reach the mainloop */
  1031. mdelay(20);
  1032. release:
  1033. release_firmware(fw);
  1034. return err;
  1035. }
  1036. static int slic_init_shmem(struct slic_device *sdev)
  1037. {
  1038. struct slic_shmem *sm = &sdev->shmem;
  1039. struct slic_shmem_data *sm_data;
  1040. dma_addr_t paddr;
  1041. sm_data = dma_alloc_coherent(&sdev->pdev->dev, sizeof(*sm_data),
  1042. &paddr, GFP_KERNEL);
  1043. if (!sm_data) {
  1044. dev_err(&sdev->pdev->dev, "failed to allocate shared memory\n");
  1045. return -ENOMEM;
  1046. }
  1047. sm->shmem_data = sm_data;
  1048. sm->isr_paddr = paddr;
  1049. sm->link_paddr = paddr + offsetof(struct slic_shmem_data, link);
  1050. return 0;
  1051. }
  1052. static void slic_free_shmem(struct slic_device *sdev)
  1053. {
  1054. struct slic_shmem *sm = &sdev->shmem;
  1055. struct slic_shmem_data *sm_data = sm->shmem_data;
  1056. dma_free_coherent(&sdev->pdev->dev, sizeof(*sm_data), sm_data,
  1057. sm->isr_paddr);
  1058. }
  1059. static int slic_init_iface(struct slic_device *sdev)
  1060. {
  1061. struct slic_shmem *sm = &sdev->shmem;
  1062. int err;
  1063. sdev->upr_list.pending = false;
  1064. err = slic_init_shmem(sdev);
  1065. if (err) {
  1066. netdev_err(sdev->netdev, "failed to init shared memory\n");
  1067. return err;
  1068. }
  1069. err = slic_load_firmware(sdev);
  1070. if (err) {
  1071. netdev_err(sdev->netdev, "failed to load firmware\n");
  1072. goto free_sm;
  1073. }
  1074. err = slic_load_rcvseq_firmware(sdev);
  1075. if (err) {
  1076. netdev_err(sdev->netdev,
  1077. "failed to load firmware for receive sequencer\n");
  1078. goto free_sm;
  1079. }
  1080. slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_OFF);
  1081. slic_flush_write(sdev);
  1082. mdelay(1);
  1083. err = slic_init_rx_queue(sdev);
  1084. if (err) {
  1085. netdev_err(sdev->netdev, "failed to init rx queue: %u\n", err);
  1086. goto free_sm;
  1087. }
  1088. err = slic_init_tx_queue(sdev);
  1089. if (err) {
  1090. netdev_err(sdev->netdev, "failed to init tx queue: %u\n", err);
  1091. goto free_rxq;
  1092. }
  1093. err = slic_init_stat_queue(sdev);
  1094. if (err) {
  1095. netdev_err(sdev->netdev, "failed to init status queue: %u\n",
  1096. err);
  1097. goto free_txq;
  1098. }
  1099. slic_write(sdev, SLIC_REG_ISP, lower_32_bits(sm->isr_paddr));
  1100. napi_enable(&sdev->napi);
  1101. /* disable irq mitigation */
  1102. slic_write(sdev, SLIC_REG_INTAGG, 0);
  1103. slic_write(sdev, SLIC_REG_ISR, 0);
  1104. slic_flush_write(sdev);
  1105. slic_set_mac_address(sdev);
  1106. spin_lock_bh(&sdev->link_lock);
  1107. sdev->duplex = DUPLEX_UNKNOWN;
  1108. sdev->speed = SPEED_UNKNOWN;
  1109. spin_unlock_bh(&sdev->link_lock);
  1110. slic_set_link_autoneg(sdev);
  1111. err = request_irq(sdev->pdev->irq, slic_irq, IRQF_SHARED, DRV_NAME,
  1112. sdev);
  1113. if (err) {
  1114. netdev_err(sdev->netdev, "failed to request irq: %u\n", err);
  1115. goto disable_napi;
  1116. }
  1117. slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_ON);
  1118. slic_flush_write(sdev);
  1119. /* request initial link status */
  1120. err = slic_handle_link_change(sdev);
  1121. if (err)
  1122. netdev_warn(sdev->netdev,
  1123. "failed to set initial link state: %u\n", err);
  1124. return 0;
  1125. disable_napi:
  1126. napi_disable(&sdev->napi);
  1127. slic_free_stat_queue(sdev);
  1128. free_txq:
  1129. slic_free_tx_queue(sdev);
  1130. free_rxq:
  1131. slic_free_rx_queue(sdev);
  1132. free_sm:
  1133. slic_free_shmem(sdev);
  1134. slic_card_reset(sdev);
  1135. return err;
  1136. }
  1137. static int slic_open(struct net_device *dev)
  1138. {
  1139. struct slic_device *sdev = netdev_priv(dev);
  1140. int err;
  1141. netif_carrier_off(dev);
  1142. err = slic_init_iface(sdev);
  1143. if (err) {
  1144. netdev_err(dev, "failed to initialize interface: %i\n", err);
  1145. return err;
  1146. }
  1147. netif_start_queue(dev);
  1148. return 0;
  1149. }
  1150. static int slic_close(struct net_device *dev)
  1151. {
  1152. struct slic_device *sdev = netdev_priv(dev);
  1153. u32 val;
  1154. netif_stop_queue(dev);
  1155. /* stop irq handling */
  1156. napi_disable(&sdev->napi);
  1157. slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_OFF);
  1158. slic_write(sdev, SLIC_REG_ISR, 0);
  1159. slic_flush_write(sdev);
  1160. free_irq(sdev->pdev->irq, sdev);
  1161. /* turn off RCV and XMT and power down PHY */
  1162. val = SLIC_GXCR_RESET | SLIC_GXCR_PAUSEEN;
  1163. slic_write(sdev, SLIC_REG_WXCFG, val);
  1164. val = SLIC_GRCR_RESET | SLIC_GRCR_CTLEN | SLIC_GRCR_ADDRAEN |
  1165. SLIC_GRCR_HASHSIZE << SLIC_GRCR_HASHSIZE_SHIFT;
  1166. slic_write(sdev, SLIC_REG_WRCFG, val);
  1167. val = MII_BMCR << 16 | BMCR_PDOWN;
  1168. slic_write(sdev, SLIC_REG_WPHY, val);
  1169. slic_flush_write(sdev);
  1170. slic_clear_upr_list(&sdev->upr_list);
  1171. slic_write(sdev, SLIC_REG_QUIESCE, 0);
  1172. slic_free_stat_queue(sdev);
  1173. slic_free_tx_queue(sdev);
  1174. slic_free_rx_queue(sdev);
  1175. slic_free_shmem(sdev);
  1176. slic_card_reset(sdev);
  1177. netif_carrier_off(dev);
  1178. return 0;
  1179. }
  1180. static netdev_tx_t slic_xmit(struct sk_buff *skb, struct net_device *dev)
  1181. {
  1182. struct slic_device *sdev = netdev_priv(dev);
  1183. struct slic_tx_queue *txq = &sdev->txq;
  1184. struct slic_tx_buffer *buff;
  1185. struct slic_tx_desc *desc;
  1186. dma_addr_t paddr;
  1187. u32 cbar_val;
  1188. u32 maplen;
  1189. if (unlikely(slic_get_free_tx_descs(txq) < SLIC_MAX_REQ_TX_DESCS)) {
  1190. netdev_err(dev, "BUG! not enough tx LEs left: %u\n",
  1191. slic_get_free_tx_descs(txq));
  1192. return NETDEV_TX_BUSY;
  1193. }
  1194. maplen = skb_headlen(skb);
  1195. paddr = dma_map_single(&sdev->pdev->dev, skb->data, maplen,
  1196. DMA_TO_DEVICE);
  1197. if (dma_mapping_error(&sdev->pdev->dev, paddr)) {
  1198. netdev_err(dev, "failed to map tx buffer\n");
  1199. goto drop_skb;
  1200. }
  1201. buff = &txq->txbuffs[txq->put_idx];
  1202. buff->skb = skb;
  1203. dma_unmap_addr_set(buff, map_addr, paddr);
  1204. dma_unmap_len_set(buff, map_len, maplen);
  1205. desc = buff->desc;
  1206. desc->totlen = cpu_to_le32(maplen);
  1207. desc->paddrl = cpu_to_le32(lower_32_bits(paddr));
  1208. desc->paddrh = cpu_to_le32(upper_32_bits(paddr));
  1209. desc->len = cpu_to_le32(maplen);
  1210. txq->put_idx = slic_next_queue_idx(txq->put_idx, txq->len);
  1211. cbar_val = lower_32_bits(buff->desc_paddr) | 1;
  1212. /* complete writes to RAM and DMA before hardware is informed */
  1213. wmb();
  1214. slic_write(sdev, SLIC_REG_CBAR, cbar_val);
  1215. if (slic_get_free_tx_descs(txq) < SLIC_MAX_REQ_TX_DESCS)
  1216. netif_stop_queue(dev);
  1217. return NETDEV_TX_OK;
  1218. drop_skb:
  1219. dev_kfree_skb_any(skb);
  1220. return NETDEV_TX_OK;
  1221. }
  1222. static void slic_get_stats(struct net_device *dev,
  1223. struct rtnl_link_stats64 *lst)
  1224. {
  1225. struct slic_device *sdev = netdev_priv(dev);
  1226. struct slic_stats *stats = &sdev->stats;
  1227. SLIC_GET_STATS_COUNTER(lst->rx_packets, stats, rx_packets);
  1228. SLIC_GET_STATS_COUNTER(lst->tx_packets, stats, tx_packets);
  1229. SLIC_GET_STATS_COUNTER(lst->rx_bytes, stats, rx_bytes);
  1230. SLIC_GET_STATS_COUNTER(lst->tx_bytes, stats, tx_bytes);
  1231. SLIC_GET_STATS_COUNTER(lst->rx_errors, stats, rx_errors);
  1232. SLIC_GET_STATS_COUNTER(lst->rx_dropped, stats, rx_buff_miss);
  1233. SLIC_GET_STATS_COUNTER(lst->tx_dropped, stats, tx_dropped);
  1234. SLIC_GET_STATS_COUNTER(lst->multicast, stats, rx_mcasts);
  1235. SLIC_GET_STATS_COUNTER(lst->rx_over_errors, stats, rx_buffoflow);
  1236. SLIC_GET_STATS_COUNTER(lst->rx_crc_errors, stats, rx_crc);
  1237. SLIC_GET_STATS_COUNTER(lst->rx_fifo_errors, stats, rx_oflow802);
  1238. SLIC_GET_STATS_COUNTER(lst->tx_carrier_errors, stats, tx_carrier);
  1239. }
  1240. static int slic_get_sset_count(struct net_device *dev, int sset)
  1241. {
  1242. switch (sset) {
  1243. case ETH_SS_STATS:
  1244. return ARRAY_SIZE(slic_stats_strings);
  1245. default:
  1246. return -EOPNOTSUPP;
  1247. }
  1248. }
  1249. static void slic_get_ethtool_stats(struct net_device *dev,
  1250. struct ethtool_stats *eth_stats, u64 *data)
  1251. {
  1252. struct slic_device *sdev = netdev_priv(dev);
  1253. struct slic_stats *stats = &sdev->stats;
  1254. SLIC_GET_STATS_COUNTER(data[0], stats, rx_packets);
  1255. SLIC_GET_STATS_COUNTER(data[1], stats, rx_bytes);
  1256. SLIC_GET_STATS_COUNTER(data[2], stats, rx_mcasts);
  1257. SLIC_GET_STATS_COUNTER(data[3], stats, rx_errors);
  1258. SLIC_GET_STATS_COUNTER(data[4], stats, rx_buff_miss);
  1259. SLIC_GET_STATS_COUNTER(data[5], stats, rx_tpcsum);
  1260. SLIC_GET_STATS_COUNTER(data[6], stats, rx_tpoflow);
  1261. SLIC_GET_STATS_COUNTER(data[7], stats, rx_tphlen);
  1262. SLIC_GET_STATS_COUNTER(data[8], stats, rx_ipcsum);
  1263. SLIC_GET_STATS_COUNTER(data[9], stats, rx_iplen);
  1264. SLIC_GET_STATS_COUNTER(data[10], stats, rx_iphlen);
  1265. SLIC_GET_STATS_COUNTER(data[11], stats, rx_early);
  1266. SLIC_GET_STATS_COUNTER(data[12], stats, rx_buffoflow);
  1267. SLIC_GET_STATS_COUNTER(data[13], stats, rx_lcode);
  1268. SLIC_GET_STATS_COUNTER(data[14], stats, rx_drbl);
  1269. SLIC_GET_STATS_COUNTER(data[15], stats, rx_crc);
  1270. SLIC_GET_STATS_COUNTER(data[16], stats, rx_oflow802);
  1271. SLIC_GET_STATS_COUNTER(data[17], stats, rx_uflow802);
  1272. SLIC_GET_STATS_COUNTER(data[18], stats, tx_packets);
  1273. SLIC_GET_STATS_COUNTER(data[19], stats, tx_bytes);
  1274. SLIC_GET_STATS_COUNTER(data[20], stats, tx_carrier);
  1275. SLIC_GET_STATS_COUNTER(data[21], stats, tx_dropped);
  1276. SLIC_GET_STATS_COUNTER(data[22], stats, irq_errs);
  1277. }
  1278. static void slic_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  1279. {
  1280. if (stringset == ETH_SS_STATS) {
  1281. memcpy(data, slic_stats_strings, sizeof(slic_stats_strings));
  1282. data += sizeof(slic_stats_strings);
  1283. }
  1284. }
  1285. static void slic_get_drvinfo(struct net_device *dev,
  1286. struct ethtool_drvinfo *info)
  1287. {
  1288. struct slic_device *sdev = netdev_priv(dev);
  1289. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  1290. strscpy(info->bus_info, pci_name(sdev->pdev), sizeof(info->bus_info));
  1291. }
  1292. static const struct ethtool_ops slic_ethtool_ops = {
  1293. .get_drvinfo = slic_get_drvinfo,
  1294. .get_link = ethtool_op_get_link,
  1295. .get_strings = slic_get_strings,
  1296. .get_ethtool_stats = slic_get_ethtool_stats,
  1297. .get_sset_count = slic_get_sset_count,
  1298. };
  1299. static const struct net_device_ops slic_netdev_ops = {
  1300. .ndo_open = slic_open,
  1301. .ndo_stop = slic_close,
  1302. .ndo_start_xmit = slic_xmit,
  1303. .ndo_set_mac_address = eth_mac_addr,
  1304. .ndo_get_stats64 = slic_get_stats,
  1305. .ndo_set_rx_mode = slic_set_rx_mode,
  1306. .ndo_validate_addr = eth_validate_addr,
  1307. };
  1308. static u16 slic_eeprom_csum(unsigned char *eeprom, unsigned int len)
  1309. {
  1310. unsigned char *ptr = eeprom;
  1311. u32 csum = 0;
  1312. __le16 data;
  1313. while (len > 1) {
  1314. memcpy(&data, ptr, sizeof(data));
  1315. csum += le16_to_cpu(data);
  1316. ptr += 2;
  1317. len -= 2;
  1318. }
  1319. if (len > 0)
  1320. csum += *(u8 *)ptr;
  1321. while (csum >> 16)
  1322. csum = (csum & 0xFFFF) + ((csum >> 16) & 0xFFFF);
  1323. return ~csum;
  1324. }
  1325. /* check eeprom size, magic and checksum */
  1326. static bool slic_eeprom_valid(unsigned char *eeprom, unsigned int size)
  1327. {
  1328. const unsigned int MAX_SIZE = 128;
  1329. const unsigned int MIN_SIZE = 98;
  1330. __le16 magic;
  1331. __le16 csum;
  1332. if (size < MIN_SIZE || size > MAX_SIZE)
  1333. return false;
  1334. memcpy(&magic, eeprom, sizeof(magic));
  1335. if (le16_to_cpu(magic) != SLIC_EEPROM_MAGIC)
  1336. return false;
  1337. /* cut checksum bytes */
  1338. size -= 2;
  1339. memcpy(&csum, eeprom + size, sizeof(csum));
  1340. return (le16_to_cpu(csum) == slic_eeprom_csum(eeprom, size));
  1341. }
  1342. static int slic_read_eeprom(struct slic_device *sdev)
  1343. {
  1344. unsigned int devfn = PCI_FUNC(sdev->pdev->devfn);
  1345. struct slic_shmem *sm = &sdev->shmem;
  1346. struct slic_shmem_data *sm_data = sm->shmem_data;
  1347. const unsigned int MAX_LOOPS = 5000;
  1348. unsigned int codesize;
  1349. unsigned char *eeprom;
  1350. struct slic_upr *upr;
  1351. unsigned int i = 0;
  1352. dma_addr_t paddr;
  1353. int err = 0;
  1354. u8 *mac[2];
  1355. eeprom = dma_alloc_coherent(&sdev->pdev->dev, SLIC_EEPROM_SIZE,
  1356. &paddr, GFP_KERNEL);
  1357. if (!eeprom)
  1358. return -ENOMEM;
  1359. slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_OFF);
  1360. /* setup ISP temporarily */
  1361. slic_write(sdev, SLIC_REG_ISP, lower_32_bits(sm->isr_paddr));
  1362. err = slic_new_upr(sdev, SLIC_UPR_CONFIG, paddr);
  1363. if (!err) {
  1364. for (i = 0; i < MAX_LOOPS; i++) {
  1365. if (le32_to_cpu(sm_data->isr) & SLIC_ISR_UPC)
  1366. break;
  1367. mdelay(1);
  1368. }
  1369. if (i == MAX_LOOPS) {
  1370. dev_err(&sdev->pdev->dev,
  1371. "timed out while waiting for eeprom data\n");
  1372. err = -ETIMEDOUT;
  1373. }
  1374. upr = slic_dequeue_upr(sdev);
  1375. kfree(upr);
  1376. }
  1377. slic_write(sdev, SLIC_REG_ISP, 0);
  1378. slic_write(sdev, SLIC_REG_ISR, 0);
  1379. slic_flush_write(sdev);
  1380. if (err)
  1381. goto free_eeprom;
  1382. if (sdev->model == SLIC_MODEL_OASIS) {
  1383. struct slic_oasis_eeprom *oee;
  1384. oee = (struct slic_oasis_eeprom *)eeprom;
  1385. mac[0] = oee->mac;
  1386. mac[1] = oee->mac2;
  1387. codesize = le16_to_cpu(oee->eeprom_code_size);
  1388. } else {
  1389. struct slic_mojave_eeprom *mee;
  1390. mee = (struct slic_mojave_eeprom *)eeprom;
  1391. mac[0] = mee->mac;
  1392. mac[1] = mee->mac2;
  1393. codesize = le16_to_cpu(mee->eeprom_code_size);
  1394. }
  1395. if (!slic_eeprom_valid(eeprom, codesize)) {
  1396. dev_err(&sdev->pdev->dev, "invalid checksum in eeprom\n");
  1397. err = -EINVAL;
  1398. goto free_eeprom;
  1399. }
  1400. /* set mac address */
  1401. eth_hw_addr_set(sdev->netdev, mac[devfn]);
  1402. free_eeprom:
  1403. dma_free_coherent(&sdev->pdev->dev, SLIC_EEPROM_SIZE, eeprom, paddr);
  1404. return err;
  1405. }
  1406. static int slic_init(struct slic_device *sdev)
  1407. {
  1408. int err;
  1409. spin_lock_init(&sdev->upper_lock);
  1410. spin_lock_init(&sdev->link_lock);
  1411. INIT_LIST_HEAD(&sdev->upr_list.list);
  1412. spin_lock_init(&sdev->upr_list.lock);
  1413. u64_stats_init(&sdev->stats.syncp);
  1414. slic_card_reset(sdev);
  1415. err = slic_load_firmware(sdev);
  1416. if (err) {
  1417. dev_err(&sdev->pdev->dev, "failed to load firmware\n");
  1418. return err;
  1419. }
  1420. /* we need the shared memory to read EEPROM so set it up temporarily */
  1421. err = slic_init_shmem(sdev);
  1422. if (err) {
  1423. dev_err(&sdev->pdev->dev, "failed to init shared memory\n");
  1424. return err;
  1425. }
  1426. err = slic_read_eeprom(sdev);
  1427. if (err) {
  1428. dev_err(&sdev->pdev->dev, "failed to read eeprom\n");
  1429. goto free_sm;
  1430. }
  1431. slic_card_reset(sdev);
  1432. slic_free_shmem(sdev);
  1433. return 0;
  1434. free_sm:
  1435. slic_free_shmem(sdev);
  1436. return err;
  1437. }
  1438. static bool slic_is_fiber(unsigned short subdev)
  1439. {
  1440. switch (subdev) {
  1441. /* Mojave */
  1442. case PCI_SUBDEVICE_ID_ALACRITECH_1000X1F:
  1443. case PCI_SUBDEVICE_ID_ALACRITECH_SES1001F: fallthrough;
  1444. /* Oasis */
  1445. case PCI_SUBDEVICE_ID_ALACRITECH_SEN2002XF:
  1446. case PCI_SUBDEVICE_ID_ALACRITECH_SEN2001XF:
  1447. case PCI_SUBDEVICE_ID_ALACRITECH_SEN2104EF:
  1448. case PCI_SUBDEVICE_ID_ALACRITECH_SEN2102EF:
  1449. return true;
  1450. }
  1451. return false;
  1452. }
  1453. static void slic_configure_pci(struct pci_dev *pdev)
  1454. {
  1455. u16 old;
  1456. u16 cmd;
  1457. pci_read_config_word(pdev, PCI_COMMAND, &old);
  1458. cmd = old | PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
  1459. if (old != cmd)
  1460. pci_write_config_word(pdev, PCI_COMMAND, cmd);
  1461. }
  1462. static int slic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1463. {
  1464. struct slic_device *sdev;
  1465. struct net_device *dev;
  1466. int err;
  1467. err = pci_enable_device(pdev);
  1468. if (err) {
  1469. dev_err(&pdev->dev, "failed to enable PCI device\n");
  1470. return err;
  1471. }
  1472. pci_set_master(pdev);
  1473. pci_try_set_mwi(pdev);
  1474. slic_configure_pci(pdev);
  1475. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  1476. if (err) {
  1477. dev_err(&pdev->dev, "failed to setup DMA\n");
  1478. goto disable;
  1479. }
  1480. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  1481. err = pci_request_regions(pdev, DRV_NAME);
  1482. if (err) {
  1483. dev_err(&pdev->dev, "failed to obtain PCI regions\n");
  1484. goto disable;
  1485. }
  1486. dev = alloc_etherdev(sizeof(*sdev));
  1487. if (!dev) {
  1488. dev_err(&pdev->dev, "failed to alloc ethernet device\n");
  1489. err = -ENOMEM;
  1490. goto free_regions;
  1491. }
  1492. SET_NETDEV_DEV(dev, &pdev->dev);
  1493. pci_set_drvdata(pdev, dev);
  1494. dev->irq = pdev->irq;
  1495. dev->netdev_ops = &slic_netdev_ops;
  1496. dev->hw_features = NETIF_F_RXCSUM;
  1497. dev->features |= dev->hw_features;
  1498. dev->ethtool_ops = &slic_ethtool_ops;
  1499. sdev = netdev_priv(dev);
  1500. sdev->model = (pdev->device == PCI_DEVICE_ID_ALACRITECH_OASIS) ?
  1501. SLIC_MODEL_OASIS : SLIC_MODEL_MOJAVE;
  1502. sdev->is_fiber = slic_is_fiber(pdev->subsystem_device);
  1503. sdev->pdev = pdev;
  1504. sdev->netdev = dev;
  1505. sdev->regs = ioremap(pci_resource_start(pdev, 0),
  1506. pci_resource_len(pdev, 0));
  1507. if (!sdev->regs) {
  1508. dev_err(&pdev->dev, "failed to map registers\n");
  1509. err = -ENOMEM;
  1510. goto free_netdev;
  1511. }
  1512. err = slic_init(sdev);
  1513. if (err) {
  1514. dev_err(&pdev->dev, "failed to initialize driver\n");
  1515. goto unmap;
  1516. }
  1517. netif_napi_add(dev, &sdev->napi, slic_poll);
  1518. netif_carrier_off(dev);
  1519. err = register_netdev(dev);
  1520. if (err) {
  1521. dev_err(&pdev->dev, "failed to register net device: %i\n", err);
  1522. goto unmap;
  1523. }
  1524. return 0;
  1525. unmap:
  1526. iounmap(sdev->regs);
  1527. free_netdev:
  1528. free_netdev(dev);
  1529. free_regions:
  1530. pci_release_regions(pdev);
  1531. disable:
  1532. pci_disable_device(pdev);
  1533. return err;
  1534. }
  1535. static void slic_remove(struct pci_dev *pdev)
  1536. {
  1537. struct net_device *dev = pci_get_drvdata(pdev);
  1538. struct slic_device *sdev = netdev_priv(dev);
  1539. unregister_netdev(dev);
  1540. iounmap(sdev->regs);
  1541. free_netdev(dev);
  1542. pci_release_regions(pdev);
  1543. pci_disable_device(pdev);
  1544. }
  1545. static struct pci_driver slic_driver = {
  1546. .name = DRV_NAME,
  1547. .id_table = slic_id_tbl,
  1548. .probe = slic_probe,
  1549. .remove = slic_remove,
  1550. };
  1551. module_pci_driver(slic_driver);
  1552. MODULE_DESCRIPTION("Alacritech non-accelerated SLIC driver");
  1553. MODULE_AUTHOR("Lino Sanfilippo <[email protected]>");
  1554. MODULE_LICENSE("GPL");