1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright 2016-2022 HabanaLabs, Ltd.
- * All Rights Reserved.
- */
- #include <linux/slab.h>
- #include "../habanalabs.h"
- #include <trace/events/habanalabs.h>
- /**
- * hl_mmu_get_funcs() - get MMU functions structure
- * @hdev: habanalabs device structure.
- * @pgt_residency: page table residency.
- * @is_dram_addr: true if we need HMMU functions
- *
- * @return appropriate MMU functions structure
- */
- static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
- bool is_dram_addr)
- {
- return &hdev->mmu_func[pgt_residency];
- }
- bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
- {
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
- prop->dmmu.start_addr,
- prop->dmmu.end_addr);
- }
- /**
- * hl_mmu_init() - initialize the MMU module.
- * @hdev: habanalabs device structure.
- *
- * Return: 0 for success, non-zero for failure.
- */
- int hl_mmu_init(struct hl_device *hdev)
- {
- int rc = -EOPNOTSUPP;
- if (!hdev->mmu_enable)
- return 0;
- mutex_init(&hdev->mmu_lock);
- if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
- rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
- if (rc)
- return rc;
- }
- if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
- rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
- if (rc)
- goto fini_dr_mmu;
- }
- return 0;
- fini_dr_mmu:
- if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
- hdev->mmu_func[MMU_DR_PGT].fini(hdev);
- return rc;
- }
- /**
- * hl_mmu_fini() - release the MMU module.
- * @hdev: habanalabs device structure.
- *
- * This function does the following:
- * - Disable MMU in H/W.
- * - Free the pgt_infos pool.
- *
- * All contexts should be freed before calling this function.
- */
- void hl_mmu_fini(struct hl_device *hdev)
- {
- if (!hdev->mmu_enable)
- return;
- if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
- hdev->mmu_func[MMU_DR_PGT].fini(hdev);
- if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
- hdev->mmu_func[MMU_HR_PGT].fini(hdev);
- mutex_destroy(&hdev->mmu_lock);
- }
- /**
- * hl_mmu_ctx_init() - initialize a context for using the MMU module.
- * @ctx: pointer to the context structure to initialize.
- *
- * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
- * page tables hops related to this context.
- * Return: 0 on success, non-zero otherwise.
- */
- int hl_mmu_ctx_init(struct hl_ctx *ctx)
- {
- struct hl_device *hdev = ctx->hdev;
- int rc = -EOPNOTSUPP;
- if (!hdev->mmu_enable)
- return 0;
- if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
- rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
- if (rc)
- return rc;
- }
- if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
- rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
- if (rc)
- goto fini_dr_ctx;
- }
- return 0;
- fini_dr_ctx:
- if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
- hdev->mmu_func[MMU_DR_PGT].fini(hdev);
- return rc;
- }
- /*
- * hl_mmu_ctx_fini - disable a ctx from using the mmu module
- *
- * @ctx: pointer to the context structure
- *
- * This function does the following:
- * - Free any pgts which were not freed yet
- * - Free the mutex
- * - Free DRAM default page mapping hops
- */
- void hl_mmu_ctx_fini(struct hl_ctx *ctx)
- {
- struct hl_device *hdev = ctx->hdev;
- if (!hdev->mmu_enable)
- return;
- if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
- hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
- if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
- hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
- }
- /*
- * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
- *
- * @hdev: pointer to device data.
- * @mmu_prop: MMU properties.
- * @page_size: page size
- * @real_page_size: set here the actual page size to use for the operation
- * @is_dram_addr: true if DRAM address, otherwise false.
- *
- * @return 0 on success, otherwise non 0 error code
- *
- * note that this is general implementation that can fit most MMU arch. but as this is used as an
- * MMU function:
- * 1. it shall not be called directly- only from mmu_func structure instance
- * 2. each MMU may modify the implementation internally
- */
- int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
- u32 page_size, u32 *real_page_size, bool is_dram_addr)
- {
- /*
- * The H/W handles mapping of specific page sizes. Hence if the page
- * size is bigger, we break it to sub-pages and map them separately.
- */
- if ((page_size % mmu_prop->page_size) == 0) {
- *real_page_size = mmu_prop->page_size;
- return 0;
- }
- dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
- page_size, mmu_prop->page_size >> 10);
- return -EFAULT;
- }
- static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
- bool is_dram_addr)
- {
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- if (is_dram_addr)
- return &prop->dmmu;
- else if ((page_size % prop->pmmu_huge.page_size) == 0)
- return &prop->pmmu_huge;
- return &prop->pmmu;
- }
- /*
- * hl_mmu_unmap_page - unmaps a virtual addr
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to map from
- * @page_size: size of the page to unmap
- * @flush_pte: whether to do a PCI flush
- *
- * This function does the following:
- * - Check that the virt addr is mapped
- * - Unmap the virt addr and frees pgts if possible
- * - Returns 0 on success, -EINVAL if the given addr is not mapped
- *
- * Because this function changes the page tables in the device and because it
- * changes the MMU hash, it must be protected by a lock.
- * However, because it maps only a single page, the lock should be implemented
- * in a higher level in order to protect the entire mapping of the memory area
- *
- * For optimization reasons PCI flush may be requested once after unmapping of
- * large area.
- */
- int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
- {
- struct hl_device *hdev = ctx->hdev;
- struct hl_mmu_properties *mmu_prop;
- struct hl_mmu_funcs *mmu_funcs;
- int i, pgt_residency, rc = 0;
- u32 real_page_size, npages;
- u64 real_virt_addr;
- bool is_dram_addr;
- if (!hdev->mmu_enable)
- return 0;
- is_dram_addr = hl_is_dram_va(hdev, virt_addr);
- mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
- pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
- mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
- rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
- is_dram_addr);
- if (rc)
- return rc;
- npages = page_size / real_page_size;
- real_virt_addr = virt_addr;
- for (i = 0 ; i < npages ; i++) {
- rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
- if (rc)
- break;
- real_virt_addr += real_page_size;
- }
- if (flush_pte)
- mmu_funcs->flush(ctx);
- if (trace_habanalabs_mmu_unmap_enabled() && !rc)
- trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
- return rc;
- }
- /*
- * hl_mmu_map_page - maps a virtual addr to physical addr
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to map from
- * @phys_addr: phys addr to map to
- * @page_size: physical page size
- * @flush_pte: whether to do a PCI flush
- *
- * This function does the following:
- * - Check that the virt addr is not mapped
- * - Allocate pgts as necessary in order to map the virt addr to the phys
- * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
- *
- * Because this function changes the page tables in the device and because it
- * changes the MMU hash, it must be protected by a lock.
- * However, because it maps only a single page, the lock should be implemented
- * in a higher level in order to protect the entire mapping of the memory area
- *
- * For optimization reasons PCI flush may be requested once after mapping of
- * large area.
- */
- int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
- bool flush_pte)
- {
- int i, rc, pgt_residency, mapped_cnt = 0;
- struct hl_device *hdev = ctx->hdev;
- struct hl_mmu_properties *mmu_prop;
- u64 real_virt_addr, real_phys_addr;
- struct hl_mmu_funcs *mmu_funcs;
- u32 real_page_size, npages;
- bool is_dram_addr;
- if (!hdev->mmu_enable)
- return 0;
- is_dram_addr = hl_is_dram_va(hdev, virt_addr);
- mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
- pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
- mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
- rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
- is_dram_addr);
- if (rc)
- return rc;
- /*
- * Verify that the phys and virt addresses are aligned with the
- * MMU page size (in dram this means checking the address and MMU
- * after scrambling)
- */
- if ((is_dram_addr &&
- ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
- (mmu_prop->page_size - 1)) ||
- (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
- (mmu_prop->page_size - 1)))) ||
- (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
- (virt_addr & (real_page_size - 1)))))
- dev_crit(hdev->dev,
- "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
- phys_addr, virt_addr, real_page_size);
- npages = page_size / real_page_size;
- real_virt_addr = virt_addr;
- real_phys_addr = phys_addr;
- for (i = 0 ; i < npages ; i++) {
- rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
- is_dram_addr);
- if (rc)
- goto err;
- real_virt_addr += real_page_size;
- real_phys_addr += real_page_size;
- mapped_cnt++;
- }
- if (flush_pte)
- mmu_funcs->flush(ctx);
- trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
- return 0;
- err:
- real_virt_addr = virt_addr;
- for (i = 0 ; i < mapped_cnt ; i++) {
- if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
- dev_warn_ratelimited(hdev->dev,
- "failed to unmap va: 0x%llx\n", real_virt_addr);
- real_virt_addr += real_page_size;
- }
- mmu_funcs->flush(ctx);
- return rc;
- }
- /*
- * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
- * for mapping contiguous physical memory
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to map from
- * @phys_addr: phys addr to map to
- * @size: size to map
- *
- */
- int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
- u64 phys_addr, u32 size)
- {
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 curr_va, curr_pa;
- u32 page_size;
- bool flush_pte;
- int rc = 0, off;
- if (hl_mem_area_inside_range(virt_addr, size,
- prop->dmmu.start_addr, prop->dmmu.end_addr))
- page_size = prop->dmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu.start_addr, prop->pmmu.end_addr))
- page_size = prop->pmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
- page_size = prop->pmmu_huge.page_size;
- else
- return -EINVAL;
- for (off = 0 ; off < size ; off += page_size) {
- curr_va = virt_addr + off;
- curr_pa = phys_addr + off;
- flush_pte = (off + page_size) >= size;
- rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
- flush_pte);
- if (rc) {
- dev_err(hdev->dev,
- "Map failed for va 0x%llx to pa 0x%llx\n",
- curr_va, curr_pa);
- /* last mapping failed so don't try to unmap it - reduce off by page_size */
- off -= page_size;
- goto unmap;
- }
- }
- return rc;
- unmap:
- for (; off >= 0 ; off -= page_size) {
- curr_va = virt_addr + off;
- flush_pte = (off - (s32) page_size) < 0;
- if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
- dev_warn_ratelimited(hdev->dev,
- "failed to unmap va 0x%llx\n", curr_va);
- }
- return rc;
- }
- /*
- * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
- * for unmapping contiguous physical memory
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to unmap
- * @size: size to unmap
- *
- */
- int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
- {
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 curr_va;
- u32 page_size;
- bool flush_pte;
- int rc = 0, off;
- if (hl_mem_area_inside_range(virt_addr, size,
- prop->dmmu.start_addr, prop->dmmu.end_addr))
- page_size = prop->dmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu.start_addr, prop->pmmu.end_addr))
- page_size = prop->pmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
- page_size = prop->pmmu_huge.page_size;
- else
- return -EINVAL;
- for (off = 0 ; off < size ; off += page_size) {
- curr_va = virt_addr + off;
- flush_pte = (off + page_size) >= size;
- rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
- if (rc)
- dev_warn_ratelimited(hdev->dev,
- "Unmap failed for va 0x%llx\n", curr_va);
- }
- return rc;
- }
- /*
- * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
- *
- * @ctx: pointer to the context structure
- *
- */
- void hl_mmu_swap_out(struct hl_ctx *ctx)
- {
- struct hl_device *hdev = ctx->hdev;
- if (!hdev->mmu_enable)
- return;
- if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
- hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
- if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
- hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
- }
- /*
- * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
- *
- * @ctx: pointer to the context structure
- *
- */
- void hl_mmu_swap_in(struct hl_ctx *ctx)
- {
- struct hl_device *hdev = ctx->hdev;
- if (!hdev->mmu_enable)
- return;
- if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
- hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
- if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
- hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
- }
- static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
- struct hl_mmu_hop_info *hops,
- u64 *phys_addr)
- {
- struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
- u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
- struct hl_mmu_properties *mmu_prop;
- /* last hop holds the phys address and flags */
- if (hops->unscrambled_paddr)
- tmp_phys_addr = hops->unscrambled_paddr;
- else
- tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
- if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
- mmu_prop = &prop->pmmu_huge;
- else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
- mmu_prop = &prop->pmmu;
- else /* HL_VA_RANGE_TYPE_DRAM */
- mmu_prop = &prop->dmmu;
- if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
- !is_power_of_2(prop->dram_page_size)) {
- u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
- page_id, page_start;
- u32 page_off;
- /*
- * Bit arithmetics cannot be used for non power of two page
- * sizes. In addition, since bit arithmetics is not used,
- * we cannot ignore dram base. All that shall be considered.
- */
- dram_page_size = prop->dram_page_size;
- dram_base = prop->dram_base_address;
- abs_phys_addr = tmp_phys_addr - dram_base;
- abs_virt_addr = virt_addr - dram_base;
- page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
- page_start = page_id * dram_page_size;
- div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
- *phys_addr = page_start + page_off + dram_base;
- } else {
- /*
- * find the correct hop shift field in hl_mmu_properties
- * structure in order to determine the right masks
- * for the page offset.
- */
- hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
- offset_mask = (1ull << hop_shift) - 1;
- addr_mask = ~(offset_mask);
- *phys_addr = (tmp_phys_addr & addr_mask) |
- (virt_addr & offset_mask);
- }
- }
- int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
- {
- struct hl_mmu_hop_info hops;
- int rc;
- memset(&hops, 0, sizeof(hops));
- rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
- if (rc)
- return rc;
- hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
- return 0;
- }
- int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
- struct hl_mmu_hop_info *hops)
- {
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop;
- struct hl_mmu_properties *mmu_prop;
- struct hl_mmu_funcs *mmu_funcs;
- int pgt_residency, rc;
- bool is_dram_addr;
- if (!hdev->mmu_enable)
- return -EOPNOTSUPP;
- prop = &hdev->asic_prop;
- hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
- is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
- prop->dmmu.start_addr,
- prop->dmmu.end_addr);
- /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
- mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
- pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
- mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
- mutex_lock(&hdev->mmu_lock);
- rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
- mutex_unlock(&hdev->mmu_lock);
- if (rc)
- return rc;
- /* add page offset to physical address */
- if (hops->unscrambled_paddr)
- hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
- return 0;
- }
- int hl_mmu_if_set_funcs(struct hl_device *hdev)
- {
- if (!hdev->mmu_enable)
- return 0;
- switch (hdev->asic_type) {
- case ASIC_GOYA:
- case ASIC_GAUDI:
- case ASIC_GAUDI_SEC:
- hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
- break;
- case ASIC_GAUDI2:
- case ASIC_GAUDI2_SEC:
- /* MMUs in Gaudi2 are always host resident */
- hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
- break;
- default:
- dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
- hdev->asic_type);
- return -EOPNOTSUPP;
- }
- return 0;
- }
- /**
- * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
- * @hdev: pointer to device data.
- * @addr: The address to scramble.
- *
- * Return: The scrambled address.
- */
- u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
- {
- return addr;
- }
- /**
- * hl_mmu_descramble_addr() - The generic mmu address descrambling
- * routine.
- * @hdev: pointer to device data.
- * @addr: The address to descramble.
- *
- * Return: The un-scrambled address.
- */
- u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
- {
- return addr;
- }
- int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
- {
- int rc;
- rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
- if (rc)
- dev_err_ratelimited(hdev->dev, "MMU cache invalidation failed\n");
- return rc;
- }
- int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
- u32 flags, u32 asid, u64 va, u64 size)
- {
- int rc;
- rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
- asid, va, size);
- if (rc)
- dev_err_ratelimited(hdev->dev, "MMU cache range invalidation failed\n");
- return rc;
- }
- static void hl_mmu_prefetch_work_function(struct work_struct *work)
- {
- struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, pf_work);
- struct hl_ctx *ctx = pfw->ctx;
- struct hl_device *hdev = ctx->hdev;
- if (!hl_device_operational(hdev, NULL))
- goto put_ctx;
- mutex_lock(&hdev->mmu_lock);
- hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
- mutex_unlock(&hdev->mmu_lock);
- put_ctx:
- /*
- * context was taken in the common mmu prefetch function- see comment there about
- * context handling.
- */
- hl_ctx_put(ctx);
- kfree(pfw);
- }
- int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
- {
- struct hl_prefetch_work *handle_pf_work;
- handle_pf_work = kmalloc(sizeof(*handle_pf_work), GFP_KERNEL);
- if (!handle_pf_work)
- return -ENOMEM;
- INIT_WORK(&handle_pf_work->pf_work, hl_mmu_prefetch_work_function);
- handle_pf_work->ctx = ctx;
- handle_pf_work->va = va;
- handle_pf_work->size = size;
- handle_pf_work->flags = flags;
- handle_pf_work->asid = asid;
- /*
- * as actual prefetch is done in a WQ we must get the context (and put it
- * at the end of the work function)
- */
- hl_ctx_get(ctx);
- queue_work(ctx->hdev->pf_wq, &handle_pf_work->pf_work);
- return 0;
- }
- u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
- {
- return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
- }
- /**
- * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
- * @ctx: pointer to the context structure to initialize.
- * @mmu_prop: MMU properties.
- * @hop_idx: HOP index.
- * @hop_addr: HOP address.
- * @virt_addr: virtual address fro the translation.
- *
- * @return the matching PTE value on success, otherwise U64_MAX.
- */
- u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
- u8 hop_idx, u64 hop_addr, u64 virt_addr)
- {
- u64 mask, shift;
- if (hop_idx >= mmu_prop->num_hops) {
- dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
- return U64_MAX;
- }
- shift = mmu_prop->hop_shifts[hop_idx];
- mask = mmu_prop->hop_masks[hop_idx];
- return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
- }
- static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
- struct gen_pool_chunk *chunk,
- void *data)
- {
- struct hl_device *hdev = (struct hl_device *)data;
- hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
- (void *)chunk->start_addr, chunk->phys_addr);
- }
- void hl_mmu_hr_flush(struct hl_ctx *ctx)
- {
- /* a flush operation requires memory barrier */
- mb();
- }
- /**
- * hl_mmu_hr_pool_destroy() - destroy genpool
- * @hdev: habanalabs device structure.
- * @hr_priv: MMU HR private data.
- * @hop_table_size: HOP table size.
- *
- * This function does the following:
- * - free entries allocated for shadow HOP0
- * - free pool chunks
- * - free pool
- */
- static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
- u32 hop_table_size)
- {
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
- struct pgt_info *hop0_pgt;
- int asid;
- if (ZERO_OR_NULL_PTR(*pool))
- return;
- /* Free the Fixed allocation of HOPs0 */
- if (hr_priv->mmu_asid_hop0) {
- for (asid = 0 ; asid < prop->max_asid ; asid++) {
- hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
- if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
- continue;
- gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
- }
- }
- gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
- gen_pool_destroy(*pool);
- /* Make sure that if we arrive here again without init was called we
- * won't cause kernel panic. This can happen for example if we fail
- * during hard reset code at certain points
- */
- *pool = NULL;
- }
- /**
- * hl_mmu_hr_init() - initialize the MMU module.
- * @hdev: habanalabs device structure.
- * @hr_priv: MMU HR private data.
- * @hop_table_size: HOP table size.
- * @pgt_size: memory size allocated for the page table
- *
- * @return 0 on success otherwise non-zero error code
- *
- * This function does the following:
- * - Create a pool of pages for pgt_infos.
- * - Create a shadow table for pgt
- */
- int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
- u64 pgt_size)
- {
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- size_t pool_chunk_size = SZ_4M;
- struct pgt_info *hop0_pgt;
- dma_addr_t dma_addr;
- u64 virt_addr;
- int i, rc;
- /*
- * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
- * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
- * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
- * allocations with higher-order alignment restrictions
- */
- hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
- if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
- dev_err(hdev->dev, "Failed to create hr page pool\n");
- return -ENOMEM;
- }
- hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
- if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
- dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
- rc = -ENOMEM;
- goto destroy_mmu_pgt_pool;
- }
- for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
- virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
- &dma_addr,
- GFP_KERNEL | __GFP_ZERO);
- if (ZERO_OR_NULL_PTR(virt_addr)) {
- dev_err(hdev->dev,
- "Failed to allocate memory for host-resident page pool\n");
- rc = -ENOMEM;
- goto destroy_mmu_pgt_pool;
- }
- rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
- pool_chunk_size, -1);
- if (rc) {
- dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
- goto destroy_mmu_pgt_pool;
- }
- }
- for (i = 0 ; i < prop->max_asid ; i++) {
- hop0_pgt = &hr_priv->mmu_asid_hop0[i];
- hop0_pgt->virt_addr = (uintptr_t)
- gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
- hop_table_size,
- (dma_addr_t *) &hop0_pgt->phys_addr,
- hop_table_size);
- if (!hop0_pgt->virt_addr) {
- dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
- rc = -ENOMEM;
- goto destroy_mmu_pgt_pool;
- }
- }
- /* MMU H/W init will be done in device hw_init() */
- return 0;
- destroy_mmu_pgt_pool:
- hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
- if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
- kvfree(hr_priv->mmu_asid_hop0);
- return rc;
- }
- /**
- * hl_mmu_hr_fini() - release the MMU module.
- * @hdev: habanalabs device structure.
- * @hr_priv: MMU host resident private info.
- * @hop_table_size: HOP table size
- *
- * This function does the following:
- * - Disable MMU in H/W.
- * - Free the pgt_infos pool.
- *
- * All contexts should be freed before calling this function.
- */
- void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
- {
- /* MMU H/W fini was already done in device hw_fini() */
- hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
- if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
- kvfree(hr_priv->mmu_asid_hop0);
- /* Make sure that if we arrive here again without init was
- * called we won't cause kernel panic. This can happen for
- * example if we fail during hard reset code at certain points
- */
- hr_priv->mmu_asid_hop0 = NULL;
- }
- }
- /**
- * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
- * @pgt_info: page table info structure.
- * @hr_priv: MMU HR private data.
- * @hop_table_size: HOP table size.
- */
- void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
- u32 hop_table_size)
- {
- gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
- hash_del(&pgt_info->node);
- kfree(pgt_info);
- }
- /**
- * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
- * @ctx: pointer to the context structure
- * @pgt: pgt_info for the HOP hosting the PTE
- * @phys_pte_addr: phys address of the PTE
- * @hop_table_size: HOP table size
- *
- * @return PTE virtual address
- *
- * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
- * by adding the PTE offset.
- */
- u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
- u64 phys_pte_addr, u32 hop_table_size)
- {
- u64 page_mask = (hop_table_size - 1);
- u64 pte_offset = phys_pte_addr & page_mask;
- return pgt->virt_addr + pte_offset;
- }
- /**
- * hl_mmu_hr_write_pte() - write HR PTE
- * @ctx: pointer to the context structure
- * @pgt_info: HOP's page table info structure
- * @phys_pte_addr: phys PTE address
- * @val: raw PTE data
- * @hop_table_size: HOP table size
- */
- void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
- u64 val, u32 hop_table_size)
- {
- /*
- * The value to write is the phys address of the next hop +
- * flags at the 12 LSBs.
- */
- u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
- *((u64 *) (uintptr_t) virt_addr) = val;
- }
- /**
- * hl_mmu_hr_clear_pte() - clear HR PTE
- * @ctx: pointer to the context structure
- * @pgt_info: HOP's page table info structure
- * @phys_pte_addr: phys PTE address
- * @hop_table_size: HOP table size
- */
- void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
- u32 hop_table_size)
- {
- /* no need to transform the value to physical address */
- hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
- }
- /**
- * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
- * @ctx: pointer to the context structure
- * @pgt_info: HOP's page table info structure
- * @hr_priv: HR MMU private info
- * @hop_table_size: HOP table size
- *
- * @return number of PTEs still in the HOP
- */
- int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
- struct hl_mmu_hr_priv *hr_priv,
- u32 hop_table_size)
- {
- int num_of_ptes_left;
- pgt_info->num_of_ptes--;
- /*
- * Need to save the number of ptes left because free_hop might free
- * the pgt_info
- */
- num_of_ptes_left = pgt_info->num_of_ptes;
- if (!num_of_ptes_left)
- hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
- return num_of_ptes_left;
- }
- /**
- * hl_mmu_hr_get_pte() - increase PGT PTE count
- * @ctx: pointer to the context structure
- * @hr_func: host resident functions
- * @phys_hop_addr: HOP phys address
- */
- void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
- {
- hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
- }
- /**
- * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
- * @ctx: pointer to the context structure.
- * @hr_func: host resident functions.
- * @curr_pte: current PTE value.
- *
- * @return pgt_info structure on success, otherwise NULL.
- */
- struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
- struct hl_hr_mmu_funcs *hr_func,
- u64 curr_pte)
- {
- u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
- if (next_hop_phys_addr == ULLONG_MAX)
- return NULL;
- return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
- }
- /**
- * hl_mmu_hr_alloc_hop() - allocate HOP
- * @ctx: pointer to the context structure.
- * @hr_priv: host resident private info structure.
- * @hr_func: host resident functions.
- * @mmu_prop: MMU properties.
- *
- * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
- */
- struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
- struct hl_hr_mmu_funcs *hr_func,
- struct hl_mmu_properties *mmu_prop)
- {
- struct hl_device *hdev = ctx->hdev;
- struct pgt_info *pgt_info;
- dma_addr_t phys_addr;
- void *virt_addr;
- int i, retry = 1;
- pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
- if (!pgt_info)
- return NULL;
- for (i = 0; i <= retry; i++) {
- virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
- mmu_prop->hop_table_size,
- &phys_addr,
- mmu_prop->hop_table_size);
- if (virt_addr)
- break;
- /* No memory in pool - get some and try again */
- virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
- GFP_KERNEL | __GFP_ZERO);
- if (ZERO_OR_NULL_PTR(virt_addr))
- break;
- if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
- phys_addr, SZ_2M, -1)) {
- hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
- virt_addr = NULL;
- break;
- }
- }
- if (ZERO_OR_NULL_PTR(virt_addr)) {
- dev_err(hdev->dev, "failed to allocate page\n");
- goto pool_alloc_err;
- }
- pgt_info->phys_addr = phys_addr;
- pgt_info->shadow_addr = (unsigned long) NULL;
- pgt_info->virt_addr = (unsigned long)virt_addr;
- pgt_info->ctx = ctx;
- pgt_info->num_of_ptes = 0;
- hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
- return pgt_info;
- pool_alloc_err:
- kfree(pgt_info);
- return NULL;
- }
- /**
- * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
- * @ctx: pointer to the context structure.
- * @hr_priv: host resident private info structure.
- * @hr_func: host resident functions.
- * @mmu_prop: MMU properties.
- * @curr_pte: current PTE value.
- * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
- *
- * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
- */
- struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
- struct hl_mmu_hr_priv *hr_priv,
- struct hl_hr_mmu_funcs *hr_func,
- struct hl_mmu_properties *mmu_prop,
- u64 curr_pte, bool *is_new_hop)
- {
- u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
- if (hop_addr != ULLONG_MAX)
- return hr_func->get_pgt_info(ctx, hop_addr);
- *is_new_hop = true;
- return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
- }
- /**
- * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
- * @ctx: pointer to the context structure.
- * @virt_addr: the virt address for which to get info.
- * @hops: HOPs info structure.
- * @hr_func: host resident functions.
- *
- * @return 0 on success, otherwise non 0 error code..
- */
- int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
- struct hl_hr_mmu_funcs *hr_func)
- {
- /* using 6 HOPs as this is the maximum number of HOPs */
- struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
- struct hl_device *hdev = ctx->hdev;
- struct hl_mmu_properties *mmu_prop;
- int rc, i, used_hops;
- bool is_huge;
- rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
- if (rc)
- return rc;
- used_hops = mmu_prop->num_hops;
- /* huge pages use one less hop */
- if (is_huge)
- used_hops--;
- hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
- for (i = 0 ; i < used_hops ; i++) {
- if (i == 0)
- hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
- else
- hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
- hops->hop_info[i - 1].hop_pte_val);
- if (!hops_pgt_info[i])
- return -EFAULT;
- hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
- hops->hop_info[i].hop_pte_addr =
- hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
- hops->hop_info[i].hop_addr,
- hops->scrambled_vaddr);
- hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
- hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
- hops->hop_info[i].hop_pte_addr,
- mmu_prop->hop_table_size);
- if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
- return -EFAULT;
- if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
- break;
- }
- /* if passed over all hops then no last hop was found */
- if (i == mmu_prop->num_hops)
- return -EFAULT;
- if (hops->scrambled_vaddr != virt_addr)
- hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
- (hdev, hops->hop_info[i].hop_pte_val);
- else
- hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
- hops->used_hops = i + 1;
- return 0;
- }
|