eeprom_93xx46.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Driver for 93xx46 EEPROMs
  4. *
  5. * (C) 2011 DENX Software Engineering, Anatolij Gustschin <[email protected]>
  6. */
  7. #include <linux/delay.h>
  8. #include <linux/device.h>
  9. #include <linux/gpio/consumer.h>
  10. #include <linux/kernel.h>
  11. #include <linux/log2.h>
  12. #include <linux/module.h>
  13. #include <linux/mutex.h>
  14. #include <linux/of.h>
  15. #include <linux/of_device.h>
  16. #include <linux/of_gpio.h>
  17. #include <linux/slab.h>
  18. #include <linux/spi/spi.h>
  19. #include <linux/nvmem-provider.h>
  20. #include <linux/eeprom_93xx46.h>
  21. #define OP_START 0x4
  22. #define OP_WRITE (OP_START | 0x1)
  23. #define OP_READ (OP_START | 0x2)
  24. #define ADDR_EWDS 0x00
  25. #define ADDR_ERAL 0x20
  26. #define ADDR_EWEN 0x30
  27. struct eeprom_93xx46_devtype_data {
  28. unsigned int quirks;
  29. unsigned char flags;
  30. };
  31. static const struct eeprom_93xx46_devtype_data at93c46_data = {
  32. .flags = EE_SIZE1K,
  33. };
  34. static const struct eeprom_93xx46_devtype_data at93c56_data = {
  35. .flags = EE_SIZE2K,
  36. };
  37. static const struct eeprom_93xx46_devtype_data at93c66_data = {
  38. .flags = EE_SIZE4K,
  39. };
  40. static const struct eeprom_93xx46_devtype_data atmel_at93c46d_data = {
  41. .flags = EE_SIZE1K,
  42. .quirks = EEPROM_93XX46_QUIRK_SINGLE_WORD_READ |
  43. EEPROM_93XX46_QUIRK_INSTRUCTION_LENGTH,
  44. };
  45. static const struct eeprom_93xx46_devtype_data microchip_93lc46b_data = {
  46. .flags = EE_SIZE1K,
  47. .quirks = EEPROM_93XX46_QUIRK_EXTRA_READ_CYCLE,
  48. };
  49. struct eeprom_93xx46_dev {
  50. struct spi_device *spi;
  51. struct eeprom_93xx46_platform_data *pdata;
  52. struct mutex lock;
  53. struct nvmem_config nvmem_config;
  54. struct nvmem_device *nvmem;
  55. int addrlen;
  56. int size;
  57. };
  58. static inline bool has_quirk_single_word_read(struct eeprom_93xx46_dev *edev)
  59. {
  60. return edev->pdata->quirks & EEPROM_93XX46_QUIRK_SINGLE_WORD_READ;
  61. }
  62. static inline bool has_quirk_instruction_length(struct eeprom_93xx46_dev *edev)
  63. {
  64. return edev->pdata->quirks & EEPROM_93XX46_QUIRK_INSTRUCTION_LENGTH;
  65. }
  66. static inline bool has_quirk_extra_read_cycle(struct eeprom_93xx46_dev *edev)
  67. {
  68. return edev->pdata->quirks & EEPROM_93XX46_QUIRK_EXTRA_READ_CYCLE;
  69. }
  70. static int eeprom_93xx46_read(void *priv, unsigned int off,
  71. void *val, size_t count)
  72. {
  73. struct eeprom_93xx46_dev *edev = priv;
  74. char *buf = val;
  75. int err = 0;
  76. int bits;
  77. if (unlikely(off >= edev->size))
  78. return 0;
  79. if ((off + count) > edev->size)
  80. count = edev->size - off;
  81. if (unlikely(!count))
  82. return count;
  83. mutex_lock(&edev->lock);
  84. if (edev->pdata->prepare)
  85. edev->pdata->prepare(edev);
  86. /* The opcode in front of the address is three bits. */
  87. bits = edev->addrlen + 3;
  88. while (count) {
  89. struct spi_message m;
  90. struct spi_transfer t[2] = { { 0 } };
  91. u16 cmd_addr = OP_READ << edev->addrlen;
  92. size_t nbytes = count;
  93. if (edev->pdata->flags & EE_ADDR8) {
  94. cmd_addr |= off;
  95. if (has_quirk_single_word_read(edev))
  96. nbytes = 1;
  97. } else {
  98. cmd_addr |= (off >> 1);
  99. if (has_quirk_single_word_read(edev))
  100. nbytes = 2;
  101. }
  102. dev_dbg(&edev->spi->dev, "read cmd 0x%x, %d Hz\n",
  103. cmd_addr, edev->spi->max_speed_hz);
  104. if (has_quirk_extra_read_cycle(edev)) {
  105. cmd_addr <<= 1;
  106. bits += 1;
  107. }
  108. spi_message_init(&m);
  109. t[0].tx_buf = (char *)&cmd_addr;
  110. t[0].len = 2;
  111. t[0].bits_per_word = bits;
  112. spi_message_add_tail(&t[0], &m);
  113. t[1].rx_buf = buf;
  114. t[1].len = count;
  115. t[1].bits_per_word = 8;
  116. spi_message_add_tail(&t[1], &m);
  117. err = spi_sync(edev->spi, &m);
  118. /* have to wait at least Tcsl ns */
  119. ndelay(250);
  120. if (err) {
  121. dev_err(&edev->spi->dev, "read %zu bytes at %d: err. %d\n",
  122. nbytes, (int)off, err);
  123. break;
  124. }
  125. buf += nbytes;
  126. off += nbytes;
  127. count -= nbytes;
  128. }
  129. if (edev->pdata->finish)
  130. edev->pdata->finish(edev);
  131. mutex_unlock(&edev->lock);
  132. return err;
  133. }
  134. static int eeprom_93xx46_ew(struct eeprom_93xx46_dev *edev, int is_on)
  135. {
  136. struct spi_message m;
  137. struct spi_transfer t;
  138. int bits, ret;
  139. u16 cmd_addr;
  140. /* The opcode in front of the address is three bits. */
  141. bits = edev->addrlen + 3;
  142. cmd_addr = OP_START << edev->addrlen;
  143. if (edev->pdata->flags & EE_ADDR8)
  144. cmd_addr |= (is_on ? ADDR_EWEN : ADDR_EWDS) << 1;
  145. else
  146. cmd_addr |= (is_on ? ADDR_EWEN : ADDR_EWDS);
  147. if (has_quirk_instruction_length(edev)) {
  148. cmd_addr <<= 2;
  149. bits += 2;
  150. }
  151. dev_dbg(&edev->spi->dev, "ew%s cmd 0x%04x, %d bits\n",
  152. is_on ? "en" : "ds", cmd_addr, bits);
  153. spi_message_init(&m);
  154. memset(&t, 0, sizeof(t));
  155. t.tx_buf = &cmd_addr;
  156. t.len = 2;
  157. t.bits_per_word = bits;
  158. spi_message_add_tail(&t, &m);
  159. mutex_lock(&edev->lock);
  160. if (edev->pdata->prepare)
  161. edev->pdata->prepare(edev);
  162. ret = spi_sync(edev->spi, &m);
  163. /* have to wait at least Tcsl ns */
  164. ndelay(250);
  165. if (ret)
  166. dev_err(&edev->spi->dev, "erase/write %sable error %d\n",
  167. is_on ? "en" : "dis", ret);
  168. if (edev->pdata->finish)
  169. edev->pdata->finish(edev);
  170. mutex_unlock(&edev->lock);
  171. return ret;
  172. }
  173. static ssize_t
  174. eeprom_93xx46_write_word(struct eeprom_93xx46_dev *edev,
  175. const char *buf, unsigned off)
  176. {
  177. struct spi_message m;
  178. struct spi_transfer t[2];
  179. int bits, data_len, ret;
  180. u16 cmd_addr;
  181. if (unlikely(off >= edev->size))
  182. return -EINVAL;
  183. /* The opcode in front of the address is three bits. */
  184. bits = edev->addrlen + 3;
  185. cmd_addr = OP_WRITE << edev->addrlen;
  186. if (edev->pdata->flags & EE_ADDR8) {
  187. cmd_addr |= off;
  188. data_len = 1;
  189. } else {
  190. cmd_addr |= (off >> 1);
  191. data_len = 2;
  192. }
  193. dev_dbg(&edev->spi->dev, "write cmd 0x%x\n", cmd_addr);
  194. spi_message_init(&m);
  195. memset(t, 0, sizeof(t));
  196. t[0].tx_buf = (char *)&cmd_addr;
  197. t[0].len = 2;
  198. t[0].bits_per_word = bits;
  199. spi_message_add_tail(&t[0], &m);
  200. t[1].tx_buf = buf;
  201. t[1].len = data_len;
  202. t[1].bits_per_word = 8;
  203. spi_message_add_tail(&t[1], &m);
  204. ret = spi_sync(edev->spi, &m);
  205. /* have to wait program cycle time Twc ms */
  206. mdelay(6);
  207. return ret;
  208. }
  209. static int eeprom_93xx46_write(void *priv, unsigned int off,
  210. void *val, size_t count)
  211. {
  212. struct eeprom_93xx46_dev *edev = priv;
  213. char *buf = val;
  214. int i, ret, step = 1;
  215. if (unlikely(off >= edev->size))
  216. return -EFBIG;
  217. if ((off + count) > edev->size)
  218. count = edev->size - off;
  219. if (unlikely(!count))
  220. return count;
  221. /* only write even number of bytes on 16-bit devices */
  222. if (edev->pdata->flags & EE_ADDR16) {
  223. step = 2;
  224. count &= ~1;
  225. }
  226. /* erase/write enable */
  227. ret = eeprom_93xx46_ew(edev, 1);
  228. if (ret)
  229. return ret;
  230. mutex_lock(&edev->lock);
  231. if (edev->pdata->prepare)
  232. edev->pdata->prepare(edev);
  233. for (i = 0; i < count; i += step) {
  234. ret = eeprom_93xx46_write_word(edev, &buf[i], off + i);
  235. if (ret) {
  236. dev_err(&edev->spi->dev, "write failed at %d: %d\n",
  237. (int)off + i, ret);
  238. break;
  239. }
  240. }
  241. if (edev->pdata->finish)
  242. edev->pdata->finish(edev);
  243. mutex_unlock(&edev->lock);
  244. /* erase/write disable */
  245. eeprom_93xx46_ew(edev, 0);
  246. return ret;
  247. }
  248. static int eeprom_93xx46_eral(struct eeprom_93xx46_dev *edev)
  249. {
  250. struct eeprom_93xx46_platform_data *pd = edev->pdata;
  251. struct spi_message m;
  252. struct spi_transfer t;
  253. int bits, ret;
  254. u16 cmd_addr;
  255. /* The opcode in front of the address is three bits. */
  256. bits = edev->addrlen + 3;
  257. cmd_addr = OP_START << edev->addrlen;
  258. if (edev->pdata->flags & EE_ADDR8)
  259. cmd_addr |= ADDR_ERAL << 1;
  260. else
  261. cmd_addr |= ADDR_ERAL;
  262. if (has_quirk_instruction_length(edev)) {
  263. cmd_addr <<= 2;
  264. bits += 2;
  265. }
  266. dev_dbg(&edev->spi->dev, "eral cmd 0x%04x, %d bits\n", cmd_addr, bits);
  267. spi_message_init(&m);
  268. memset(&t, 0, sizeof(t));
  269. t.tx_buf = &cmd_addr;
  270. t.len = 2;
  271. t.bits_per_word = bits;
  272. spi_message_add_tail(&t, &m);
  273. mutex_lock(&edev->lock);
  274. if (edev->pdata->prepare)
  275. edev->pdata->prepare(edev);
  276. ret = spi_sync(edev->spi, &m);
  277. if (ret)
  278. dev_err(&edev->spi->dev, "erase error %d\n", ret);
  279. /* have to wait erase cycle time Tec ms */
  280. mdelay(6);
  281. if (pd->finish)
  282. pd->finish(edev);
  283. mutex_unlock(&edev->lock);
  284. return ret;
  285. }
  286. static ssize_t eeprom_93xx46_store_erase(struct device *dev,
  287. struct device_attribute *attr,
  288. const char *buf, size_t count)
  289. {
  290. struct eeprom_93xx46_dev *edev = dev_get_drvdata(dev);
  291. int erase = 0, ret;
  292. sscanf(buf, "%d", &erase);
  293. if (erase) {
  294. ret = eeprom_93xx46_ew(edev, 1);
  295. if (ret)
  296. return ret;
  297. ret = eeprom_93xx46_eral(edev);
  298. if (ret)
  299. return ret;
  300. ret = eeprom_93xx46_ew(edev, 0);
  301. if (ret)
  302. return ret;
  303. }
  304. return count;
  305. }
  306. static DEVICE_ATTR(erase, S_IWUSR, NULL, eeprom_93xx46_store_erase);
  307. static void select_assert(void *context)
  308. {
  309. struct eeprom_93xx46_dev *edev = context;
  310. gpiod_set_value_cansleep(edev->pdata->select, 1);
  311. }
  312. static void select_deassert(void *context)
  313. {
  314. struct eeprom_93xx46_dev *edev = context;
  315. gpiod_set_value_cansleep(edev->pdata->select, 0);
  316. }
  317. static const struct of_device_id eeprom_93xx46_of_table[] = {
  318. { .compatible = "eeprom-93xx46", .data = &at93c46_data, },
  319. { .compatible = "atmel,at93c46", .data = &at93c46_data, },
  320. { .compatible = "atmel,at93c46d", .data = &atmel_at93c46d_data, },
  321. { .compatible = "atmel,at93c56", .data = &at93c56_data, },
  322. { .compatible = "atmel,at93c66", .data = &at93c66_data, },
  323. { .compatible = "microchip,93lc46b", .data = &microchip_93lc46b_data, },
  324. {}
  325. };
  326. MODULE_DEVICE_TABLE(of, eeprom_93xx46_of_table);
  327. static const struct spi_device_id eeprom_93xx46_spi_ids[] = {
  328. { .name = "eeprom-93xx46",
  329. .driver_data = (kernel_ulong_t)&at93c46_data, },
  330. { .name = "at93c46",
  331. .driver_data = (kernel_ulong_t)&at93c46_data, },
  332. { .name = "at93c46d",
  333. .driver_data = (kernel_ulong_t)&atmel_at93c46d_data, },
  334. { .name = "at93c56",
  335. .driver_data = (kernel_ulong_t)&at93c56_data, },
  336. { .name = "at93c66",
  337. .driver_data = (kernel_ulong_t)&at93c66_data, },
  338. { .name = "93lc46b",
  339. .driver_data = (kernel_ulong_t)&microchip_93lc46b_data, },
  340. {}
  341. };
  342. MODULE_DEVICE_TABLE(spi, eeprom_93xx46_spi_ids);
  343. static int eeprom_93xx46_probe_dt(struct spi_device *spi)
  344. {
  345. const struct of_device_id *of_id =
  346. of_match_device(eeprom_93xx46_of_table, &spi->dev);
  347. struct device_node *np = spi->dev.of_node;
  348. struct eeprom_93xx46_platform_data *pd;
  349. u32 tmp;
  350. int ret;
  351. pd = devm_kzalloc(&spi->dev, sizeof(*pd), GFP_KERNEL);
  352. if (!pd)
  353. return -ENOMEM;
  354. ret = of_property_read_u32(np, "data-size", &tmp);
  355. if (ret < 0) {
  356. dev_err(&spi->dev, "data-size property not found\n");
  357. return ret;
  358. }
  359. if (tmp == 8) {
  360. pd->flags |= EE_ADDR8;
  361. } else if (tmp == 16) {
  362. pd->flags |= EE_ADDR16;
  363. } else {
  364. dev_err(&spi->dev, "invalid data-size (%d)\n", tmp);
  365. return -EINVAL;
  366. }
  367. if (of_property_read_bool(np, "read-only"))
  368. pd->flags |= EE_READONLY;
  369. pd->select = devm_gpiod_get_optional(&spi->dev, "select",
  370. GPIOD_OUT_LOW);
  371. if (IS_ERR(pd->select))
  372. return PTR_ERR(pd->select);
  373. pd->prepare = select_assert;
  374. pd->finish = select_deassert;
  375. gpiod_direction_output(pd->select, 0);
  376. if (of_id->data) {
  377. const struct eeprom_93xx46_devtype_data *data = of_id->data;
  378. pd->quirks = data->quirks;
  379. pd->flags |= data->flags;
  380. }
  381. spi->dev.platform_data = pd;
  382. return 0;
  383. }
  384. static int eeprom_93xx46_probe(struct spi_device *spi)
  385. {
  386. struct eeprom_93xx46_platform_data *pd;
  387. struct eeprom_93xx46_dev *edev;
  388. int err;
  389. if (spi->dev.of_node) {
  390. err = eeprom_93xx46_probe_dt(spi);
  391. if (err < 0)
  392. return err;
  393. }
  394. pd = spi->dev.platform_data;
  395. if (!pd) {
  396. dev_err(&spi->dev, "missing platform data\n");
  397. return -ENODEV;
  398. }
  399. edev = devm_kzalloc(&spi->dev, sizeof(*edev), GFP_KERNEL);
  400. if (!edev)
  401. return -ENOMEM;
  402. if (pd->flags & EE_SIZE1K)
  403. edev->size = 128;
  404. else if (pd->flags & EE_SIZE2K)
  405. edev->size = 256;
  406. else if (pd->flags & EE_SIZE4K)
  407. edev->size = 512;
  408. else {
  409. dev_err(&spi->dev, "unspecified size\n");
  410. return -EINVAL;
  411. }
  412. if (pd->flags & EE_ADDR8)
  413. edev->addrlen = ilog2(edev->size);
  414. else if (pd->flags & EE_ADDR16)
  415. edev->addrlen = ilog2(edev->size) - 1;
  416. else {
  417. dev_err(&spi->dev, "unspecified address type\n");
  418. return -EINVAL;
  419. }
  420. mutex_init(&edev->lock);
  421. edev->spi = spi;
  422. edev->pdata = pd;
  423. edev->nvmem_config.type = NVMEM_TYPE_EEPROM;
  424. edev->nvmem_config.name = dev_name(&spi->dev);
  425. edev->nvmem_config.dev = &spi->dev;
  426. edev->nvmem_config.read_only = pd->flags & EE_READONLY;
  427. edev->nvmem_config.root_only = true;
  428. edev->nvmem_config.owner = THIS_MODULE;
  429. edev->nvmem_config.compat = true;
  430. edev->nvmem_config.base_dev = &spi->dev;
  431. edev->nvmem_config.reg_read = eeprom_93xx46_read;
  432. edev->nvmem_config.reg_write = eeprom_93xx46_write;
  433. edev->nvmem_config.priv = edev;
  434. edev->nvmem_config.stride = 4;
  435. edev->nvmem_config.word_size = 1;
  436. edev->nvmem_config.size = edev->size;
  437. edev->nvmem = devm_nvmem_register(&spi->dev, &edev->nvmem_config);
  438. if (IS_ERR(edev->nvmem))
  439. return PTR_ERR(edev->nvmem);
  440. dev_info(&spi->dev, "%d-bit eeprom containing %d bytes %s\n",
  441. (pd->flags & EE_ADDR8) ? 8 : 16,
  442. edev->size,
  443. (pd->flags & EE_READONLY) ? "(readonly)" : "");
  444. if (!(pd->flags & EE_READONLY)) {
  445. if (device_create_file(&spi->dev, &dev_attr_erase))
  446. dev_err(&spi->dev, "can't create erase interface\n");
  447. }
  448. spi_set_drvdata(spi, edev);
  449. return 0;
  450. }
  451. static void eeprom_93xx46_remove(struct spi_device *spi)
  452. {
  453. struct eeprom_93xx46_dev *edev = spi_get_drvdata(spi);
  454. if (!(edev->pdata->flags & EE_READONLY))
  455. device_remove_file(&spi->dev, &dev_attr_erase);
  456. }
  457. static struct spi_driver eeprom_93xx46_driver = {
  458. .driver = {
  459. .name = "93xx46",
  460. .of_match_table = of_match_ptr(eeprom_93xx46_of_table),
  461. },
  462. .probe = eeprom_93xx46_probe,
  463. .remove = eeprom_93xx46_remove,
  464. .id_table = eeprom_93xx46_spi_ids,
  465. };
  466. module_spi_driver(eeprom_93xx46_driver);
  467. MODULE_LICENSE("GPL");
  468. MODULE_DESCRIPTION("Driver for 93xx46 EEPROMs");
  469. MODULE_AUTHOR("Anatolij Gustschin <[email protected]>");
  470. MODULE_ALIAS("spi:93xx46");
  471. MODULE_ALIAS("spi:eeprom-93xx46");
  472. MODULE_ALIAS("spi:93lc46b");