da9150-core.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * DA9150 Core MFD Driver
  4. *
  5. * Copyright (c) 2014 Dialog Semiconductor
  6. *
  7. * Author: Adam Thomson <[email protected]>
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/i2c.h>
  13. #include <linux/regmap.h>
  14. #include <linux/slab.h>
  15. #include <linux/irq.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/mfd/core.h>
  18. #include <linux/mfd/da9150/core.h>
  19. #include <linux/mfd/da9150/registers.h>
  20. /* Raw device access, used for QIF */
  21. static int da9150_i2c_read_device(struct i2c_client *client, u8 addr, int count,
  22. u8 *buf)
  23. {
  24. struct i2c_msg xfer;
  25. int ret;
  26. /*
  27. * Read is split into two transfers as device expects STOP/START rather
  28. * than repeated start to carry out this kind of access.
  29. */
  30. /* Write address */
  31. xfer.addr = client->addr;
  32. xfer.flags = 0;
  33. xfer.len = 1;
  34. xfer.buf = &addr;
  35. ret = i2c_transfer(client->adapter, &xfer, 1);
  36. if (ret != 1) {
  37. if (ret < 0)
  38. return ret;
  39. else
  40. return -EIO;
  41. }
  42. /* Read data */
  43. xfer.addr = client->addr;
  44. xfer.flags = I2C_M_RD;
  45. xfer.len = count;
  46. xfer.buf = buf;
  47. ret = i2c_transfer(client->adapter, &xfer, 1);
  48. if (ret == 1)
  49. return 0;
  50. else if (ret < 0)
  51. return ret;
  52. else
  53. return -EIO;
  54. }
  55. static int da9150_i2c_write_device(struct i2c_client *client, u8 addr,
  56. int count, const u8 *buf)
  57. {
  58. struct i2c_msg xfer;
  59. u8 *reg_data;
  60. int ret;
  61. reg_data = kzalloc(1 + count, GFP_KERNEL);
  62. if (!reg_data)
  63. return -ENOMEM;
  64. reg_data[0] = addr;
  65. memcpy(&reg_data[1], buf, count);
  66. /* Write address & data */
  67. xfer.addr = client->addr;
  68. xfer.flags = 0;
  69. xfer.len = 1 + count;
  70. xfer.buf = reg_data;
  71. ret = i2c_transfer(client->adapter, &xfer, 1);
  72. kfree(reg_data);
  73. if (ret == 1)
  74. return 0;
  75. else if (ret < 0)
  76. return ret;
  77. else
  78. return -EIO;
  79. }
  80. static bool da9150_volatile_reg(struct device *dev, unsigned int reg)
  81. {
  82. switch (reg) {
  83. case DA9150_PAGE_CON:
  84. case DA9150_STATUS_A:
  85. case DA9150_STATUS_B:
  86. case DA9150_STATUS_C:
  87. case DA9150_STATUS_D:
  88. case DA9150_STATUS_E:
  89. case DA9150_STATUS_F:
  90. case DA9150_STATUS_G:
  91. case DA9150_STATUS_H:
  92. case DA9150_STATUS_I:
  93. case DA9150_STATUS_J:
  94. case DA9150_STATUS_K:
  95. case DA9150_STATUS_L:
  96. case DA9150_STATUS_N:
  97. case DA9150_FAULT_LOG_A:
  98. case DA9150_FAULT_LOG_B:
  99. case DA9150_EVENT_E:
  100. case DA9150_EVENT_F:
  101. case DA9150_EVENT_G:
  102. case DA9150_EVENT_H:
  103. case DA9150_CONTROL_B:
  104. case DA9150_CONTROL_C:
  105. case DA9150_GPADC_MAN:
  106. case DA9150_GPADC_RES_A:
  107. case DA9150_GPADC_RES_B:
  108. case DA9150_ADETVB_CFG_C:
  109. case DA9150_ADETD_STAT:
  110. case DA9150_ADET_CMPSTAT:
  111. case DA9150_ADET_CTRL_A:
  112. case DA9150_PPR_TCTR_B:
  113. case DA9150_COREBTLD_STAT_A:
  114. case DA9150_CORE_DATA_A:
  115. case DA9150_CORE_DATA_B:
  116. case DA9150_CORE_DATA_C:
  117. case DA9150_CORE_DATA_D:
  118. case DA9150_CORE2WIRE_STAT_A:
  119. case DA9150_FW_CTRL_C:
  120. case DA9150_FG_CTRL_B:
  121. case DA9150_FW_CTRL_B:
  122. case DA9150_GPADC_CMAN:
  123. case DA9150_GPADC_CRES_A:
  124. case DA9150_GPADC_CRES_B:
  125. case DA9150_CC_ICHG_RES_A:
  126. case DA9150_CC_ICHG_RES_B:
  127. case DA9150_CC_IAVG_RES_A:
  128. case DA9150_CC_IAVG_RES_B:
  129. case DA9150_TAUX_CTRL_A:
  130. case DA9150_TAUX_VALUE_H:
  131. case DA9150_TAUX_VALUE_L:
  132. case DA9150_TBAT_RES_A:
  133. case DA9150_TBAT_RES_B:
  134. return true;
  135. default:
  136. return false;
  137. }
  138. }
  139. static const struct regmap_range_cfg da9150_range_cfg[] = {
  140. {
  141. .range_min = DA9150_PAGE_CON,
  142. .range_max = DA9150_TBAT_RES_B,
  143. .selector_reg = DA9150_PAGE_CON,
  144. .selector_mask = DA9150_I2C_PAGE_MASK,
  145. .selector_shift = DA9150_I2C_PAGE_SHIFT,
  146. .window_start = 0,
  147. .window_len = 256,
  148. },
  149. };
  150. static const struct regmap_config da9150_regmap_config = {
  151. .reg_bits = 8,
  152. .val_bits = 8,
  153. .ranges = da9150_range_cfg,
  154. .num_ranges = ARRAY_SIZE(da9150_range_cfg),
  155. .max_register = DA9150_TBAT_RES_B,
  156. .cache_type = REGCACHE_RBTREE,
  157. .volatile_reg = da9150_volatile_reg,
  158. };
  159. void da9150_read_qif(struct da9150 *da9150, u8 addr, int count, u8 *buf)
  160. {
  161. int ret;
  162. ret = da9150_i2c_read_device(da9150->core_qif, addr, count, buf);
  163. if (ret < 0)
  164. dev_err(da9150->dev, "Failed to read from QIF 0x%x: %d\n",
  165. addr, ret);
  166. }
  167. EXPORT_SYMBOL_GPL(da9150_read_qif);
  168. void da9150_write_qif(struct da9150 *da9150, u8 addr, int count, const u8 *buf)
  169. {
  170. int ret;
  171. ret = da9150_i2c_write_device(da9150->core_qif, addr, count, buf);
  172. if (ret < 0)
  173. dev_err(da9150->dev, "Failed to write to QIF 0x%x: %d\n",
  174. addr, ret);
  175. }
  176. EXPORT_SYMBOL_GPL(da9150_write_qif);
  177. u8 da9150_reg_read(struct da9150 *da9150, u16 reg)
  178. {
  179. int val, ret;
  180. ret = regmap_read(da9150->regmap, reg, &val);
  181. if (ret)
  182. dev_err(da9150->dev, "Failed to read from reg 0x%x: %d\n",
  183. reg, ret);
  184. return (u8) val;
  185. }
  186. EXPORT_SYMBOL_GPL(da9150_reg_read);
  187. void da9150_reg_write(struct da9150 *da9150, u16 reg, u8 val)
  188. {
  189. int ret;
  190. ret = regmap_write(da9150->regmap, reg, val);
  191. if (ret)
  192. dev_err(da9150->dev, "Failed to write to reg 0x%x: %d\n",
  193. reg, ret);
  194. }
  195. EXPORT_SYMBOL_GPL(da9150_reg_write);
  196. void da9150_set_bits(struct da9150 *da9150, u16 reg, u8 mask, u8 val)
  197. {
  198. int ret;
  199. ret = regmap_update_bits(da9150->regmap, reg, mask, val);
  200. if (ret)
  201. dev_err(da9150->dev, "Failed to set bits in reg 0x%x: %d\n",
  202. reg, ret);
  203. }
  204. EXPORT_SYMBOL_GPL(da9150_set_bits);
  205. void da9150_bulk_read(struct da9150 *da9150, u16 reg, int count, u8 *buf)
  206. {
  207. int ret;
  208. ret = regmap_bulk_read(da9150->regmap, reg, buf, count);
  209. if (ret)
  210. dev_err(da9150->dev, "Failed to bulk read from reg 0x%x: %d\n",
  211. reg, ret);
  212. }
  213. EXPORT_SYMBOL_GPL(da9150_bulk_read);
  214. void da9150_bulk_write(struct da9150 *da9150, u16 reg, int count, const u8 *buf)
  215. {
  216. int ret;
  217. ret = regmap_raw_write(da9150->regmap, reg, buf, count);
  218. if (ret)
  219. dev_err(da9150->dev, "Failed to bulk write to reg 0x%x %d\n",
  220. reg, ret);
  221. }
  222. EXPORT_SYMBOL_GPL(da9150_bulk_write);
  223. static const struct regmap_irq da9150_irqs[] = {
  224. [DA9150_IRQ_VBUS] = {
  225. .reg_offset = 0,
  226. .mask = DA9150_E_VBUS_MASK,
  227. },
  228. [DA9150_IRQ_CHG] = {
  229. .reg_offset = 0,
  230. .mask = DA9150_E_CHG_MASK,
  231. },
  232. [DA9150_IRQ_TCLASS] = {
  233. .reg_offset = 0,
  234. .mask = DA9150_E_TCLASS_MASK,
  235. },
  236. [DA9150_IRQ_TJUNC] = {
  237. .reg_offset = 0,
  238. .mask = DA9150_E_TJUNC_MASK,
  239. },
  240. [DA9150_IRQ_VFAULT] = {
  241. .reg_offset = 0,
  242. .mask = DA9150_E_VFAULT_MASK,
  243. },
  244. [DA9150_IRQ_CONF] = {
  245. .reg_offset = 1,
  246. .mask = DA9150_E_CONF_MASK,
  247. },
  248. [DA9150_IRQ_DAT] = {
  249. .reg_offset = 1,
  250. .mask = DA9150_E_DAT_MASK,
  251. },
  252. [DA9150_IRQ_DTYPE] = {
  253. .reg_offset = 1,
  254. .mask = DA9150_E_DTYPE_MASK,
  255. },
  256. [DA9150_IRQ_ID] = {
  257. .reg_offset = 1,
  258. .mask = DA9150_E_ID_MASK,
  259. },
  260. [DA9150_IRQ_ADP] = {
  261. .reg_offset = 1,
  262. .mask = DA9150_E_ADP_MASK,
  263. },
  264. [DA9150_IRQ_SESS_END] = {
  265. .reg_offset = 1,
  266. .mask = DA9150_E_SESS_END_MASK,
  267. },
  268. [DA9150_IRQ_SESS_VLD] = {
  269. .reg_offset = 1,
  270. .mask = DA9150_E_SESS_VLD_MASK,
  271. },
  272. [DA9150_IRQ_FG] = {
  273. .reg_offset = 2,
  274. .mask = DA9150_E_FG_MASK,
  275. },
  276. [DA9150_IRQ_GP] = {
  277. .reg_offset = 2,
  278. .mask = DA9150_E_GP_MASK,
  279. },
  280. [DA9150_IRQ_TBAT] = {
  281. .reg_offset = 2,
  282. .mask = DA9150_E_TBAT_MASK,
  283. },
  284. [DA9150_IRQ_GPIOA] = {
  285. .reg_offset = 2,
  286. .mask = DA9150_E_GPIOA_MASK,
  287. },
  288. [DA9150_IRQ_GPIOB] = {
  289. .reg_offset = 2,
  290. .mask = DA9150_E_GPIOB_MASK,
  291. },
  292. [DA9150_IRQ_GPIOC] = {
  293. .reg_offset = 2,
  294. .mask = DA9150_E_GPIOC_MASK,
  295. },
  296. [DA9150_IRQ_GPIOD] = {
  297. .reg_offset = 2,
  298. .mask = DA9150_E_GPIOD_MASK,
  299. },
  300. [DA9150_IRQ_GPADC] = {
  301. .reg_offset = 2,
  302. .mask = DA9150_E_GPADC_MASK,
  303. },
  304. [DA9150_IRQ_WKUP] = {
  305. .reg_offset = 3,
  306. .mask = DA9150_E_WKUP_MASK,
  307. },
  308. };
  309. static const struct regmap_irq_chip da9150_regmap_irq_chip = {
  310. .name = "da9150_irq",
  311. .status_base = DA9150_EVENT_E,
  312. .mask_base = DA9150_IRQ_MASK_E,
  313. .ack_base = DA9150_EVENT_E,
  314. .num_regs = DA9150_NUM_IRQ_REGS,
  315. .irqs = da9150_irqs,
  316. .num_irqs = ARRAY_SIZE(da9150_irqs),
  317. };
  318. static const struct resource da9150_gpadc_resources[] = {
  319. DEFINE_RES_IRQ_NAMED(DA9150_IRQ_GPADC, "GPADC"),
  320. };
  321. static const struct resource da9150_charger_resources[] = {
  322. DEFINE_RES_IRQ_NAMED(DA9150_IRQ_CHG, "CHG_STATUS"),
  323. DEFINE_RES_IRQ_NAMED(DA9150_IRQ_TJUNC, "CHG_TJUNC"),
  324. DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VFAULT, "CHG_VFAULT"),
  325. DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VBUS, "CHG_VBUS"),
  326. };
  327. static const struct resource da9150_fg_resources[] = {
  328. DEFINE_RES_IRQ_NAMED(DA9150_IRQ_FG, "FG"),
  329. };
  330. enum da9150_dev_idx {
  331. DA9150_GPADC_IDX = 0,
  332. DA9150_CHARGER_IDX,
  333. DA9150_FG_IDX,
  334. };
  335. static struct mfd_cell da9150_devs[] = {
  336. [DA9150_GPADC_IDX] = {
  337. .name = "da9150-gpadc",
  338. .of_compatible = "dlg,da9150-gpadc",
  339. .resources = da9150_gpadc_resources,
  340. .num_resources = ARRAY_SIZE(da9150_gpadc_resources),
  341. },
  342. [DA9150_CHARGER_IDX] = {
  343. .name = "da9150-charger",
  344. .of_compatible = "dlg,da9150-charger",
  345. .resources = da9150_charger_resources,
  346. .num_resources = ARRAY_SIZE(da9150_charger_resources),
  347. },
  348. [DA9150_FG_IDX] = {
  349. .name = "da9150-fuel-gauge",
  350. .of_compatible = "dlg,da9150-fuel-gauge",
  351. .resources = da9150_fg_resources,
  352. .num_resources = ARRAY_SIZE(da9150_fg_resources),
  353. },
  354. };
  355. static int da9150_probe(struct i2c_client *client,
  356. const struct i2c_device_id *id)
  357. {
  358. struct da9150 *da9150;
  359. struct da9150_pdata *pdata = dev_get_platdata(&client->dev);
  360. int qif_addr;
  361. int ret;
  362. da9150 = devm_kzalloc(&client->dev, sizeof(*da9150), GFP_KERNEL);
  363. if (!da9150)
  364. return -ENOMEM;
  365. da9150->dev = &client->dev;
  366. da9150->irq = client->irq;
  367. i2c_set_clientdata(client, da9150);
  368. da9150->regmap = devm_regmap_init_i2c(client, &da9150_regmap_config);
  369. if (IS_ERR(da9150->regmap)) {
  370. ret = PTR_ERR(da9150->regmap);
  371. dev_err(da9150->dev, "Failed to allocate register map: %d\n",
  372. ret);
  373. return ret;
  374. }
  375. /* Setup secondary I2C interface for QIF access */
  376. qif_addr = da9150_reg_read(da9150, DA9150_CORE2WIRE_CTRL_A);
  377. qif_addr = (qif_addr & DA9150_CORE_BASE_ADDR_MASK) >> 1;
  378. qif_addr |= DA9150_QIF_I2C_ADDR_LSB;
  379. da9150->core_qif = i2c_new_dummy_device(client->adapter, qif_addr);
  380. if (IS_ERR(da9150->core_qif)) {
  381. dev_err(da9150->dev, "Failed to attach QIF client\n");
  382. return PTR_ERR(da9150->core_qif);
  383. }
  384. i2c_set_clientdata(da9150->core_qif, da9150);
  385. if (pdata) {
  386. da9150->irq_base = pdata->irq_base;
  387. da9150_devs[DA9150_FG_IDX].platform_data = pdata->fg_pdata;
  388. da9150_devs[DA9150_FG_IDX].pdata_size =
  389. sizeof(struct da9150_fg_pdata);
  390. } else {
  391. da9150->irq_base = -1;
  392. }
  393. ret = regmap_add_irq_chip(da9150->regmap, da9150->irq,
  394. IRQF_TRIGGER_LOW | IRQF_ONESHOT,
  395. da9150->irq_base, &da9150_regmap_irq_chip,
  396. &da9150->regmap_irq_data);
  397. if (ret) {
  398. dev_err(da9150->dev, "Failed to add regmap irq chip: %d\n",
  399. ret);
  400. goto regmap_irq_fail;
  401. }
  402. da9150->irq_base = regmap_irq_chip_get_base(da9150->regmap_irq_data);
  403. enable_irq_wake(da9150->irq);
  404. ret = mfd_add_devices(da9150->dev, -1, da9150_devs,
  405. ARRAY_SIZE(da9150_devs), NULL,
  406. da9150->irq_base, NULL);
  407. if (ret) {
  408. dev_err(da9150->dev, "Failed to add child devices: %d\n", ret);
  409. goto mfd_fail;
  410. }
  411. return 0;
  412. mfd_fail:
  413. regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
  414. regmap_irq_fail:
  415. i2c_unregister_device(da9150->core_qif);
  416. return ret;
  417. }
  418. static void da9150_remove(struct i2c_client *client)
  419. {
  420. struct da9150 *da9150 = i2c_get_clientdata(client);
  421. regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
  422. mfd_remove_devices(da9150->dev);
  423. i2c_unregister_device(da9150->core_qif);
  424. }
  425. static void da9150_shutdown(struct i2c_client *client)
  426. {
  427. struct da9150 *da9150 = i2c_get_clientdata(client);
  428. /* Make sure we have a wakup source for the device */
  429. da9150_set_bits(da9150, DA9150_CONFIG_D,
  430. DA9150_WKUP_PM_EN_MASK,
  431. DA9150_WKUP_PM_EN_MASK);
  432. /* Set device to DISABLED mode */
  433. da9150_set_bits(da9150, DA9150_CONTROL_C,
  434. DA9150_DISABLE_MASK, DA9150_DISABLE_MASK);
  435. }
  436. static const struct i2c_device_id da9150_i2c_id[] = {
  437. { "da9150", },
  438. { }
  439. };
  440. MODULE_DEVICE_TABLE(i2c, da9150_i2c_id);
  441. static const struct of_device_id da9150_of_match[] = {
  442. { .compatible = "dlg,da9150", },
  443. { }
  444. };
  445. MODULE_DEVICE_TABLE(of, da9150_of_match);
  446. static struct i2c_driver da9150_driver = {
  447. .driver = {
  448. .name = "da9150",
  449. .of_match_table = da9150_of_match,
  450. },
  451. .probe = da9150_probe,
  452. .remove = da9150_remove,
  453. .shutdown = da9150_shutdown,
  454. .id_table = da9150_i2c_id,
  455. };
  456. module_i2c_driver(da9150_driver);
  457. MODULE_DESCRIPTION("MFD Core Driver for DA9150");
  458. MODULE_AUTHOR("Adam Thomson <[email protected]>");
  459. MODULE_LICENSE("GPL");