meson-ir-tx.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * meson-ir-tx.c - Amlogic Meson IR TX driver
  4. *
  5. * Copyright (c) 2021, SberDevices. All Rights Reserved.
  6. *
  7. * Author: Viktor Prutyanov <[email protected]>
  8. */
  9. #include <linux/device.h>
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/of.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/of_irq.h>
  17. #include <linux/clk.h>
  18. #include <linux/slab.h>
  19. #include <media/rc-core.h>
  20. #define DEVICE_NAME "Meson IR TX"
  21. #define DRIVER_NAME "meson-ir-tx"
  22. #define MIRTX_DEFAULT_CARRIER 38000
  23. #define MIRTX_DEFAULT_DUTY_CYCLE 50
  24. #define MIRTX_FIFO_THD 32
  25. #define IRB_MOD_1US_CLK_RATE 1000000
  26. #define IRB_FIFO_LEN 128
  27. #define IRB_ADDR0 0x0
  28. #define IRB_ADDR1 0x4
  29. #define IRB_ADDR2 0x8
  30. #define IRB_ADDR3 0xc
  31. #define IRB_MAX_DELAY (1 << 10)
  32. #define IRB_DELAY_MASK (IRB_MAX_DELAY - 1)
  33. /* IRCTRL_IR_BLASTER_ADDR0 */
  34. #define IRB_MOD_CLK(x) ((x) << 12)
  35. #define IRB_MOD_SYS_CLK 0
  36. #define IRB_MOD_XTAL3_CLK 1
  37. #define IRB_MOD_1US_CLK 2
  38. #define IRB_MOD_10US_CLK 3
  39. #define IRB_INIT_HIGH BIT(2)
  40. #define IRB_ENABLE BIT(0)
  41. /* IRCTRL_IR_BLASTER_ADDR2 */
  42. #define IRB_MOD_COUNT(lo, hi) ((((lo) - 1) << 16) | ((hi) - 1))
  43. /* IRCTRL_IR_BLASTER_ADDR2 */
  44. #define IRB_WRITE_FIFO BIT(16)
  45. #define IRB_MOD_ENABLE BIT(12)
  46. #define IRB_TB_1US (0x0 << 10)
  47. #define IRB_TB_10US (0x1 << 10)
  48. #define IRB_TB_100US (0x2 << 10)
  49. #define IRB_TB_MOD_CLK (0x3 << 10)
  50. /* IRCTRL_IR_BLASTER_ADDR3 */
  51. #define IRB_FIFO_THD_PENDING BIT(16)
  52. #define IRB_FIFO_IRQ_ENABLE BIT(8)
  53. struct meson_irtx {
  54. struct device *dev;
  55. void __iomem *reg_base;
  56. u32 *buf;
  57. unsigned int buf_len;
  58. unsigned int buf_head;
  59. unsigned int carrier;
  60. unsigned int duty_cycle;
  61. /* Locks buf */
  62. spinlock_t lock;
  63. struct completion completion;
  64. unsigned long clk_rate;
  65. };
  66. static void meson_irtx_set_mod(struct meson_irtx *ir)
  67. {
  68. unsigned int cnt = DIV_ROUND_CLOSEST(ir->clk_rate, ir->carrier);
  69. unsigned int pulse_cnt = DIV_ROUND_CLOSEST(cnt * ir->duty_cycle, 100);
  70. unsigned int space_cnt = cnt - pulse_cnt;
  71. dev_dbg(ir->dev, "F_mod = %uHz, T_mod = %luns, duty_cycle = %u%%\n",
  72. ir->carrier, NSEC_PER_SEC / ir->clk_rate * cnt,
  73. 100 * pulse_cnt / cnt);
  74. writel(IRB_MOD_COUNT(pulse_cnt, space_cnt),
  75. ir->reg_base + IRB_ADDR1);
  76. }
  77. static void meson_irtx_setup(struct meson_irtx *ir, unsigned int clk_nr)
  78. {
  79. /*
  80. * Disable the TX, set modulator clock tick and set initialize
  81. * output to be high. Set up carrier frequency and duty cycle. Then
  82. * unset initialize output. Enable FIFO interrupt, set FIFO interrupt
  83. * threshold. Finally, enable the transmitter back.
  84. */
  85. writel(~IRB_ENABLE & (IRB_MOD_CLK(clk_nr) | IRB_INIT_HIGH),
  86. ir->reg_base + IRB_ADDR0);
  87. meson_irtx_set_mod(ir);
  88. writel(readl(ir->reg_base + IRB_ADDR0) & ~IRB_INIT_HIGH,
  89. ir->reg_base + IRB_ADDR0);
  90. writel(IRB_FIFO_IRQ_ENABLE | MIRTX_FIFO_THD,
  91. ir->reg_base + IRB_ADDR3);
  92. writel(readl(ir->reg_base + IRB_ADDR0) | IRB_ENABLE,
  93. ir->reg_base + IRB_ADDR0);
  94. }
  95. static u32 meson_irtx_prepare_pulse(struct meson_irtx *ir, unsigned int time)
  96. {
  97. unsigned int delay;
  98. unsigned int tb = IRB_TB_MOD_CLK;
  99. unsigned int tb_us = DIV_ROUND_CLOSEST(USEC_PER_SEC, ir->carrier);
  100. delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK;
  101. return ((IRB_WRITE_FIFO | IRB_MOD_ENABLE) | tb | delay);
  102. }
  103. static u32 meson_irtx_prepare_space(struct meson_irtx *ir, unsigned int time)
  104. {
  105. unsigned int delay;
  106. unsigned int tb = IRB_TB_100US;
  107. unsigned int tb_us = 100;
  108. if (time <= IRB_MAX_DELAY) {
  109. tb = IRB_TB_1US;
  110. tb_us = 1;
  111. } else if (time <= 10 * IRB_MAX_DELAY) {
  112. tb = IRB_TB_10US;
  113. tb_us = 10;
  114. } else if (time <= 100 * IRB_MAX_DELAY) {
  115. tb = IRB_TB_100US;
  116. tb_us = 100;
  117. }
  118. delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK;
  119. return ((IRB_WRITE_FIFO & ~IRB_MOD_ENABLE) | tb | delay);
  120. }
  121. static void meson_irtx_send_buffer(struct meson_irtx *ir)
  122. {
  123. unsigned int nr = 0;
  124. unsigned int max_fifo_level = IRB_FIFO_LEN - MIRTX_FIFO_THD;
  125. while (ir->buf_head < ir->buf_len && nr < max_fifo_level) {
  126. writel(ir->buf[ir->buf_head], ir->reg_base + IRB_ADDR2);
  127. ir->buf_head++;
  128. nr++;
  129. }
  130. }
  131. static bool meson_irtx_check_buf(struct meson_irtx *ir,
  132. unsigned int *buf, unsigned int len)
  133. {
  134. unsigned int i;
  135. for (i = 0; i < len; i++) {
  136. unsigned int max_tb_us;
  137. /*
  138. * Max space timebase is 100 us.
  139. * Pulse timebase equals to carrier period.
  140. */
  141. if (i % 2 == 0)
  142. max_tb_us = USEC_PER_SEC / ir->carrier;
  143. else
  144. max_tb_us = 100;
  145. if (buf[i] >= max_tb_us * IRB_MAX_DELAY)
  146. return false;
  147. }
  148. return true;
  149. }
  150. static void meson_irtx_fill_buf(struct meson_irtx *ir, u32 *dst_buf,
  151. unsigned int *src_buf, unsigned int len)
  152. {
  153. unsigned int i;
  154. for (i = 0; i < len; i++) {
  155. if (i % 2 == 0)
  156. dst_buf[i] = meson_irtx_prepare_pulse(ir, src_buf[i]);
  157. else
  158. dst_buf[i] = meson_irtx_prepare_space(ir, src_buf[i]);
  159. }
  160. }
  161. static irqreturn_t meson_irtx_irqhandler(int irq, void *data)
  162. {
  163. unsigned long flags;
  164. struct meson_irtx *ir = data;
  165. writel(readl(ir->reg_base + IRB_ADDR3) & ~IRB_FIFO_THD_PENDING,
  166. ir->reg_base + IRB_ADDR3);
  167. if (completion_done(&ir->completion))
  168. return IRQ_HANDLED;
  169. spin_lock_irqsave(&ir->lock, flags);
  170. if (ir->buf_head < ir->buf_len)
  171. meson_irtx_send_buffer(ir);
  172. else
  173. complete(&ir->completion);
  174. spin_unlock_irqrestore(&ir->lock, flags);
  175. return IRQ_HANDLED;
  176. }
  177. static int meson_irtx_set_carrier(struct rc_dev *rc, u32 carrier)
  178. {
  179. struct meson_irtx *ir = rc->priv;
  180. if (carrier == 0)
  181. return -EINVAL;
  182. ir->carrier = carrier;
  183. meson_irtx_set_mod(ir);
  184. return 0;
  185. }
  186. static int meson_irtx_set_duty_cycle(struct rc_dev *rc, u32 duty_cycle)
  187. {
  188. struct meson_irtx *ir = rc->priv;
  189. ir->duty_cycle = duty_cycle;
  190. meson_irtx_set_mod(ir);
  191. return 0;
  192. }
  193. static void meson_irtx_update_buf(struct meson_irtx *ir, u32 *buf,
  194. unsigned int len, unsigned int head)
  195. {
  196. ir->buf = buf;
  197. ir->buf_len = len;
  198. ir->buf_head = head;
  199. }
  200. static int meson_irtx_transmit(struct rc_dev *rc, unsigned int *buf,
  201. unsigned int len)
  202. {
  203. unsigned long flags;
  204. struct meson_irtx *ir = rc->priv;
  205. u32 *tx_buf;
  206. int ret = len;
  207. if (!meson_irtx_check_buf(ir, buf, len))
  208. return -EINVAL;
  209. tx_buf = kmalloc_array(len, sizeof(u32), GFP_KERNEL);
  210. if (!tx_buf)
  211. return -ENOMEM;
  212. meson_irtx_fill_buf(ir, tx_buf, buf, len);
  213. dev_dbg(ir->dev, "TX buffer filled, length = %u\n", len);
  214. spin_lock_irqsave(&ir->lock, flags);
  215. meson_irtx_update_buf(ir, tx_buf, len, 0);
  216. reinit_completion(&ir->completion);
  217. meson_irtx_send_buffer(ir);
  218. spin_unlock_irqrestore(&ir->lock, flags);
  219. if (!wait_for_completion_timeout(&ir->completion,
  220. usecs_to_jiffies(IR_MAX_DURATION)))
  221. ret = -ETIMEDOUT;
  222. spin_lock_irqsave(&ir->lock, flags);
  223. kfree(ir->buf);
  224. meson_irtx_update_buf(ir, NULL, 0, 0);
  225. spin_unlock_irqrestore(&ir->lock, flags);
  226. return ret;
  227. }
  228. static int meson_irtx_mod_clock_probe(struct meson_irtx *ir,
  229. unsigned int *clk_nr)
  230. {
  231. struct device_node *np = ir->dev->of_node;
  232. struct clk *clock;
  233. if (!np)
  234. return -ENODEV;
  235. clock = devm_clk_get(ir->dev, "xtal");
  236. if (IS_ERR(clock) || clk_prepare_enable(clock))
  237. return -ENODEV;
  238. *clk_nr = IRB_MOD_XTAL3_CLK;
  239. ir->clk_rate = clk_get_rate(clock) / 3;
  240. if (ir->clk_rate < IRB_MOD_1US_CLK_RATE) {
  241. *clk_nr = IRB_MOD_1US_CLK;
  242. ir->clk_rate = IRB_MOD_1US_CLK_RATE;
  243. }
  244. dev_info(ir->dev, "F_clk = %luHz\n", ir->clk_rate);
  245. return 0;
  246. }
  247. static int __init meson_irtx_probe(struct platform_device *pdev)
  248. {
  249. struct device *dev = &pdev->dev;
  250. struct meson_irtx *ir;
  251. struct rc_dev *rc;
  252. int irq;
  253. unsigned int clk_nr;
  254. int ret;
  255. ir = devm_kzalloc(dev, sizeof(*ir), GFP_KERNEL);
  256. if (!ir)
  257. return -ENOMEM;
  258. ir->reg_base = devm_platform_ioremap_resource(pdev, 0);
  259. if (IS_ERR(ir->reg_base))
  260. return PTR_ERR(ir->reg_base);
  261. irq = platform_get_irq(pdev, 0);
  262. if (irq < 0)
  263. return -ENODEV;
  264. ir->dev = dev;
  265. ir->carrier = MIRTX_DEFAULT_CARRIER;
  266. ir->duty_cycle = MIRTX_DEFAULT_DUTY_CYCLE;
  267. init_completion(&ir->completion);
  268. spin_lock_init(&ir->lock);
  269. ret = meson_irtx_mod_clock_probe(ir, &clk_nr);
  270. if (ret) {
  271. dev_err(dev, "modulator clock setup failed\n");
  272. return ret;
  273. }
  274. meson_irtx_setup(ir, clk_nr);
  275. ret = devm_request_irq(dev, irq,
  276. meson_irtx_irqhandler,
  277. IRQF_TRIGGER_RISING,
  278. DRIVER_NAME, ir);
  279. if (ret) {
  280. dev_err(dev, "irq request failed\n");
  281. return ret;
  282. }
  283. rc = rc_allocate_device(RC_DRIVER_IR_RAW_TX);
  284. if (!rc)
  285. return -ENOMEM;
  286. rc->driver_name = DRIVER_NAME;
  287. rc->device_name = DEVICE_NAME;
  288. rc->priv = ir;
  289. rc->tx_ir = meson_irtx_transmit;
  290. rc->s_tx_carrier = meson_irtx_set_carrier;
  291. rc->s_tx_duty_cycle = meson_irtx_set_duty_cycle;
  292. ret = rc_register_device(rc);
  293. if (ret < 0) {
  294. dev_err(dev, "rc_dev registration failed\n");
  295. rc_free_device(rc);
  296. return ret;
  297. }
  298. platform_set_drvdata(pdev, rc);
  299. return 0;
  300. }
  301. static int meson_irtx_remove(struct platform_device *pdev)
  302. {
  303. struct rc_dev *rc = platform_get_drvdata(pdev);
  304. rc_unregister_device(rc);
  305. return 0;
  306. }
  307. static const struct of_device_id meson_irtx_dt_match[] = {
  308. {
  309. .compatible = "amlogic,meson-g12a-ir-tx",
  310. },
  311. {},
  312. };
  313. MODULE_DEVICE_TABLE(of, meson_irtx_dt_match);
  314. static struct platform_driver meson_irtx_pd = {
  315. .remove = meson_irtx_remove,
  316. .driver = {
  317. .name = DRIVER_NAME,
  318. .of_match_table = meson_irtx_dt_match,
  319. },
  320. };
  321. module_platform_driver_probe(meson_irtx_pd, meson_irtx_probe);
  322. MODULE_DESCRIPTION("Meson IR TX driver");
  323. MODULE_AUTHOR("Viktor Prutyanov <[email protected]>");
  324. MODULE_LICENSE("GPL");