ds3000.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. Montage Technology DS3000 - DVBS/S2 Demodulator driver
  4. Copyright (C) 2009-2012 Konstantin Dimitrov <[email protected]>
  5. Copyright (C) 2009-2012 TurboSight.com
  6. */
  7. #include <linux/slab.h>
  8. #include <linux/kernel.h>
  9. #include <linux/module.h>
  10. #include <linux/moduleparam.h>
  11. #include <linux/init.h>
  12. #include <linux/firmware.h>
  13. #include <media/dvb_frontend.h>
  14. #include "ts2020.h"
  15. #include "ds3000.h"
  16. static int debug;
  17. #define dprintk(args...) \
  18. do { \
  19. if (debug) \
  20. printk(args); \
  21. } while (0)
  22. /* as of March 2009 current DS3000 firmware version is 1.78 */
  23. /* DS3000 FW v1.78 MD5: a32d17910c4f370073f9346e71d34b80 */
  24. #define DS3000_DEFAULT_FIRMWARE "dvb-fe-ds3000.fw"
  25. #define DS3000_SAMPLE_RATE 96000 /* in kHz */
  26. /* Register values to initialise the demod in DVB-S mode */
  27. static u8 ds3000_dvbs_init_tab[] = {
  28. 0x23, 0x05,
  29. 0x08, 0x03,
  30. 0x0c, 0x00,
  31. 0x21, 0x54,
  32. 0x25, 0x82,
  33. 0x27, 0x31,
  34. 0x30, 0x08,
  35. 0x31, 0x40,
  36. 0x32, 0x32,
  37. 0x33, 0x35,
  38. 0x35, 0xff,
  39. 0x3a, 0x00,
  40. 0x37, 0x10,
  41. 0x38, 0x10,
  42. 0x39, 0x02,
  43. 0x42, 0x60,
  44. 0x4a, 0x40,
  45. 0x4b, 0x04,
  46. 0x4d, 0x91,
  47. 0x5d, 0xc8,
  48. 0x50, 0x77,
  49. 0x51, 0x77,
  50. 0x52, 0x36,
  51. 0x53, 0x36,
  52. 0x56, 0x01,
  53. 0x63, 0x43,
  54. 0x64, 0x30,
  55. 0x65, 0x40,
  56. 0x68, 0x26,
  57. 0x69, 0x4c,
  58. 0x70, 0x20,
  59. 0x71, 0x70,
  60. 0x72, 0x04,
  61. 0x73, 0x00,
  62. 0x70, 0x40,
  63. 0x71, 0x70,
  64. 0x72, 0x04,
  65. 0x73, 0x00,
  66. 0x70, 0x60,
  67. 0x71, 0x70,
  68. 0x72, 0x04,
  69. 0x73, 0x00,
  70. 0x70, 0x80,
  71. 0x71, 0x70,
  72. 0x72, 0x04,
  73. 0x73, 0x00,
  74. 0x70, 0xa0,
  75. 0x71, 0x70,
  76. 0x72, 0x04,
  77. 0x73, 0x00,
  78. 0x70, 0x1f,
  79. 0x76, 0x00,
  80. 0x77, 0xd1,
  81. 0x78, 0x0c,
  82. 0x79, 0x80,
  83. 0x7f, 0x04,
  84. 0x7c, 0x00,
  85. 0x80, 0x86,
  86. 0x81, 0xa6,
  87. 0x85, 0x04,
  88. 0xcd, 0xf4,
  89. 0x90, 0x33,
  90. 0xa0, 0x44,
  91. 0xc0, 0x18,
  92. 0xc3, 0x10,
  93. 0xc4, 0x08,
  94. 0xc5, 0x80,
  95. 0xc6, 0x80,
  96. 0xc7, 0x0a,
  97. 0xc8, 0x1a,
  98. 0xc9, 0x80,
  99. 0xfe, 0x92,
  100. 0xe0, 0xf8,
  101. 0xe6, 0x8b,
  102. 0xd0, 0x40,
  103. 0xf8, 0x20,
  104. 0xfa, 0x0f,
  105. 0xfd, 0x20,
  106. 0xad, 0x20,
  107. 0xae, 0x07,
  108. 0xb8, 0x00,
  109. };
  110. /* Register values to initialise the demod in DVB-S2 mode */
  111. static u8 ds3000_dvbs2_init_tab[] = {
  112. 0x23, 0x0f,
  113. 0x08, 0x07,
  114. 0x0c, 0x00,
  115. 0x21, 0x54,
  116. 0x25, 0x82,
  117. 0x27, 0x31,
  118. 0x30, 0x08,
  119. 0x31, 0x32,
  120. 0x32, 0x32,
  121. 0x33, 0x35,
  122. 0x35, 0xff,
  123. 0x3a, 0x00,
  124. 0x37, 0x10,
  125. 0x38, 0x10,
  126. 0x39, 0x02,
  127. 0x42, 0x60,
  128. 0x4a, 0x80,
  129. 0x4b, 0x04,
  130. 0x4d, 0x81,
  131. 0x5d, 0x88,
  132. 0x50, 0x36,
  133. 0x51, 0x36,
  134. 0x52, 0x36,
  135. 0x53, 0x36,
  136. 0x63, 0x60,
  137. 0x64, 0x10,
  138. 0x65, 0x10,
  139. 0x68, 0x04,
  140. 0x69, 0x29,
  141. 0x70, 0x20,
  142. 0x71, 0x70,
  143. 0x72, 0x04,
  144. 0x73, 0x00,
  145. 0x70, 0x40,
  146. 0x71, 0x70,
  147. 0x72, 0x04,
  148. 0x73, 0x00,
  149. 0x70, 0x60,
  150. 0x71, 0x70,
  151. 0x72, 0x04,
  152. 0x73, 0x00,
  153. 0x70, 0x80,
  154. 0x71, 0x70,
  155. 0x72, 0x04,
  156. 0x73, 0x00,
  157. 0x70, 0xa0,
  158. 0x71, 0x70,
  159. 0x72, 0x04,
  160. 0x73, 0x00,
  161. 0x70, 0x1f,
  162. 0xa0, 0x44,
  163. 0xc0, 0x08,
  164. 0xc1, 0x10,
  165. 0xc2, 0x08,
  166. 0xc3, 0x10,
  167. 0xc4, 0x08,
  168. 0xc5, 0xf0,
  169. 0xc6, 0xf0,
  170. 0xc7, 0x0a,
  171. 0xc8, 0x1a,
  172. 0xc9, 0x80,
  173. 0xca, 0x23,
  174. 0xcb, 0x24,
  175. 0xce, 0x74,
  176. 0x90, 0x03,
  177. 0x76, 0x80,
  178. 0x77, 0x42,
  179. 0x78, 0x0a,
  180. 0x79, 0x80,
  181. 0xad, 0x40,
  182. 0xae, 0x07,
  183. 0x7f, 0xd4,
  184. 0x7c, 0x00,
  185. 0x80, 0xa8,
  186. 0x81, 0xda,
  187. 0x7c, 0x01,
  188. 0x80, 0xda,
  189. 0x81, 0xec,
  190. 0x7c, 0x02,
  191. 0x80, 0xca,
  192. 0x81, 0xeb,
  193. 0x7c, 0x03,
  194. 0x80, 0xba,
  195. 0x81, 0xdb,
  196. 0x85, 0x08,
  197. 0x86, 0x00,
  198. 0x87, 0x02,
  199. 0x89, 0x80,
  200. 0x8b, 0x44,
  201. 0x8c, 0xaa,
  202. 0x8a, 0x10,
  203. 0xba, 0x00,
  204. 0xf5, 0x04,
  205. 0xfe, 0x44,
  206. 0xd2, 0x32,
  207. 0xb8, 0x00,
  208. };
  209. struct ds3000_state {
  210. struct i2c_adapter *i2c;
  211. const struct ds3000_config *config;
  212. struct dvb_frontend frontend;
  213. /* previous uncorrected block counter for DVB-S2 */
  214. u16 prevUCBS2;
  215. };
  216. static int ds3000_writereg(struct ds3000_state *state, int reg, int data)
  217. {
  218. u8 buf[] = { reg, data };
  219. struct i2c_msg msg = { .addr = state->config->demod_address,
  220. .flags = 0, .buf = buf, .len = 2 };
  221. int err;
  222. dprintk("%s: write reg 0x%02x, value 0x%02x\n", __func__, reg, data);
  223. err = i2c_transfer(state->i2c, &msg, 1);
  224. if (err != 1) {
  225. printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n",
  226. __func__, err, reg, data);
  227. return -EREMOTEIO;
  228. }
  229. return 0;
  230. }
  231. static int ds3000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  232. {
  233. struct ds3000_state *state = fe->demodulator_priv;
  234. if (enable)
  235. ds3000_writereg(state, 0x03, 0x12);
  236. else
  237. ds3000_writereg(state, 0x03, 0x02);
  238. return 0;
  239. }
  240. /* I2C write for 8k firmware load */
  241. static int ds3000_writeFW(struct ds3000_state *state, int reg,
  242. const u8 *data, u16 len)
  243. {
  244. int i, ret = 0;
  245. struct i2c_msg msg;
  246. u8 *buf;
  247. buf = kmalloc(33, GFP_KERNEL);
  248. if (!buf)
  249. return -ENOMEM;
  250. *(buf) = reg;
  251. msg.addr = state->config->demod_address;
  252. msg.flags = 0;
  253. msg.buf = buf;
  254. msg.len = 33;
  255. for (i = 0; i < len; i += 32) {
  256. memcpy(buf + 1, data + i, 32);
  257. dprintk("%s: write reg 0x%02x, len = %d\n", __func__, reg, len);
  258. ret = i2c_transfer(state->i2c, &msg, 1);
  259. if (ret != 1) {
  260. printk(KERN_ERR "%s: write error(err == %i, reg == 0x%02x\n",
  261. __func__, ret, reg);
  262. ret = -EREMOTEIO;
  263. goto error;
  264. }
  265. }
  266. ret = 0;
  267. error:
  268. kfree(buf);
  269. return ret;
  270. }
  271. static int ds3000_readreg(struct ds3000_state *state, u8 reg)
  272. {
  273. int ret;
  274. u8 b0[] = { reg };
  275. u8 b1[] = { 0 };
  276. struct i2c_msg msg[] = {
  277. {
  278. .addr = state->config->demod_address,
  279. .flags = 0,
  280. .buf = b0,
  281. .len = 1
  282. }, {
  283. .addr = state->config->demod_address,
  284. .flags = I2C_M_RD,
  285. .buf = b1,
  286. .len = 1
  287. }
  288. };
  289. ret = i2c_transfer(state->i2c, msg, 2);
  290. if (ret != 2) {
  291. printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret);
  292. return ret;
  293. }
  294. dprintk("%s: read reg 0x%02x, value 0x%02x\n", __func__, reg, b1[0]);
  295. return b1[0];
  296. }
  297. static int ds3000_load_firmware(struct dvb_frontend *fe,
  298. const struct firmware *fw);
  299. static int ds3000_firmware_ondemand(struct dvb_frontend *fe)
  300. {
  301. struct ds3000_state *state = fe->demodulator_priv;
  302. const struct firmware *fw;
  303. int ret = 0;
  304. dprintk("%s()\n", __func__);
  305. ret = ds3000_readreg(state, 0xb2);
  306. if (ret < 0)
  307. return ret;
  308. /* Load firmware */
  309. /* request the firmware, this will block until someone uploads it */
  310. printk(KERN_INFO "%s: Waiting for firmware upload (%s)...\n", __func__,
  311. DS3000_DEFAULT_FIRMWARE);
  312. ret = request_firmware(&fw, DS3000_DEFAULT_FIRMWARE,
  313. state->i2c->dev.parent);
  314. printk(KERN_INFO "%s: Waiting for firmware upload(2)...\n", __func__);
  315. if (ret) {
  316. printk(KERN_ERR "%s: No firmware uploaded (timeout or file not found?)\n",
  317. __func__);
  318. return ret;
  319. }
  320. ret = ds3000_load_firmware(fe, fw);
  321. if (ret)
  322. printk("%s: Writing firmware to device failed\n", __func__);
  323. release_firmware(fw);
  324. dprintk("%s: Firmware upload %s\n", __func__,
  325. ret == 0 ? "complete" : "failed");
  326. return ret;
  327. }
  328. static int ds3000_load_firmware(struct dvb_frontend *fe,
  329. const struct firmware *fw)
  330. {
  331. struct ds3000_state *state = fe->demodulator_priv;
  332. int ret = 0;
  333. dprintk("%s\n", __func__);
  334. dprintk("Firmware is %zu bytes (%02x %02x .. %02x %02x)\n",
  335. fw->size,
  336. fw->data[0],
  337. fw->data[1],
  338. fw->data[fw->size - 2],
  339. fw->data[fw->size - 1]);
  340. /* Begin the firmware load process */
  341. ds3000_writereg(state, 0xb2, 0x01);
  342. /* write the entire firmware */
  343. ret = ds3000_writeFW(state, 0xb0, fw->data, fw->size);
  344. ds3000_writereg(state, 0xb2, 0x00);
  345. return ret;
  346. }
  347. static int ds3000_set_voltage(struct dvb_frontend *fe,
  348. enum fe_sec_voltage voltage)
  349. {
  350. struct ds3000_state *state = fe->demodulator_priv;
  351. u8 data;
  352. dprintk("%s(%d)\n", __func__, voltage);
  353. data = ds3000_readreg(state, 0xa2);
  354. data |= 0x03; /* bit0 V/H, bit1 off/on */
  355. switch (voltage) {
  356. case SEC_VOLTAGE_18:
  357. data &= ~0x03;
  358. break;
  359. case SEC_VOLTAGE_13:
  360. data &= ~0x03;
  361. data |= 0x01;
  362. break;
  363. case SEC_VOLTAGE_OFF:
  364. break;
  365. }
  366. ds3000_writereg(state, 0xa2, data);
  367. return 0;
  368. }
  369. static int ds3000_read_status(struct dvb_frontend *fe, enum fe_status *status)
  370. {
  371. struct ds3000_state *state = fe->demodulator_priv;
  372. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  373. int lock;
  374. *status = 0;
  375. switch (c->delivery_system) {
  376. case SYS_DVBS:
  377. lock = ds3000_readreg(state, 0xd1);
  378. if ((lock & 0x07) == 0x07)
  379. *status = FE_HAS_SIGNAL | FE_HAS_CARRIER |
  380. FE_HAS_VITERBI | FE_HAS_SYNC |
  381. FE_HAS_LOCK;
  382. break;
  383. case SYS_DVBS2:
  384. lock = ds3000_readreg(state, 0x0d);
  385. if ((lock & 0x8f) == 0x8f)
  386. *status = FE_HAS_SIGNAL | FE_HAS_CARRIER |
  387. FE_HAS_VITERBI | FE_HAS_SYNC |
  388. FE_HAS_LOCK;
  389. break;
  390. default:
  391. return -EINVAL;
  392. }
  393. if (state->config->set_lock_led)
  394. state->config->set_lock_led(fe, *status == 0 ? 0 : 1);
  395. dprintk("%s: status = 0x%02x\n", __func__, lock);
  396. return 0;
  397. }
  398. /* read DS3000 BER value */
  399. static int ds3000_read_ber(struct dvb_frontend *fe, u32* ber)
  400. {
  401. struct ds3000_state *state = fe->demodulator_priv;
  402. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  403. u8 data;
  404. u32 ber_reading, lpdc_frames;
  405. dprintk("%s()\n", __func__);
  406. switch (c->delivery_system) {
  407. case SYS_DVBS:
  408. /* set the number of bytes checked during
  409. BER estimation */
  410. ds3000_writereg(state, 0xf9, 0x04);
  411. /* read BER estimation status */
  412. data = ds3000_readreg(state, 0xf8);
  413. /* check if BER estimation is ready */
  414. if ((data & 0x10) == 0) {
  415. /* this is the number of error bits,
  416. to calculate the bit error rate
  417. divide to 8388608 */
  418. *ber = (ds3000_readreg(state, 0xf7) << 8) |
  419. ds3000_readreg(state, 0xf6);
  420. /* start counting error bits */
  421. /* need to be set twice
  422. otherwise it fails sometimes */
  423. data |= 0x10;
  424. ds3000_writereg(state, 0xf8, data);
  425. ds3000_writereg(state, 0xf8, data);
  426. } else
  427. /* used to indicate that BER estimation
  428. is not ready, i.e. BER is unknown */
  429. *ber = 0xffffffff;
  430. break;
  431. case SYS_DVBS2:
  432. /* read the number of LPDC decoded frames */
  433. lpdc_frames = (ds3000_readreg(state, 0xd7) << 16) |
  434. (ds3000_readreg(state, 0xd6) << 8) |
  435. ds3000_readreg(state, 0xd5);
  436. /* read the number of packets with bad CRC */
  437. ber_reading = (ds3000_readreg(state, 0xf8) << 8) |
  438. ds3000_readreg(state, 0xf7);
  439. if (lpdc_frames > 750) {
  440. /* clear LPDC frame counters */
  441. ds3000_writereg(state, 0xd1, 0x01);
  442. /* clear bad packets counter */
  443. ds3000_writereg(state, 0xf9, 0x01);
  444. /* enable bad packets counter */
  445. ds3000_writereg(state, 0xf9, 0x00);
  446. /* enable LPDC frame counters */
  447. ds3000_writereg(state, 0xd1, 0x00);
  448. *ber = ber_reading;
  449. } else
  450. /* used to indicate that BER estimation is not ready,
  451. i.e. BER is unknown */
  452. *ber = 0xffffffff;
  453. break;
  454. default:
  455. return -EINVAL;
  456. }
  457. return 0;
  458. }
  459. static int ds3000_read_signal_strength(struct dvb_frontend *fe,
  460. u16 *signal_strength)
  461. {
  462. if (fe->ops.tuner_ops.get_rf_strength)
  463. fe->ops.tuner_ops.get_rf_strength(fe, signal_strength);
  464. return 0;
  465. }
  466. /* calculate DS3000 snr value in dB */
  467. static int ds3000_read_snr(struct dvb_frontend *fe, u16 *snr)
  468. {
  469. struct ds3000_state *state = fe->demodulator_priv;
  470. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  471. u8 snr_reading, snr_value;
  472. u32 dvbs2_signal_reading, dvbs2_noise_reading, tmp;
  473. static const u16 dvbs_snr_tab[] = { /* 20 x Table (rounded up) */
  474. 0x0000, 0x1b13, 0x2aea, 0x3627, 0x3ede, 0x45fe, 0x4c03,
  475. 0x513a, 0x55d4, 0x59f2, 0x5dab, 0x6111, 0x6431, 0x6717,
  476. 0x69c9, 0x6c4e, 0x6eac, 0x70e8, 0x7304, 0x7505
  477. };
  478. static const u16 dvbs2_snr_tab[] = { /* 80 x Table (rounded up) */
  479. 0x0000, 0x0bc2, 0x12a3, 0x1785, 0x1b4e, 0x1e65, 0x2103,
  480. 0x2347, 0x2546, 0x2710, 0x28ae, 0x2a28, 0x2b83, 0x2cc5,
  481. 0x2df1, 0x2f09, 0x3010, 0x3109, 0x31f4, 0x32d2, 0x33a6,
  482. 0x3470, 0x3531, 0x35ea, 0x369b, 0x3746, 0x37ea, 0x3888,
  483. 0x3920, 0x39b3, 0x3a42, 0x3acc, 0x3b51, 0x3bd3, 0x3c51,
  484. 0x3ccb, 0x3d42, 0x3db6, 0x3e27, 0x3e95, 0x3f00, 0x3f68,
  485. 0x3fcf, 0x4033, 0x4094, 0x40f4, 0x4151, 0x41ac, 0x4206,
  486. 0x425e, 0x42b4, 0x4308, 0x435b, 0x43ac, 0x43fc, 0x444a,
  487. 0x4497, 0x44e2, 0x452d, 0x4576, 0x45bd, 0x4604, 0x4649,
  488. 0x468e, 0x46d1, 0x4713, 0x4755, 0x4795, 0x47d4, 0x4813,
  489. 0x4851, 0x488d, 0x48c9, 0x4904, 0x493f, 0x4978, 0x49b1,
  490. 0x49e9, 0x4a20, 0x4a57
  491. };
  492. dprintk("%s()\n", __func__);
  493. switch (c->delivery_system) {
  494. case SYS_DVBS:
  495. snr_reading = ds3000_readreg(state, 0xff);
  496. snr_reading /= 8;
  497. if (snr_reading == 0)
  498. *snr = 0x0000;
  499. else {
  500. if (snr_reading > 20)
  501. snr_reading = 20;
  502. snr_value = dvbs_snr_tab[snr_reading - 1] * 10 / 23026;
  503. /* cook the value to be suitable for szap-s2
  504. human readable output */
  505. *snr = snr_value * 8 * 655;
  506. }
  507. dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__,
  508. snr_reading, *snr);
  509. break;
  510. case SYS_DVBS2:
  511. dvbs2_noise_reading = (ds3000_readreg(state, 0x8c) & 0x3f) +
  512. (ds3000_readreg(state, 0x8d) << 4);
  513. dvbs2_signal_reading = ds3000_readreg(state, 0x8e);
  514. tmp = dvbs2_signal_reading * dvbs2_signal_reading >> 1;
  515. if (tmp == 0) {
  516. *snr = 0x0000;
  517. return 0;
  518. }
  519. if (dvbs2_noise_reading == 0) {
  520. snr_value = 0x0013;
  521. /* cook the value to be suitable for szap-s2
  522. human readable output */
  523. *snr = 0xffff;
  524. return 0;
  525. }
  526. if (tmp > dvbs2_noise_reading) {
  527. snr_reading = tmp / dvbs2_noise_reading;
  528. if (snr_reading > 80)
  529. snr_reading = 80;
  530. snr_value = dvbs2_snr_tab[snr_reading - 1] / 1000;
  531. /* cook the value to be suitable for szap-s2
  532. human readable output */
  533. *snr = snr_value * 5 * 655;
  534. } else {
  535. snr_reading = dvbs2_noise_reading / tmp;
  536. if (snr_reading > 80)
  537. snr_reading = 80;
  538. *snr = -(dvbs2_snr_tab[snr_reading - 1] / 1000);
  539. }
  540. dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__,
  541. snr_reading, *snr);
  542. break;
  543. default:
  544. return -EINVAL;
  545. }
  546. return 0;
  547. }
  548. /* read DS3000 uncorrected blocks */
  549. static int ds3000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  550. {
  551. struct ds3000_state *state = fe->demodulator_priv;
  552. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  553. u8 data;
  554. u16 _ucblocks;
  555. dprintk("%s()\n", __func__);
  556. switch (c->delivery_system) {
  557. case SYS_DVBS:
  558. *ucblocks = (ds3000_readreg(state, 0xf5) << 8) |
  559. ds3000_readreg(state, 0xf4);
  560. data = ds3000_readreg(state, 0xf8);
  561. /* clear packet counters */
  562. data &= ~0x20;
  563. ds3000_writereg(state, 0xf8, data);
  564. /* enable packet counters */
  565. data |= 0x20;
  566. ds3000_writereg(state, 0xf8, data);
  567. break;
  568. case SYS_DVBS2:
  569. _ucblocks = (ds3000_readreg(state, 0xe2) << 8) |
  570. ds3000_readreg(state, 0xe1);
  571. if (_ucblocks > state->prevUCBS2)
  572. *ucblocks = _ucblocks - state->prevUCBS2;
  573. else
  574. *ucblocks = state->prevUCBS2 - _ucblocks;
  575. state->prevUCBS2 = _ucblocks;
  576. break;
  577. default:
  578. return -EINVAL;
  579. }
  580. return 0;
  581. }
  582. static int ds3000_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
  583. {
  584. struct ds3000_state *state = fe->demodulator_priv;
  585. u8 data;
  586. dprintk("%s(%d)\n", __func__, tone);
  587. if ((tone != SEC_TONE_ON) && (tone != SEC_TONE_OFF)) {
  588. printk(KERN_ERR "%s: Invalid, tone=%d\n", __func__, tone);
  589. return -EINVAL;
  590. }
  591. data = ds3000_readreg(state, 0xa2);
  592. data &= ~0xc0;
  593. ds3000_writereg(state, 0xa2, data);
  594. switch (tone) {
  595. case SEC_TONE_ON:
  596. dprintk("%s: setting tone on\n", __func__);
  597. data = ds3000_readreg(state, 0xa1);
  598. data &= ~0x43;
  599. data |= 0x04;
  600. ds3000_writereg(state, 0xa1, data);
  601. break;
  602. case SEC_TONE_OFF:
  603. dprintk("%s: setting tone off\n", __func__);
  604. data = ds3000_readreg(state, 0xa2);
  605. data |= 0x80;
  606. ds3000_writereg(state, 0xa2, data);
  607. break;
  608. }
  609. return 0;
  610. }
  611. static int ds3000_send_diseqc_msg(struct dvb_frontend *fe,
  612. struct dvb_diseqc_master_cmd *d)
  613. {
  614. struct ds3000_state *state = fe->demodulator_priv;
  615. int i;
  616. u8 data;
  617. /* Dump DiSEqC message */
  618. dprintk("%s(", __func__);
  619. for (i = 0 ; i < d->msg_len;) {
  620. dprintk("0x%02x", d->msg[i]);
  621. if (++i < d->msg_len)
  622. dprintk(", ");
  623. }
  624. /* enable DiSEqC message send pin */
  625. data = ds3000_readreg(state, 0xa2);
  626. data &= ~0xc0;
  627. ds3000_writereg(state, 0xa2, data);
  628. /* DiSEqC message */
  629. for (i = 0; i < d->msg_len; i++)
  630. ds3000_writereg(state, 0xa3 + i, d->msg[i]);
  631. data = ds3000_readreg(state, 0xa1);
  632. /* clear DiSEqC message length and status,
  633. enable DiSEqC message send */
  634. data &= ~0xf8;
  635. /* set DiSEqC mode, modulation active during 33 pulses,
  636. set DiSEqC message length */
  637. data |= ((d->msg_len - 1) << 3) | 0x07;
  638. ds3000_writereg(state, 0xa1, data);
  639. /* wait up to 150ms for DiSEqC transmission to complete */
  640. for (i = 0; i < 15; i++) {
  641. data = ds3000_readreg(state, 0xa1);
  642. if ((data & 0x40) == 0)
  643. break;
  644. msleep(10);
  645. }
  646. /* DiSEqC timeout after 150ms */
  647. if (i == 15) {
  648. data = ds3000_readreg(state, 0xa1);
  649. data &= ~0x80;
  650. data |= 0x40;
  651. ds3000_writereg(state, 0xa1, data);
  652. data = ds3000_readreg(state, 0xa2);
  653. data &= ~0xc0;
  654. data |= 0x80;
  655. ds3000_writereg(state, 0xa2, data);
  656. return -ETIMEDOUT;
  657. }
  658. data = ds3000_readreg(state, 0xa2);
  659. data &= ~0xc0;
  660. data |= 0x80;
  661. ds3000_writereg(state, 0xa2, data);
  662. return 0;
  663. }
  664. /* Send DiSEqC burst */
  665. static int ds3000_diseqc_send_burst(struct dvb_frontend *fe,
  666. enum fe_sec_mini_cmd burst)
  667. {
  668. struct ds3000_state *state = fe->demodulator_priv;
  669. int i;
  670. u8 data;
  671. dprintk("%s()\n", __func__);
  672. data = ds3000_readreg(state, 0xa2);
  673. data &= ~0xc0;
  674. ds3000_writereg(state, 0xa2, data);
  675. /* DiSEqC burst */
  676. if (burst == SEC_MINI_A)
  677. /* Unmodulated tone burst */
  678. ds3000_writereg(state, 0xa1, 0x02);
  679. else if (burst == SEC_MINI_B)
  680. /* Modulated tone burst */
  681. ds3000_writereg(state, 0xa1, 0x01);
  682. else
  683. return -EINVAL;
  684. msleep(13);
  685. for (i = 0; i < 5; i++) {
  686. data = ds3000_readreg(state, 0xa1);
  687. if ((data & 0x40) == 0)
  688. break;
  689. msleep(1);
  690. }
  691. if (i == 5) {
  692. data = ds3000_readreg(state, 0xa1);
  693. data &= ~0x80;
  694. data |= 0x40;
  695. ds3000_writereg(state, 0xa1, data);
  696. data = ds3000_readreg(state, 0xa2);
  697. data &= ~0xc0;
  698. data |= 0x80;
  699. ds3000_writereg(state, 0xa2, data);
  700. return -ETIMEDOUT;
  701. }
  702. data = ds3000_readreg(state, 0xa2);
  703. data &= ~0xc0;
  704. data |= 0x80;
  705. ds3000_writereg(state, 0xa2, data);
  706. return 0;
  707. }
  708. static void ds3000_release(struct dvb_frontend *fe)
  709. {
  710. struct ds3000_state *state = fe->demodulator_priv;
  711. if (state->config->set_lock_led)
  712. state->config->set_lock_led(fe, 0);
  713. dprintk("%s\n", __func__);
  714. kfree(state);
  715. }
  716. static const struct dvb_frontend_ops ds3000_ops;
  717. struct dvb_frontend *ds3000_attach(const struct ds3000_config *config,
  718. struct i2c_adapter *i2c)
  719. {
  720. struct ds3000_state *state;
  721. int ret;
  722. dprintk("%s\n", __func__);
  723. /* allocate memory for the internal state */
  724. state = kzalloc(sizeof(*state), GFP_KERNEL);
  725. if (!state)
  726. return NULL;
  727. state->config = config;
  728. state->i2c = i2c;
  729. state->prevUCBS2 = 0;
  730. /* check if the demod is present */
  731. ret = ds3000_readreg(state, 0x00) & 0xfe;
  732. if (ret != 0xe0) {
  733. kfree(state);
  734. printk(KERN_ERR "Invalid probe, probably not a DS3000\n");
  735. return NULL;
  736. }
  737. printk(KERN_INFO "DS3000 chip version: %d.%d attached.\n",
  738. ds3000_readreg(state, 0x02),
  739. ds3000_readreg(state, 0x01));
  740. memcpy(&state->frontend.ops, &ds3000_ops,
  741. sizeof(struct dvb_frontend_ops));
  742. state->frontend.demodulator_priv = state;
  743. /*
  744. * Some devices like T480 starts with voltage on. Be sure
  745. * to turn voltage off during init, as this can otherwise
  746. * interfere with Unicable SCR systems.
  747. */
  748. ds3000_set_voltage(&state->frontend, SEC_VOLTAGE_OFF);
  749. return &state->frontend;
  750. }
  751. EXPORT_SYMBOL_GPL(ds3000_attach);
  752. static int ds3000_set_carrier_offset(struct dvb_frontend *fe,
  753. s32 carrier_offset_khz)
  754. {
  755. struct ds3000_state *state = fe->demodulator_priv;
  756. s32 tmp;
  757. tmp = carrier_offset_khz;
  758. tmp *= 65536;
  759. tmp = (2 * tmp + DS3000_SAMPLE_RATE) / (2 * DS3000_SAMPLE_RATE);
  760. if (tmp < 0)
  761. tmp += 65536;
  762. ds3000_writereg(state, 0x5f, tmp >> 8);
  763. ds3000_writereg(state, 0x5e, tmp & 0xff);
  764. return 0;
  765. }
  766. static int ds3000_set_frontend(struct dvb_frontend *fe)
  767. {
  768. struct ds3000_state *state = fe->demodulator_priv;
  769. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  770. int i;
  771. enum fe_status status;
  772. s32 offset_khz;
  773. u32 frequency;
  774. u16 value;
  775. dprintk("%s() ", __func__);
  776. if (state->config->set_ts_params)
  777. state->config->set_ts_params(fe, 0);
  778. /* Tune */
  779. if (fe->ops.tuner_ops.set_params)
  780. fe->ops.tuner_ops.set_params(fe);
  781. /* ds3000 global reset */
  782. ds3000_writereg(state, 0x07, 0x80);
  783. ds3000_writereg(state, 0x07, 0x00);
  784. /* ds3000 built-in uC reset */
  785. ds3000_writereg(state, 0xb2, 0x01);
  786. /* ds3000 software reset */
  787. ds3000_writereg(state, 0x00, 0x01);
  788. switch (c->delivery_system) {
  789. case SYS_DVBS:
  790. /* initialise the demod in DVB-S mode */
  791. for (i = 0; i < sizeof(ds3000_dvbs_init_tab); i += 2)
  792. ds3000_writereg(state,
  793. ds3000_dvbs_init_tab[i],
  794. ds3000_dvbs_init_tab[i + 1]);
  795. value = ds3000_readreg(state, 0xfe);
  796. value &= 0xc0;
  797. value |= 0x1b;
  798. ds3000_writereg(state, 0xfe, value);
  799. break;
  800. case SYS_DVBS2:
  801. /* initialise the demod in DVB-S2 mode */
  802. for (i = 0; i < sizeof(ds3000_dvbs2_init_tab); i += 2)
  803. ds3000_writereg(state,
  804. ds3000_dvbs2_init_tab[i],
  805. ds3000_dvbs2_init_tab[i + 1]);
  806. if (c->symbol_rate >= 30000000)
  807. ds3000_writereg(state, 0xfe, 0x54);
  808. else
  809. ds3000_writereg(state, 0xfe, 0x98);
  810. break;
  811. default:
  812. return -EINVAL;
  813. }
  814. /* enable 27MHz clock output */
  815. ds3000_writereg(state, 0x29, 0x80);
  816. /* enable ac coupling */
  817. ds3000_writereg(state, 0x25, 0x8a);
  818. if ((c->symbol_rate < ds3000_ops.info.symbol_rate_min) ||
  819. (c->symbol_rate > ds3000_ops.info.symbol_rate_max)) {
  820. dprintk("%s() symbol_rate %u out of range (%u ... %u)\n",
  821. __func__, c->symbol_rate,
  822. ds3000_ops.info.symbol_rate_min,
  823. ds3000_ops.info.symbol_rate_max);
  824. return -EINVAL;
  825. }
  826. /* enhance symbol rate performance */
  827. if ((c->symbol_rate / 1000) <= 5000) {
  828. value = 29777 / (c->symbol_rate / 1000) + 1;
  829. if (value % 2 != 0)
  830. value++;
  831. ds3000_writereg(state, 0xc3, 0x0d);
  832. ds3000_writereg(state, 0xc8, value);
  833. ds3000_writereg(state, 0xc4, 0x10);
  834. ds3000_writereg(state, 0xc7, 0x0e);
  835. } else if ((c->symbol_rate / 1000) <= 10000) {
  836. value = 92166 / (c->symbol_rate / 1000) + 1;
  837. if (value % 2 != 0)
  838. value++;
  839. ds3000_writereg(state, 0xc3, 0x07);
  840. ds3000_writereg(state, 0xc8, value);
  841. ds3000_writereg(state, 0xc4, 0x09);
  842. ds3000_writereg(state, 0xc7, 0x12);
  843. } else if ((c->symbol_rate / 1000) <= 20000) {
  844. value = 64516 / (c->symbol_rate / 1000) + 1;
  845. ds3000_writereg(state, 0xc3, value);
  846. ds3000_writereg(state, 0xc8, 0x0e);
  847. ds3000_writereg(state, 0xc4, 0x07);
  848. ds3000_writereg(state, 0xc7, 0x18);
  849. } else {
  850. value = 129032 / (c->symbol_rate / 1000) + 1;
  851. ds3000_writereg(state, 0xc3, value);
  852. ds3000_writereg(state, 0xc8, 0x0a);
  853. ds3000_writereg(state, 0xc4, 0x05);
  854. ds3000_writereg(state, 0xc7, 0x24);
  855. }
  856. /* normalized symbol rate rounded to the closest integer */
  857. value = (((c->symbol_rate / 1000) << 16) +
  858. (DS3000_SAMPLE_RATE / 2)) / DS3000_SAMPLE_RATE;
  859. ds3000_writereg(state, 0x61, value & 0x00ff);
  860. ds3000_writereg(state, 0x62, (value & 0xff00) >> 8);
  861. /* co-channel interference cancellation disabled */
  862. ds3000_writereg(state, 0x56, 0x00);
  863. /* equalizer disabled */
  864. ds3000_writereg(state, 0x76, 0x00);
  865. /*ds3000_writereg(state, 0x08, 0x03);
  866. ds3000_writereg(state, 0xfd, 0x22);
  867. ds3000_writereg(state, 0x08, 0x07);
  868. ds3000_writereg(state, 0xfd, 0x42);
  869. ds3000_writereg(state, 0x08, 0x07);*/
  870. if (state->config->ci_mode) {
  871. switch (c->delivery_system) {
  872. case SYS_DVBS:
  873. default:
  874. ds3000_writereg(state, 0xfd, 0x80);
  875. break;
  876. case SYS_DVBS2:
  877. ds3000_writereg(state, 0xfd, 0x01);
  878. break;
  879. }
  880. }
  881. /* ds3000 out of software reset */
  882. ds3000_writereg(state, 0x00, 0x00);
  883. /* start ds3000 built-in uC */
  884. ds3000_writereg(state, 0xb2, 0x00);
  885. if (fe->ops.tuner_ops.get_frequency) {
  886. fe->ops.tuner_ops.get_frequency(fe, &frequency);
  887. offset_khz = frequency - c->frequency;
  888. ds3000_set_carrier_offset(fe, offset_khz);
  889. }
  890. for (i = 0; i < 30 ; i++) {
  891. ds3000_read_status(fe, &status);
  892. if (status & FE_HAS_LOCK)
  893. break;
  894. msleep(10);
  895. }
  896. return 0;
  897. }
  898. static int ds3000_tune(struct dvb_frontend *fe,
  899. bool re_tune,
  900. unsigned int mode_flags,
  901. unsigned int *delay,
  902. enum fe_status *status)
  903. {
  904. if (re_tune) {
  905. int ret = ds3000_set_frontend(fe);
  906. if (ret)
  907. return ret;
  908. }
  909. *delay = HZ / 5;
  910. return ds3000_read_status(fe, status);
  911. }
  912. static enum dvbfe_algo ds3000_get_algo(struct dvb_frontend *fe)
  913. {
  914. struct ds3000_state *state = fe->demodulator_priv;
  915. if (state->config->set_lock_led)
  916. state->config->set_lock_led(fe, 0);
  917. dprintk("%s()\n", __func__);
  918. return DVBFE_ALGO_HW;
  919. }
  920. /*
  921. * Initialise or wake up device
  922. *
  923. * Power config will reset and load initial firmware if required
  924. */
  925. static int ds3000_initfe(struct dvb_frontend *fe)
  926. {
  927. struct ds3000_state *state = fe->demodulator_priv;
  928. int ret;
  929. dprintk("%s()\n", __func__);
  930. /* hard reset */
  931. ds3000_writereg(state, 0x08, 0x01 | ds3000_readreg(state, 0x08));
  932. msleep(1);
  933. /* Load the firmware if required */
  934. ret = ds3000_firmware_ondemand(fe);
  935. if (ret != 0) {
  936. printk(KERN_ERR "%s: Unable initialize firmware\n", __func__);
  937. return ret;
  938. }
  939. return 0;
  940. }
  941. static const struct dvb_frontend_ops ds3000_ops = {
  942. .delsys = { SYS_DVBS, SYS_DVBS2 },
  943. .info = {
  944. .name = "Montage Technology DS3000",
  945. .frequency_min_hz = 950 * MHz,
  946. .frequency_max_hz = 2150 * MHz,
  947. .frequency_stepsize_hz = 1011 * kHz,
  948. .frequency_tolerance_hz = 5 * MHz,
  949. .symbol_rate_min = 1000000,
  950. .symbol_rate_max = 45000000,
  951. .caps = FE_CAN_INVERSION_AUTO |
  952. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  953. FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
  954. FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  955. FE_CAN_2G_MODULATION |
  956. FE_CAN_QPSK | FE_CAN_RECOVER
  957. },
  958. .release = ds3000_release,
  959. .init = ds3000_initfe,
  960. .i2c_gate_ctrl = ds3000_i2c_gate_ctrl,
  961. .read_status = ds3000_read_status,
  962. .read_ber = ds3000_read_ber,
  963. .read_signal_strength = ds3000_read_signal_strength,
  964. .read_snr = ds3000_read_snr,
  965. .read_ucblocks = ds3000_read_ucblocks,
  966. .set_voltage = ds3000_set_voltage,
  967. .set_tone = ds3000_set_tone,
  968. .diseqc_send_master_cmd = ds3000_send_diseqc_msg,
  969. .diseqc_send_burst = ds3000_diseqc_send_burst,
  970. .get_frontend_algo = ds3000_get_algo,
  971. .set_frontend = ds3000_set_frontend,
  972. .tune = ds3000_tune,
  973. };
  974. module_param(debug, int, 0644);
  975. MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
  976. MODULE_DESCRIPTION("DVB Frontend module for Montage Technology DS3000 hardware");
  977. MODULE_AUTHOR("Konstantin Dimitrov <[email protected]>");
  978. MODULE_LICENSE("GPL");
  979. MODULE_FIRMWARE(DS3000_DEFAULT_FIRMWARE);