cxd2099.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * cxd2099.c: Driver for the Sony CXD2099AR Common Interface Controller
  4. *
  5. * Copyright (C) 2010-2013 Digital Devices GmbH
  6. */
  7. #include <linux/slab.h>
  8. #include <linux/kernel.h>
  9. #include <linux/module.h>
  10. #include <linux/i2c.h>
  11. #include <linux/regmap.h>
  12. #include <linux/wait.h>
  13. #include <linux/delay.h>
  14. #include <linux/mutex.h>
  15. #include <linux/io.h>
  16. #include "cxd2099.h"
  17. static int buffermode;
  18. module_param(buffermode, int, 0444);
  19. MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
  20. static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
  21. struct cxd {
  22. struct dvb_ca_en50221 en;
  23. struct cxd2099_cfg cfg;
  24. struct i2c_client *client;
  25. struct regmap *regmap;
  26. u8 regs[0x23];
  27. u8 lastaddress;
  28. u8 clk_reg_f;
  29. u8 clk_reg_b;
  30. int mode;
  31. int ready;
  32. int dr;
  33. int write_busy;
  34. int slot_stat;
  35. u8 amem[1024];
  36. int amem_read;
  37. int cammode;
  38. struct mutex lock; /* device access lock */
  39. u8 rbuf[1028];
  40. u8 wbuf[1028];
  41. };
  42. static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
  43. {
  44. int status = 0;
  45. if (ci->lastaddress != adr)
  46. status = regmap_write(ci->regmap, 0, adr);
  47. if (!status) {
  48. ci->lastaddress = adr;
  49. while (n) {
  50. int len = n;
  51. if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
  52. len = ci->cfg.max_i2c;
  53. status = regmap_raw_read(ci->regmap, 1, data, len);
  54. if (status)
  55. return status;
  56. data += len;
  57. n -= len;
  58. }
  59. }
  60. return status;
  61. }
  62. static int read_reg(struct cxd *ci, u8 reg, u8 *val)
  63. {
  64. return read_block(ci, reg, val, 1);
  65. }
  66. static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
  67. {
  68. int status;
  69. u8 addr[2] = {address & 0xff, address >> 8};
  70. status = regmap_raw_write(ci->regmap, 2, addr, 2);
  71. if (!status)
  72. status = regmap_raw_read(ci->regmap, 3, data, n);
  73. return status;
  74. }
  75. static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
  76. {
  77. int status;
  78. u8 addr[2] = {address & 0xff, address >> 8};
  79. status = regmap_raw_write(ci->regmap, 2, addr, 2);
  80. if (!status) {
  81. u8 buf[256];
  82. memcpy(buf, data, n);
  83. status = regmap_raw_write(ci->regmap, 3, buf, n);
  84. }
  85. return status;
  86. }
  87. static int read_io(struct cxd *ci, u16 address, unsigned int *val)
  88. {
  89. int status;
  90. u8 addr[2] = {address & 0xff, address >> 8};
  91. status = regmap_raw_write(ci->regmap, 2, addr, 2);
  92. if (!status)
  93. status = regmap_read(ci->regmap, 3, val);
  94. return status;
  95. }
  96. static int write_io(struct cxd *ci, u16 address, u8 val)
  97. {
  98. int status;
  99. u8 addr[2] = {address & 0xff, address >> 8};
  100. status = regmap_raw_write(ci->regmap, 2, addr, 2);
  101. if (!status)
  102. status = regmap_write(ci->regmap, 3, val);
  103. return status;
  104. }
  105. static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
  106. {
  107. int status = 0;
  108. unsigned int regval;
  109. if (ci->lastaddress != reg)
  110. status = regmap_write(ci->regmap, 0, reg);
  111. if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
  112. status = regmap_read(ci->regmap, 1, &regval);
  113. ci->regs[reg] = regval;
  114. }
  115. ci->lastaddress = reg;
  116. ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
  117. if (!status)
  118. status = regmap_write(ci->regmap, 1, ci->regs[reg]);
  119. if (reg == 0x20)
  120. ci->regs[reg] &= 0x7f;
  121. return status;
  122. }
  123. static int write_reg(struct cxd *ci, u8 reg, u8 val)
  124. {
  125. return write_regm(ci, reg, val, 0xff);
  126. }
  127. static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
  128. {
  129. int status = 0;
  130. u8 *buf = ci->wbuf;
  131. if (ci->lastaddress != adr)
  132. status = regmap_write(ci->regmap, 0, adr);
  133. if (status)
  134. return status;
  135. ci->lastaddress = adr;
  136. while (n) {
  137. int len = n;
  138. if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
  139. len = ci->cfg.max_i2c - 1;
  140. memcpy(buf, data, len);
  141. status = regmap_raw_write(ci->regmap, 1, buf, len);
  142. if (status)
  143. return status;
  144. n -= len;
  145. data += len;
  146. }
  147. return status;
  148. }
  149. static void set_mode(struct cxd *ci, int mode)
  150. {
  151. if (mode == ci->mode)
  152. return;
  153. switch (mode) {
  154. case 0x00: /* IO mem */
  155. write_regm(ci, 0x06, 0x00, 0x07);
  156. break;
  157. case 0x01: /* ATT mem */
  158. write_regm(ci, 0x06, 0x02, 0x07);
  159. break;
  160. default:
  161. break;
  162. }
  163. ci->mode = mode;
  164. }
  165. static void cam_mode(struct cxd *ci, int mode)
  166. {
  167. u8 dummy;
  168. if (mode == ci->cammode)
  169. return;
  170. switch (mode) {
  171. case 0x00:
  172. write_regm(ci, 0x20, 0x80, 0x80);
  173. break;
  174. case 0x01:
  175. if (!ci->en.read_data)
  176. return;
  177. ci->write_busy = 0;
  178. dev_info(&ci->client->dev, "enable cam buffer mode\n");
  179. write_reg(ci, 0x0d, 0x00);
  180. write_reg(ci, 0x0e, 0x01);
  181. write_regm(ci, 0x08, 0x40, 0x40);
  182. read_reg(ci, 0x12, &dummy);
  183. write_regm(ci, 0x08, 0x80, 0x80);
  184. break;
  185. default:
  186. break;
  187. }
  188. ci->cammode = mode;
  189. }
  190. static int init(struct cxd *ci)
  191. {
  192. int status;
  193. mutex_lock(&ci->lock);
  194. ci->mode = -1;
  195. do {
  196. status = write_reg(ci, 0x00, 0x00);
  197. if (status < 0)
  198. break;
  199. status = write_reg(ci, 0x01, 0x00);
  200. if (status < 0)
  201. break;
  202. status = write_reg(ci, 0x02, 0x10);
  203. if (status < 0)
  204. break;
  205. status = write_reg(ci, 0x03, 0x00);
  206. if (status < 0)
  207. break;
  208. status = write_reg(ci, 0x05, 0xFF);
  209. if (status < 0)
  210. break;
  211. status = write_reg(ci, 0x06, 0x1F);
  212. if (status < 0)
  213. break;
  214. status = write_reg(ci, 0x07, 0x1F);
  215. if (status < 0)
  216. break;
  217. status = write_reg(ci, 0x08, 0x28);
  218. if (status < 0)
  219. break;
  220. status = write_reg(ci, 0x14, 0x20);
  221. if (status < 0)
  222. break;
  223. /* TOSTRT = 8, Mode B (gated clock), falling Edge,
  224. * Serial, POL=HIGH, MSB
  225. */
  226. status = write_reg(ci, 0x0A, 0xA7);
  227. if (status < 0)
  228. break;
  229. status = write_reg(ci, 0x0B, 0x33);
  230. if (status < 0)
  231. break;
  232. status = write_reg(ci, 0x0C, 0x33);
  233. if (status < 0)
  234. break;
  235. status = write_regm(ci, 0x14, 0x00, 0x0F);
  236. if (status < 0)
  237. break;
  238. status = write_reg(ci, 0x15, ci->clk_reg_b);
  239. if (status < 0)
  240. break;
  241. status = write_regm(ci, 0x16, 0x00, 0x0F);
  242. if (status < 0)
  243. break;
  244. status = write_reg(ci, 0x17, ci->clk_reg_f);
  245. if (status < 0)
  246. break;
  247. if (ci->cfg.clock_mode == 2) {
  248. /* bitrate*2^13/ 72000 */
  249. u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
  250. if (ci->cfg.polarity) {
  251. status = write_reg(ci, 0x09, 0x6f);
  252. if (status < 0)
  253. break;
  254. } else {
  255. status = write_reg(ci, 0x09, 0x6d);
  256. if (status < 0)
  257. break;
  258. }
  259. status = write_reg(ci, 0x20, 0x08);
  260. if (status < 0)
  261. break;
  262. status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
  263. if (status < 0)
  264. break;
  265. status = write_reg(ci, 0x22, reg & 0xff);
  266. if (status < 0)
  267. break;
  268. } else if (ci->cfg.clock_mode == 1) {
  269. if (ci->cfg.polarity) {
  270. status = write_reg(ci, 0x09, 0x6f); /* D */
  271. if (status < 0)
  272. break;
  273. } else {
  274. status = write_reg(ci, 0x09, 0x6d);
  275. if (status < 0)
  276. break;
  277. }
  278. status = write_reg(ci, 0x20, 0x68);
  279. if (status < 0)
  280. break;
  281. status = write_reg(ci, 0x21, 0x00);
  282. if (status < 0)
  283. break;
  284. status = write_reg(ci, 0x22, 0x02);
  285. if (status < 0)
  286. break;
  287. } else {
  288. if (ci->cfg.polarity) {
  289. status = write_reg(ci, 0x09, 0x4f); /* C */
  290. if (status < 0)
  291. break;
  292. } else {
  293. status = write_reg(ci, 0x09, 0x4d);
  294. if (status < 0)
  295. break;
  296. }
  297. status = write_reg(ci, 0x20, 0x28);
  298. if (status < 0)
  299. break;
  300. status = write_reg(ci, 0x21, 0x00);
  301. if (status < 0)
  302. break;
  303. status = write_reg(ci, 0x22, 0x07);
  304. if (status < 0)
  305. break;
  306. }
  307. status = write_regm(ci, 0x20, 0x80, 0x80);
  308. if (status < 0)
  309. break;
  310. status = write_regm(ci, 0x03, 0x02, 0x02);
  311. if (status < 0)
  312. break;
  313. status = write_reg(ci, 0x01, 0x04);
  314. if (status < 0)
  315. break;
  316. status = write_reg(ci, 0x00, 0x31);
  317. if (status < 0)
  318. break;
  319. /* Put TS in bypass */
  320. status = write_regm(ci, 0x09, 0x08, 0x08);
  321. if (status < 0)
  322. break;
  323. ci->cammode = -1;
  324. cam_mode(ci, 0);
  325. } while (0);
  326. mutex_unlock(&ci->lock);
  327. return 0;
  328. }
  329. static int read_attribute_mem(struct dvb_ca_en50221 *ca,
  330. int slot, int address)
  331. {
  332. struct cxd *ci = ca->data;
  333. u8 val;
  334. mutex_lock(&ci->lock);
  335. set_mode(ci, 1);
  336. read_pccard(ci, address, &val, 1);
  337. mutex_unlock(&ci->lock);
  338. return val;
  339. }
  340. static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
  341. int address, u8 value)
  342. {
  343. struct cxd *ci = ca->data;
  344. mutex_lock(&ci->lock);
  345. set_mode(ci, 1);
  346. write_pccard(ci, address, &value, 1);
  347. mutex_unlock(&ci->lock);
  348. return 0;
  349. }
  350. static int read_cam_control(struct dvb_ca_en50221 *ca,
  351. int slot, u8 address)
  352. {
  353. struct cxd *ci = ca->data;
  354. unsigned int val;
  355. mutex_lock(&ci->lock);
  356. set_mode(ci, 0);
  357. read_io(ci, address, &val);
  358. mutex_unlock(&ci->lock);
  359. return val;
  360. }
  361. static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
  362. u8 address, u8 value)
  363. {
  364. struct cxd *ci = ca->data;
  365. mutex_lock(&ci->lock);
  366. set_mode(ci, 0);
  367. write_io(ci, address, value);
  368. mutex_unlock(&ci->lock);
  369. return 0;
  370. }
  371. static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
  372. {
  373. struct cxd *ci = ca->data;
  374. if (ci->cammode)
  375. read_data(ca, slot, ci->rbuf, 0);
  376. mutex_lock(&ci->lock);
  377. cam_mode(ci, 0);
  378. write_reg(ci, 0x00, 0x21);
  379. write_reg(ci, 0x06, 0x1F);
  380. write_reg(ci, 0x00, 0x31);
  381. write_regm(ci, 0x20, 0x80, 0x80);
  382. write_reg(ci, 0x03, 0x02);
  383. ci->ready = 0;
  384. ci->mode = -1;
  385. {
  386. int i;
  387. for (i = 0; i < 100; i++) {
  388. usleep_range(10000, 11000);
  389. if (ci->ready)
  390. break;
  391. }
  392. }
  393. mutex_unlock(&ci->lock);
  394. return 0;
  395. }
  396. static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
  397. {
  398. struct cxd *ci = ca->data;
  399. dev_dbg(&ci->client->dev, "%s\n", __func__);
  400. if (ci->cammode)
  401. read_data(ca, slot, ci->rbuf, 0);
  402. mutex_lock(&ci->lock);
  403. write_reg(ci, 0x00, 0x21);
  404. write_reg(ci, 0x06, 0x1F);
  405. msleep(300);
  406. write_regm(ci, 0x09, 0x08, 0x08);
  407. write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
  408. write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
  409. ci->mode = -1;
  410. ci->write_busy = 0;
  411. mutex_unlock(&ci->lock);
  412. return 0;
  413. }
  414. static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
  415. {
  416. struct cxd *ci = ca->data;
  417. mutex_lock(&ci->lock);
  418. write_regm(ci, 0x09, 0x00, 0x08);
  419. set_mode(ci, 0);
  420. cam_mode(ci, 1);
  421. mutex_unlock(&ci->lock);
  422. return 0;
  423. }
  424. static int campoll(struct cxd *ci)
  425. {
  426. u8 istat;
  427. read_reg(ci, 0x04, &istat);
  428. if (!istat)
  429. return 0;
  430. write_reg(ci, 0x05, istat);
  431. if (istat & 0x40)
  432. ci->dr = 1;
  433. if (istat & 0x20)
  434. ci->write_busy = 0;
  435. if (istat & 2) {
  436. u8 slotstat;
  437. read_reg(ci, 0x01, &slotstat);
  438. if (!(2 & slotstat)) {
  439. if (!ci->slot_stat) {
  440. ci->slot_stat |=
  441. DVB_CA_EN50221_POLL_CAM_PRESENT;
  442. write_regm(ci, 0x03, 0x08, 0x08);
  443. }
  444. } else {
  445. if (ci->slot_stat) {
  446. ci->slot_stat = 0;
  447. write_regm(ci, 0x03, 0x00, 0x08);
  448. dev_info(&ci->client->dev, "NO CAM\n");
  449. ci->ready = 0;
  450. }
  451. }
  452. if ((istat & 8) &&
  453. ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
  454. ci->ready = 1;
  455. ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
  456. }
  457. }
  458. return 0;
  459. }
  460. static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
  461. {
  462. struct cxd *ci = ca->data;
  463. u8 slotstat;
  464. mutex_lock(&ci->lock);
  465. campoll(ci);
  466. read_reg(ci, 0x01, &slotstat);
  467. mutex_unlock(&ci->lock);
  468. return ci->slot_stat;
  469. }
  470. static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
  471. {
  472. struct cxd *ci = ca->data;
  473. u8 msb, lsb;
  474. u16 len;
  475. mutex_lock(&ci->lock);
  476. campoll(ci);
  477. mutex_unlock(&ci->lock);
  478. if (!ci->dr)
  479. return 0;
  480. mutex_lock(&ci->lock);
  481. read_reg(ci, 0x0f, &msb);
  482. read_reg(ci, 0x10, &lsb);
  483. len = ((u16)msb << 8) | lsb;
  484. if (len > ecount || len < 2) {
  485. /* read it anyway or cxd may hang */
  486. read_block(ci, 0x12, ci->rbuf, len);
  487. mutex_unlock(&ci->lock);
  488. return -EIO;
  489. }
  490. read_block(ci, 0x12, ebuf, len);
  491. ci->dr = 0;
  492. mutex_unlock(&ci->lock);
  493. return len;
  494. }
  495. static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
  496. {
  497. struct cxd *ci = ca->data;
  498. if (ci->write_busy)
  499. return -EAGAIN;
  500. mutex_lock(&ci->lock);
  501. write_reg(ci, 0x0d, ecount >> 8);
  502. write_reg(ci, 0x0e, ecount & 0xff);
  503. write_block(ci, 0x11, ebuf, ecount);
  504. ci->write_busy = 1;
  505. mutex_unlock(&ci->lock);
  506. return ecount;
  507. }
  508. static const struct dvb_ca_en50221 en_templ = {
  509. .read_attribute_mem = read_attribute_mem,
  510. .write_attribute_mem = write_attribute_mem,
  511. .read_cam_control = read_cam_control,
  512. .write_cam_control = write_cam_control,
  513. .slot_reset = slot_reset,
  514. .slot_shutdown = slot_shutdown,
  515. .slot_ts_enable = slot_ts_enable,
  516. .poll_slot_status = poll_slot_status,
  517. .read_data = read_data,
  518. .write_data = write_data,
  519. };
  520. static int cxd2099_probe(struct i2c_client *client,
  521. const struct i2c_device_id *id)
  522. {
  523. struct cxd *ci;
  524. struct cxd2099_cfg *cfg = client->dev.platform_data;
  525. static const struct regmap_config rm_cfg = {
  526. .reg_bits = 8,
  527. .val_bits = 8,
  528. };
  529. unsigned int val;
  530. int ret;
  531. ci = kzalloc(sizeof(*ci), GFP_KERNEL);
  532. if (!ci) {
  533. ret = -ENOMEM;
  534. goto err;
  535. }
  536. ci->client = client;
  537. memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
  538. ci->regmap = regmap_init_i2c(client, &rm_cfg);
  539. if (IS_ERR(ci->regmap)) {
  540. ret = PTR_ERR(ci->regmap);
  541. goto err_kfree;
  542. }
  543. ret = regmap_read(ci->regmap, 0x00, &val);
  544. if (ret < 0) {
  545. dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
  546. client->addr);
  547. goto err_rmexit;
  548. }
  549. mutex_init(&ci->lock);
  550. ci->lastaddress = 0xff;
  551. ci->clk_reg_b = 0x4a;
  552. ci->clk_reg_f = 0x1b;
  553. ci->en = en_templ;
  554. ci->en.data = ci;
  555. init(ci);
  556. dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
  557. *cfg->en = &ci->en;
  558. if (!buffermode) {
  559. ci->en.read_data = NULL;
  560. ci->en.write_data = NULL;
  561. } else {
  562. dev_info(&client->dev, "Using CXD2099AR buffer mode");
  563. }
  564. i2c_set_clientdata(client, ci);
  565. return 0;
  566. err_rmexit:
  567. regmap_exit(ci->regmap);
  568. err_kfree:
  569. kfree(ci);
  570. err:
  571. return ret;
  572. }
  573. static void cxd2099_remove(struct i2c_client *client)
  574. {
  575. struct cxd *ci = i2c_get_clientdata(client);
  576. regmap_exit(ci->regmap);
  577. kfree(ci);
  578. }
  579. static const struct i2c_device_id cxd2099_id[] = {
  580. {"cxd2099", 0},
  581. {}
  582. };
  583. MODULE_DEVICE_TABLE(i2c, cxd2099_id);
  584. static struct i2c_driver cxd2099_driver = {
  585. .driver = {
  586. .name = "cxd2099",
  587. },
  588. .probe = cxd2099_probe,
  589. .remove = cxd2099_remove,
  590. .id_table = cxd2099_id,
  591. };
  592. module_i2c_driver(cxd2099_driver);
  593. MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver");
  594. MODULE_AUTHOR("Ralph Metzler");
  595. MODULE_LICENSE("GPL v2");