bcm-flexrm-mailbox.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. // Copyright (C) 2017 Broadcom
  3. /*
  4. * Broadcom FlexRM Mailbox Driver
  5. *
  6. * Each Broadcom FlexSparx4 offload engine is implemented as an
  7. * extension to Broadcom FlexRM ring manager. The FlexRM ring
  8. * manager provides a set of rings which can be used to submit
  9. * work to a FlexSparx4 offload engine.
  10. *
  11. * This driver creates a mailbox controller using a set of FlexRM
  12. * rings where each mailbox channel represents a separate FlexRM ring.
  13. */
  14. #include <asm/barrier.h>
  15. #include <asm/byteorder.h>
  16. #include <linux/atomic.h>
  17. #include <linux/bitmap.h>
  18. #include <linux/debugfs.h>
  19. #include <linux/delay.h>
  20. #include <linux/device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmapool.h>
  23. #include <linux/err.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/kernel.h>
  26. #include <linux/mailbox_controller.h>
  27. #include <linux/mailbox_client.h>
  28. #include <linux/mailbox/brcm-message.h>
  29. #include <linux/module.h>
  30. #include <linux/msi.h>
  31. #include <linux/of_address.h>
  32. #include <linux/of_irq.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/spinlock.h>
  35. /* ====== FlexRM register defines ===== */
  36. /* FlexRM configuration */
  37. #define RING_REGS_SIZE 0x10000
  38. #define RING_DESC_SIZE 8
  39. #define RING_DESC_INDEX(offset) \
  40. ((offset) / RING_DESC_SIZE)
  41. #define RING_DESC_OFFSET(index) \
  42. ((index) * RING_DESC_SIZE)
  43. #define RING_MAX_REQ_COUNT 1024
  44. #define RING_BD_ALIGN_ORDER 12
  45. #define RING_BD_ALIGN_CHECK(addr) \
  46. (!((addr) & ((0x1 << RING_BD_ALIGN_ORDER) - 1)))
  47. #define RING_BD_TOGGLE_INVALID(offset) \
  48. (((offset) >> RING_BD_ALIGN_ORDER) & 0x1)
  49. #define RING_BD_TOGGLE_VALID(offset) \
  50. (!RING_BD_TOGGLE_INVALID(offset))
  51. #define RING_BD_DESC_PER_REQ 32
  52. #define RING_BD_DESC_COUNT \
  53. (RING_MAX_REQ_COUNT * RING_BD_DESC_PER_REQ)
  54. #define RING_BD_SIZE \
  55. (RING_BD_DESC_COUNT * RING_DESC_SIZE)
  56. #define RING_CMPL_ALIGN_ORDER 13
  57. #define RING_CMPL_DESC_COUNT RING_MAX_REQ_COUNT
  58. #define RING_CMPL_SIZE \
  59. (RING_CMPL_DESC_COUNT * RING_DESC_SIZE)
  60. #define RING_VER_MAGIC 0x76303031
  61. /* Per-Ring register offsets */
  62. #define RING_VER 0x000
  63. #define RING_BD_START_ADDR 0x004
  64. #define RING_BD_READ_PTR 0x008
  65. #define RING_BD_WRITE_PTR 0x00c
  66. #define RING_BD_READ_PTR_DDR_LS 0x010
  67. #define RING_BD_READ_PTR_DDR_MS 0x014
  68. #define RING_CMPL_START_ADDR 0x018
  69. #define RING_CMPL_WRITE_PTR 0x01c
  70. #define RING_NUM_REQ_RECV_LS 0x020
  71. #define RING_NUM_REQ_RECV_MS 0x024
  72. #define RING_NUM_REQ_TRANS_LS 0x028
  73. #define RING_NUM_REQ_TRANS_MS 0x02c
  74. #define RING_NUM_REQ_OUTSTAND 0x030
  75. #define RING_CONTROL 0x034
  76. #define RING_FLUSH_DONE 0x038
  77. #define RING_MSI_ADDR_LS 0x03c
  78. #define RING_MSI_ADDR_MS 0x040
  79. #define RING_MSI_CONTROL 0x048
  80. #define RING_BD_READ_PTR_DDR_CONTROL 0x04c
  81. #define RING_MSI_DATA_VALUE 0x064
  82. /* Register RING_BD_START_ADDR fields */
  83. #define BD_LAST_UPDATE_HW_SHIFT 28
  84. #define BD_LAST_UPDATE_HW_MASK 0x1
  85. #define BD_START_ADDR_VALUE(pa) \
  86. ((u32)((((dma_addr_t)(pa)) >> RING_BD_ALIGN_ORDER) & 0x0fffffff))
  87. #define BD_START_ADDR_DECODE(val) \
  88. ((dma_addr_t)((val) & 0x0fffffff) << RING_BD_ALIGN_ORDER)
  89. /* Register RING_CMPL_START_ADDR fields */
  90. #define CMPL_START_ADDR_VALUE(pa) \
  91. ((u32)((((u64)(pa)) >> RING_CMPL_ALIGN_ORDER) & 0x07ffffff))
  92. /* Register RING_CONTROL fields */
  93. #define CONTROL_MASK_DISABLE_CONTROL 12
  94. #define CONTROL_FLUSH_SHIFT 5
  95. #define CONTROL_ACTIVE_SHIFT 4
  96. #define CONTROL_RATE_ADAPT_MASK 0xf
  97. #define CONTROL_RATE_DYNAMIC 0x0
  98. #define CONTROL_RATE_FAST 0x8
  99. #define CONTROL_RATE_MEDIUM 0x9
  100. #define CONTROL_RATE_SLOW 0xa
  101. #define CONTROL_RATE_IDLE 0xb
  102. /* Register RING_FLUSH_DONE fields */
  103. #define FLUSH_DONE_MASK 0x1
  104. /* Register RING_MSI_CONTROL fields */
  105. #define MSI_TIMER_VAL_SHIFT 16
  106. #define MSI_TIMER_VAL_MASK 0xffff
  107. #define MSI_ENABLE_SHIFT 15
  108. #define MSI_ENABLE_MASK 0x1
  109. #define MSI_COUNT_SHIFT 0
  110. #define MSI_COUNT_MASK 0x3ff
  111. /* Register RING_BD_READ_PTR_DDR_CONTROL fields */
  112. #define BD_READ_PTR_DDR_TIMER_VAL_SHIFT 16
  113. #define BD_READ_PTR_DDR_TIMER_VAL_MASK 0xffff
  114. #define BD_READ_PTR_DDR_ENABLE_SHIFT 15
  115. #define BD_READ_PTR_DDR_ENABLE_MASK 0x1
  116. /* ====== FlexRM ring descriptor defines ===== */
  117. /* Completion descriptor format */
  118. #define CMPL_OPAQUE_SHIFT 0
  119. #define CMPL_OPAQUE_MASK 0xffff
  120. #define CMPL_ENGINE_STATUS_SHIFT 16
  121. #define CMPL_ENGINE_STATUS_MASK 0xffff
  122. #define CMPL_DME_STATUS_SHIFT 32
  123. #define CMPL_DME_STATUS_MASK 0xffff
  124. #define CMPL_RM_STATUS_SHIFT 48
  125. #define CMPL_RM_STATUS_MASK 0xffff
  126. /* Completion DME status code */
  127. #define DME_STATUS_MEM_COR_ERR BIT(0)
  128. #define DME_STATUS_MEM_UCOR_ERR BIT(1)
  129. #define DME_STATUS_FIFO_UNDERFLOW BIT(2)
  130. #define DME_STATUS_FIFO_OVERFLOW BIT(3)
  131. #define DME_STATUS_RRESP_ERR BIT(4)
  132. #define DME_STATUS_BRESP_ERR BIT(5)
  133. #define DME_STATUS_ERROR_MASK (DME_STATUS_MEM_COR_ERR | \
  134. DME_STATUS_MEM_UCOR_ERR | \
  135. DME_STATUS_FIFO_UNDERFLOW | \
  136. DME_STATUS_FIFO_OVERFLOW | \
  137. DME_STATUS_RRESP_ERR | \
  138. DME_STATUS_BRESP_ERR)
  139. /* Completion RM status code */
  140. #define RM_STATUS_CODE_SHIFT 0
  141. #define RM_STATUS_CODE_MASK 0x3ff
  142. #define RM_STATUS_CODE_GOOD 0x0
  143. #define RM_STATUS_CODE_AE_TIMEOUT 0x3ff
  144. /* General descriptor format */
  145. #define DESC_TYPE_SHIFT 60
  146. #define DESC_TYPE_MASK 0xf
  147. #define DESC_PAYLOAD_SHIFT 0
  148. #define DESC_PAYLOAD_MASK 0x0fffffffffffffff
  149. /* Null descriptor format */
  150. #define NULL_TYPE 0
  151. #define NULL_TOGGLE_SHIFT 58
  152. #define NULL_TOGGLE_MASK 0x1
  153. /* Header descriptor format */
  154. #define HEADER_TYPE 1
  155. #define HEADER_TOGGLE_SHIFT 58
  156. #define HEADER_TOGGLE_MASK 0x1
  157. #define HEADER_ENDPKT_SHIFT 57
  158. #define HEADER_ENDPKT_MASK 0x1
  159. #define HEADER_STARTPKT_SHIFT 56
  160. #define HEADER_STARTPKT_MASK 0x1
  161. #define HEADER_BDCOUNT_SHIFT 36
  162. #define HEADER_BDCOUNT_MASK 0x1f
  163. #define HEADER_BDCOUNT_MAX HEADER_BDCOUNT_MASK
  164. #define HEADER_FLAGS_SHIFT 16
  165. #define HEADER_FLAGS_MASK 0xffff
  166. #define HEADER_OPAQUE_SHIFT 0
  167. #define HEADER_OPAQUE_MASK 0xffff
  168. /* Source (SRC) descriptor format */
  169. #define SRC_TYPE 2
  170. #define SRC_LENGTH_SHIFT 44
  171. #define SRC_LENGTH_MASK 0xffff
  172. #define SRC_ADDR_SHIFT 0
  173. #define SRC_ADDR_MASK 0x00000fffffffffff
  174. /* Destination (DST) descriptor format */
  175. #define DST_TYPE 3
  176. #define DST_LENGTH_SHIFT 44
  177. #define DST_LENGTH_MASK 0xffff
  178. #define DST_ADDR_SHIFT 0
  179. #define DST_ADDR_MASK 0x00000fffffffffff
  180. /* Immediate (IMM) descriptor format */
  181. #define IMM_TYPE 4
  182. #define IMM_DATA_SHIFT 0
  183. #define IMM_DATA_MASK 0x0fffffffffffffff
  184. /* Next pointer (NPTR) descriptor format */
  185. #define NPTR_TYPE 5
  186. #define NPTR_TOGGLE_SHIFT 58
  187. #define NPTR_TOGGLE_MASK 0x1
  188. #define NPTR_ADDR_SHIFT 0
  189. #define NPTR_ADDR_MASK 0x00000fffffffffff
  190. /* Mega source (MSRC) descriptor format */
  191. #define MSRC_TYPE 6
  192. #define MSRC_LENGTH_SHIFT 44
  193. #define MSRC_LENGTH_MASK 0xffff
  194. #define MSRC_ADDR_SHIFT 0
  195. #define MSRC_ADDR_MASK 0x00000fffffffffff
  196. /* Mega destination (MDST) descriptor format */
  197. #define MDST_TYPE 7
  198. #define MDST_LENGTH_SHIFT 44
  199. #define MDST_LENGTH_MASK 0xffff
  200. #define MDST_ADDR_SHIFT 0
  201. #define MDST_ADDR_MASK 0x00000fffffffffff
  202. /* Source with tlast (SRCT) descriptor format */
  203. #define SRCT_TYPE 8
  204. #define SRCT_LENGTH_SHIFT 44
  205. #define SRCT_LENGTH_MASK 0xffff
  206. #define SRCT_ADDR_SHIFT 0
  207. #define SRCT_ADDR_MASK 0x00000fffffffffff
  208. /* Destination with tlast (DSTT) descriptor format */
  209. #define DSTT_TYPE 9
  210. #define DSTT_LENGTH_SHIFT 44
  211. #define DSTT_LENGTH_MASK 0xffff
  212. #define DSTT_ADDR_SHIFT 0
  213. #define DSTT_ADDR_MASK 0x00000fffffffffff
  214. /* Immediate with tlast (IMMT) descriptor format */
  215. #define IMMT_TYPE 10
  216. #define IMMT_DATA_SHIFT 0
  217. #define IMMT_DATA_MASK 0x0fffffffffffffff
  218. /* Descriptor helper macros */
  219. #define DESC_DEC(_d, _s, _m) (((_d) >> (_s)) & (_m))
  220. #define DESC_ENC(_d, _v, _s, _m) \
  221. do { \
  222. (_d) &= ~((u64)(_m) << (_s)); \
  223. (_d) |= (((u64)(_v) & (_m)) << (_s)); \
  224. } while (0)
  225. /* ====== FlexRM data structures ===== */
  226. struct flexrm_ring {
  227. /* Unprotected members */
  228. int num;
  229. struct flexrm_mbox *mbox;
  230. void __iomem *regs;
  231. bool irq_requested;
  232. unsigned int irq;
  233. cpumask_t irq_aff_hint;
  234. unsigned int msi_timer_val;
  235. unsigned int msi_count_threshold;
  236. struct brcm_message *requests[RING_MAX_REQ_COUNT];
  237. void *bd_base;
  238. dma_addr_t bd_dma_base;
  239. u32 bd_write_offset;
  240. void *cmpl_base;
  241. dma_addr_t cmpl_dma_base;
  242. /* Atomic stats */
  243. atomic_t msg_send_count;
  244. atomic_t msg_cmpl_count;
  245. /* Protected members */
  246. spinlock_t lock;
  247. DECLARE_BITMAP(requests_bmap, RING_MAX_REQ_COUNT);
  248. u32 cmpl_read_offset;
  249. };
  250. struct flexrm_mbox {
  251. struct device *dev;
  252. void __iomem *regs;
  253. u32 num_rings;
  254. struct flexrm_ring *rings;
  255. struct dma_pool *bd_pool;
  256. struct dma_pool *cmpl_pool;
  257. struct dentry *root;
  258. struct mbox_controller controller;
  259. };
  260. /* ====== FlexRM ring descriptor helper routines ===== */
  261. static u64 flexrm_read_desc(void *desc_ptr)
  262. {
  263. return le64_to_cpu(*((u64 *)desc_ptr));
  264. }
  265. static void flexrm_write_desc(void *desc_ptr, u64 desc)
  266. {
  267. *((u64 *)desc_ptr) = cpu_to_le64(desc);
  268. }
  269. static u32 flexrm_cmpl_desc_to_reqid(u64 cmpl_desc)
  270. {
  271. return (u32)(cmpl_desc & CMPL_OPAQUE_MASK);
  272. }
  273. static int flexrm_cmpl_desc_to_error(u64 cmpl_desc)
  274. {
  275. u32 status;
  276. status = DESC_DEC(cmpl_desc, CMPL_DME_STATUS_SHIFT,
  277. CMPL_DME_STATUS_MASK);
  278. if (status & DME_STATUS_ERROR_MASK)
  279. return -EIO;
  280. status = DESC_DEC(cmpl_desc, CMPL_RM_STATUS_SHIFT,
  281. CMPL_RM_STATUS_MASK);
  282. status &= RM_STATUS_CODE_MASK;
  283. if (status == RM_STATUS_CODE_AE_TIMEOUT)
  284. return -ETIMEDOUT;
  285. return 0;
  286. }
  287. static bool flexrm_is_next_table_desc(void *desc_ptr)
  288. {
  289. u64 desc = flexrm_read_desc(desc_ptr);
  290. u32 type = DESC_DEC(desc, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  291. return (type == NPTR_TYPE) ? true : false;
  292. }
  293. static u64 flexrm_next_table_desc(u32 toggle, dma_addr_t next_addr)
  294. {
  295. u64 desc = 0;
  296. DESC_ENC(desc, NPTR_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  297. DESC_ENC(desc, toggle, NPTR_TOGGLE_SHIFT, NPTR_TOGGLE_MASK);
  298. DESC_ENC(desc, next_addr, NPTR_ADDR_SHIFT, NPTR_ADDR_MASK);
  299. return desc;
  300. }
  301. static u64 flexrm_null_desc(u32 toggle)
  302. {
  303. u64 desc = 0;
  304. DESC_ENC(desc, NULL_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  305. DESC_ENC(desc, toggle, NULL_TOGGLE_SHIFT, NULL_TOGGLE_MASK);
  306. return desc;
  307. }
  308. static u32 flexrm_estimate_header_desc_count(u32 nhcnt)
  309. {
  310. u32 hcnt = nhcnt / HEADER_BDCOUNT_MAX;
  311. if (!(nhcnt % HEADER_BDCOUNT_MAX))
  312. hcnt += 1;
  313. return hcnt;
  314. }
  315. static void flexrm_flip_header_toggle(void *desc_ptr)
  316. {
  317. u64 desc = flexrm_read_desc(desc_ptr);
  318. if (desc & ((u64)0x1 << HEADER_TOGGLE_SHIFT))
  319. desc &= ~((u64)0x1 << HEADER_TOGGLE_SHIFT);
  320. else
  321. desc |= ((u64)0x1 << HEADER_TOGGLE_SHIFT);
  322. flexrm_write_desc(desc_ptr, desc);
  323. }
  324. static u64 flexrm_header_desc(u32 toggle, u32 startpkt, u32 endpkt,
  325. u32 bdcount, u32 flags, u32 opaque)
  326. {
  327. u64 desc = 0;
  328. DESC_ENC(desc, HEADER_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  329. DESC_ENC(desc, toggle, HEADER_TOGGLE_SHIFT, HEADER_TOGGLE_MASK);
  330. DESC_ENC(desc, startpkt, HEADER_STARTPKT_SHIFT, HEADER_STARTPKT_MASK);
  331. DESC_ENC(desc, endpkt, HEADER_ENDPKT_SHIFT, HEADER_ENDPKT_MASK);
  332. DESC_ENC(desc, bdcount, HEADER_BDCOUNT_SHIFT, HEADER_BDCOUNT_MASK);
  333. DESC_ENC(desc, flags, HEADER_FLAGS_SHIFT, HEADER_FLAGS_MASK);
  334. DESC_ENC(desc, opaque, HEADER_OPAQUE_SHIFT, HEADER_OPAQUE_MASK);
  335. return desc;
  336. }
  337. static void flexrm_enqueue_desc(u32 nhpos, u32 nhcnt, u32 reqid,
  338. u64 desc, void **desc_ptr, u32 *toggle,
  339. void *start_desc, void *end_desc)
  340. {
  341. u64 d;
  342. u32 nhavail, _toggle, _startpkt, _endpkt, _bdcount;
  343. /* Sanity check */
  344. if (nhcnt <= nhpos)
  345. return;
  346. /*
  347. * Each request or packet start with a HEADER descriptor followed
  348. * by one or more non-HEADER descriptors (SRC, SRCT, MSRC, DST,
  349. * DSTT, MDST, IMM, and IMMT). The number of non-HEADER descriptors
  350. * following a HEADER descriptor is represented by BDCOUNT field
  351. * of HEADER descriptor. The max value of BDCOUNT field is 31 which
  352. * means we can only have 31 non-HEADER descriptors following one
  353. * HEADER descriptor.
  354. *
  355. * In general use, number of non-HEADER descriptors can easily go
  356. * beyond 31. To tackle this situation, we have packet (or request)
  357. * extension bits (STARTPKT and ENDPKT) in the HEADER descriptor.
  358. *
  359. * To use packet extension, the first HEADER descriptor of request
  360. * (or packet) will have STARTPKT=1 and ENDPKT=0. The intermediate
  361. * HEADER descriptors will have STARTPKT=0 and ENDPKT=0. The last
  362. * HEADER descriptor will have STARTPKT=0 and ENDPKT=1. Also, the
  363. * TOGGLE bit of the first HEADER will be set to invalid state to
  364. * ensure that FlexRM does not start fetching descriptors till all
  365. * descriptors are enqueued. The user of this function will flip
  366. * the TOGGLE bit of first HEADER after all descriptors are
  367. * enqueued.
  368. */
  369. if ((nhpos % HEADER_BDCOUNT_MAX == 0) && (nhcnt - nhpos)) {
  370. /* Prepare the header descriptor */
  371. nhavail = (nhcnt - nhpos);
  372. _toggle = (nhpos == 0) ? !(*toggle) : (*toggle);
  373. _startpkt = (nhpos == 0) ? 0x1 : 0x0;
  374. _endpkt = (nhavail <= HEADER_BDCOUNT_MAX) ? 0x1 : 0x0;
  375. _bdcount = (nhavail <= HEADER_BDCOUNT_MAX) ?
  376. nhavail : HEADER_BDCOUNT_MAX;
  377. if (nhavail <= HEADER_BDCOUNT_MAX)
  378. _bdcount = nhavail;
  379. else
  380. _bdcount = HEADER_BDCOUNT_MAX;
  381. d = flexrm_header_desc(_toggle, _startpkt, _endpkt,
  382. _bdcount, 0x0, reqid);
  383. /* Write header descriptor */
  384. flexrm_write_desc(*desc_ptr, d);
  385. /* Point to next descriptor */
  386. *desc_ptr += sizeof(desc);
  387. if (*desc_ptr == end_desc)
  388. *desc_ptr = start_desc;
  389. /* Skip next pointer descriptors */
  390. while (flexrm_is_next_table_desc(*desc_ptr)) {
  391. *toggle = (*toggle) ? 0 : 1;
  392. *desc_ptr += sizeof(desc);
  393. if (*desc_ptr == end_desc)
  394. *desc_ptr = start_desc;
  395. }
  396. }
  397. /* Write desired descriptor */
  398. flexrm_write_desc(*desc_ptr, desc);
  399. /* Point to next descriptor */
  400. *desc_ptr += sizeof(desc);
  401. if (*desc_ptr == end_desc)
  402. *desc_ptr = start_desc;
  403. /* Skip next pointer descriptors */
  404. while (flexrm_is_next_table_desc(*desc_ptr)) {
  405. *toggle = (*toggle) ? 0 : 1;
  406. *desc_ptr += sizeof(desc);
  407. if (*desc_ptr == end_desc)
  408. *desc_ptr = start_desc;
  409. }
  410. }
  411. static u64 flexrm_src_desc(dma_addr_t addr, unsigned int length)
  412. {
  413. u64 desc = 0;
  414. DESC_ENC(desc, SRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  415. DESC_ENC(desc, length, SRC_LENGTH_SHIFT, SRC_LENGTH_MASK);
  416. DESC_ENC(desc, addr, SRC_ADDR_SHIFT, SRC_ADDR_MASK);
  417. return desc;
  418. }
  419. static u64 flexrm_msrc_desc(dma_addr_t addr, unsigned int length_div_16)
  420. {
  421. u64 desc = 0;
  422. DESC_ENC(desc, MSRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  423. DESC_ENC(desc, length_div_16, MSRC_LENGTH_SHIFT, MSRC_LENGTH_MASK);
  424. DESC_ENC(desc, addr, MSRC_ADDR_SHIFT, MSRC_ADDR_MASK);
  425. return desc;
  426. }
  427. static u64 flexrm_dst_desc(dma_addr_t addr, unsigned int length)
  428. {
  429. u64 desc = 0;
  430. DESC_ENC(desc, DST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  431. DESC_ENC(desc, length, DST_LENGTH_SHIFT, DST_LENGTH_MASK);
  432. DESC_ENC(desc, addr, DST_ADDR_SHIFT, DST_ADDR_MASK);
  433. return desc;
  434. }
  435. static u64 flexrm_mdst_desc(dma_addr_t addr, unsigned int length_div_16)
  436. {
  437. u64 desc = 0;
  438. DESC_ENC(desc, MDST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  439. DESC_ENC(desc, length_div_16, MDST_LENGTH_SHIFT, MDST_LENGTH_MASK);
  440. DESC_ENC(desc, addr, MDST_ADDR_SHIFT, MDST_ADDR_MASK);
  441. return desc;
  442. }
  443. static u64 flexrm_imm_desc(u64 data)
  444. {
  445. u64 desc = 0;
  446. DESC_ENC(desc, IMM_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  447. DESC_ENC(desc, data, IMM_DATA_SHIFT, IMM_DATA_MASK);
  448. return desc;
  449. }
  450. static u64 flexrm_srct_desc(dma_addr_t addr, unsigned int length)
  451. {
  452. u64 desc = 0;
  453. DESC_ENC(desc, SRCT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  454. DESC_ENC(desc, length, SRCT_LENGTH_SHIFT, SRCT_LENGTH_MASK);
  455. DESC_ENC(desc, addr, SRCT_ADDR_SHIFT, SRCT_ADDR_MASK);
  456. return desc;
  457. }
  458. static u64 flexrm_dstt_desc(dma_addr_t addr, unsigned int length)
  459. {
  460. u64 desc = 0;
  461. DESC_ENC(desc, DSTT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  462. DESC_ENC(desc, length, DSTT_LENGTH_SHIFT, DSTT_LENGTH_MASK);
  463. DESC_ENC(desc, addr, DSTT_ADDR_SHIFT, DSTT_ADDR_MASK);
  464. return desc;
  465. }
  466. static u64 flexrm_immt_desc(u64 data)
  467. {
  468. u64 desc = 0;
  469. DESC_ENC(desc, IMMT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  470. DESC_ENC(desc, data, IMMT_DATA_SHIFT, IMMT_DATA_MASK);
  471. return desc;
  472. }
  473. static bool flexrm_spu_sanity_check(struct brcm_message *msg)
  474. {
  475. struct scatterlist *sg;
  476. if (!msg->spu.src || !msg->spu.dst)
  477. return false;
  478. for (sg = msg->spu.src; sg; sg = sg_next(sg)) {
  479. if (sg->length & 0xf) {
  480. if (sg->length > SRC_LENGTH_MASK)
  481. return false;
  482. } else {
  483. if (sg->length > (MSRC_LENGTH_MASK * 16))
  484. return false;
  485. }
  486. }
  487. for (sg = msg->spu.dst; sg; sg = sg_next(sg)) {
  488. if (sg->length & 0xf) {
  489. if (sg->length > DST_LENGTH_MASK)
  490. return false;
  491. } else {
  492. if (sg->length > (MDST_LENGTH_MASK * 16))
  493. return false;
  494. }
  495. }
  496. return true;
  497. }
  498. static u32 flexrm_spu_estimate_nonheader_desc_count(struct brcm_message *msg)
  499. {
  500. u32 cnt = 0;
  501. unsigned int dst_target = 0;
  502. struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
  503. while (src_sg || dst_sg) {
  504. if (src_sg) {
  505. cnt++;
  506. dst_target = src_sg->length;
  507. src_sg = sg_next(src_sg);
  508. } else
  509. dst_target = UINT_MAX;
  510. while (dst_target && dst_sg) {
  511. cnt++;
  512. if (dst_sg->length < dst_target)
  513. dst_target -= dst_sg->length;
  514. else
  515. dst_target = 0;
  516. dst_sg = sg_next(dst_sg);
  517. }
  518. }
  519. return cnt;
  520. }
  521. static int flexrm_spu_dma_map(struct device *dev, struct brcm_message *msg)
  522. {
  523. int rc;
  524. rc = dma_map_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
  525. DMA_TO_DEVICE);
  526. if (!rc)
  527. return -EIO;
  528. rc = dma_map_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
  529. DMA_FROM_DEVICE);
  530. if (!rc) {
  531. dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
  532. DMA_TO_DEVICE);
  533. return -EIO;
  534. }
  535. return 0;
  536. }
  537. static void flexrm_spu_dma_unmap(struct device *dev, struct brcm_message *msg)
  538. {
  539. dma_unmap_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
  540. DMA_FROM_DEVICE);
  541. dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
  542. DMA_TO_DEVICE);
  543. }
  544. static void *flexrm_spu_write_descs(struct brcm_message *msg, u32 nhcnt,
  545. u32 reqid, void *desc_ptr, u32 toggle,
  546. void *start_desc, void *end_desc)
  547. {
  548. u64 d;
  549. u32 nhpos = 0;
  550. void *orig_desc_ptr = desc_ptr;
  551. unsigned int dst_target = 0;
  552. struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
  553. while (src_sg || dst_sg) {
  554. if (src_sg) {
  555. if (sg_dma_len(src_sg) & 0xf)
  556. d = flexrm_src_desc(sg_dma_address(src_sg),
  557. sg_dma_len(src_sg));
  558. else
  559. d = flexrm_msrc_desc(sg_dma_address(src_sg),
  560. sg_dma_len(src_sg)/16);
  561. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  562. d, &desc_ptr, &toggle,
  563. start_desc, end_desc);
  564. nhpos++;
  565. dst_target = sg_dma_len(src_sg);
  566. src_sg = sg_next(src_sg);
  567. } else
  568. dst_target = UINT_MAX;
  569. while (dst_target && dst_sg) {
  570. if (sg_dma_len(dst_sg) & 0xf)
  571. d = flexrm_dst_desc(sg_dma_address(dst_sg),
  572. sg_dma_len(dst_sg));
  573. else
  574. d = flexrm_mdst_desc(sg_dma_address(dst_sg),
  575. sg_dma_len(dst_sg)/16);
  576. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  577. d, &desc_ptr, &toggle,
  578. start_desc, end_desc);
  579. nhpos++;
  580. if (sg_dma_len(dst_sg) < dst_target)
  581. dst_target -= sg_dma_len(dst_sg);
  582. else
  583. dst_target = 0;
  584. dst_sg = sg_next(dst_sg);
  585. }
  586. }
  587. /* Null descriptor with invalid toggle bit */
  588. flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
  589. /* Ensure that descriptors have been written to memory */
  590. wmb();
  591. /* Flip toggle bit in header */
  592. flexrm_flip_header_toggle(orig_desc_ptr);
  593. return desc_ptr;
  594. }
  595. static bool flexrm_sba_sanity_check(struct brcm_message *msg)
  596. {
  597. u32 i;
  598. if (!msg->sba.cmds || !msg->sba.cmds_count)
  599. return false;
  600. for (i = 0; i < msg->sba.cmds_count; i++) {
  601. if (((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
  602. (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C)) &&
  603. (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT))
  604. return false;
  605. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) &&
  606. (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
  607. return false;
  608. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C) &&
  609. (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
  610. return false;
  611. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP) &&
  612. (msg->sba.cmds[i].resp_len > DSTT_LENGTH_MASK))
  613. return false;
  614. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT) &&
  615. (msg->sba.cmds[i].data_len > DSTT_LENGTH_MASK))
  616. return false;
  617. }
  618. return true;
  619. }
  620. static u32 flexrm_sba_estimate_nonheader_desc_count(struct brcm_message *msg)
  621. {
  622. u32 i, cnt;
  623. cnt = 0;
  624. for (i = 0; i < msg->sba.cmds_count; i++) {
  625. cnt++;
  626. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
  627. (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C))
  628. cnt++;
  629. if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP)
  630. cnt++;
  631. if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT)
  632. cnt++;
  633. }
  634. return cnt;
  635. }
  636. static void *flexrm_sba_write_descs(struct brcm_message *msg, u32 nhcnt,
  637. u32 reqid, void *desc_ptr, u32 toggle,
  638. void *start_desc, void *end_desc)
  639. {
  640. u64 d;
  641. u32 i, nhpos = 0;
  642. struct brcm_sba_command *c;
  643. void *orig_desc_ptr = desc_ptr;
  644. /* Convert SBA commands into descriptors */
  645. for (i = 0; i < msg->sba.cmds_count; i++) {
  646. c = &msg->sba.cmds[i];
  647. if ((c->flags & BRCM_SBA_CMD_HAS_RESP) &&
  648. (c->flags & BRCM_SBA_CMD_HAS_OUTPUT)) {
  649. /* Destination response descriptor */
  650. d = flexrm_dst_desc(c->resp, c->resp_len);
  651. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  652. d, &desc_ptr, &toggle,
  653. start_desc, end_desc);
  654. nhpos++;
  655. } else if (c->flags & BRCM_SBA_CMD_HAS_RESP) {
  656. /* Destination response with tlast descriptor */
  657. d = flexrm_dstt_desc(c->resp, c->resp_len);
  658. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  659. d, &desc_ptr, &toggle,
  660. start_desc, end_desc);
  661. nhpos++;
  662. }
  663. if (c->flags & BRCM_SBA_CMD_HAS_OUTPUT) {
  664. /* Destination with tlast descriptor */
  665. d = flexrm_dstt_desc(c->data, c->data_len);
  666. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  667. d, &desc_ptr, &toggle,
  668. start_desc, end_desc);
  669. nhpos++;
  670. }
  671. if (c->flags & BRCM_SBA_CMD_TYPE_B) {
  672. /* Command as immediate descriptor */
  673. d = flexrm_imm_desc(c->cmd);
  674. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  675. d, &desc_ptr, &toggle,
  676. start_desc, end_desc);
  677. nhpos++;
  678. } else {
  679. /* Command as immediate descriptor with tlast */
  680. d = flexrm_immt_desc(c->cmd);
  681. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  682. d, &desc_ptr, &toggle,
  683. start_desc, end_desc);
  684. nhpos++;
  685. }
  686. if ((c->flags & BRCM_SBA_CMD_TYPE_B) ||
  687. (c->flags & BRCM_SBA_CMD_TYPE_C)) {
  688. /* Source with tlast descriptor */
  689. d = flexrm_srct_desc(c->data, c->data_len);
  690. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  691. d, &desc_ptr, &toggle,
  692. start_desc, end_desc);
  693. nhpos++;
  694. }
  695. }
  696. /* Null descriptor with invalid toggle bit */
  697. flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
  698. /* Ensure that descriptors have been written to memory */
  699. wmb();
  700. /* Flip toggle bit in header */
  701. flexrm_flip_header_toggle(orig_desc_ptr);
  702. return desc_ptr;
  703. }
  704. static bool flexrm_sanity_check(struct brcm_message *msg)
  705. {
  706. if (!msg)
  707. return false;
  708. switch (msg->type) {
  709. case BRCM_MESSAGE_SPU:
  710. return flexrm_spu_sanity_check(msg);
  711. case BRCM_MESSAGE_SBA:
  712. return flexrm_sba_sanity_check(msg);
  713. default:
  714. return false;
  715. };
  716. }
  717. static u32 flexrm_estimate_nonheader_desc_count(struct brcm_message *msg)
  718. {
  719. if (!msg)
  720. return 0;
  721. switch (msg->type) {
  722. case BRCM_MESSAGE_SPU:
  723. return flexrm_spu_estimate_nonheader_desc_count(msg);
  724. case BRCM_MESSAGE_SBA:
  725. return flexrm_sba_estimate_nonheader_desc_count(msg);
  726. default:
  727. return 0;
  728. };
  729. }
  730. static int flexrm_dma_map(struct device *dev, struct brcm_message *msg)
  731. {
  732. if (!dev || !msg)
  733. return -EINVAL;
  734. switch (msg->type) {
  735. case BRCM_MESSAGE_SPU:
  736. return flexrm_spu_dma_map(dev, msg);
  737. default:
  738. break;
  739. }
  740. return 0;
  741. }
  742. static void flexrm_dma_unmap(struct device *dev, struct brcm_message *msg)
  743. {
  744. if (!dev || !msg)
  745. return;
  746. switch (msg->type) {
  747. case BRCM_MESSAGE_SPU:
  748. flexrm_spu_dma_unmap(dev, msg);
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. static void *flexrm_write_descs(struct brcm_message *msg, u32 nhcnt,
  755. u32 reqid, void *desc_ptr, u32 toggle,
  756. void *start_desc, void *end_desc)
  757. {
  758. if (!msg || !desc_ptr || !start_desc || !end_desc)
  759. return ERR_PTR(-ENOTSUPP);
  760. if ((desc_ptr < start_desc) || (end_desc <= desc_ptr))
  761. return ERR_PTR(-ERANGE);
  762. switch (msg->type) {
  763. case BRCM_MESSAGE_SPU:
  764. return flexrm_spu_write_descs(msg, nhcnt, reqid,
  765. desc_ptr, toggle,
  766. start_desc, end_desc);
  767. case BRCM_MESSAGE_SBA:
  768. return flexrm_sba_write_descs(msg, nhcnt, reqid,
  769. desc_ptr, toggle,
  770. start_desc, end_desc);
  771. default:
  772. return ERR_PTR(-ENOTSUPP);
  773. };
  774. }
  775. /* ====== FlexRM driver helper routines ===== */
  776. static void flexrm_write_config_in_seqfile(struct flexrm_mbox *mbox,
  777. struct seq_file *file)
  778. {
  779. int i;
  780. const char *state;
  781. struct flexrm_ring *ring;
  782. seq_printf(file, "%-5s %-9s %-18s %-10s %-18s %-10s\n",
  783. "Ring#", "State", "BD_Addr", "BD_Size",
  784. "Cmpl_Addr", "Cmpl_Size");
  785. for (i = 0; i < mbox->num_rings; i++) {
  786. ring = &mbox->rings[i];
  787. if (readl(ring->regs + RING_CONTROL) &
  788. BIT(CONTROL_ACTIVE_SHIFT))
  789. state = "active";
  790. else
  791. state = "inactive";
  792. seq_printf(file,
  793. "%-5d %-9s 0x%016llx 0x%08x 0x%016llx 0x%08x\n",
  794. ring->num, state,
  795. (unsigned long long)ring->bd_dma_base,
  796. (u32)RING_BD_SIZE,
  797. (unsigned long long)ring->cmpl_dma_base,
  798. (u32)RING_CMPL_SIZE);
  799. }
  800. }
  801. static void flexrm_write_stats_in_seqfile(struct flexrm_mbox *mbox,
  802. struct seq_file *file)
  803. {
  804. int i;
  805. u32 val, bd_read_offset;
  806. struct flexrm_ring *ring;
  807. seq_printf(file, "%-5s %-10s %-10s %-10s %-11s %-11s\n",
  808. "Ring#", "BD_Read", "BD_Write",
  809. "Cmpl_Read", "Submitted", "Completed");
  810. for (i = 0; i < mbox->num_rings; i++) {
  811. ring = &mbox->rings[i];
  812. bd_read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
  813. val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
  814. bd_read_offset *= RING_DESC_SIZE;
  815. bd_read_offset += (u32)(BD_START_ADDR_DECODE(val) -
  816. ring->bd_dma_base);
  817. seq_printf(file, "%-5d 0x%08x 0x%08x 0x%08x %-11d %-11d\n",
  818. ring->num,
  819. (u32)bd_read_offset,
  820. (u32)ring->bd_write_offset,
  821. (u32)ring->cmpl_read_offset,
  822. (u32)atomic_read(&ring->msg_send_count),
  823. (u32)atomic_read(&ring->msg_cmpl_count));
  824. }
  825. }
  826. static int flexrm_new_request(struct flexrm_ring *ring,
  827. struct brcm_message *batch_msg,
  828. struct brcm_message *msg)
  829. {
  830. void *next;
  831. unsigned long flags;
  832. u32 val, count, nhcnt;
  833. u32 read_offset, write_offset;
  834. bool exit_cleanup = false;
  835. int ret = 0, reqid;
  836. /* Do sanity check on message */
  837. if (!flexrm_sanity_check(msg))
  838. return -EIO;
  839. msg->error = 0;
  840. /* If no requests possible then save data pointer and goto done. */
  841. spin_lock_irqsave(&ring->lock, flags);
  842. reqid = bitmap_find_free_region(ring->requests_bmap,
  843. RING_MAX_REQ_COUNT, 0);
  844. spin_unlock_irqrestore(&ring->lock, flags);
  845. if (reqid < 0)
  846. return -ENOSPC;
  847. ring->requests[reqid] = msg;
  848. /* Do DMA mappings for the message */
  849. ret = flexrm_dma_map(ring->mbox->dev, msg);
  850. if (ret < 0) {
  851. ring->requests[reqid] = NULL;
  852. spin_lock_irqsave(&ring->lock, flags);
  853. bitmap_release_region(ring->requests_bmap, reqid, 0);
  854. spin_unlock_irqrestore(&ring->lock, flags);
  855. return ret;
  856. }
  857. /* Determine current HW BD read offset */
  858. read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
  859. val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
  860. read_offset *= RING_DESC_SIZE;
  861. read_offset += (u32)(BD_START_ADDR_DECODE(val) - ring->bd_dma_base);
  862. /*
  863. * Number required descriptors = number of non-header descriptors +
  864. * number of header descriptors +
  865. * 1x null descriptor
  866. */
  867. nhcnt = flexrm_estimate_nonheader_desc_count(msg);
  868. count = flexrm_estimate_header_desc_count(nhcnt) + nhcnt + 1;
  869. /* Check for available descriptor space. */
  870. write_offset = ring->bd_write_offset;
  871. while (count) {
  872. if (!flexrm_is_next_table_desc(ring->bd_base + write_offset))
  873. count--;
  874. write_offset += RING_DESC_SIZE;
  875. if (write_offset == RING_BD_SIZE)
  876. write_offset = 0x0;
  877. if (write_offset == read_offset)
  878. break;
  879. }
  880. if (count) {
  881. ret = -ENOSPC;
  882. exit_cleanup = true;
  883. goto exit;
  884. }
  885. /* Write descriptors to ring */
  886. next = flexrm_write_descs(msg, nhcnt, reqid,
  887. ring->bd_base + ring->bd_write_offset,
  888. RING_BD_TOGGLE_VALID(ring->bd_write_offset),
  889. ring->bd_base, ring->bd_base + RING_BD_SIZE);
  890. if (IS_ERR(next)) {
  891. ret = PTR_ERR(next);
  892. exit_cleanup = true;
  893. goto exit;
  894. }
  895. /* Save ring BD write offset */
  896. ring->bd_write_offset = (unsigned long)(next - ring->bd_base);
  897. /* Increment number of messages sent */
  898. atomic_inc_return(&ring->msg_send_count);
  899. exit:
  900. /* Update error status in message */
  901. msg->error = ret;
  902. /* Cleanup if we failed */
  903. if (exit_cleanup) {
  904. flexrm_dma_unmap(ring->mbox->dev, msg);
  905. ring->requests[reqid] = NULL;
  906. spin_lock_irqsave(&ring->lock, flags);
  907. bitmap_release_region(ring->requests_bmap, reqid, 0);
  908. spin_unlock_irqrestore(&ring->lock, flags);
  909. }
  910. return ret;
  911. }
  912. static int flexrm_process_completions(struct flexrm_ring *ring)
  913. {
  914. u64 desc;
  915. int err, count = 0;
  916. unsigned long flags;
  917. struct brcm_message *msg = NULL;
  918. u32 reqid, cmpl_read_offset, cmpl_write_offset;
  919. struct mbox_chan *chan = &ring->mbox->controller.chans[ring->num];
  920. spin_lock_irqsave(&ring->lock, flags);
  921. /*
  922. * Get current completion read and write offset
  923. *
  924. * Note: We should read completion write pointer at least once
  925. * after we get a MSI interrupt because HW maintains internal
  926. * MSI status which will allow next MSI interrupt only after
  927. * completion write pointer is read.
  928. */
  929. cmpl_write_offset = readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
  930. cmpl_write_offset *= RING_DESC_SIZE;
  931. cmpl_read_offset = ring->cmpl_read_offset;
  932. ring->cmpl_read_offset = cmpl_write_offset;
  933. spin_unlock_irqrestore(&ring->lock, flags);
  934. /* For each completed request notify mailbox clients */
  935. reqid = 0;
  936. while (cmpl_read_offset != cmpl_write_offset) {
  937. /* Dequeue next completion descriptor */
  938. desc = *((u64 *)(ring->cmpl_base + cmpl_read_offset));
  939. /* Next read offset */
  940. cmpl_read_offset += RING_DESC_SIZE;
  941. if (cmpl_read_offset == RING_CMPL_SIZE)
  942. cmpl_read_offset = 0;
  943. /* Decode error from completion descriptor */
  944. err = flexrm_cmpl_desc_to_error(desc);
  945. if (err < 0) {
  946. dev_warn(ring->mbox->dev,
  947. "ring%d got completion desc=0x%lx with error %d\n",
  948. ring->num, (unsigned long)desc, err);
  949. }
  950. /* Determine request id from completion descriptor */
  951. reqid = flexrm_cmpl_desc_to_reqid(desc);
  952. /* Determine message pointer based on reqid */
  953. msg = ring->requests[reqid];
  954. if (!msg) {
  955. dev_warn(ring->mbox->dev,
  956. "ring%d null msg pointer for completion desc=0x%lx\n",
  957. ring->num, (unsigned long)desc);
  958. continue;
  959. }
  960. /* Release reqid for recycling */
  961. ring->requests[reqid] = NULL;
  962. spin_lock_irqsave(&ring->lock, flags);
  963. bitmap_release_region(ring->requests_bmap, reqid, 0);
  964. spin_unlock_irqrestore(&ring->lock, flags);
  965. /* Unmap DMA mappings */
  966. flexrm_dma_unmap(ring->mbox->dev, msg);
  967. /* Give-back message to mailbox client */
  968. msg->error = err;
  969. mbox_chan_received_data(chan, msg);
  970. /* Increment number of completions processed */
  971. atomic_inc_return(&ring->msg_cmpl_count);
  972. count++;
  973. }
  974. return count;
  975. }
  976. /* ====== FlexRM Debugfs callbacks ====== */
  977. static int flexrm_debugfs_conf_show(struct seq_file *file, void *offset)
  978. {
  979. struct flexrm_mbox *mbox = dev_get_drvdata(file->private);
  980. /* Write config in file */
  981. flexrm_write_config_in_seqfile(mbox, file);
  982. return 0;
  983. }
  984. static int flexrm_debugfs_stats_show(struct seq_file *file, void *offset)
  985. {
  986. struct flexrm_mbox *mbox = dev_get_drvdata(file->private);
  987. /* Write stats in file */
  988. flexrm_write_stats_in_seqfile(mbox, file);
  989. return 0;
  990. }
  991. /* ====== FlexRM interrupt handler ===== */
  992. static irqreturn_t flexrm_irq_event(int irq, void *dev_id)
  993. {
  994. /* We only have MSI for completions so just wakeup IRQ thread */
  995. /* Ring related errors will be informed via completion descriptors */
  996. return IRQ_WAKE_THREAD;
  997. }
  998. static irqreturn_t flexrm_irq_thread(int irq, void *dev_id)
  999. {
  1000. flexrm_process_completions(dev_id);
  1001. return IRQ_HANDLED;
  1002. }
  1003. /* ====== FlexRM mailbox callbacks ===== */
  1004. static int flexrm_send_data(struct mbox_chan *chan, void *data)
  1005. {
  1006. int i, rc;
  1007. struct flexrm_ring *ring = chan->con_priv;
  1008. struct brcm_message *msg = data;
  1009. if (msg->type == BRCM_MESSAGE_BATCH) {
  1010. for (i = msg->batch.msgs_queued;
  1011. i < msg->batch.msgs_count; i++) {
  1012. rc = flexrm_new_request(ring, msg,
  1013. &msg->batch.msgs[i]);
  1014. if (rc) {
  1015. msg->error = rc;
  1016. return rc;
  1017. }
  1018. msg->batch.msgs_queued++;
  1019. }
  1020. return 0;
  1021. }
  1022. return flexrm_new_request(ring, NULL, data);
  1023. }
  1024. static bool flexrm_peek_data(struct mbox_chan *chan)
  1025. {
  1026. int cnt = flexrm_process_completions(chan->con_priv);
  1027. return (cnt > 0) ? true : false;
  1028. }
  1029. static int flexrm_startup(struct mbox_chan *chan)
  1030. {
  1031. u64 d;
  1032. u32 val, off;
  1033. int ret = 0;
  1034. dma_addr_t next_addr;
  1035. struct flexrm_ring *ring = chan->con_priv;
  1036. /* Allocate BD memory */
  1037. ring->bd_base = dma_pool_alloc(ring->mbox->bd_pool,
  1038. GFP_KERNEL, &ring->bd_dma_base);
  1039. if (!ring->bd_base) {
  1040. dev_err(ring->mbox->dev,
  1041. "can't allocate BD memory for ring%d\n",
  1042. ring->num);
  1043. ret = -ENOMEM;
  1044. goto fail;
  1045. }
  1046. /* Configure next table pointer entries in BD memory */
  1047. for (off = 0; off < RING_BD_SIZE; off += RING_DESC_SIZE) {
  1048. next_addr = off + RING_DESC_SIZE;
  1049. if (next_addr == RING_BD_SIZE)
  1050. next_addr = 0;
  1051. next_addr += ring->bd_dma_base;
  1052. if (RING_BD_ALIGN_CHECK(next_addr))
  1053. d = flexrm_next_table_desc(RING_BD_TOGGLE_VALID(off),
  1054. next_addr);
  1055. else
  1056. d = flexrm_null_desc(RING_BD_TOGGLE_INVALID(off));
  1057. flexrm_write_desc(ring->bd_base + off, d);
  1058. }
  1059. /* Allocate completion memory */
  1060. ring->cmpl_base = dma_pool_zalloc(ring->mbox->cmpl_pool,
  1061. GFP_KERNEL, &ring->cmpl_dma_base);
  1062. if (!ring->cmpl_base) {
  1063. dev_err(ring->mbox->dev,
  1064. "can't allocate completion memory for ring%d\n",
  1065. ring->num);
  1066. ret = -ENOMEM;
  1067. goto fail_free_bd_memory;
  1068. }
  1069. /* Request IRQ */
  1070. if (ring->irq == UINT_MAX) {
  1071. dev_err(ring->mbox->dev,
  1072. "ring%d IRQ not available\n", ring->num);
  1073. ret = -ENODEV;
  1074. goto fail_free_cmpl_memory;
  1075. }
  1076. ret = request_threaded_irq(ring->irq,
  1077. flexrm_irq_event,
  1078. flexrm_irq_thread,
  1079. 0, dev_name(ring->mbox->dev), ring);
  1080. if (ret) {
  1081. dev_err(ring->mbox->dev,
  1082. "failed to request ring%d IRQ\n", ring->num);
  1083. goto fail_free_cmpl_memory;
  1084. }
  1085. ring->irq_requested = true;
  1086. /* Set IRQ affinity hint */
  1087. ring->irq_aff_hint = CPU_MASK_NONE;
  1088. val = ring->mbox->num_rings;
  1089. val = (num_online_cpus() < val) ? val / num_online_cpus() : 1;
  1090. cpumask_set_cpu((ring->num / val) % num_online_cpus(),
  1091. &ring->irq_aff_hint);
  1092. ret = irq_update_affinity_hint(ring->irq, &ring->irq_aff_hint);
  1093. if (ret) {
  1094. dev_err(ring->mbox->dev,
  1095. "failed to set IRQ affinity hint for ring%d\n",
  1096. ring->num);
  1097. goto fail_free_irq;
  1098. }
  1099. /* Disable/inactivate ring */
  1100. writel_relaxed(0x0, ring->regs + RING_CONTROL);
  1101. /* Program BD start address */
  1102. val = BD_START_ADDR_VALUE(ring->bd_dma_base);
  1103. writel_relaxed(val, ring->regs + RING_BD_START_ADDR);
  1104. /* BD write pointer will be same as HW write pointer */
  1105. ring->bd_write_offset =
  1106. readl_relaxed(ring->regs + RING_BD_WRITE_PTR);
  1107. ring->bd_write_offset *= RING_DESC_SIZE;
  1108. /* Program completion start address */
  1109. val = CMPL_START_ADDR_VALUE(ring->cmpl_dma_base);
  1110. writel_relaxed(val, ring->regs + RING_CMPL_START_ADDR);
  1111. /* Completion read pointer will be same as HW write pointer */
  1112. ring->cmpl_read_offset =
  1113. readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
  1114. ring->cmpl_read_offset *= RING_DESC_SIZE;
  1115. /* Read ring Tx, Rx, and Outstanding counts to clear */
  1116. readl_relaxed(ring->regs + RING_NUM_REQ_RECV_LS);
  1117. readl_relaxed(ring->regs + RING_NUM_REQ_RECV_MS);
  1118. readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_LS);
  1119. readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_MS);
  1120. readl_relaxed(ring->regs + RING_NUM_REQ_OUTSTAND);
  1121. /* Configure RING_MSI_CONTROL */
  1122. val = 0;
  1123. val |= (ring->msi_timer_val << MSI_TIMER_VAL_SHIFT);
  1124. val |= BIT(MSI_ENABLE_SHIFT);
  1125. val |= (ring->msi_count_threshold & MSI_COUNT_MASK) << MSI_COUNT_SHIFT;
  1126. writel_relaxed(val, ring->regs + RING_MSI_CONTROL);
  1127. /* Enable/activate ring */
  1128. val = BIT(CONTROL_ACTIVE_SHIFT);
  1129. writel_relaxed(val, ring->regs + RING_CONTROL);
  1130. /* Reset stats to zero */
  1131. atomic_set(&ring->msg_send_count, 0);
  1132. atomic_set(&ring->msg_cmpl_count, 0);
  1133. return 0;
  1134. fail_free_irq:
  1135. free_irq(ring->irq, ring);
  1136. ring->irq_requested = false;
  1137. fail_free_cmpl_memory:
  1138. dma_pool_free(ring->mbox->cmpl_pool,
  1139. ring->cmpl_base, ring->cmpl_dma_base);
  1140. ring->cmpl_base = NULL;
  1141. fail_free_bd_memory:
  1142. dma_pool_free(ring->mbox->bd_pool,
  1143. ring->bd_base, ring->bd_dma_base);
  1144. ring->bd_base = NULL;
  1145. fail:
  1146. return ret;
  1147. }
  1148. static void flexrm_shutdown(struct mbox_chan *chan)
  1149. {
  1150. u32 reqid;
  1151. unsigned int timeout;
  1152. struct brcm_message *msg;
  1153. struct flexrm_ring *ring = chan->con_priv;
  1154. /* Disable/inactivate ring */
  1155. writel_relaxed(0x0, ring->regs + RING_CONTROL);
  1156. /* Set ring flush state */
  1157. timeout = 1000; /* timeout of 1s */
  1158. writel_relaxed(BIT(CONTROL_FLUSH_SHIFT),
  1159. ring->regs + RING_CONTROL);
  1160. do {
  1161. if (readl_relaxed(ring->regs + RING_FLUSH_DONE) &
  1162. FLUSH_DONE_MASK)
  1163. break;
  1164. mdelay(1);
  1165. } while (--timeout);
  1166. if (!timeout)
  1167. dev_err(ring->mbox->dev,
  1168. "setting ring%d flush state timedout\n", ring->num);
  1169. /* Clear ring flush state */
  1170. timeout = 1000; /* timeout of 1s */
  1171. writel_relaxed(0x0, ring->regs + RING_CONTROL);
  1172. do {
  1173. if (!(readl_relaxed(ring->regs + RING_FLUSH_DONE) &
  1174. FLUSH_DONE_MASK))
  1175. break;
  1176. mdelay(1);
  1177. } while (--timeout);
  1178. if (!timeout)
  1179. dev_err(ring->mbox->dev,
  1180. "clearing ring%d flush state timedout\n", ring->num);
  1181. /* Abort all in-flight requests */
  1182. for (reqid = 0; reqid < RING_MAX_REQ_COUNT; reqid++) {
  1183. msg = ring->requests[reqid];
  1184. if (!msg)
  1185. continue;
  1186. /* Release reqid for recycling */
  1187. ring->requests[reqid] = NULL;
  1188. /* Unmap DMA mappings */
  1189. flexrm_dma_unmap(ring->mbox->dev, msg);
  1190. /* Give-back message to mailbox client */
  1191. msg->error = -EIO;
  1192. mbox_chan_received_data(chan, msg);
  1193. }
  1194. /* Clear requests bitmap */
  1195. bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT);
  1196. /* Release IRQ */
  1197. if (ring->irq_requested) {
  1198. irq_update_affinity_hint(ring->irq, NULL);
  1199. free_irq(ring->irq, ring);
  1200. ring->irq_requested = false;
  1201. }
  1202. /* Free-up completion descriptor ring */
  1203. if (ring->cmpl_base) {
  1204. dma_pool_free(ring->mbox->cmpl_pool,
  1205. ring->cmpl_base, ring->cmpl_dma_base);
  1206. ring->cmpl_base = NULL;
  1207. }
  1208. /* Free-up BD descriptor ring */
  1209. if (ring->bd_base) {
  1210. dma_pool_free(ring->mbox->bd_pool,
  1211. ring->bd_base, ring->bd_dma_base);
  1212. ring->bd_base = NULL;
  1213. }
  1214. }
  1215. static const struct mbox_chan_ops flexrm_mbox_chan_ops = {
  1216. .send_data = flexrm_send_data,
  1217. .startup = flexrm_startup,
  1218. .shutdown = flexrm_shutdown,
  1219. .peek_data = flexrm_peek_data,
  1220. };
  1221. static struct mbox_chan *flexrm_mbox_of_xlate(struct mbox_controller *cntlr,
  1222. const struct of_phandle_args *pa)
  1223. {
  1224. struct mbox_chan *chan;
  1225. struct flexrm_ring *ring;
  1226. if (pa->args_count < 3)
  1227. return ERR_PTR(-EINVAL);
  1228. if (pa->args[0] >= cntlr->num_chans)
  1229. return ERR_PTR(-ENOENT);
  1230. if (pa->args[1] > MSI_COUNT_MASK)
  1231. return ERR_PTR(-EINVAL);
  1232. if (pa->args[2] > MSI_TIMER_VAL_MASK)
  1233. return ERR_PTR(-EINVAL);
  1234. chan = &cntlr->chans[pa->args[0]];
  1235. ring = chan->con_priv;
  1236. ring->msi_count_threshold = pa->args[1];
  1237. ring->msi_timer_val = pa->args[2];
  1238. return chan;
  1239. }
  1240. /* ====== FlexRM platform driver ===== */
  1241. static void flexrm_mbox_msi_write(struct msi_desc *desc, struct msi_msg *msg)
  1242. {
  1243. struct device *dev = msi_desc_to_dev(desc);
  1244. struct flexrm_mbox *mbox = dev_get_drvdata(dev);
  1245. struct flexrm_ring *ring = &mbox->rings[desc->msi_index];
  1246. /* Configure per-Ring MSI registers */
  1247. writel_relaxed(msg->address_lo, ring->regs + RING_MSI_ADDR_LS);
  1248. writel_relaxed(msg->address_hi, ring->regs + RING_MSI_ADDR_MS);
  1249. writel_relaxed(msg->data, ring->regs + RING_MSI_DATA_VALUE);
  1250. }
  1251. static int flexrm_mbox_probe(struct platform_device *pdev)
  1252. {
  1253. int index, ret = 0;
  1254. void __iomem *regs;
  1255. void __iomem *regs_end;
  1256. struct resource *iomem;
  1257. struct flexrm_ring *ring;
  1258. struct flexrm_mbox *mbox;
  1259. struct device *dev = &pdev->dev;
  1260. /* Allocate driver mailbox struct */
  1261. mbox = devm_kzalloc(dev, sizeof(*mbox), GFP_KERNEL);
  1262. if (!mbox) {
  1263. ret = -ENOMEM;
  1264. goto fail;
  1265. }
  1266. mbox->dev = dev;
  1267. platform_set_drvdata(pdev, mbox);
  1268. /* Get resource for registers */
  1269. iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1270. if (!iomem || (resource_size(iomem) < RING_REGS_SIZE)) {
  1271. ret = -ENODEV;
  1272. goto fail;
  1273. }
  1274. /* Map registers of all rings */
  1275. mbox->regs = devm_ioremap_resource(&pdev->dev, iomem);
  1276. if (IS_ERR(mbox->regs)) {
  1277. ret = PTR_ERR(mbox->regs);
  1278. goto fail;
  1279. }
  1280. regs_end = mbox->regs + resource_size(iomem);
  1281. /* Scan and count available rings */
  1282. mbox->num_rings = 0;
  1283. for (regs = mbox->regs; regs < regs_end; regs += RING_REGS_SIZE) {
  1284. if (readl_relaxed(regs + RING_VER) == RING_VER_MAGIC)
  1285. mbox->num_rings++;
  1286. }
  1287. if (!mbox->num_rings) {
  1288. ret = -ENODEV;
  1289. goto fail;
  1290. }
  1291. /* Allocate driver ring structs */
  1292. ring = devm_kcalloc(dev, mbox->num_rings, sizeof(*ring), GFP_KERNEL);
  1293. if (!ring) {
  1294. ret = -ENOMEM;
  1295. goto fail;
  1296. }
  1297. mbox->rings = ring;
  1298. /* Initialize members of driver ring structs */
  1299. regs = mbox->regs;
  1300. for (index = 0; index < mbox->num_rings; index++) {
  1301. ring = &mbox->rings[index];
  1302. ring->num = index;
  1303. ring->mbox = mbox;
  1304. while ((regs < regs_end) &&
  1305. (readl_relaxed(regs + RING_VER) != RING_VER_MAGIC))
  1306. regs += RING_REGS_SIZE;
  1307. if (regs_end <= regs) {
  1308. ret = -ENODEV;
  1309. goto fail;
  1310. }
  1311. ring->regs = regs;
  1312. regs += RING_REGS_SIZE;
  1313. ring->irq = UINT_MAX;
  1314. ring->irq_requested = false;
  1315. ring->msi_timer_val = MSI_TIMER_VAL_MASK;
  1316. ring->msi_count_threshold = 0x1;
  1317. memset(ring->requests, 0, sizeof(ring->requests));
  1318. ring->bd_base = NULL;
  1319. ring->bd_dma_base = 0;
  1320. ring->cmpl_base = NULL;
  1321. ring->cmpl_dma_base = 0;
  1322. atomic_set(&ring->msg_send_count, 0);
  1323. atomic_set(&ring->msg_cmpl_count, 0);
  1324. spin_lock_init(&ring->lock);
  1325. bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT);
  1326. ring->cmpl_read_offset = 0;
  1327. }
  1328. /* FlexRM is capable of 40-bit physical addresses only */
  1329. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
  1330. if (ret) {
  1331. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
  1332. if (ret)
  1333. goto fail;
  1334. }
  1335. /* Create DMA pool for ring BD memory */
  1336. mbox->bd_pool = dma_pool_create("bd", dev, RING_BD_SIZE,
  1337. 1 << RING_BD_ALIGN_ORDER, 0);
  1338. if (!mbox->bd_pool) {
  1339. ret = -ENOMEM;
  1340. goto fail;
  1341. }
  1342. /* Create DMA pool for ring completion memory */
  1343. mbox->cmpl_pool = dma_pool_create("cmpl", dev, RING_CMPL_SIZE,
  1344. 1 << RING_CMPL_ALIGN_ORDER, 0);
  1345. if (!mbox->cmpl_pool) {
  1346. ret = -ENOMEM;
  1347. goto fail_destroy_bd_pool;
  1348. }
  1349. /* Allocate platform MSIs for each ring */
  1350. ret = platform_msi_domain_alloc_irqs(dev, mbox->num_rings,
  1351. flexrm_mbox_msi_write);
  1352. if (ret)
  1353. goto fail_destroy_cmpl_pool;
  1354. /* Save alloced IRQ numbers for each ring */
  1355. for (index = 0; index < mbox->num_rings; index++)
  1356. mbox->rings[index].irq = msi_get_virq(dev, index);
  1357. /* Check availability of debugfs */
  1358. if (!debugfs_initialized())
  1359. goto skip_debugfs;
  1360. /* Create debugfs root entry */
  1361. mbox->root = debugfs_create_dir(dev_name(mbox->dev), NULL);
  1362. /* Create debugfs config entry */
  1363. debugfs_create_devm_seqfile(mbox->dev, "config", mbox->root,
  1364. flexrm_debugfs_conf_show);
  1365. /* Create debugfs stats entry */
  1366. debugfs_create_devm_seqfile(mbox->dev, "stats", mbox->root,
  1367. flexrm_debugfs_stats_show);
  1368. skip_debugfs:
  1369. /* Initialize mailbox controller */
  1370. mbox->controller.txdone_irq = false;
  1371. mbox->controller.txdone_poll = false;
  1372. mbox->controller.ops = &flexrm_mbox_chan_ops;
  1373. mbox->controller.dev = dev;
  1374. mbox->controller.num_chans = mbox->num_rings;
  1375. mbox->controller.of_xlate = flexrm_mbox_of_xlate;
  1376. mbox->controller.chans = devm_kcalloc(dev, mbox->num_rings,
  1377. sizeof(*mbox->controller.chans), GFP_KERNEL);
  1378. if (!mbox->controller.chans) {
  1379. ret = -ENOMEM;
  1380. goto fail_free_debugfs_root;
  1381. }
  1382. for (index = 0; index < mbox->num_rings; index++)
  1383. mbox->controller.chans[index].con_priv = &mbox->rings[index];
  1384. /* Register mailbox controller */
  1385. ret = devm_mbox_controller_register(dev, &mbox->controller);
  1386. if (ret)
  1387. goto fail_free_debugfs_root;
  1388. dev_info(dev, "registered flexrm mailbox with %d channels\n",
  1389. mbox->controller.num_chans);
  1390. return 0;
  1391. fail_free_debugfs_root:
  1392. debugfs_remove_recursive(mbox->root);
  1393. platform_msi_domain_free_irqs(dev);
  1394. fail_destroy_cmpl_pool:
  1395. dma_pool_destroy(mbox->cmpl_pool);
  1396. fail_destroy_bd_pool:
  1397. dma_pool_destroy(mbox->bd_pool);
  1398. fail:
  1399. return ret;
  1400. }
  1401. static int flexrm_mbox_remove(struct platform_device *pdev)
  1402. {
  1403. struct device *dev = &pdev->dev;
  1404. struct flexrm_mbox *mbox = platform_get_drvdata(pdev);
  1405. debugfs_remove_recursive(mbox->root);
  1406. platform_msi_domain_free_irqs(dev);
  1407. dma_pool_destroy(mbox->cmpl_pool);
  1408. dma_pool_destroy(mbox->bd_pool);
  1409. return 0;
  1410. }
  1411. static const struct of_device_id flexrm_mbox_of_match[] = {
  1412. { .compatible = "brcm,iproc-flexrm-mbox", },
  1413. {},
  1414. };
  1415. MODULE_DEVICE_TABLE(of, flexrm_mbox_of_match);
  1416. static struct platform_driver flexrm_mbox_driver = {
  1417. .driver = {
  1418. .name = "brcm-flexrm-mbox",
  1419. .of_match_table = flexrm_mbox_of_match,
  1420. },
  1421. .probe = flexrm_mbox_probe,
  1422. .remove = flexrm_mbox_remove,
  1423. };
  1424. module_platform_driver(flexrm_mbox_driver);
  1425. MODULE_AUTHOR("Anup Patel <[email protected]>");
  1426. MODULE_DESCRIPTION("Broadcom FlexRM mailbox driver");
  1427. MODULE_LICENSE("GPL v2");