mr.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344
  1. /*
  2. * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
  3. * Copyright (c) 2020, Intel Corporation. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #include <linux/kref.h>
  34. #include <linux/random.h>
  35. #include <linux/debugfs.h>
  36. #include <linux/export.h>
  37. #include <linux/delay.h>
  38. #include <linux/dma-buf.h>
  39. #include <linux/dma-resv.h>
  40. #include <rdma/ib_umem_odp.h>
  41. #include "dm.h"
  42. #include "mlx5_ib.h"
  43. #include "umr.h"
  44. enum {
  45. MAX_PENDING_REG_MR = 8,
  46. };
  47. #define MLX5_UMR_ALIGN 2048
  48. static void
  49. create_mkey_callback(int status, struct mlx5_async_work *context);
  50. static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
  51. u64 iova, int access_flags,
  52. unsigned int page_size, bool populate);
  53. static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
  54. struct ib_pd *pd)
  55. {
  56. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  57. MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
  58. MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
  59. MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
  60. MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
  61. MLX5_SET(mkc, mkc, lr, 1);
  62. if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
  63. pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
  64. if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
  65. MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
  66. if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
  67. MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
  68. }
  69. MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
  70. MLX5_SET(mkc, mkc, qpn, 0xffffff);
  71. MLX5_SET64(mkc, mkc, start_addr, start_addr);
  72. }
  73. static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
  74. {
  75. u8 key = atomic_inc_return(&dev->mkey_var);
  76. void *mkc;
  77. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  78. MLX5_SET(mkc, mkc, mkey_7_0, key);
  79. *mkey = key;
  80. }
  81. static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
  82. struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
  83. {
  84. int ret;
  85. assign_mkey_variant(dev, &mkey->key, in);
  86. ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
  87. if (!ret)
  88. init_waitqueue_head(&mkey->wait);
  89. return ret;
  90. }
  91. static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
  92. {
  93. struct mlx5_ib_dev *dev = async_create->ent->dev;
  94. size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  95. size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
  96. MLX5_SET(create_mkey_in, async_create->in, opcode,
  97. MLX5_CMD_OP_CREATE_MKEY);
  98. assign_mkey_variant(dev, &async_create->mkey, async_create->in);
  99. return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
  100. async_create->out, outlen, create_mkey_callback,
  101. &async_create->cb_work);
  102. }
  103. static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
  104. static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
  105. static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
  106. {
  107. WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
  108. return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
  109. }
  110. static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
  111. {
  112. if (status == -ENXIO) /* core driver is not available */
  113. return;
  114. mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
  115. if (status != -EREMOTEIO) /* driver specific failure */
  116. return;
  117. /* Failed in FW, print cmd out failure details */
  118. mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
  119. }
  120. static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
  121. void *to_store)
  122. {
  123. XA_STATE(xas, &ent->mkeys, 0);
  124. void *curr;
  125. xa_lock_irq(&ent->mkeys);
  126. if (limit_pendings &&
  127. (ent->reserved - ent->stored) > MAX_PENDING_REG_MR) {
  128. xa_unlock_irq(&ent->mkeys);
  129. return -EAGAIN;
  130. }
  131. while (1) {
  132. /*
  133. * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
  134. * doesn't transparently unlock. Instead we set the xas index to
  135. * the current value of reserved every iteration.
  136. */
  137. xas_set(&xas, ent->reserved);
  138. curr = xas_load(&xas);
  139. if (!curr) {
  140. if (to_store && ent->stored == ent->reserved)
  141. xas_store(&xas, to_store);
  142. else
  143. xas_store(&xas, XA_ZERO_ENTRY);
  144. if (xas_valid(&xas)) {
  145. ent->reserved++;
  146. if (to_store) {
  147. if (ent->stored != ent->reserved)
  148. __xa_store(&ent->mkeys,
  149. ent->stored,
  150. to_store,
  151. GFP_KERNEL);
  152. ent->stored++;
  153. queue_adjust_cache_locked(ent);
  154. WRITE_ONCE(ent->dev->cache.last_add,
  155. jiffies);
  156. }
  157. }
  158. }
  159. xa_unlock_irq(&ent->mkeys);
  160. /*
  161. * Notice xas_nomem() must always be called as it cleans
  162. * up any cached allocation.
  163. */
  164. if (!xas_nomem(&xas, GFP_KERNEL))
  165. break;
  166. xa_lock_irq(&ent->mkeys);
  167. }
  168. if (xas_error(&xas))
  169. return xas_error(&xas);
  170. if (WARN_ON(curr))
  171. return -EINVAL;
  172. return 0;
  173. }
  174. static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
  175. {
  176. void *old;
  177. ent->reserved--;
  178. old = __xa_erase(&ent->mkeys, ent->reserved);
  179. WARN_ON(old);
  180. }
  181. static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
  182. {
  183. void *old;
  184. old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
  185. WARN_ON(old);
  186. ent->stored++;
  187. }
  188. static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
  189. {
  190. void *old, *xa_mkey;
  191. ent->stored--;
  192. ent->reserved--;
  193. if (ent->stored == ent->reserved) {
  194. xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
  195. WARN_ON(!xa_mkey);
  196. return (u32)xa_to_value(xa_mkey);
  197. }
  198. xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
  199. GFP_KERNEL);
  200. WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
  201. old = __xa_erase(&ent->mkeys, ent->reserved);
  202. WARN_ON(old);
  203. return (u32)xa_to_value(xa_mkey);
  204. }
  205. static void create_mkey_callback(int status, struct mlx5_async_work *context)
  206. {
  207. struct mlx5r_async_create_mkey *mkey_out =
  208. container_of(context, struct mlx5r_async_create_mkey, cb_work);
  209. struct mlx5_cache_ent *ent = mkey_out->ent;
  210. struct mlx5_ib_dev *dev = ent->dev;
  211. unsigned long flags;
  212. if (status) {
  213. create_mkey_warn(dev, status, mkey_out->out);
  214. kfree(mkey_out);
  215. xa_lock_irqsave(&ent->mkeys, flags);
  216. undo_push_reserve_mkey(ent);
  217. WRITE_ONCE(dev->fill_delay, 1);
  218. xa_unlock_irqrestore(&ent->mkeys, flags);
  219. mod_timer(&dev->delay_timer, jiffies + HZ);
  220. return;
  221. }
  222. mkey_out->mkey |= mlx5_idx_to_mkey(
  223. MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
  224. WRITE_ONCE(dev->cache.last_add, jiffies);
  225. xa_lock_irqsave(&ent->mkeys, flags);
  226. push_to_reserved(ent, mkey_out->mkey);
  227. /* If we are doing fill_to_high_water then keep going. */
  228. queue_adjust_cache_locked(ent);
  229. xa_unlock_irqrestore(&ent->mkeys, flags);
  230. kfree(mkey_out);
  231. }
  232. static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
  233. {
  234. int ret = 0;
  235. switch (access_mode) {
  236. case MLX5_MKC_ACCESS_MODE_MTT:
  237. ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
  238. sizeof(struct mlx5_mtt));
  239. break;
  240. case MLX5_MKC_ACCESS_MODE_KSM:
  241. ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
  242. sizeof(struct mlx5_klm));
  243. break;
  244. default:
  245. WARN_ON(1);
  246. }
  247. return ret;
  248. }
  249. static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
  250. {
  251. set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
  252. MLX5_SET(mkc, mkc, free, 1);
  253. MLX5_SET(mkc, mkc, umr_en, 1);
  254. MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
  255. MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
  256. MLX5_SET(mkc, mkc, translations_octword_size,
  257. get_mkc_octo_size(ent->access_mode, ent->ndescs));
  258. MLX5_SET(mkc, mkc, log_page_size, ent->page);
  259. }
  260. /* Asynchronously schedule new MRs to be populated in the cache. */
  261. static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
  262. {
  263. struct mlx5r_async_create_mkey *async_create;
  264. void *mkc;
  265. int err = 0;
  266. int i;
  267. for (i = 0; i < num; i++) {
  268. async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
  269. GFP_KERNEL);
  270. if (!async_create)
  271. return -ENOMEM;
  272. mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
  273. memory_key_mkey_entry);
  274. set_cache_mkc(ent, mkc);
  275. async_create->ent = ent;
  276. err = push_mkey(ent, true, NULL);
  277. if (err)
  278. goto free_async_create;
  279. err = mlx5_ib_create_mkey_cb(async_create);
  280. if (err) {
  281. mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
  282. goto err_undo_reserve;
  283. }
  284. }
  285. return 0;
  286. err_undo_reserve:
  287. xa_lock_irq(&ent->mkeys);
  288. undo_push_reserve_mkey(ent);
  289. xa_unlock_irq(&ent->mkeys);
  290. free_async_create:
  291. kfree(async_create);
  292. return err;
  293. }
  294. /* Synchronously create a MR in the cache */
  295. static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
  296. {
  297. size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  298. void *mkc;
  299. u32 *in;
  300. int err;
  301. in = kzalloc(inlen, GFP_KERNEL);
  302. if (!in)
  303. return -ENOMEM;
  304. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  305. set_cache_mkc(ent, mkc);
  306. err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
  307. if (err)
  308. goto free_in;
  309. WRITE_ONCE(ent->dev->cache.last_add, jiffies);
  310. free_in:
  311. kfree(in);
  312. return err;
  313. }
  314. static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
  315. {
  316. u32 mkey;
  317. lockdep_assert_held(&ent->mkeys.xa_lock);
  318. if (!ent->stored)
  319. return;
  320. mkey = pop_stored_mkey(ent);
  321. xa_unlock_irq(&ent->mkeys);
  322. mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
  323. xa_lock_irq(&ent->mkeys);
  324. }
  325. static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
  326. bool limit_fill)
  327. __acquires(&ent->mkeys) __releases(&ent->mkeys)
  328. {
  329. int err;
  330. lockdep_assert_held(&ent->mkeys.xa_lock);
  331. while (true) {
  332. if (limit_fill)
  333. target = ent->limit * 2;
  334. if (target == ent->reserved)
  335. return 0;
  336. if (target > ent->reserved) {
  337. u32 todo = target - ent->reserved;
  338. xa_unlock_irq(&ent->mkeys);
  339. err = add_keys(ent, todo);
  340. if (err == -EAGAIN)
  341. usleep_range(3000, 5000);
  342. xa_lock_irq(&ent->mkeys);
  343. if (err) {
  344. if (err != -EAGAIN)
  345. return err;
  346. } else
  347. return 0;
  348. } else {
  349. remove_cache_mr_locked(ent);
  350. }
  351. }
  352. }
  353. static ssize_t size_write(struct file *filp, const char __user *buf,
  354. size_t count, loff_t *pos)
  355. {
  356. struct mlx5_cache_ent *ent = filp->private_data;
  357. u32 target;
  358. int err;
  359. err = kstrtou32_from_user(buf, count, 0, &target);
  360. if (err)
  361. return err;
  362. /*
  363. * Target is the new value of total_mrs the user requests, however we
  364. * cannot free MRs that are in use. Compute the target value for stored
  365. * mkeys.
  366. */
  367. xa_lock_irq(&ent->mkeys);
  368. if (target < ent->in_use) {
  369. err = -EINVAL;
  370. goto err_unlock;
  371. }
  372. target = target - ent->in_use;
  373. if (target < ent->limit || target > ent->limit*2) {
  374. err = -EINVAL;
  375. goto err_unlock;
  376. }
  377. err = resize_available_mrs(ent, target, false);
  378. if (err)
  379. goto err_unlock;
  380. xa_unlock_irq(&ent->mkeys);
  381. return count;
  382. err_unlock:
  383. xa_unlock_irq(&ent->mkeys);
  384. return err;
  385. }
  386. static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
  387. loff_t *pos)
  388. {
  389. struct mlx5_cache_ent *ent = filp->private_data;
  390. char lbuf[20];
  391. int err;
  392. err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
  393. if (err < 0)
  394. return err;
  395. return simple_read_from_buffer(buf, count, pos, lbuf, err);
  396. }
  397. static const struct file_operations size_fops = {
  398. .owner = THIS_MODULE,
  399. .open = simple_open,
  400. .write = size_write,
  401. .read = size_read,
  402. };
  403. static ssize_t limit_write(struct file *filp, const char __user *buf,
  404. size_t count, loff_t *pos)
  405. {
  406. struct mlx5_cache_ent *ent = filp->private_data;
  407. u32 var;
  408. int err;
  409. err = kstrtou32_from_user(buf, count, 0, &var);
  410. if (err)
  411. return err;
  412. /*
  413. * Upon set we immediately fill the cache to high water mark implied by
  414. * the limit.
  415. */
  416. xa_lock_irq(&ent->mkeys);
  417. ent->limit = var;
  418. err = resize_available_mrs(ent, 0, true);
  419. xa_unlock_irq(&ent->mkeys);
  420. if (err)
  421. return err;
  422. return count;
  423. }
  424. static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
  425. loff_t *pos)
  426. {
  427. struct mlx5_cache_ent *ent = filp->private_data;
  428. char lbuf[20];
  429. int err;
  430. err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
  431. if (err < 0)
  432. return err;
  433. return simple_read_from_buffer(buf, count, pos, lbuf, err);
  434. }
  435. static const struct file_operations limit_fops = {
  436. .owner = THIS_MODULE,
  437. .open = simple_open,
  438. .write = limit_write,
  439. .read = limit_read,
  440. };
  441. static bool someone_adding(struct mlx5_mkey_cache *cache)
  442. {
  443. unsigned int i;
  444. for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
  445. struct mlx5_cache_ent *ent = &cache->ent[i];
  446. bool ret;
  447. xa_lock_irq(&ent->mkeys);
  448. ret = ent->stored < ent->limit;
  449. xa_unlock_irq(&ent->mkeys);
  450. if (ret)
  451. return true;
  452. }
  453. return false;
  454. }
  455. /*
  456. * Check if the bucket is outside the high/low water mark and schedule an async
  457. * update. The cache refill has hysteresis, once the low water mark is hit it is
  458. * refilled up to the high mark.
  459. */
  460. static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
  461. {
  462. lockdep_assert_held(&ent->mkeys.xa_lock);
  463. if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
  464. return;
  465. if (ent->stored < ent->limit) {
  466. ent->fill_to_high_water = true;
  467. mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
  468. } else if (ent->fill_to_high_water &&
  469. ent->reserved < 2 * ent->limit) {
  470. /*
  471. * Once we start populating due to hitting a low water mark
  472. * continue until we pass the high water mark.
  473. */
  474. mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
  475. } else if (ent->stored == 2 * ent->limit) {
  476. ent->fill_to_high_water = false;
  477. } else if (ent->stored > 2 * ent->limit) {
  478. /* Queue deletion of excess entries */
  479. ent->fill_to_high_water = false;
  480. if (ent->stored != ent->reserved)
  481. queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
  482. msecs_to_jiffies(1000));
  483. else
  484. mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
  485. }
  486. }
  487. static void __cache_work_func(struct mlx5_cache_ent *ent)
  488. {
  489. struct mlx5_ib_dev *dev = ent->dev;
  490. struct mlx5_mkey_cache *cache = &dev->cache;
  491. int err;
  492. xa_lock_irq(&ent->mkeys);
  493. if (ent->disabled)
  494. goto out;
  495. if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
  496. !READ_ONCE(dev->fill_delay)) {
  497. xa_unlock_irq(&ent->mkeys);
  498. err = add_keys(ent, 1);
  499. xa_lock_irq(&ent->mkeys);
  500. if (ent->disabled)
  501. goto out;
  502. if (err) {
  503. /*
  504. * EAGAIN only happens if there are pending MRs, so we
  505. * will be rescheduled when storing them. The only
  506. * failure path here is ENOMEM.
  507. */
  508. if (err != -EAGAIN) {
  509. mlx5_ib_warn(
  510. dev,
  511. "command failed order %d, err %d\n",
  512. ent->order, err);
  513. queue_delayed_work(cache->wq, &ent->dwork,
  514. msecs_to_jiffies(1000));
  515. }
  516. }
  517. } else if (ent->stored > 2 * ent->limit) {
  518. bool need_delay;
  519. /*
  520. * The remove_cache_mr() logic is performed as garbage
  521. * collection task. Such task is intended to be run when no
  522. * other active processes are running.
  523. *
  524. * The need_resched() will return TRUE if there are user tasks
  525. * to be activated in near future.
  526. *
  527. * In such case, we don't execute remove_cache_mr() and postpone
  528. * the garbage collection work to try to run in next cycle, in
  529. * order to free CPU resources to other tasks.
  530. */
  531. xa_unlock_irq(&ent->mkeys);
  532. need_delay = need_resched() || someone_adding(cache) ||
  533. !time_after(jiffies,
  534. READ_ONCE(cache->last_add) + 300 * HZ);
  535. xa_lock_irq(&ent->mkeys);
  536. if (ent->disabled)
  537. goto out;
  538. if (need_delay) {
  539. queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
  540. goto out;
  541. }
  542. remove_cache_mr_locked(ent);
  543. queue_adjust_cache_locked(ent);
  544. }
  545. out:
  546. xa_unlock_irq(&ent->mkeys);
  547. }
  548. static void delayed_cache_work_func(struct work_struct *work)
  549. {
  550. struct mlx5_cache_ent *ent;
  551. ent = container_of(work, struct mlx5_cache_ent, dwork.work);
  552. __cache_work_func(ent);
  553. }
  554. struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
  555. struct mlx5_cache_ent *ent,
  556. int access_flags)
  557. {
  558. struct mlx5_ib_mr *mr;
  559. int err;
  560. if (!mlx5r_umr_can_reconfig(dev, 0, access_flags))
  561. return ERR_PTR(-EOPNOTSUPP);
  562. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  563. if (!mr)
  564. return ERR_PTR(-ENOMEM);
  565. xa_lock_irq(&ent->mkeys);
  566. ent->in_use++;
  567. if (!ent->stored) {
  568. queue_adjust_cache_locked(ent);
  569. ent->miss++;
  570. xa_unlock_irq(&ent->mkeys);
  571. err = create_cache_mkey(ent, &mr->mmkey.key);
  572. if (err) {
  573. xa_lock_irq(&ent->mkeys);
  574. ent->in_use--;
  575. xa_unlock_irq(&ent->mkeys);
  576. kfree(mr);
  577. return ERR_PTR(err);
  578. }
  579. } else {
  580. mr->mmkey.key = pop_stored_mkey(ent);
  581. queue_adjust_cache_locked(ent);
  582. xa_unlock_irq(&ent->mkeys);
  583. }
  584. mr->mmkey.cache_ent = ent;
  585. mr->mmkey.type = MLX5_MKEY_MR;
  586. init_waitqueue_head(&mr->mmkey.wait);
  587. return mr;
  588. }
  589. static void clean_keys(struct mlx5_ib_dev *dev, int c)
  590. {
  591. struct mlx5_mkey_cache *cache = &dev->cache;
  592. struct mlx5_cache_ent *ent = &cache->ent[c];
  593. u32 mkey;
  594. cancel_delayed_work(&ent->dwork);
  595. xa_lock_irq(&ent->mkeys);
  596. while (ent->stored) {
  597. mkey = pop_stored_mkey(ent);
  598. xa_unlock_irq(&ent->mkeys);
  599. mlx5_core_destroy_mkey(dev->mdev, mkey);
  600. xa_lock_irq(&ent->mkeys);
  601. }
  602. xa_unlock_irq(&ent->mkeys);
  603. }
  604. static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
  605. {
  606. if (!mlx5_debugfs_root || dev->is_rep)
  607. return;
  608. debugfs_remove_recursive(dev->cache.root);
  609. dev->cache.root = NULL;
  610. }
  611. static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
  612. {
  613. struct mlx5_mkey_cache *cache = &dev->cache;
  614. struct mlx5_cache_ent *ent;
  615. struct dentry *dir;
  616. int i;
  617. if (!mlx5_debugfs_root || dev->is_rep)
  618. return;
  619. cache->root = debugfs_create_dir("mr_cache", mlx5_debugfs_get_dev_root(dev->mdev));
  620. for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
  621. ent = &cache->ent[i];
  622. sprintf(ent->name, "%d", ent->order);
  623. dir = debugfs_create_dir(ent->name, cache->root);
  624. debugfs_create_file("size", 0600, dir, ent, &size_fops);
  625. debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
  626. debugfs_create_ulong("cur", 0400, dir, &ent->stored);
  627. debugfs_create_u32("miss", 0600, dir, &ent->miss);
  628. }
  629. }
  630. static void delay_time_func(struct timer_list *t)
  631. {
  632. struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
  633. WRITE_ONCE(dev->fill_delay, 0);
  634. }
  635. int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
  636. {
  637. struct mlx5_mkey_cache *cache = &dev->cache;
  638. struct mlx5_cache_ent *ent;
  639. int i;
  640. mutex_init(&dev->slow_path_mutex);
  641. cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
  642. if (!cache->wq) {
  643. mlx5_ib_warn(dev, "failed to create work queue\n");
  644. return -ENOMEM;
  645. }
  646. mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
  647. timer_setup(&dev->delay_timer, delay_time_func, 0);
  648. for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
  649. ent = &cache->ent[i];
  650. xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
  651. ent->order = i + 2;
  652. ent->dev = dev;
  653. ent->limit = 0;
  654. INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
  655. if (i > MKEY_CACHE_LAST_STD_ENTRY) {
  656. mlx5_odp_init_mkey_cache_entry(ent);
  657. continue;
  658. }
  659. if (ent->order > mkey_cache_max_order(dev))
  660. continue;
  661. ent->page = PAGE_SHIFT;
  662. ent->ndescs = 1 << ent->order;
  663. ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
  664. if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
  665. !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
  666. mlx5r_umr_can_load_pas(dev, 0))
  667. ent->limit = dev->mdev->profile.mr_cache[i].limit;
  668. else
  669. ent->limit = 0;
  670. xa_lock_irq(&ent->mkeys);
  671. queue_adjust_cache_locked(ent);
  672. xa_unlock_irq(&ent->mkeys);
  673. }
  674. mlx5_mkey_cache_debugfs_init(dev);
  675. return 0;
  676. }
  677. int mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
  678. {
  679. unsigned int i;
  680. if (!dev->cache.wq)
  681. return 0;
  682. for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
  683. struct mlx5_cache_ent *ent = &dev->cache.ent[i];
  684. xa_lock_irq(&ent->mkeys);
  685. ent->disabled = true;
  686. xa_unlock_irq(&ent->mkeys);
  687. cancel_delayed_work_sync(&ent->dwork);
  688. }
  689. mlx5_mkey_cache_debugfs_cleanup(dev);
  690. mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
  691. for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++)
  692. clean_keys(dev, i);
  693. destroy_workqueue(dev->cache.wq);
  694. del_timer_sync(&dev->delay_timer);
  695. return 0;
  696. }
  697. struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
  698. {
  699. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  700. int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  701. struct mlx5_ib_mr *mr;
  702. void *mkc;
  703. u32 *in;
  704. int err;
  705. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  706. if (!mr)
  707. return ERR_PTR(-ENOMEM);
  708. in = kzalloc(inlen, GFP_KERNEL);
  709. if (!in) {
  710. err = -ENOMEM;
  711. goto err_free;
  712. }
  713. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  714. MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
  715. MLX5_SET(mkc, mkc, length64, 1);
  716. set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
  717. pd);
  718. err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
  719. if (err)
  720. goto err_in;
  721. kfree(in);
  722. mr->mmkey.type = MLX5_MKEY_MR;
  723. mr->ibmr.lkey = mr->mmkey.key;
  724. mr->ibmr.rkey = mr->mmkey.key;
  725. mr->umem = NULL;
  726. return &mr->ibmr;
  727. err_in:
  728. kfree(in);
  729. err_free:
  730. kfree(mr);
  731. return ERR_PTR(err);
  732. }
  733. static int get_octo_len(u64 addr, u64 len, int page_shift)
  734. {
  735. u64 page_size = 1ULL << page_shift;
  736. u64 offset;
  737. int npages;
  738. offset = addr & (page_size - 1);
  739. npages = ALIGN(len + offset, page_size) >> page_shift;
  740. return (npages + 1) / 2;
  741. }
  742. static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
  743. {
  744. if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  745. return MKEY_CACHE_LAST_STD_ENTRY + 2;
  746. return MLX5_MAX_UMR_SHIFT;
  747. }
  748. static struct mlx5_cache_ent *mkey_cache_ent_from_order(struct mlx5_ib_dev *dev,
  749. unsigned int order)
  750. {
  751. struct mlx5_mkey_cache *cache = &dev->cache;
  752. if (order < cache->ent[0].order)
  753. return &cache->ent[0];
  754. order = order - cache->ent[0].order;
  755. if (order > MKEY_CACHE_LAST_STD_ENTRY)
  756. return NULL;
  757. return &cache->ent[order];
  758. }
  759. static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
  760. u64 length, int access_flags, u64 iova)
  761. {
  762. mr->ibmr.lkey = mr->mmkey.key;
  763. mr->ibmr.rkey = mr->mmkey.key;
  764. mr->ibmr.length = length;
  765. mr->ibmr.device = &dev->ib_dev;
  766. mr->ibmr.iova = iova;
  767. mr->access_flags = access_flags;
  768. }
  769. static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
  770. u64 iova)
  771. {
  772. /*
  773. * The alignment of iova has already been checked upon entering
  774. * UVERBS_METHOD_REG_DMABUF_MR
  775. */
  776. umem->iova = iova;
  777. return PAGE_SIZE;
  778. }
  779. static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
  780. struct ib_umem *umem, u64 iova,
  781. int access_flags)
  782. {
  783. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  784. struct mlx5_cache_ent *ent;
  785. struct mlx5_ib_mr *mr;
  786. unsigned int page_size;
  787. if (umem->is_dmabuf)
  788. page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
  789. else
  790. page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
  791. 0, iova);
  792. if (WARN_ON(!page_size))
  793. return ERR_PTR(-EINVAL);
  794. ent = mkey_cache_ent_from_order(
  795. dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
  796. /*
  797. * Matches access in alloc_cache_mr(). If the MR can't come from the
  798. * cache then synchronously create an uncached one.
  799. */
  800. if (!ent || ent->limit == 0 ||
  801. !mlx5r_umr_can_reconfig(dev, 0, access_flags) ||
  802. mlx5_umem_needs_ats(dev, umem, access_flags)) {
  803. mutex_lock(&dev->slow_path_mutex);
  804. mr = reg_create(pd, umem, iova, access_flags, page_size, false);
  805. mutex_unlock(&dev->slow_path_mutex);
  806. return mr;
  807. }
  808. mr = mlx5_mr_cache_alloc(dev, ent, access_flags);
  809. if (IS_ERR(mr))
  810. return mr;
  811. mr->ibmr.pd = pd;
  812. mr->umem = umem;
  813. mr->page_shift = order_base_2(page_size);
  814. set_mr_fields(dev, mr, umem->length, access_flags, iova);
  815. return mr;
  816. }
  817. /*
  818. * If ibmr is NULL it will be allocated by reg_create.
  819. * Else, the given ibmr will be used.
  820. */
  821. static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
  822. u64 iova, int access_flags,
  823. unsigned int page_size, bool populate)
  824. {
  825. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  826. struct mlx5_ib_mr *mr;
  827. __be64 *pas;
  828. void *mkc;
  829. int inlen;
  830. u32 *in;
  831. int err;
  832. bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
  833. if (!page_size)
  834. return ERR_PTR(-EINVAL);
  835. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  836. if (!mr)
  837. return ERR_PTR(-ENOMEM);
  838. mr->ibmr.pd = pd;
  839. mr->access_flags = access_flags;
  840. mr->page_shift = order_base_2(page_size);
  841. inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  842. if (populate)
  843. inlen += sizeof(*pas) *
  844. roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
  845. in = kvzalloc(inlen, GFP_KERNEL);
  846. if (!in) {
  847. err = -ENOMEM;
  848. goto err_1;
  849. }
  850. pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
  851. if (populate) {
  852. if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
  853. err = -EINVAL;
  854. goto err_2;
  855. }
  856. mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
  857. pg_cap ? MLX5_IB_MTT_PRESENT : 0);
  858. }
  859. /* The pg_access bit allows setting the access flags
  860. * in the page list submitted with the command. */
  861. MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
  862. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  863. set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
  864. populate ? pd : dev->umrc.pd);
  865. MLX5_SET(mkc, mkc, free, !populate);
  866. MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
  867. MLX5_SET(mkc, mkc, umr_en, 1);
  868. MLX5_SET64(mkc, mkc, len, umem->length);
  869. MLX5_SET(mkc, mkc, bsf_octword_size, 0);
  870. MLX5_SET(mkc, mkc, translations_octword_size,
  871. get_octo_len(iova, umem->length, mr->page_shift));
  872. MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
  873. if (mlx5_umem_needs_ats(dev, umem, access_flags))
  874. MLX5_SET(mkc, mkc, ma_translation_mode, 1);
  875. if (populate) {
  876. MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
  877. get_octo_len(iova, umem->length, mr->page_shift));
  878. }
  879. err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
  880. if (err) {
  881. mlx5_ib_warn(dev, "create mkey failed\n");
  882. goto err_2;
  883. }
  884. mr->mmkey.type = MLX5_MKEY_MR;
  885. mr->umem = umem;
  886. set_mr_fields(dev, mr, umem->length, access_flags, iova);
  887. kvfree(in);
  888. mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
  889. return mr;
  890. err_2:
  891. kvfree(in);
  892. err_1:
  893. kfree(mr);
  894. return ERR_PTR(err);
  895. }
  896. static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
  897. u64 length, int acc, int mode)
  898. {
  899. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  900. int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  901. struct mlx5_ib_mr *mr;
  902. void *mkc;
  903. u32 *in;
  904. int err;
  905. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  906. if (!mr)
  907. return ERR_PTR(-ENOMEM);
  908. in = kzalloc(inlen, GFP_KERNEL);
  909. if (!in) {
  910. err = -ENOMEM;
  911. goto err_free;
  912. }
  913. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  914. MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
  915. MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
  916. MLX5_SET64(mkc, mkc, len, length);
  917. set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
  918. err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
  919. if (err)
  920. goto err_in;
  921. kfree(in);
  922. set_mr_fields(dev, mr, length, acc, start_addr);
  923. return &mr->ibmr;
  924. err_in:
  925. kfree(in);
  926. err_free:
  927. kfree(mr);
  928. return ERR_PTR(err);
  929. }
  930. int mlx5_ib_advise_mr(struct ib_pd *pd,
  931. enum ib_uverbs_advise_mr_advice advice,
  932. u32 flags,
  933. struct ib_sge *sg_list,
  934. u32 num_sge,
  935. struct uverbs_attr_bundle *attrs)
  936. {
  937. if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
  938. advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
  939. advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
  940. return -EOPNOTSUPP;
  941. return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
  942. sg_list, num_sge);
  943. }
  944. struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
  945. struct ib_dm_mr_attr *attr,
  946. struct uverbs_attr_bundle *attrs)
  947. {
  948. struct mlx5_ib_dm *mdm = to_mdm(dm);
  949. struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
  950. u64 start_addr = mdm->dev_addr + attr->offset;
  951. int mode;
  952. switch (mdm->type) {
  953. case MLX5_IB_UAPI_DM_TYPE_MEMIC:
  954. if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
  955. return ERR_PTR(-EINVAL);
  956. mode = MLX5_MKC_ACCESS_MODE_MEMIC;
  957. start_addr -= pci_resource_start(dev->pdev, 0);
  958. break;
  959. case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
  960. case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
  961. case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
  962. if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
  963. return ERR_PTR(-EINVAL);
  964. mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
  965. break;
  966. default:
  967. return ERR_PTR(-EINVAL);
  968. }
  969. return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
  970. attr->access_flags, mode);
  971. }
  972. static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
  973. u64 iova, int access_flags)
  974. {
  975. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  976. struct mlx5_ib_mr *mr = NULL;
  977. bool xlt_with_umr;
  978. int err;
  979. xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
  980. if (xlt_with_umr) {
  981. mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
  982. } else {
  983. unsigned int page_size = mlx5_umem_find_best_pgsz(
  984. umem, mkc, log_page_size, 0, iova);
  985. mutex_lock(&dev->slow_path_mutex);
  986. mr = reg_create(pd, umem, iova, access_flags, page_size, true);
  987. mutex_unlock(&dev->slow_path_mutex);
  988. }
  989. if (IS_ERR(mr)) {
  990. ib_umem_release(umem);
  991. return ERR_CAST(mr);
  992. }
  993. mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
  994. atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
  995. if (xlt_with_umr) {
  996. /*
  997. * If the MR was created with reg_create then it will be
  998. * configured properly but left disabled. It is safe to go ahead
  999. * and configure it again via UMR while enabling it.
  1000. */
  1001. err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
  1002. if (err) {
  1003. mlx5_ib_dereg_mr(&mr->ibmr, NULL);
  1004. return ERR_PTR(err);
  1005. }
  1006. }
  1007. return &mr->ibmr;
  1008. }
  1009. static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
  1010. u64 iova, int access_flags,
  1011. struct ib_udata *udata)
  1012. {
  1013. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  1014. struct ib_umem_odp *odp;
  1015. struct mlx5_ib_mr *mr;
  1016. int err;
  1017. if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
  1018. return ERR_PTR(-EOPNOTSUPP);
  1019. err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
  1020. if (err)
  1021. return ERR_PTR(err);
  1022. if (!start && length == U64_MAX) {
  1023. if (iova != 0)
  1024. return ERR_PTR(-EINVAL);
  1025. if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
  1026. return ERR_PTR(-EINVAL);
  1027. mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
  1028. if (IS_ERR(mr))
  1029. return ERR_CAST(mr);
  1030. return &mr->ibmr;
  1031. }
  1032. /* ODP requires xlt update via umr to work. */
  1033. if (!mlx5r_umr_can_load_pas(dev, length))
  1034. return ERR_PTR(-EINVAL);
  1035. odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
  1036. &mlx5_mn_ops);
  1037. if (IS_ERR(odp))
  1038. return ERR_CAST(odp);
  1039. mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
  1040. if (IS_ERR(mr)) {
  1041. ib_umem_release(&odp->umem);
  1042. return ERR_CAST(mr);
  1043. }
  1044. xa_init(&mr->implicit_children);
  1045. odp->private = mr;
  1046. err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
  1047. if (err)
  1048. goto err_dereg_mr;
  1049. err = mlx5_ib_init_odp_mr(mr);
  1050. if (err)
  1051. goto err_dereg_mr;
  1052. return &mr->ibmr;
  1053. err_dereg_mr:
  1054. mlx5_ib_dereg_mr(&mr->ibmr, NULL);
  1055. return ERR_PTR(err);
  1056. }
  1057. struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  1058. u64 iova, int access_flags,
  1059. struct ib_udata *udata)
  1060. {
  1061. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  1062. struct ib_umem *umem;
  1063. if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
  1064. return ERR_PTR(-EOPNOTSUPP);
  1065. mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
  1066. start, iova, length, access_flags);
  1067. if (access_flags & IB_ACCESS_ON_DEMAND)
  1068. return create_user_odp_mr(pd, start, length, iova, access_flags,
  1069. udata);
  1070. umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
  1071. if (IS_ERR(umem))
  1072. return ERR_CAST(umem);
  1073. return create_real_mr(pd, umem, iova, access_flags);
  1074. }
  1075. static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
  1076. {
  1077. struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
  1078. struct mlx5_ib_mr *mr = umem_dmabuf->private;
  1079. dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
  1080. if (!umem_dmabuf->sgt)
  1081. return;
  1082. mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
  1083. ib_umem_dmabuf_unmap_pages(umem_dmabuf);
  1084. }
  1085. static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
  1086. .allow_peer2peer = 1,
  1087. .move_notify = mlx5_ib_dmabuf_invalidate_cb,
  1088. };
  1089. struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
  1090. u64 length, u64 virt_addr,
  1091. int fd, int access_flags,
  1092. struct ib_udata *udata)
  1093. {
  1094. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  1095. struct mlx5_ib_mr *mr = NULL;
  1096. struct ib_umem_dmabuf *umem_dmabuf;
  1097. int err;
  1098. if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
  1099. !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
  1100. return ERR_PTR(-EOPNOTSUPP);
  1101. mlx5_ib_dbg(dev,
  1102. "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
  1103. offset, virt_addr, length, fd, access_flags);
  1104. /* dmabuf requires xlt update via umr to work. */
  1105. if (!mlx5r_umr_can_load_pas(dev, length))
  1106. return ERR_PTR(-EINVAL);
  1107. umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
  1108. access_flags,
  1109. &mlx5_ib_dmabuf_attach_ops);
  1110. if (IS_ERR(umem_dmabuf)) {
  1111. mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
  1112. PTR_ERR(umem_dmabuf));
  1113. return ERR_CAST(umem_dmabuf);
  1114. }
  1115. mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
  1116. access_flags);
  1117. if (IS_ERR(mr)) {
  1118. ib_umem_release(&umem_dmabuf->umem);
  1119. return ERR_CAST(mr);
  1120. }
  1121. mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
  1122. atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
  1123. umem_dmabuf->private = mr;
  1124. err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
  1125. if (err)
  1126. goto err_dereg_mr;
  1127. err = mlx5_ib_init_dmabuf_mr(mr);
  1128. if (err)
  1129. goto err_dereg_mr;
  1130. return &mr->ibmr;
  1131. err_dereg_mr:
  1132. mlx5_ib_dereg_mr(&mr->ibmr, NULL);
  1133. return ERR_PTR(err);
  1134. }
  1135. /*
  1136. * True if the change in access flags can be done via UMR, only some access
  1137. * flags can be updated.
  1138. */
  1139. static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
  1140. unsigned int current_access_flags,
  1141. unsigned int target_access_flags)
  1142. {
  1143. unsigned int diffs = current_access_flags ^ target_access_flags;
  1144. if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
  1145. IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
  1146. return false;
  1147. return mlx5r_umr_can_reconfig(dev, current_access_flags,
  1148. target_access_flags);
  1149. }
  1150. static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
  1151. struct ib_umem *new_umem,
  1152. int new_access_flags, u64 iova,
  1153. unsigned long *page_size)
  1154. {
  1155. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
  1156. /* We only track the allocated sizes of MRs from the cache */
  1157. if (!mr->mmkey.cache_ent)
  1158. return false;
  1159. if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
  1160. return false;
  1161. *page_size =
  1162. mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
  1163. if (WARN_ON(!*page_size))
  1164. return false;
  1165. return (1ULL << mr->mmkey.cache_ent->order) >=
  1166. ib_umem_num_dma_blocks(new_umem, *page_size);
  1167. }
  1168. static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
  1169. int access_flags, int flags, struct ib_umem *new_umem,
  1170. u64 iova, unsigned long page_size)
  1171. {
  1172. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
  1173. int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
  1174. struct ib_umem *old_umem = mr->umem;
  1175. int err;
  1176. /*
  1177. * To keep everything simple the MR is revoked before we start to mess
  1178. * with it. This ensure the change is atomic relative to any use of the
  1179. * MR.
  1180. */
  1181. err = mlx5r_umr_revoke_mr(mr);
  1182. if (err)
  1183. return err;
  1184. if (flags & IB_MR_REREG_PD) {
  1185. mr->ibmr.pd = pd;
  1186. upd_flags |= MLX5_IB_UPD_XLT_PD;
  1187. }
  1188. if (flags & IB_MR_REREG_ACCESS) {
  1189. mr->access_flags = access_flags;
  1190. upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
  1191. }
  1192. mr->ibmr.iova = iova;
  1193. mr->ibmr.length = new_umem->length;
  1194. mr->page_shift = order_base_2(page_size);
  1195. mr->umem = new_umem;
  1196. err = mlx5r_umr_update_mr_pas(mr, upd_flags);
  1197. if (err) {
  1198. /*
  1199. * The MR is revoked at this point so there is no issue to free
  1200. * new_umem.
  1201. */
  1202. mr->umem = old_umem;
  1203. return err;
  1204. }
  1205. atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
  1206. ib_umem_release(old_umem);
  1207. atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
  1208. return 0;
  1209. }
  1210. struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
  1211. u64 length, u64 iova, int new_access_flags,
  1212. struct ib_pd *new_pd,
  1213. struct ib_udata *udata)
  1214. {
  1215. struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
  1216. struct mlx5_ib_mr *mr = to_mmr(ib_mr);
  1217. int err;
  1218. if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
  1219. return ERR_PTR(-EOPNOTSUPP);
  1220. mlx5_ib_dbg(
  1221. dev,
  1222. "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
  1223. start, iova, length, new_access_flags);
  1224. if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
  1225. return ERR_PTR(-EOPNOTSUPP);
  1226. if (!(flags & IB_MR_REREG_ACCESS))
  1227. new_access_flags = mr->access_flags;
  1228. if (!(flags & IB_MR_REREG_PD))
  1229. new_pd = ib_mr->pd;
  1230. if (!(flags & IB_MR_REREG_TRANS)) {
  1231. struct ib_umem *umem;
  1232. /* Fast path for PD/access change */
  1233. if (can_use_umr_rereg_access(dev, mr->access_flags,
  1234. new_access_flags)) {
  1235. err = mlx5r_umr_rereg_pd_access(mr, new_pd,
  1236. new_access_flags);
  1237. if (err)
  1238. return ERR_PTR(err);
  1239. return NULL;
  1240. }
  1241. /* DM or ODP MR's don't have a normal umem so we can't re-use it */
  1242. if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
  1243. goto recreate;
  1244. /*
  1245. * Only one active MR can refer to a umem at one time, revoke
  1246. * the old MR before assigning the umem to the new one.
  1247. */
  1248. err = mlx5r_umr_revoke_mr(mr);
  1249. if (err)
  1250. return ERR_PTR(err);
  1251. umem = mr->umem;
  1252. mr->umem = NULL;
  1253. atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
  1254. return create_real_mr(new_pd, umem, mr->ibmr.iova,
  1255. new_access_flags);
  1256. }
  1257. /*
  1258. * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
  1259. * but the logic around releasing the umem is different
  1260. */
  1261. if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
  1262. goto recreate;
  1263. if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
  1264. can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
  1265. struct ib_umem *new_umem;
  1266. unsigned long page_size;
  1267. new_umem = ib_umem_get(&dev->ib_dev, start, length,
  1268. new_access_flags);
  1269. if (IS_ERR(new_umem))
  1270. return ERR_CAST(new_umem);
  1271. /* Fast path for PAS change */
  1272. if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
  1273. &page_size)) {
  1274. err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
  1275. new_umem, iova, page_size);
  1276. if (err) {
  1277. ib_umem_release(new_umem);
  1278. return ERR_PTR(err);
  1279. }
  1280. return NULL;
  1281. }
  1282. return create_real_mr(new_pd, new_umem, iova, new_access_flags);
  1283. }
  1284. /*
  1285. * Everything else has no state we can preserve, just create a new MR
  1286. * from scratch
  1287. */
  1288. recreate:
  1289. return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
  1290. new_access_flags, udata);
  1291. }
  1292. static int
  1293. mlx5_alloc_priv_descs(struct ib_device *device,
  1294. struct mlx5_ib_mr *mr,
  1295. int ndescs,
  1296. int desc_size)
  1297. {
  1298. struct mlx5_ib_dev *dev = to_mdev(device);
  1299. struct device *ddev = &dev->mdev->pdev->dev;
  1300. int size = ndescs * desc_size;
  1301. int add_size;
  1302. int ret;
  1303. add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
  1304. mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
  1305. if (!mr->descs_alloc)
  1306. return -ENOMEM;
  1307. mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
  1308. mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
  1309. if (dma_mapping_error(ddev, mr->desc_map)) {
  1310. ret = -ENOMEM;
  1311. goto err;
  1312. }
  1313. return 0;
  1314. err:
  1315. kfree(mr->descs_alloc);
  1316. return ret;
  1317. }
  1318. static void
  1319. mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
  1320. {
  1321. if (!mr->umem && mr->descs) {
  1322. struct ib_device *device = mr->ibmr.device;
  1323. int size = mr->max_descs * mr->desc_size;
  1324. struct mlx5_ib_dev *dev = to_mdev(device);
  1325. dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
  1326. DMA_TO_DEVICE);
  1327. kfree(mr->descs_alloc);
  1328. mr->descs = NULL;
  1329. }
  1330. }
  1331. int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
  1332. {
  1333. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1334. struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
  1335. int rc;
  1336. /*
  1337. * Any async use of the mr must hold the refcount, once the refcount
  1338. * goes to zero no other thread, such as ODP page faults, prefetch, any
  1339. * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
  1340. */
  1341. if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
  1342. refcount_read(&mr->mmkey.usecount) != 0 &&
  1343. xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
  1344. mlx5r_deref_wait_odp_mkey(&mr->mmkey);
  1345. if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
  1346. xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
  1347. mr->sig, NULL, GFP_KERNEL);
  1348. if (mr->mtt_mr) {
  1349. rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
  1350. if (rc)
  1351. return rc;
  1352. mr->mtt_mr = NULL;
  1353. }
  1354. if (mr->klm_mr) {
  1355. rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
  1356. if (rc)
  1357. return rc;
  1358. mr->klm_mr = NULL;
  1359. }
  1360. if (mlx5_core_destroy_psv(dev->mdev,
  1361. mr->sig->psv_memory.psv_idx))
  1362. mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
  1363. mr->sig->psv_memory.psv_idx);
  1364. if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
  1365. mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
  1366. mr->sig->psv_wire.psv_idx);
  1367. kfree(mr->sig);
  1368. mr->sig = NULL;
  1369. }
  1370. /* Stop DMA */
  1371. if (mr->mmkey.cache_ent) {
  1372. xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
  1373. mr->mmkey.cache_ent->in_use--;
  1374. xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
  1375. if (mlx5r_umr_revoke_mr(mr) ||
  1376. push_mkey(mr->mmkey.cache_ent, false,
  1377. xa_mk_value(mr->mmkey.key)))
  1378. mr->mmkey.cache_ent = NULL;
  1379. }
  1380. if (!mr->mmkey.cache_ent) {
  1381. rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
  1382. if (rc)
  1383. return rc;
  1384. }
  1385. if (mr->umem) {
  1386. bool is_odp = is_odp_mr(mr);
  1387. if (!is_odp)
  1388. atomic_sub(ib_umem_num_pages(mr->umem),
  1389. &dev->mdev->priv.reg_pages);
  1390. ib_umem_release(mr->umem);
  1391. if (is_odp)
  1392. mlx5_ib_free_odp_mr(mr);
  1393. }
  1394. if (!mr->mmkey.cache_ent)
  1395. mlx5_free_priv_descs(mr);
  1396. kfree(mr);
  1397. return 0;
  1398. }
  1399. static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
  1400. int access_mode, int page_shift)
  1401. {
  1402. void *mkc;
  1403. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  1404. /* This is only used from the kernel, so setting the PD is OK. */
  1405. set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
  1406. MLX5_SET(mkc, mkc, free, 1);
  1407. MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
  1408. MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
  1409. MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
  1410. MLX5_SET(mkc, mkc, umr_en, 1);
  1411. MLX5_SET(mkc, mkc, log_page_size, page_shift);
  1412. }
  1413. static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
  1414. int ndescs, int desc_size, int page_shift,
  1415. int access_mode, u32 *in, int inlen)
  1416. {
  1417. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  1418. int err;
  1419. mr->access_mode = access_mode;
  1420. mr->desc_size = desc_size;
  1421. mr->max_descs = ndescs;
  1422. err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
  1423. if (err)
  1424. return err;
  1425. mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
  1426. err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
  1427. if (err)
  1428. goto err_free_descs;
  1429. mr->mmkey.type = MLX5_MKEY_MR;
  1430. mr->ibmr.lkey = mr->mmkey.key;
  1431. mr->ibmr.rkey = mr->mmkey.key;
  1432. return 0;
  1433. err_free_descs:
  1434. mlx5_free_priv_descs(mr);
  1435. return err;
  1436. }
  1437. static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
  1438. u32 max_num_sg, u32 max_num_meta_sg,
  1439. int desc_size, int access_mode)
  1440. {
  1441. int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  1442. int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
  1443. int page_shift = 0;
  1444. struct mlx5_ib_mr *mr;
  1445. u32 *in;
  1446. int err;
  1447. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  1448. if (!mr)
  1449. return ERR_PTR(-ENOMEM);
  1450. mr->ibmr.pd = pd;
  1451. mr->ibmr.device = pd->device;
  1452. in = kzalloc(inlen, GFP_KERNEL);
  1453. if (!in) {
  1454. err = -ENOMEM;
  1455. goto err_free;
  1456. }
  1457. if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
  1458. page_shift = PAGE_SHIFT;
  1459. err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
  1460. access_mode, in, inlen);
  1461. if (err)
  1462. goto err_free_in;
  1463. mr->umem = NULL;
  1464. kfree(in);
  1465. return mr;
  1466. err_free_in:
  1467. kfree(in);
  1468. err_free:
  1469. kfree(mr);
  1470. return ERR_PTR(err);
  1471. }
  1472. static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
  1473. int ndescs, u32 *in, int inlen)
  1474. {
  1475. return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
  1476. PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
  1477. inlen);
  1478. }
  1479. static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
  1480. int ndescs, u32 *in, int inlen)
  1481. {
  1482. return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
  1483. 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
  1484. }
  1485. static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
  1486. int max_num_sg, int max_num_meta_sg,
  1487. u32 *in, int inlen)
  1488. {
  1489. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  1490. u32 psv_index[2];
  1491. void *mkc;
  1492. int err;
  1493. mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
  1494. if (!mr->sig)
  1495. return -ENOMEM;
  1496. /* create mem & wire PSVs */
  1497. err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
  1498. if (err)
  1499. goto err_free_sig;
  1500. mr->sig->psv_memory.psv_idx = psv_index[0];
  1501. mr->sig->psv_wire.psv_idx = psv_index[1];
  1502. mr->sig->sig_status_checked = true;
  1503. mr->sig->sig_err_exists = false;
  1504. /* Next UMR, Arm SIGERR */
  1505. ++mr->sig->sigerr_count;
  1506. mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
  1507. sizeof(struct mlx5_klm),
  1508. MLX5_MKC_ACCESS_MODE_KLMS);
  1509. if (IS_ERR(mr->klm_mr)) {
  1510. err = PTR_ERR(mr->klm_mr);
  1511. goto err_destroy_psv;
  1512. }
  1513. mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
  1514. sizeof(struct mlx5_mtt),
  1515. MLX5_MKC_ACCESS_MODE_MTT);
  1516. if (IS_ERR(mr->mtt_mr)) {
  1517. err = PTR_ERR(mr->mtt_mr);
  1518. goto err_free_klm_mr;
  1519. }
  1520. /* Set bsf descriptors for mkey */
  1521. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  1522. MLX5_SET(mkc, mkc, bsf_en, 1);
  1523. MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
  1524. err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
  1525. MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
  1526. if (err)
  1527. goto err_free_mtt_mr;
  1528. err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
  1529. mr->sig, GFP_KERNEL));
  1530. if (err)
  1531. goto err_free_descs;
  1532. return 0;
  1533. err_free_descs:
  1534. destroy_mkey(dev, mr);
  1535. mlx5_free_priv_descs(mr);
  1536. err_free_mtt_mr:
  1537. mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
  1538. mr->mtt_mr = NULL;
  1539. err_free_klm_mr:
  1540. mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
  1541. mr->klm_mr = NULL;
  1542. err_destroy_psv:
  1543. if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
  1544. mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
  1545. mr->sig->psv_memory.psv_idx);
  1546. if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
  1547. mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
  1548. mr->sig->psv_wire.psv_idx);
  1549. err_free_sig:
  1550. kfree(mr->sig);
  1551. return err;
  1552. }
  1553. static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
  1554. enum ib_mr_type mr_type, u32 max_num_sg,
  1555. u32 max_num_meta_sg)
  1556. {
  1557. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  1558. int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  1559. int ndescs = ALIGN(max_num_sg, 4);
  1560. struct mlx5_ib_mr *mr;
  1561. u32 *in;
  1562. int err;
  1563. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  1564. if (!mr)
  1565. return ERR_PTR(-ENOMEM);
  1566. in = kzalloc(inlen, GFP_KERNEL);
  1567. if (!in) {
  1568. err = -ENOMEM;
  1569. goto err_free;
  1570. }
  1571. mr->ibmr.device = pd->device;
  1572. mr->umem = NULL;
  1573. switch (mr_type) {
  1574. case IB_MR_TYPE_MEM_REG:
  1575. err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
  1576. break;
  1577. case IB_MR_TYPE_SG_GAPS:
  1578. err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
  1579. break;
  1580. case IB_MR_TYPE_INTEGRITY:
  1581. err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
  1582. max_num_meta_sg, in, inlen);
  1583. break;
  1584. default:
  1585. mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
  1586. err = -EINVAL;
  1587. }
  1588. if (err)
  1589. goto err_free_in;
  1590. kfree(in);
  1591. return &mr->ibmr;
  1592. err_free_in:
  1593. kfree(in);
  1594. err_free:
  1595. kfree(mr);
  1596. return ERR_PTR(err);
  1597. }
  1598. struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
  1599. u32 max_num_sg)
  1600. {
  1601. return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
  1602. }
  1603. struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
  1604. u32 max_num_sg, u32 max_num_meta_sg)
  1605. {
  1606. return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
  1607. max_num_meta_sg);
  1608. }
  1609. int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
  1610. {
  1611. struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
  1612. int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
  1613. struct mlx5_ib_mw *mw = to_mmw(ibmw);
  1614. unsigned int ndescs;
  1615. u32 *in = NULL;
  1616. void *mkc;
  1617. int err;
  1618. struct mlx5_ib_alloc_mw req = {};
  1619. struct {
  1620. __u32 comp_mask;
  1621. __u32 response_length;
  1622. } resp = {};
  1623. err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
  1624. if (err)
  1625. return err;
  1626. if (req.comp_mask || req.reserved1 || req.reserved2)
  1627. return -EOPNOTSUPP;
  1628. if (udata->inlen > sizeof(req) &&
  1629. !ib_is_udata_cleared(udata, sizeof(req),
  1630. udata->inlen - sizeof(req)))
  1631. return -EOPNOTSUPP;
  1632. ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
  1633. in = kzalloc(inlen, GFP_KERNEL);
  1634. if (!in) {
  1635. err = -ENOMEM;
  1636. goto free;
  1637. }
  1638. mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  1639. MLX5_SET(mkc, mkc, free, 1);
  1640. MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
  1641. MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
  1642. MLX5_SET(mkc, mkc, umr_en, 1);
  1643. MLX5_SET(mkc, mkc, lr, 1);
  1644. MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
  1645. MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
  1646. MLX5_SET(mkc, mkc, qpn, 0xffffff);
  1647. err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
  1648. if (err)
  1649. goto free;
  1650. mw->mmkey.type = MLX5_MKEY_MW;
  1651. ibmw->rkey = mw->mmkey.key;
  1652. mw->mmkey.ndescs = ndescs;
  1653. resp.response_length =
  1654. min(offsetofend(typeof(resp), response_length), udata->outlen);
  1655. if (resp.response_length) {
  1656. err = ib_copy_to_udata(udata, &resp, resp.response_length);
  1657. if (err)
  1658. goto free_mkey;
  1659. }
  1660. if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
  1661. err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
  1662. if (err)
  1663. goto free_mkey;
  1664. }
  1665. kfree(in);
  1666. return 0;
  1667. free_mkey:
  1668. mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
  1669. free:
  1670. kfree(in);
  1671. return err;
  1672. }
  1673. int mlx5_ib_dealloc_mw(struct ib_mw *mw)
  1674. {
  1675. struct mlx5_ib_dev *dev = to_mdev(mw->device);
  1676. struct mlx5_ib_mw *mmw = to_mmw(mw);
  1677. if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
  1678. xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
  1679. /*
  1680. * pagefault_single_data_segment() may be accessing mmw
  1681. * if the user bound an ODP MR to this MW.
  1682. */
  1683. mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
  1684. return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
  1685. }
  1686. int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
  1687. struct ib_mr_status *mr_status)
  1688. {
  1689. struct mlx5_ib_mr *mmr = to_mmr(ibmr);
  1690. int ret = 0;
  1691. if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
  1692. pr_err("Invalid status check mask\n");
  1693. ret = -EINVAL;
  1694. goto done;
  1695. }
  1696. mr_status->fail_status = 0;
  1697. if (check_mask & IB_MR_CHECK_SIG_STATUS) {
  1698. if (!mmr->sig) {
  1699. ret = -EINVAL;
  1700. pr_err("signature status check requested on a non-signature enabled MR\n");
  1701. goto done;
  1702. }
  1703. mmr->sig->sig_status_checked = true;
  1704. if (!mmr->sig->sig_err_exists)
  1705. goto done;
  1706. if (ibmr->lkey == mmr->sig->err_item.key)
  1707. memcpy(&mr_status->sig_err, &mmr->sig->err_item,
  1708. sizeof(mr_status->sig_err));
  1709. else {
  1710. mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
  1711. mr_status->sig_err.sig_err_offset = 0;
  1712. mr_status->sig_err.key = mmr->sig->err_item.key;
  1713. }
  1714. mmr->sig->sig_err_exists = false;
  1715. mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
  1716. }
  1717. done:
  1718. return ret;
  1719. }
  1720. static int
  1721. mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
  1722. int data_sg_nents, unsigned int *data_sg_offset,
  1723. struct scatterlist *meta_sg, int meta_sg_nents,
  1724. unsigned int *meta_sg_offset)
  1725. {
  1726. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1727. unsigned int sg_offset = 0;
  1728. int n = 0;
  1729. mr->meta_length = 0;
  1730. if (data_sg_nents == 1) {
  1731. n++;
  1732. mr->mmkey.ndescs = 1;
  1733. if (data_sg_offset)
  1734. sg_offset = *data_sg_offset;
  1735. mr->data_length = sg_dma_len(data_sg) - sg_offset;
  1736. mr->data_iova = sg_dma_address(data_sg) + sg_offset;
  1737. if (meta_sg_nents == 1) {
  1738. n++;
  1739. mr->meta_ndescs = 1;
  1740. if (meta_sg_offset)
  1741. sg_offset = *meta_sg_offset;
  1742. else
  1743. sg_offset = 0;
  1744. mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
  1745. mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
  1746. }
  1747. ibmr->length = mr->data_length + mr->meta_length;
  1748. }
  1749. return n;
  1750. }
  1751. static int
  1752. mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
  1753. struct scatterlist *sgl,
  1754. unsigned short sg_nents,
  1755. unsigned int *sg_offset_p,
  1756. struct scatterlist *meta_sgl,
  1757. unsigned short meta_sg_nents,
  1758. unsigned int *meta_sg_offset_p)
  1759. {
  1760. struct scatterlist *sg = sgl;
  1761. struct mlx5_klm *klms = mr->descs;
  1762. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1763. u32 lkey = mr->ibmr.pd->local_dma_lkey;
  1764. int i, j = 0;
  1765. mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
  1766. mr->ibmr.length = 0;
  1767. for_each_sg(sgl, sg, sg_nents, i) {
  1768. if (unlikely(i >= mr->max_descs))
  1769. break;
  1770. klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
  1771. klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
  1772. klms[i].key = cpu_to_be32(lkey);
  1773. mr->ibmr.length += sg_dma_len(sg) - sg_offset;
  1774. sg_offset = 0;
  1775. }
  1776. if (sg_offset_p)
  1777. *sg_offset_p = sg_offset;
  1778. mr->mmkey.ndescs = i;
  1779. mr->data_length = mr->ibmr.length;
  1780. if (meta_sg_nents) {
  1781. sg = meta_sgl;
  1782. sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
  1783. for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
  1784. if (unlikely(i + j >= mr->max_descs))
  1785. break;
  1786. klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
  1787. sg_offset);
  1788. klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
  1789. sg_offset);
  1790. klms[i + j].key = cpu_to_be32(lkey);
  1791. mr->ibmr.length += sg_dma_len(sg) - sg_offset;
  1792. sg_offset = 0;
  1793. }
  1794. if (meta_sg_offset_p)
  1795. *meta_sg_offset_p = sg_offset;
  1796. mr->meta_ndescs = j;
  1797. mr->meta_length = mr->ibmr.length - mr->data_length;
  1798. }
  1799. return i + j;
  1800. }
  1801. static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
  1802. {
  1803. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1804. __be64 *descs;
  1805. if (unlikely(mr->mmkey.ndescs == mr->max_descs))
  1806. return -ENOMEM;
  1807. descs = mr->descs;
  1808. descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
  1809. return 0;
  1810. }
  1811. static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
  1812. {
  1813. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1814. __be64 *descs;
  1815. if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
  1816. return -ENOMEM;
  1817. descs = mr->descs;
  1818. descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
  1819. cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
  1820. return 0;
  1821. }
  1822. static int
  1823. mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
  1824. int data_sg_nents, unsigned int *data_sg_offset,
  1825. struct scatterlist *meta_sg, int meta_sg_nents,
  1826. unsigned int *meta_sg_offset)
  1827. {
  1828. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1829. struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
  1830. int n;
  1831. pi_mr->mmkey.ndescs = 0;
  1832. pi_mr->meta_ndescs = 0;
  1833. pi_mr->meta_length = 0;
  1834. ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
  1835. pi_mr->desc_size * pi_mr->max_descs,
  1836. DMA_TO_DEVICE);
  1837. pi_mr->ibmr.page_size = ibmr->page_size;
  1838. n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
  1839. mlx5_set_page);
  1840. if (n != data_sg_nents)
  1841. return n;
  1842. pi_mr->data_iova = pi_mr->ibmr.iova;
  1843. pi_mr->data_length = pi_mr->ibmr.length;
  1844. pi_mr->ibmr.length = pi_mr->data_length;
  1845. ibmr->length = pi_mr->data_length;
  1846. if (meta_sg_nents) {
  1847. u64 page_mask = ~((u64)ibmr->page_size - 1);
  1848. u64 iova = pi_mr->data_iova;
  1849. n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
  1850. meta_sg_offset, mlx5_set_page_pi);
  1851. pi_mr->meta_length = pi_mr->ibmr.length;
  1852. /*
  1853. * PI address for the HW is the offset of the metadata address
  1854. * relative to the first data page address.
  1855. * It equals to first data page address + size of data pages +
  1856. * metadata offset at the first metadata page
  1857. */
  1858. pi_mr->pi_iova = (iova & page_mask) +
  1859. pi_mr->mmkey.ndescs * ibmr->page_size +
  1860. (pi_mr->ibmr.iova & ~page_mask);
  1861. /*
  1862. * In order to use one MTT MR for data and metadata, we register
  1863. * also the gaps between the end of the data and the start of
  1864. * the metadata (the sig MR will verify that the HW will access
  1865. * to right addresses). This mapping is safe because we use
  1866. * internal mkey for the registration.
  1867. */
  1868. pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
  1869. pi_mr->ibmr.iova = iova;
  1870. ibmr->length += pi_mr->meta_length;
  1871. }
  1872. ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
  1873. pi_mr->desc_size * pi_mr->max_descs,
  1874. DMA_TO_DEVICE);
  1875. return n;
  1876. }
  1877. static int
  1878. mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
  1879. int data_sg_nents, unsigned int *data_sg_offset,
  1880. struct scatterlist *meta_sg, int meta_sg_nents,
  1881. unsigned int *meta_sg_offset)
  1882. {
  1883. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1884. struct mlx5_ib_mr *pi_mr = mr->klm_mr;
  1885. int n;
  1886. pi_mr->mmkey.ndescs = 0;
  1887. pi_mr->meta_ndescs = 0;
  1888. pi_mr->meta_length = 0;
  1889. ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
  1890. pi_mr->desc_size * pi_mr->max_descs,
  1891. DMA_TO_DEVICE);
  1892. n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
  1893. meta_sg, meta_sg_nents, meta_sg_offset);
  1894. ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
  1895. pi_mr->desc_size * pi_mr->max_descs,
  1896. DMA_TO_DEVICE);
  1897. /* This is zero-based memory region */
  1898. pi_mr->data_iova = 0;
  1899. pi_mr->ibmr.iova = 0;
  1900. pi_mr->pi_iova = pi_mr->data_length;
  1901. ibmr->length = pi_mr->ibmr.length;
  1902. return n;
  1903. }
  1904. int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
  1905. int data_sg_nents, unsigned int *data_sg_offset,
  1906. struct scatterlist *meta_sg, int meta_sg_nents,
  1907. unsigned int *meta_sg_offset)
  1908. {
  1909. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1910. struct mlx5_ib_mr *pi_mr = NULL;
  1911. int n;
  1912. WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
  1913. mr->mmkey.ndescs = 0;
  1914. mr->data_length = 0;
  1915. mr->data_iova = 0;
  1916. mr->meta_ndescs = 0;
  1917. mr->pi_iova = 0;
  1918. /*
  1919. * As a performance optimization, if possible, there is no need to
  1920. * perform UMR operation to register the data/metadata buffers.
  1921. * First try to map the sg lists to PA descriptors with local_dma_lkey.
  1922. * Fallback to UMR only in case of a failure.
  1923. */
  1924. n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
  1925. data_sg_offset, meta_sg, meta_sg_nents,
  1926. meta_sg_offset);
  1927. if (n == data_sg_nents + meta_sg_nents)
  1928. goto out;
  1929. /*
  1930. * As a performance optimization, if possible, there is no need to map
  1931. * the sg lists to KLM descriptors. First try to map the sg lists to MTT
  1932. * descriptors and fallback to KLM only in case of a failure.
  1933. * It's more efficient for the HW to work with MTT descriptors
  1934. * (especially in high load).
  1935. * Use KLM (indirect access) only if it's mandatory.
  1936. */
  1937. pi_mr = mr->mtt_mr;
  1938. n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
  1939. data_sg_offset, meta_sg, meta_sg_nents,
  1940. meta_sg_offset);
  1941. if (n == data_sg_nents + meta_sg_nents)
  1942. goto out;
  1943. pi_mr = mr->klm_mr;
  1944. n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
  1945. data_sg_offset, meta_sg, meta_sg_nents,
  1946. meta_sg_offset);
  1947. if (unlikely(n != data_sg_nents + meta_sg_nents))
  1948. return -ENOMEM;
  1949. out:
  1950. /* This is zero-based memory region */
  1951. ibmr->iova = 0;
  1952. mr->pi_mr = pi_mr;
  1953. if (pi_mr)
  1954. ibmr->sig_attrs->meta_length = pi_mr->meta_length;
  1955. else
  1956. ibmr->sig_attrs->meta_length = mr->meta_length;
  1957. return 0;
  1958. }
  1959. int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
  1960. unsigned int *sg_offset)
  1961. {
  1962. struct mlx5_ib_mr *mr = to_mmr(ibmr);
  1963. int n;
  1964. mr->mmkey.ndescs = 0;
  1965. ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
  1966. mr->desc_size * mr->max_descs,
  1967. DMA_TO_DEVICE);
  1968. if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
  1969. n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
  1970. NULL);
  1971. else
  1972. n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
  1973. mlx5_set_page);
  1974. ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
  1975. mr->desc_size * mr->max_descs,
  1976. DMA_TO_DEVICE);
  1977. return n;
  1978. }