abp060mg.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Copyright (C) 2016 - Marcin Malagowski <[email protected]>
  4. */
  5. #include <linux/delay.h>
  6. #include <linux/device.h>
  7. #include <linux/err.h>
  8. #include <linux/i2c.h>
  9. #include <linux/io.h>
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/iio/iio.h>
  13. #define ABP060MG_ERROR_MASK 0xC000
  14. #define ABP060MG_RESP_TIME_MS 40
  15. #define ABP060MG_MIN_COUNTS 1638 /* = 0x0666 (10% of u14) */
  16. #define ABP060MG_MAX_COUNTS 14745 /* = 0x3999 (90% of u14) */
  17. #define ABP060MG_NUM_COUNTS (ABP060MG_MAX_COUNTS - ABP060MG_MIN_COUNTS)
  18. enum abp_variant {
  19. /* gage [kPa] */
  20. ABP006KG, ABP010KG, ABP016KG, ABP025KG, ABP040KG, ABP060KG, ABP100KG,
  21. ABP160KG, ABP250KG, ABP400KG, ABP600KG, ABP001GG,
  22. /* differential [kPa] */
  23. ABP006KD, ABP010KD, ABP016KD, ABP025KD, ABP040KD, ABP060KD, ABP100KD,
  24. ABP160KD, ABP250KD, ABP400KD,
  25. /* gage [psi] */
  26. ABP001PG, ABP005PG, ABP015PG, ABP030PG, ABP060PG, ABP100PG, ABP150PG,
  27. /* differential [psi] */
  28. ABP001PD, ABP005PD, ABP015PD, ABP030PD, ABP060PD,
  29. };
  30. struct abp_config {
  31. int min;
  32. int max;
  33. };
  34. static struct abp_config abp_config[] = {
  35. /* mbar & kPa variants */
  36. [ABP006KG] = { .min = 0, .max = 6000 },
  37. [ABP010KG] = { .min = 0, .max = 10000 },
  38. [ABP016KG] = { .min = 0, .max = 16000 },
  39. [ABP025KG] = { .min = 0, .max = 25000 },
  40. [ABP040KG] = { .min = 0, .max = 40000 },
  41. [ABP060KG] = { .min = 0, .max = 60000 },
  42. [ABP100KG] = { .min = 0, .max = 100000 },
  43. [ABP160KG] = { .min = 0, .max = 160000 },
  44. [ABP250KG] = { .min = 0, .max = 250000 },
  45. [ABP400KG] = { .min = 0, .max = 400000 },
  46. [ABP600KG] = { .min = 0, .max = 600000 },
  47. [ABP001GG] = { .min = 0, .max = 1000000 },
  48. [ABP006KD] = { .min = -6000, .max = 6000 },
  49. [ABP010KD] = { .min = -10000, .max = 10000 },
  50. [ABP016KD] = { .min = -16000, .max = 16000 },
  51. [ABP025KD] = { .min = -25000, .max = 25000 },
  52. [ABP040KD] = { .min = -40000, .max = 40000 },
  53. [ABP060KD] = { .min = -60000, .max = 60000 },
  54. [ABP100KD] = { .min = -100000, .max = 100000 },
  55. [ABP160KD] = { .min = -160000, .max = 160000 },
  56. [ABP250KD] = { .min = -250000, .max = 250000 },
  57. [ABP400KD] = { .min = -400000, .max = 400000 },
  58. /* psi variants (1 psi ~ 6895 Pa) */
  59. [ABP001PG] = { .min = 0, .max = 6985 },
  60. [ABP005PG] = { .min = 0, .max = 34474 },
  61. [ABP015PG] = { .min = 0, .max = 103421 },
  62. [ABP030PG] = { .min = 0, .max = 206843 },
  63. [ABP060PG] = { .min = 0, .max = 413686 },
  64. [ABP100PG] = { .min = 0, .max = 689476 },
  65. [ABP150PG] = { .min = 0, .max = 1034214 },
  66. [ABP001PD] = { .min = -6895, .max = 6895 },
  67. [ABP005PD] = { .min = -34474, .max = 34474 },
  68. [ABP015PD] = { .min = -103421, .max = 103421 },
  69. [ABP030PD] = { .min = -206843, .max = 206843 },
  70. [ABP060PD] = { .min = -413686, .max = 413686 },
  71. };
  72. struct abp_state {
  73. struct i2c_client *client;
  74. struct mutex lock;
  75. /*
  76. * bus-dependent MEASURE_REQUEST length.
  77. * If no SMBUS_QUICK support, need to send dummy byte
  78. */
  79. int mreq_len;
  80. /* model-dependent values (calculated on probe) */
  81. int scale;
  82. int offset;
  83. };
  84. static const struct iio_chan_spec abp060mg_channels[] = {
  85. {
  86. .type = IIO_PRESSURE,
  87. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  88. BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE),
  89. },
  90. };
  91. static int abp060mg_get_measurement(struct abp_state *state, int *val)
  92. {
  93. struct i2c_client *client = state->client;
  94. __be16 buf[2];
  95. u16 pressure;
  96. int ret;
  97. buf[0] = 0;
  98. ret = i2c_master_send(client, (u8 *)&buf, state->mreq_len);
  99. if (ret < 0)
  100. return ret;
  101. msleep_interruptible(ABP060MG_RESP_TIME_MS);
  102. ret = i2c_master_recv(client, (u8 *)&buf, sizeof(buf));
  103. if (ret < 0)
  104. return ret;
  105. pressure = be16_to_cpu(buf[0]);
  106. if (pressure & ABP060MG_ERROR_MASK)
  107. return -EIO;
  108. if (pressure < ABP060MG_MIN_COUNTS || pressure > ABP060MG_MAX_COUNTS)
  109. return -EIO;
  110. *val = pressure;
  111. return IIO_VAL_INT;
  112. }
  113. static int abp060mg_read_raw(struct iio_dev *indio_dev,
  114. struct iio_chan_spec const *chan, int *val,
  115. int *val2, long mask)
  116. {
  117. struct abp_state *state = iio_priv(indio_dev);
  118. int ret;
  119. mutex_lock(&state->lock);
  120. switch (mask) {
  121. case IIO_CHAN_INFO_RAW:
  122. ret = abp060mg_get_measurement(state, val);
  123. break;
  124. case IIO_CHAN_INFO_OFFSET:
  125. *val = state->offset;
  126. ret = IIO_VAL_INT;
  127. break;
  128. case IIO_CHAN_INFO_SCALE:
  129. *val = state->scale;
  130. *val2 = ABP060MG_NUM_COUNTS * 1000; /* to kPa */
  131. ret = IIO_VAL_FRACTIONAL;
  132. break;
  133. default:
  134. ret = -EINVAL;
  135. break;
  136. }
  137. mutex_unlock(&state->lock);
  138. return ret;
  139. }
  140. static const struct iio_info abp060mg_info = {
  141. .read_raw = abp060mg_read_raw,
  142. };
  143. static void abp060mg_init_device(struct iio_dev *indio_dev, unsigned long id)
  144. {
  145. struct abp_state *state = iio_priv(indio_dev);
  146. struct abp_config *cfg = &abp_config[id];
  147. state->scale = cfg->max - cfg->min;
  148. state->offset = -ABP060MG_MIN_COUNTS;
  149. if (cfg->min < 0) /* differential */
  150. state->offset -= ABP060MG_NUM_COUNTS >> 1;
  151. }
  152. static int abp060mg_probe(struct i2c_client *client,
  153. const struct i2c_device_id *id)
  154. {
  155. struct iio_dev *indio_dev;
  156. struct abp_state *state;
  157. unsigned long cfg_id = id->driver_data;
  158. indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
  159. if (!indio_dev)
  160. return -ENOMEM;
  161. state = iio_priv(indio_dev);
  162. i2c_set_clientdata(client, state);
  163. state->client = client;
  164. if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_QUICK))
  165. state->mreq_len = 1;
  166. abp060mg_init_device(indio_dev, cfg_id);
  167. indio_dev->name = dev_name(&client->dev);
  168. indio_dev->modes = INDIO_DIRECT_MODE;
  169. indio_dev->info = &abp060mg_info;
  170. indio_dev->channels = abp060mg_channels;
  171. indio_dev->num_channels = ARRAY_SIZE(abp060mg_channels);
  172. mutex_init(&state->lock);
  173. return devm_iio_device_register(&client->dev, indio_dev);
  174. }
  175. static const struct i2c_device_id abp060mg_id_table[] = {
  176. /* mbar & kPa variants (abp060m [60 mbar] == abp006k [6 kPa]) */
  177. /* gage: */
  178. { "abp060mg", ABP006KG }, { "abp006kg", ABP006KG },
  179. { "abp100mg", ABP010KG }, { "abp010kg", ABP010KG },
  180. { "abp160mg", ABP016KG }, { "abp016kg", ABP016KG },
  181. { "abp250mg", ABP025KG }, { "abp025kg", ABP025KG },
  182. { "abp400mg", ABP040KG }, { "abp040kg", ABP040KG },
  183. { "abp600mg", ABP060KG }, { "abp060kg", ABP060KG },
  184. { "abp001bg", ABP100KG }, { "abp100kg", ABP100KG },
  185. { "abp1_6bg", ABP160KG }, { "abp160kg", ABP160KG },
  186. { "abp2_5bg", ABP250KG }, { "abp250kg", ABP250KG },
  187. { "abp004bg", ABP400KG }, { "abp400kg", ABP400KG },
  188. { "abp006bg", ABP600KG }, { "abp600kg", ABP600KG },
  189. { "abp010bg", ABP001GG }, { "abp001gg", ABP001GG },
  190. /* differential: */
  191. { "abp060md", ABP006KD }, { "abp006kd", ABP006KD },
  192. { "abp100md", ABP010KD }, { "abp010kd", ABP010KD },
  193. { "abp160md", ABP016KD }, { "abp016kd", ABP016KD },
  194. { "abp250md", ABP025KD }, { "abp025kd", ABP025KD },
  195. { "abp400md", ABP040KD }, { "abp040kd", ABP040KD },
  196. { "abp600md", ABP060KD }, { "abp060kd", ABP060KD },
  197. { "abp001bd", ABP100KD }, { "abp100kd", ABP100KD },
  198. { "abp1_6bd", ABP160KD }, { "abp160kd", ABP160KD },
  199. { "abp2_5bd", ABP250KD }, { "abp250kd", ABP250KD },
  200. { "abp004bd", ABP400KD }, { "abp400kd", ABP400KD },
  201. /* psi variants */
  202. /* gage: */
  203. { "abp001pg", ABP001PG },
  204. { "abp005pg", ABP005PG },
  205. { "abp015pg", ABP015PG },
  206. { "abp030pg", ABP030PG },
  207. { "abp060pg", ABP060PG },
  208. { "abp100pg", ABP100PG },
  209. { "abp150pg", ABP150PG },
  210. /* differential: */
  211. { "abp001pd", ABP001PD },
  212. { "abp005pd", ABP005PD },
  213. { "abp015pd", ABP015PD },
  214. { "abp030pd", ABP030PD },
  215. { "abp060pd", ABP060PD },
  216. { /* empty */ },
  217. };
  218. MODULE_DEVICE_TABLE(i2c, abp060mg_id_table);
  219. static struct i2c_driver abp060mg_driver = {
  220. .driver = {
  221. .name = "abp060mg",
  222. },
  223. .probe = abp060mg_probe,
  224. .id_table = abp060mg_id_table,
  225. };
  226. module_i2c_driver(abp060mg_driver);
  227. MODULE_AUTHOR("Marcin Malagowski <[email protected]>");
  228. MODULE_DESCRIPTION("Honeywell ABP pressure sensor driver");
  229. MODULE_LICENSE("GPL");