admv1014.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * ADMV1014 driver
  4. *
  5. * Copyright 2022 Analog Devices Inc.
  6. */
  7. #include <linux/bitfield.h>
  8. #include <linux/bits.h>
  9. #include <linux/clk.h>
  10. #include <linux/clkdev.h>
  11. #include <linux/device.h>
  12. #include <linux/iio/iio.h>
  13. #include <linux/module.h>
  14. #include <linux/mod_devicetable.h>
  15. #include <linux/notifier.h>
  16. #include <linux/property.h>
  17. #include <linux/regulator/consumer.h>
  18. #include <linux/spi/spi.h>
  19. #include <linux/units.h>
  20. #include <asm/unaligned.h>
  21. /* ADMV1014 Register Map */
  22. #define ADMV1014_REG_SPI_CONTROL 0x00
  23. #define ADMV1014_REG_ALARM 0x01
  24. #define ADMV1014_REG_ALARM_MASKS 0x02
  25. #define ADMV1014_REG_ENABLE 0x03
  26. #define ADMV1014_REG_QUAD 0x04
  27. #define ADMV1014_REG_LO_AMP_PHASE_ADJUST1 0x05
  28. #define ADMV1014_REG_MIXER 0x07
  29. #define ADMV1014_REG_IF_AMP 0x08
  30. #define ADMV1014_REG_IF_AMP_BB_AMP 0x09
  31. #define ADMV1014_REG_BB_AMP_AGC 0x0A
  32. #define ADMV1014_REG_VVA_TEMP_COMP 0x0B
  33. /* ADMV1014_REG_SPI_CONTROL Map */
  34. #define ADMV1014_PARITY_EN_MSK BIT(15)
  35. #define ADMV1014_SPI_SOFT_RESET_MSK BIT(14)
  36. #define ADMV1014_CHIP_ID_MSK GENMASK(11, 4)
  37. #define ADMV1014_CHIP_ID 0x9
  38. #define ADMV1014_REVISION_ID_MSK GENMASK(3, 0)
  39. /* ADMV1014_REG_ALARM Map */
  40. #define ADMV1014_PARITY_ERROR_MSK BIT(15)
  41. #define ADMV1014_TOO_FEW_ERRORS_MSK BIT(14)
  42. #define ADMV1014_TOO_MANY_ERRORS_MSK BIT(13)
  43. #define ADMV1014_ADDRESS_RANGE_ERROR_MSK BIT(12)
  44. /* ADMV1014_REG_ENABLE Map */
  45. #define ADMV1014_IBIAS_PD_MSK BIT(14)
  46. #define ADMV1014_P1DB_COMPENSATION_MSK GENMASK(13, 12)
  47. #define ADMV1014_IF_AMP_PD_MSK BIT(11)
  48. #define ADMV1014_QUAD_BG_PD_MSK BIT(9)
  49. #define ADMV1014_BB_AMP_PD_MSK BIT(8)
  50. #define ADMV1014_QUAD_IBIAS_PD_MSK BIT(7)
  51. #define ADMV1014_DET_EN_MSK BIT(6)
  52. #define ADMV1014_BG_PD_MSK BIT(5)
  53. /* ADMV1014_REG_QUAD Map */
  54. #define ADMV1014_QUAD_SE_MODE_MSK GENMASK(9, 6)
  55. #define ADMV1014_QUAD_FILTERS_MSK GENMASK(3, 0)
  56. /* ADMV1014_REG_LO_AMP_PHASE_ADJUST1 Map */
  57. #define ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK GENMASK(15, 9)
  58. #define ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK GENMASK(8, 2)
  59. /* ADMV1014_REG_MIXER Map */
  60. #define ADMV1014_MIXER_VGATE_MSK GENMASK(15, 9)
  61. #define ADMV1014_DET_PROG_MSK GENMASK(6, 0)
  62. /* ADMV1014_REG_IF_AMP Map */
  63. #define ADMV1014_IF_AMP_COARSE_GAIN_I_MSK GENMASK(11, 8)
  64. #define ADMV1014_IF_AMP_FINE_GAIN_Q_MSK GENMASK(7, 4)
  65. #define ADMV1014_IF_AMP_FINE_GAIN_I_MSK GENMASK(3, 0)
  66. /* ADMV1014_REG_IF_AMP_BB_AMP Map */
  67. #define ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK GENMASK(15, 12)
  68. #define ADMV1014_BB_AMP_OFFSET_Q_MSK GENMASK(9, 5)
  69. #define ADMV1014_BB_AMP_OFFSET_I_MSK GENMASK(4, 0)
  70. /* ADMV1014_REG_BB_AMP_AGC Map */
  71. #define ADMV1014_BB_AMP_REF_GEN_MSK GENMASK(6, 3)
  72. #define ADMV1014_BB_AMP_GAIN_CTRL_MSK GENMASK(2, 1)
  73. #define ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK BIT(0)
  74. /* ADMV1014_REG_VVA_TEMP_COMP Map */
  75. #define ADMV1014_VVA_TEMP_COMP_MSK GENMASK(15, 0)
  76. /* ADMV1014 Miscellaneous Defines */
  77. #define ADMV1014_READ BIT(7)
  78. #define ADMV1014_REG_ADDR_READ_MSK GENMASK(6, 1)
  79. #define ADMV1014_REG_ADDR_WRITE_MSK GENMASK(22, 17)
  80. #define ADMV1014_REG_DATA_MSK GENMASK(16, 1)
  81. #define ADMV1014_NUM_REGULATORS 9
  82. enum {
  83. ADMV1014_IQ_MODE,
  84. ADMV1014_IF_MODE,
  85. };
  86. enum {
  87. ADMV1014_SE_MODE_POS = 6,
  88. ADMV1014_SE_MODE_NEG = 9,
  89. ADMV1014_SE_MODE_DIFF = 12,
  90. };
  91. enum {
  92. ADMV1014_CALIBSCALE_COARSE,
  93. ADMV1014_CALIBSCALE_FINE,
  94. };
  95. static const int detector_table[] = {0, 1, 2, 4, 8, 16, 32, 64};
  96. static const char * const input_mode_names[] = { "iq", "if" };
  97. static const char * const quad_se_mode_names[] = { "se-pos", "se-neg", "diff" };
  98. struct admv1014_state {
  99. struct spi_device *spi;
  100. struct clk *clkin;
  101. struct notifier_block nb;
  102. /* Protect against concurrent accesses to the device and to data*/
  103. struct mutex lock;
  104. struct regulator_bulk_data regulators[ADMV1014_NUM_REGULATORS];
  105. unsigned int input_mode;
  106. unsigned int quad_se_mode;
  107. unsigned int p1db_comp;
  108. bool det_en;
  109. u8 data[3] __aligned(IIO_DMA_MINALIGN);
  110. };
  111. static const int mixer_vgate_table[] = {106, 107, 108, 110, 111, 112, 113, 114,
  112. 117, 118, 119, 120, 122, 123, 44, 45};
  113. static int __admv1014_spi_read(struct admv1014_state *st, unsigned int reg,
  114. unsigned int *val)
  115. {
  116. struct spi_transfer t = {};
  117. int ret;
  118. st->data[0] = ADMV1014_READ | FIELD_PREP(ADMV1014_REG_ADDR_READ_MSK, reg);
  119. st->data[1] = 0;
  120. st->data[2] = 0;
  121. t.rx_buf = &st->data[0];
  122. t.tx_buf = &st->data[0];
  123. t.len = sizeof(st->data);
  124. ret = spi_sync_transfer(st->spi, &t, 1);
  125. if (ret)
  126. return ret;
  127. *val = FIELD_GET(ADMV1014_REG_DATA_MSK, get_unaligned_be24(&st->data[0]));
  128. return ret;
  129. }
  130. static int admv1014_spi_read(struct admv1014_state *st, unsigned int reg,
  131. unsigned int *val)
  132. {
  133. int ret;
  134. mutex_lock(&st->lock);
  135. ret = __admv1014_spi_read(st, reg, val);
  136. mutex_unlock(&st->lock);
  137. return ret;
  138. }
  139. static int __admv1014_spi_write(struct admv1014_state *st,
  140. unsigned int reg,
  141. unsigned int val)
  142. {
  143. put_unaligned_be24(FIELD_PREP(ADMV1014_REG_DATA_MSK, val) |
  144. FIELD_PREP(ADMV1014_REG_ADDR_WRITE_MSK, reg), &st->data[0]);
  145. return spi_write(st->spi, &st->data[0], 3);
  146. }
  147. static int admv1014_spi_write(struct admv1014_state *st, unsigned int reg,
  148. unsigned int val)
  149. {
  150. int ret;
  151. mutex_lock(&st->lock);
  152. ret = __admv1014_spi_write(st, reg, val);
  153. mutex_unlock(&st->lock);
  154. return ret;
  155. }
  156. static int __admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg,
  157. unsigned int mask, unsigned int val)
  158. {
  159. unsigned int data, temp;
  160. int ret;
  161. ret = __admv1014_spi_read(st, reg, &data);
  162. if (ret)
  163. return ret;
  164. temp = (data & ~mask) | (val & mask);
  165. return __admv1014_spi_write(st, reg, temp);
  166. }
  167. static int admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg,
  168. unsigned int mask, unsigned int val)
  169. {
  170. int ret;
  171. mutex_lock(&st->lock);
  172. ret = __admv1014_spi_update_bits(st, reg, mask, val);
  173. mutex_unlock(&st->lock);
  174. return ret;
  175. }
  176. static int admv1014_update_quad_filters(struct admv1014_state *st)
  177. {
  178. unsigned int filt_raw;
  179. u64 rate = clk_get_rate(st->clkin);
  180. if (rate >= (5400 * HZ_PER_MHZ) && rate <= (7000 * HZ_PER_MHZ))
  181. filt_raw = 15;
  182. else if (rate > (7000 * HZ_PER_MHZ) && rate <= (8000 * HZ_PER_MHZ))
  183. filt_raw = 10;
  184. else if (rate > (8000 * HZ_PER_MHZ) && rate <= (9200 * HZ_PER_MHZ))
  185. filt_raw = 5;
  186. else
  187. filt_raw = 0;
  188. return __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD,
  189. ADMV1014_QUAD_FILTERS_MSK,
  190. FIELD_PREP(ADMV1014_QUAD_FILTERS_MSK, filt_raw));
  191. }
  192. static int admv1014_update_vcm_settings(struct admv1014_state *st)
  193. {
  194. unsigned int i, vcm_mv, vcm_comp, bb_sw_hl_cm;
  195. int ret;
  196. vcm_mv = regulator_get_voltage(st->regulators[0].consumer) / 1000;
  197. for (i = 0; i < ARRAY_SIZE(mixer_vgate_table); i++) {
  198. vcm_comp = 1050 + mult_frac(i, 450, 8);
  199. if (vcm_mv != vcm_comp)
  200. continue;
  201. ret = __admv1014_spi_update_bits(st, ADMV1014_REG_MIXER,
  202. ADMV1014_MIXER_VGATE_MSK,
  203. FIELD_PREP(ADMV1014_MIXER_VGATE_MSK,
  204. mixer_vgate_table[i]));
  205. if (ret)
  206. return ret;
  207. bb_sw_hl_cm = ~(i / 8);
  208. bb_sw_hl_cm = FIELD_PREP(ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK, bb_sw_hl_cm);
  209. return __admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC,
  210. ADMV1014_BB_AMP_REF_GEN_MSK |
  211. ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK,
  212. FIELD_PREP(ADMV1014_BB_AMP_REF_GEN_MSK, i) |
  213. bb_sw_hl_cm);
  214. }
  215. return -EINVAL;
  216. }
  217. static int admv1014_read_raw(struct iio_dev *indio_dev,
  218. struct iio_chan_spec const *chan,
  219. int *val, int *val2, long info)
  220. {
  221. struct admv1014_state *st = iio_priv(indio_dev);
  222. unsigned int data;
  223. int ret;
  224. switch (info) {
  225. case IIO_CHAN_INFO_OFFSET:
  226. ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data);
  227. if (ret)
  228. return ret;
  229. if (chan->channel2 == IIO_MOD_I)
  230. *val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_I_MSK, data);
  231. else
  232. *val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_Q_MSK, data);
  233. return IIO_VAL_INT;
  234. case IIO_CHAN_INFO_PHASE:
  235. ret = admv1014_spi_read(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, &data);
  236. if (ret)
  237. return ret;
  238. if (chan->channel2 == IIO_MOD_I)
  239. *val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, data);
  240. else
  241. *val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, data);
  242. return IIO_VAL_INT;
  243. case IIO_CHAN_INFO_SCALE:
  244. ret = admv1014_spi_read(st, ADMV1014_REG_MIXER, &data);
  245. if (ret)
  246. return ret;
  247. *val = FIELD_GET(ADMV1014_DET_PROG_MSK, data);
  248. return IIO_VAL_INT;
  249. case IIO_CHAN_INFO_CALIBSCALE:
  250. ret = admv1014_spi_read(st, ADMV1014_REG_BB_AMP_AGC, &data);
  251. if (ret)
  252. return ret;
  253. *val = FIELD_GET(ADMV1014_BB_AMP_GAIN_CTRL_MSK, data);
  254. return IIO_VAL_INT;
  255. default:
  256. return -EINVAL;
  257. }
  258. }
  259. static int admv1014_write_raw(struct iio_dev *indio_dev,
  260. struct iio_chan_spec const *chan,
  261. int val, int val2, long info)
  262. {
  263. int data;
  264. unsigned int msk;
  265. struct admv1014_state *st = iio_priv(indio_dev);
  266. switch (info) {
  267. case IIO_CHAN_INFO_OFFSET:
  268. if (chan->channel2 == IIO_MOD_I) {
  269. msk = ADMV1014_BB_AMP_OFFSET_I_MSK;
  270. data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_I_MSK, val);
  271. } else {
  272. msk = ADMV1014_BB_AMP_OFFSET_Q_MSK;
  273. data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_Q_MSK, val);
  274. }
  275. return admv1014_spi_update_bits(st, ADMV1014_REG_IF_AMP_BB_AMP, msk, data);
  276. case IIO_CHAN_INFO_PHASE:
  277. if (chan->channel2 == IIO_MOD_I) {
  278. msk = ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK;
  279. data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, val);
  280. } else {
  281. msk = ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK;
  282. data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, val);
  283. }
  284. return admv1014_spi_update_bits(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, msk, data);
  285. case IIO_CHAN_INFO_SCALE:
  286. return admv1014_spi_update_bits(st, ADMV1014_REG_MIXER,
  287. ADMV1014_DET_PROG_MSK,
  288. FIELD_PREP(ADMV1014_DET_PROG_MSK, val));
  289. case IIO_CHAN_INFO_CALIBSCALE:
  290. return admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC,
  291. ADMV1014_BB_AMP_GAIN_CTRL_MSK,
  292. FIELD_PREP(ADMV1014_BB_AMP_GAIN_CTRL_MSK, val));
  293. default:
  294. return -EINVAL;
  295. }
  296. }
  297. static ssize_t admv1014_read(struct iio_dev *indio_dev,
  298. uintptr_t private,
  299. const struct iio_chan_spec *chan,
  300. char *buf)
  301. {
  302. struct admv1014_state *st = iio_priv(indio_dev);
  303. unsigned int data;
  304. int ret;
  305. switch (private) {
  306. case ADMV1014_CALIBSCALE_COARSE:
  307. if (chan->channel2 == IIO_MOD_I) {
  308. ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data);
  309. if (ret)
  310. return ret;
  311. data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data);
  312. } else {
  313. ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data);
  314. if (ret)
  315. return ret;
  316. data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data);
  317. }
  318. break;
  319. case ADMV1014_CALIBSCALE_FINE:
  320. ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data);
  321. if (ret)
  322. return ret;
  323. if (chan->channel2 == IIO_MOD_I)
  324. data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data);
  325. else
  326. data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data);
  327. break;
  328. default:
  329. return -EINVAL;
  330. }
  331. return sysfs_emit(buf, "%u\n", data);
  332. }
  333. static ssize_t admv1014_write(struct iio_dev *indio_dev,
  334. uintptr_t private,
  335. const struct iio_chan_spec *chan,
  336. const char *buf, size_t len)
  337. {
  338. struct admv1014_state *st = iio_priv(indio_dev);
  339. unsigned int data, addr, msk;
  340. int ret;
  341. ret = kstrtouint(buf, 10, &data);
  342. if (ret)
  343. return ret;
  344. switch (private) {
  345. case ADMV1014_CALIBSCALE_COARSE:
  346. if (chan->channel2 == IIO_MOD_I) {
  347. addr = ADMV1014_REG_IF_AMP;
  348. msk = ADMV1014_IF_AMP_COARSE_GAIN_I_MSK;
  349. data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data);
  350. } else {
  351. addr = ADMV1014_REG_IF_AMP_BB_AMP;
  352. msk = ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK;
  353. data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data);
  354. }
  355. break;
  356. case ADMV1014_CALIBSCALE_FINE:
  357. addr = ADMV1014_REG_IF_AMP;
  358. if (chan->channel2 == IIO_MOD_I) {
  359. msk = ADMV1014_IF_AMP_FINE_GAIN_I_MSK;
  360. data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data);
  361. } else {
  362. msk = ADMV1014_IF_AMP_FINE_GAIN_Q_MSK;
  363. data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data);
  364. }
  365. break;
  366. default:
  367. return -EINVAL;
  368. }
  369. ret = admv1014_spi_update_bits(st, addr, msk, data);
  370. return ret ? ret : len;
  371. }
  372. static int admv1014_read_avail(struct iio_dev *indio_dev,
  373. struct iio_chan_spec const *chan,
  374. const int **vals, int *type, int *length,
  375. long info)
  376. {
  377. switch (info) {
  378. case IIO_CHAN_INFO_SCALE:
  379. *vals = detector_table;
  380. *type = IIO_VAL_INT;
  381. *length = ARRAY_SIZE(detector_table);
  382. return IIO_AVAIL_LIST;
  383. default:
  384. return -EINVAL;
  385. }
  386. }
  387. static int admv1014_reg_access(struct iio_dev *indio_dev,
  388. unsigned int reg,
  389. unsigned int write_val,
  390. unsigned int *read_val)
  391. {
  392. struct admv1014_state *st = iio_priv(indio_dev);
  393. if (read_val)
  394. return admv1014_spi_read(st, reg, read_val);
  395. else
  396. return admv1014_spi_write(st, reg, write_val);
  397. }
  398. static const struct iio_info admv1014_info = {
  399. .read_raw = admv1014_read_raw,
  400. .write_raw = admv1014_write_raw,
  401. .read_avail = &admv1014_read_avail,
  402. .debugfs_reg_access = &admv1014_reg_access,
  403. };
  404. static const char * const admv1014_reg_name[] = {
  405. "vcm", "vcc-if-bb", "vcc-vga", "vcc-vva", "vcc-lna-3p3",
  406. "vcc-lna-1p5", "vcc-bg", "vcc-quad", "vcc-mixer"
  407. };
  408. static int admv1014_freq_change(struct notifier_block *nb, unsigned long action, void *data)
  409. {
  410. struct admv1014_state *st = container_of(nb, struct admv1014_state, nb);
  411. int ret;
  412. if (action == POST_RATE_CHANGE) {
  413. mutex_lock(&st->lock);
  414. ret = notifier_from_errno(admv1014_update_quad_filters(st));
  415. mutex_unlock(&st->lock);
  416. return ret;
  417. }
  418. return NOTIFY_OK;
  419. }
  420. #define _ADMV1014_EXT_INFO(_name, _shared, _ident) { \
  421. .name = _name, \
  422. .read = admv1014_read, \
  423. .write = admv1014_write, \
  424. .private = _ident, \
  425. .shared = _shared, \
  426. }
  427. static const struct iio_chan_spec_ext_info admv1014_ext_info[] = {
  428. _ADMV1014_EXT_INFO("calibscale_coarse", IIO_SEPARATE, ADMV1014_CALIBSCALE_COARSE),
  429. _ADMV1014_EXT_INFO("calibscale_fine", IIO_SEPARATE, ADMV1014_CALIBSCALE_FINE),
  430. { }
  431. };
  432. #define ADMV1014_CHAN_IQ(_channel, rf_comp) { \
  433. .type = IIO_ALTVOLTAGE, \
  434. .modified = 1, \
  435. .output = 0, \
  436. .indexed = 1, \
  437. .channel2 = IIO_MOD_##rf_comp, \
  438. .channel = _channel, \
  439. .info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) | \
  440. BIT(IIO_CHAN_INFO_OFFSET), \
  441. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_CALIBSCALE), \
  442. }
  443. #define ADMV1014_CHAN_IF(_channel, rf_comp) { \
  444. .type = IIO_ALTVOLTAGE, \
  445. .modified = 1, \
  446. .output = 0, \
  447. .indexed = 1, \
  448. .channel2 = IIO_MOD_##rf_comp, \
  449. .channel = _channel, \
  450. .info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) | \
  451. BIT(IIO_CHAN_INFO_OFFSET), \
  452. }
  453. #define ADMV1014_CHAN_POWER(_channel) { \
  454. .type = IIO_POWER, \
  455. .output = 0, \
  456. .indexed = 1, \
  457. .channel = _channel, \
  458. .info_mask_separate = BIT(IIO_CHAN_INFO_SCALE), \
  459. .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \
  460. }
  461. #define ADMV1014_CHAN_CALIBSCALE(_channel, rf_comp, _admv1014_ext_info) { \
  462. .type = IIO_ALTVOLTAGE, \
  463. .modified = 1, \
  464. .output = 0, \
  465. .indexed = 1, \
  466. .channel2 = IIO_MOD_##rf_comp, \
  467. .channel = _channel, \
  468. .ext_info = _admv1014_ext_info, \
  469. }
  470. static const struct iio_chan_spec admv1014_channels_iq[] = {
  471. ADMV1014_CHAN_IQ(0, I),
  472. ADMV1014_CHAN_IQ(0, Q),
  473. ADMV1014_CHAN_POWER(0),
  474. };
  475. static const struct iio_chan_spec admv1014_channels_if[] = {
  476. ADMV1014_CHAN_IF(0, I),
  477. ADMV1014_CHAN_IF(0, Q),
  478. ADMV1014_CHAN_CALIBSCALE(0, I, admv1014_ext_info),
  479. ADMV1014_CHAN_CALIBSCALE(0, Q, admv1014_ext_info),
  480. ADMV1014_CHAN_POWER(0),
  481. };
  482. static void admv1014_clk_disable(void *data)
  483. {
  484. clk_disable_unprepare(data);
  485. }
  486. static void admv1014_reg_disable(void *data)
  487. {
  488. regulator_bulk_disable(ADMV1014_NUM_REGULATORS, data);
  489. }
  490. static void admv1014_powerdown(void *data)
  491. {
  492. unsigned int enable_reg, enable_reg_msk;
  493. /* Disable all components in the Enable Register */
  494. enable_reg_msk = ADMV1014_IBIAS_PD_MSK |
  495. ADMV1014_IF_AMP_PD_MSK |
  496. ADMV1014_QUAD_BG_PD_MSK |
  497. ADMV1014_BB_AMP_PD_MSK |
  498. ADMV1014_QUAD_IBIAS_PD_MSK |
  499. ADMV1014_BG_PD_MSK;
  500. enable_reg = FIELD_PREP(ADMV1014_IBIAS_PD_MSK, 1) |
  501. FIELD_PREP(ADMV1014_IF_AMP_PD_MSK, 1) |
  502. FIELD_PREP(ADMV1014_QUAD_BG_PD_MSK, 1) |
  503. FIELD_PREP(ADMV1014_BB_AMP_PD_MSK, 1) |
  504. FIELD_PREP(ADMV1014_QUAD_IBIAS_PD_MSK, 1) |
  505. FIELD_PREP(ADMV1014_BG_PD_MSK, 1);
  506. admv1014_spi_update_bits(data, ADMV1014_REG_ENABLE,
  507. enable_reg_msk, enable_reg);
  508. }
  509. static int admv1014_init(struct admv1014_state *st)
  510. {
  511. unsigned int chip_id, enable_reg, enable_reg_msk;
  512. struct spi_device *spi = st->spi;
  513. int ret;
  514. ret = regulator_bulk_enable(ADMV1014_NUM_REGULATORS, st->regulators);
  515. if (ret) {
  516. dev_err(&spi->dev, "Failed to enable regulators");
  517. return ret;
  518. }
  519. ret = devm_add_action_or_reset(&spi->dev, admv1014_reg_disable, st->regulators);
  520. if (ret)
  521. return ret;
  522. ret = clk_prepare_enable(st->clkin);
  523. if (ret)
  524. return ret;
  525. ret = devm_add_action_or_reset(&spi->dev, admv1014_clk_disable, st->clkin);
  526. if (ret)
  527. return ret;
  528. st->nb.notifier_call = admv1014_freq_change;
  529. ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb);
  530. if (ret)
  531. return ret;
  532. ret = devm_add_action_or_reset(&spi->dev, admv1014_powerdown, st);
  533. if (ret)
  534. return ret;
  535. /* Perform a software reset */
  536. ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL,
  537. ADMV1014_SPI_SOFT_RESET_MSK,
  538. FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 1));
  539. if (ret) {
  540. dev_err(&spi->dev, "ADMV1014 SPI software reset failed.\n");
  541. return ret;
  542. }
  543. ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL,
  544. ADMV1014_SPI_SOFT_RESET_MSK,
  545. FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 0));
  546. if (ret) {
  547. dev_err(&spi->dev, "ADMV1014 SPI software reset disable failed.\n");
  548. return ret;
  549. }
  550. ret = __admv1014_spi_write(st, ADMV1014_REG_VVA_TEMP_COMP, 0x727C);
  551. if (ret) {
  552. dev_err(&spi->dev, "Writing default Temperature Compensation value failed.\n");
  553. return ret;
  554. }
  555. ret = __admv1014_spi_read(st, ADMV1014_REG_SPI_CONTROL, &chip_id);
  556. if (ret)
  557. return ret;
  558. chip_id = FIELD_GET(ADMV1014_CHIP_ID_MSK, chip_id);
  559. if (chip_id != ADMV1014_CHIP_ID) {
  560. dev_err(&spi->dev, "Invalid Chip ID.\n");
  561. return -EINVAL;
  562. }
  563. ret = __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD,
  564. ADMV1014_QUAD_SE_MODE_MSK,
  565. FIELD_PREP(ADMV1014_QUAD_SE_MODE_MSK,
  566. st->quad_se_mode));
  567. if (ret) {
  568. dev_err(&spi->dev, "Writing Quad SE Mode failed.\n");
  569. return ret;
  570. }
  571. ret = admv1014_update_quad_filters(st);
  572. if (ret) {
  573. dev_err(&spi->dev, "Update Quad Filters failed.\n");
  574. return ret;
  575. }
  576. ret = admv1014_update_vcm_settings(st);
  577. if (ret) {
  578. dev_err(&spi->dev, "Update VCM Settings failed.\n");
  579. return ret;
  580. }
  581. enable_reg_msk = ADMV1014_P1DB_COMPENSATION_MSK |
  582. ADMV1014_IF_AMP_PD_MSK |
  583. ADMV1014_BB_AMP_PD_MSK |
  584. ADMV1014_DET_EN_MSK;
  585. enable_reg = FIELD_PREP(ADMV1014_P1DB_COMPENSATION_MSK, st->p1db_comp ? 3 : 0) |
  586. FIELD_PREP(ADMV1014_IF_AMP_PD_MSK,
  587. (st->input_mode == ADMV1014_IF_MODE) ? 0 : 1) |
  588. FIELD_PREP(ADMV1014_BB_AMP_PD_MSK,
  589. (st->input_mode == ADMV1014_IF_MODE) ? 1 : 0) |
  590. FIELD_PREP(ADMV1014_DET_EN_MSK, st->det_en);
  591. return __admv1014_spi_update_bits(st, ADMV1014_REG_ENABLE, enable_reg_msk, enable_reg);
  592. }
  593. static int admv1014_properties_parse(struct admv1014_state *st)
  594. {
  595. const char *str;
  596. unsigned int i;
  597. struct spi_device *spi = st->spi;
  598. int ret;
  599. st->det_en = device_property_read_bool(&spi->dev, "adi,detector-enable");
  600. st->p1db_comp = device_property_read_bool(&spi->dev, "adi,p1db-compensation-enable");
  601. ret = device_property_read_string(&spi->dev, "adi,input-mode", &str);
  602. if (ret) {
  603. st->input_mode = ADMV1014_IQ_MODE;
  604. } else {
  605. ret = match_string(input_mode_names, ARRAY_SIZE(input_mode_names), str);
  606. if (ret < 0)
  607. return ret;
  608. st->input_mode = ret;
  609. }
  610. ret = device_property_read_string(&spi->dev, "adi,quad-se-mode", &str);
  611. if (ret) {
  612. st->quad_se_mode = ADMV1014_SE_MODE_POS;
  613. } else {
  614. ret = match_string(quad_se_mode_names, ARRAY_SIZE(quad_se_mode_names), str);
  615. if (ret < 0)
  616. return ret;
  617. st->quad_se_mode = ADMV1014_SE_MODE_POS + (ret * 3);
  618. }
  619. for (i = 0; i < ADMV1014_NUM_REGULATORS; ++i)
  620. st->regulators[i].supply = admv1014_reg_name[i];
  621. ret = devm_regulator_bulk_get(&st->spi->dev, ADMV1014_NUM_REGULATORS,
  622. st->regulators);
  623. if (ret) {
  624. dev_err(&spi->dev, "Failed to request regulators");
  625. return ret;
  626. }
  627. st->clkin = devm_clk_get(&spi->dev, "lo_in");
  628. if (IS_ERR(st->clkin))
  629. return dev_err_probe(&spi->dev, PTR_ERR(st->clkin),
  630. "failed to get the LO input clock\n");
  631. return 0;
  632. }
  633. static int admv1014_probe(struct spi_device *spi)
  634. {
  635. struct iio_dev *indio_dev;
  636. struct admv1014_state *st;
  637. int ret;
  638. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
  639. if (!indio_dev)
  640. return -ENOMEM;
  641. st = iio_priv(indio_dev);
  642. ret = admv1014_properties_parse(st);
  643. if (ret)
  644. return ret;
  645. indio_dev->info = &admv1014_info;
  646. indio_dev->name = "admv1014";
  647. if (st->input_mode == ADMV1014_IQ_MODE) {
  648. indio_dev->channels = admv1014_channels_iq;
  649. indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_iq);
  650. } else {
  651. indio_dev->channels = admv1014_channels_if;
  652. indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_if);
  653. }
  654. st->spi = spi;
  655. mutex_init(&st->lock);
  656. ret = admv1014_init(st);
  657. if (ret)
  658. return ret;
  659. return devm_iio_device_register(&spi->dev, indio_dev);
  660. }
  661. static const struct spi_device_id admv1014_id[] = {
  662. { "admv1014", 0 },
  663. {}
  664. };
  665. MODULE_DEVICE_TABLE(spi, admv1014_id);
  666. static const struct of_device_id admv1014_of_match[] = {
  667. { .compatible = "adi,admv1014" },
  668. {}
  669. };
  670. MODULE_DEVICE_TABLE(of, admv1014_of_match);
  671. static struct spi_driver admv1014_driver = {
  672. .driver = {
  673. .name = "admv1014",
  674. .of_match_table = admv1014_of_match,
  675. },
  676. .probe = admv1014_probe,
  677. .id_table = admv1014_id,
  678. };
  679. module_spi_driver(admv1014_driver);
  680. MODULE_AUTHOR("Antoniu Miclaus <[email protected]");
  681. MODULE_DESCRIPTION("Analog Devices ADMV1014");
  682. MODULE_LICENSE("GPL v2");