adf4350.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * ADF4350/ADF4351 SPI Wideband Synthesizer driver
  4. *
  5. * Copyright 2012-2013 Analog Devices Inc.
  6. */
  7. #include <linux/device.h>
  8. #include <linux/kernel.h>
  9. #include <linux/mod_devicetable.h>
  10. #include <linux/module.h>
  11. #include <linux/property.h>
  12. #include <linux/slab.h>
  13. #include <linux/sysfs.h>
  14. #include <linux/spi/spi.h>
  15. #include <linux/regulator/consumer.h>
  16. #include <linux/err.h>
  17. #include <linux/gcd.h>
  18. #include <linux/gpio/consumer.h>
  19. #include <asm/div64.h>
  20. #include <linux/clk.h>
  21. #include <linux/iio/iio.h>
  22. #include <linux/iio/sysfs.h>
  23. #include <linux/iio/frequency/adf4350.h>
  24. enum {
  25. ADF4350_FREQ,
  26. ADF4350_FREQ_REFIN,
  27. ADF4350_FREQ_RESOLUTION,
  28. ADF4350_PWRDOWN,
  29. };
  30. struct adf4350_state {
  31. struct spi_device *spi;
  32. struct gpio_desc *lock_detect_gpiod;
  33. struct adf4350_platform_data *pdata;
  34. struct clk *clk;
  35. unsigned long clkin;
  36. unsigned long chspc; /* Channel Spacing */
  37. unsigned long fpfd; /* Phase Frequency Detector */
  38. unsigned long min_out_freq;
  39. unsigned r0_fract;
  40. unsigned r0_int;
  41. unsigned r1_mod;
  42. unsigned r4_rf_div_sel;
  43. unsigned long regs[6];
  44. unsigned long regs_hw[6];
  45. unsigned long long freq_req;
  46. /*
  47. * Lock to protect the state of the device from potential concurrent
  48. * writes. The device is configured via a sequence of SPI writes,
  49. * and this lock is meant to prevent the start of another sequence
  50. * before another one has finished.
  51. */
  52. struct mutex lock;
  53. /*
  54. * DMA (thus cache coherency maintenance) may require that
  55. * transfer buffers live in their own cache lines.
  56. */
  57. __be32 val __aligned(IIO_DMA_MINALIGN);
  58. };
  59. static struct adf4350_platform_data default_pdata = {
  60. .channel_spacing = 10000,
  61. .r2_user_settings = ADF4350_REG2_PD_POLARITY_POS |
  62. ADF4350_REG2_CHARGE_PUMP_CURR_uA(2500),
  63. .r3_user_settings = ADF4350_REG3_12BIT_CLKDIV_MODE(0),
  64. .r4_user_settings = ADF4350_REG4_OUTPUT_PWR(3) |
  65. ADF4350_REG4_MUTE_TILL_LOCK_EN,
  66. };
  67. static int adf4350_sync_config(struct adf4350_state *st)
  68. {
  69. int ret, i, doublebuf = 0;
  70. for (i = ADF4350_REG5; i >= ADF4350_REG0; i--) {
  71. if ((st->regs_hw[i] != st->regs[i]) ||
  72. ((i == ADF4350_REG0) && doublebuf)) {
  73. switch (i) {
  74. case ADF4350_REG1:
  75. case ADF4350_REG4:
  76. doublebuf = 1;
  77. break;
  78. }
  79. st->val = cpu_to_be32(st->regs[i] | i);
  80. ret = spi_write(st->spi, &st->val, 4);
  81. if (ret < 0)
  82. return ret;
  83. st->regs_hw[i] = st->regs[i];
  84. dev_dbg(&st->spi->dev, "[%d] 0x%X\n",
  85. i, (u32)st->regs[i] | i);
  86. }
  87. }
  88. return 0;
  89. }
  90. static int adf4350_reg_access(struct iio_dev *indio_dev,
  91. unsigned reg, unsigned writeval,
  92. unsigned *readval)
  93. {
  94. struct adf4350_state *st = iio_priv(indio_dev);
  95. int ret;
  96. if (reg > ADF4350_REG5)
  97. return -EINVAL;
  98. mutex_lock(&st->lock);
  99. if (readval == NULL) {
  100. st->regs[reg] = writeval & ~(BIT(0) | BIT(1) | BIT(2));
  101. ret = adf4350_sync_config(st);
  102. } else {
  103. *readval = st->regs_hw[reg];
  104. ret = 0;
  105. }
  106. mutex_unlock(&st->lock);
  107. return ret;
  108. }
  109. static int adf4350_tune_r_cnt(struct adf4350_state *st, unsigned short r_cnt)
  110. {
  111. struct adf4350_platform_data *pdata = st->pdata;
  112. do {
  113. r_cnt++;
  114. st->fpfd = (st->clkin * (pdata->ref_doubler_en ? 2 : 1)) /
  115. (r_cnt * (pdata->ref_div2_en ? 2 : 1));
  116. } while (st->fpfd > ADF4350_MAX_FREQ_PFD);
  117. return r_cnt;
  118. }
  119. static int adf4350_set_freq(struct adf4350_state *st, unsigned long long freq)
  120. {
  121. struct adf4350_platform_data *pdata = st->pdata;
  122. u64 tmp;
  123. u32 div_gcd, prescaler, chspc;
  124. u16 mdiv, r_cnt = 0;
  125. u8 band_sel_div;
  126. if (freq > ADF4350_MAX_OUT_FREQ || freq < st->min_out_freq)
  127. return -EINVAL;
  128. if (freq > ADF4350_MAX_FREQ_45_PRESC) {
  129. prescaler = ADF4350_REG1_PRESCALER;
  130. mdiv = 75;
  131. } else {
  132. prescaler = 0;
  133. mdiv = 23;
  134. }
  135. st->r4_rf_div_sel = 0;
  136. while (freq < ADF4350_MIN_VCO_FREQ) {
  137. freq <<= 1;
  138. st->r4_rf_div_sel++;
  139. }
  140. /*
  141. * Allow a predefined reference division factor
  142. * if not set, compute our own
  143. */
  144. if (pdata->ref_div_factor)
  145. r_cnt = pdata->ref_div_factor - 1;
  146. chspc = st->chspc;
  147. do {
  148. do {
  149. do {
  150. r_cnt = adf4350_tune_r_cnt(st, r_cnt);
  151. st->r1_mod = st->fpfd / chspc;
  152. if (r_cnt > ADF4350_MAX_R_CNT) {
  153. /* try higher spacing values */
  154. chspc++;
  155. r_cnt = 0;
  156. }
  157. } while ((st->r1_mod > ADF4350_MAX_MODULUS) && r_cnt);
  158. } while (r_cnt == 0);
  159. tmp = freq * (u64)st->r1_mod + (st->fpfd >> 1);
  160. do_div(tmp, st->fpfd); /* Div round closest (n + d/2)/d */
  161. st->r0_fract = do_div(tmp, st->r1_mod);
  162. st->r0_int = tmp;
  163. } while (mdiv > st->r0_int);
  164. band_sel_div = DIV_ROUND_UP(st->fpfd, ADF4350_MAX_BANDSEL_CLK);
  165. if (st->r0_fract && st->r1_mod) {
  166. div_gcd = gcd(st->r1_mod, st->r0_fract);
  167. st->r1_mod /= div_gcd;
  168. st->r0_fract /= div_gcd;
  169. } else {
  170. st->r0_fract = 0;
  171. st->r1_mod = 1;
  172. }
  173. dev_dbg(&st->spi->dev, "VCO: %llu Hz, PFD %lu Hz\n"
  174. "REF_DIV %d, R0_INT %d, R0_FRACT %d\n"
  175. "R1_MOD %d, RF_DIV %d\nPRESCALER %s, BAND_SEL_DIV %d\n",
  176. freq, st->fpfd, r_cnt, st->r0_int, st->r0_fract, st->r1_mod,
  177. 1 << st->r4_rf_div_sel, prescaler ? "8/9" : "4/5",
  178. band_sel_div);
  179. st->regs[ADF4350_REG0] = ADF4350_REG0_INT(st->r0_int) |
  180. ADF4350_REG0_FRACT(st->r0_fract);
  181. st->regs[ADF4350_REG1] = ADF4350_REG1_PHASE(1) |
  182. ADF4350_REG1_MOD(st->r1_mod) |
  183. prescaler;
  184. st->regs[ADF4350_REG2] =
  185. ADF4350_REG2_10BIT_R_CNT(r_cnt) |
  186. ADF4350_REG2_DOUBLE_BUFF_EN |
  187. (pdata->ref_doubler_en ? ADF4350_REG2_RMULT2_EN : 0) |
  188. (pdata->ref_div2_en ? ADF4350_REG2_RDIV2_EN : 0) |
  189. (pdata->r2_user_settings & (ADF4350_REG2_PD_POLARITY_POS |
  190. ADF4350_REG2_LDP_6ns | ADF4350_REG2_LDF_INT_N |
  191. ADF4350_REG2_CHARGE_PUMP_CURR_uA(5000) |
  192. ADF4350_REG2_MUXOUT(0x7) | ADF4350_REG2_NOISE_MODE(0x3)));
  193. st->regs[ADF4350_REG3] = pdata->r3_user_settings &
  194. (ADF4350_REG3_12BIT_CLKDIV(0xFFF) |
  195. ADF4350_REG3_12BIT_CLKDIV_MODE(0x3) |
  196. ADF4350_REG3_12BIT_CSR_EN |
  197. ADF4351_REG3_CHARGE_CANCELLATION_EN |
  198. ADF4351_REG3_ANTI_BACKLASH_3ns_EN |
  199. ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH);
  200. st->regs[ADF4350_REG4] =
  201. ADF4350_REG4_FEEDBACK_FUND |
  202. ADF4350_REG4_RF_DIV_SEL(st->r4_rf_div_sel) |
  203. ADF4350_REG4_8BIT_BAND_SEL_CLKDIV(band_sel_div) |
  204. ADF4350_REG4_RF_OUT_EN |
  205. (pdata->r4_user_settings &
  206. (ADF4350_REG4_OUTPUT_PWR(0x3) |
  207. ADF4350_REG4_AUX_OUTPUT_PWR(0x3) |
  208. ADF4350_REG4_AUX_OUTPUT_EN |
  209. ADF4350_REG4_AUX_OUTPUT_FUND |
  210. ADF4350_REG4_MUTE_TILL_LOCK_EN));
  211. st->regs[ADF4350_REG5] = ADF4350_REG5_LD_PIN_MODE_DIGITAL;
  212. st->freq_req = freq;
  213. return adf4350_sync_config(st);
  214. }
  215. static ssize_t adf4350_write(struct iio_dev *indio_dev,
  216. uintptr_t private,
  217. const struct iio_chan_spec *chan,
  218. const char *buf, size_t len)
  219. {
  220. struct adf4350_state *st = iio_priv(indio_dev);
  221. unsigned long long readin;
  222. unsigned long tmp;
  223. int ret;
  224. ret = kstrtoull(buf, 10, &readin);
  225. if (ret)
  226. return ret;
  227. mutex_lock(&st->lock);
  228. switch ((u32)private) {
  229. case ADF4350_FREQ:
  230. ret = adf4350_set_freq(st, readin);
  231. break;
  232. case ADF4350_FREQ_REFIN:
  233. if (readin > ADF4350_MAX_FREQ_REFIN) {
  234. ret = -EINVAL;
  235. break;
  236. }
  237. if (st->clk) {
  238. tmp = clk_round_rate(st->clk, readin);
  239. if (tmp != readin) {
  240. ret = -EINVAL;
  241. break;
  242. }
  243. ret = clk_set_rate(st->clk, tmp);
  244. if (ret < 0)
  245. break;
  246. }
  247. st->clkin = readin;
  248. ret = adf4350_set_freq(st, st->freq_req);
  249. break;
  250. case ADF4350_FREQ_RESOLUTION:
  251. if (readin == 0)
  252. ret = -EINVAL;
  253. else
  254. st->chspc = readin;
  255. break;
  256. case ADF4350_PWRDOWN:
  257. if (readin)
  258. st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN;
  259. else
  260. st->regs[ADF4350_REG2] &= ~ADF4350_REG2_POWER_DOWN_EN;
  261. adf4350_sync_config(st);
  262. break;
  263. default:
  264. ret = -EINVAL;
  265. }
  266. mutex_unlock(&st->lock);
  267. return ret ? ret : len;
  268. }
  269. static ssize_t adf4350_read(struct iio_dev *indio_dev,
  270. uintptr_t private,
  271. const struct iio_chan_spec *chan,
  272. char *buf)
  273. {
  274. struct adf4350_state *st = iio_priv(indio_dev);
  275. unsigned long long val;
  276. int ret = 0;
  277. mutex_lock(&st->lock);
  278. switch ((u32)private) {
  279. case ADF4350_FREQ:
  280. val = (u64)((st->r0_int * st->r1_mod) + st->r0_fract) *
  281. (u64)st->fpfd;
  282. do_div(val, st->r1_mod * (1 << st->r4_rf_div_sel));
  283. /* PLL unlocked? return error */
  284. if (st->lock_detect_gpiod)
  285. if (!gpiod_get_value(st->lock_detect_gpiod)) {
  286. dev_dbg(&st->spi->dev, "PLL un-locked\n");
  287. ret = -EBUSY;
  288. }
  289. break;
  290. case ADF4350_FREQ_REFIN:
  291. if (st->clk)
  292. st->clkin = clk_get_rate(st->clk);
  293. val = st->clkin;
  294. break;
  295. case ADF4350_FREQ_RESOLUTION:
  296. val = st->chspc;
  297. break;
  298. case ADF4350_PWRDOWN:
  299. val = !!(st->regs[ADF4350_REG2] & ADF4350_REG2_POWER_DOWN_EN);
  300. break;
  301. default:
  302. ret = -EINVAL;
  303. val = 0;
  304. }
  305. mutex_unlock(&st->lock);
  306. return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
  307. }
  308. #define _ADF4350_EXT_INFO(_name, _ident) { \
  309. .name = _name, \
  310. .read = adf4350_read, \
  311. .write = adf4350_write, \
  312. .private = _ident, \
  313. .shared = IIO_SEPARATE, \
  314. }
  315. static const struct iio_chan_spec_ext_info adf4350_ext_info[] = {
  316. /* Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
  317. * values > 2^32 in order to support the entire frequency range
  318. * in Hz. Using scale is a bit ugly.
  319. */
  320. _ADF4350_EXT_INFO("frequency", ADF4350_FREQ),
  321. _ADF4350_EXT_INFO("frequency_resolution", ADF4350_FREQ_RESOLUTION),
  322. _ADF4350_EXT_INFO("refin_frequency", ADF4350_FREQ_REFIN),
  323. _ADF4350_EXT_INFO("powerdown", ADF4350_PWRDOWN),
  324. { },
  325. };
  326. static const struct iio_chan_spec adf4350_chan = {
  327. .type = IIO_ALTVOLTAGE,
  328. .indexed = 1,
  329. .output = 1,
  330. .ext_info = adf4350_ext_info,
  331. };
  332. static const struct iio_info adf4350_info = {
  333. .debugfs_reg_access = &adf4350_reg_access,
  334. };
  335. static struct adf4350_platform_data *adf4350_parse_dt(struct device *dev)
  336. {
  337. struct adf4350_platform_data *pdata;
  338. unsigned int tmp;
  339. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  340. if (!pdata)
  341. return NULL;
  342. snprintf(pdata->name, sizeof(pdata->name), "%pfw", dev_fwnode(dev));
  343. tmp = 10000;
  344. device_property_read_u32(dev, "adi,channel-spacing", &tmp);
  345. pdata->channel_spacing = tmp;
  346. tmp = 0;
  347. device_property_read_u32(dev, "adi,power-up-frequency", &tmp);
  348. pdata->power_up_frequency = tmp;
  349. tmp = 0;
  350. device_property_read_u32(dev, "adi,reference-div-factor", &tmp);
  351. pdata->ref_div_factor = tmp;
  352. pdata->ref_doubler_en = device_property_read_bool(dev, "adi,reference-doubler-enable");
  353. pdata->ref_div2_en = device_property_read_bool(dev, "adi,reference-div2-enable");
  354. /* r2_user_settings */
  355. pdata->r2_user_settings = 0;
  356. if (device_property_read_bool(dev, "adi,phase-detector-polarity-positive-enable"))
  357. pdata->r2_user_settings |= ADF4350_REG2_PD_POLARITY_POS;
  358. if (device_property_read_bool(dev, "adi,lock-detect-precision-6ns-enable"))
  359. pdata->r2_user_settings |= ADF4350_REG2_LDP_6ns;
  360. if (device_property_read_bool(dev, "adi,lock-detect-function-integer-n-enable"))
  361. pdata->r2_user_settings |= ADF4350_REG2_LDF_INT_N;
  362. tmp = 2500;
  363. device_property_read_u32(dev, "adi,charge-pump-current", &tmp);
  364. pdata->r2_user_settings |= ADF4350_REG2_CHARGE_PUMP_CURR_uA(tmp);
  365. tmp = 0;
  366. device_property_read_u32(dev, "adi,muxout-select", &tmp);
  367. pdata->r2_user_settings |= ADF4350_REG2_MUXOUT(tmp);
  368. if (device_property_read_bool(dev, "adi,low-spur-mode-enable"))
  369. pdata->r2_user_settings |= ADF4350_REG2_NOISE_MODE(0x3);
  370. /* r3_user_settings */
  371. pdata->r3_user_settings = 0;
  372. if (device_property_read_bool(dev, "adi,cycle-slip-reduction-enable"))
  373. pdata->r3_user_settings |= ADF4350_REG3_12BIT_CSR_EN;
  374. if (device_property_read_bool(dev, "adi,charge-cancellation-enable"))
  375. pdata->r3_user_settings |= ADF4351_REG3_CHARGE_CANCELLATION_EN;
  376. if (device_property_read_bool(dev, "adi,anti-backlash-3ns-enable"))
  377. pdata->r3_user_settings |= ADF4351_REG3_ANTI_BACKLASH_3ns_EN;
  378. if (device_property_read_bool(dev, "adi,band-select-clock-mode-high-enable"))
  379. pdata->r3_user_settings |= ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH;
  380. tmp = 0;
  381. device_property_read_u32(dev, "adi,12bit-clk-divider", &tmp);
  382. pdata->r3_user_settings |= ADF4350_REG3_12BIT_CLKDIV(tmp);
  383. tmp = 0;
  384. device_property_read_u32(dev, "adi,clk-divider-mode", &tmp);
  385. pdata->r3_user_settings |= ADF4350_REG3_12BIT_CLKDIV_MODE(tmp);
  386. /* r4_user_settings */
  387. pdata->r4_user_settings = 0;
  388. if (device_property_read_bool(dev, "adi,aux-output-enable"))
  389. pdata->r4_user_settings |= ADF4350_REG4_AUX_OUTPUT_EN;
  390. if (device_property_read_bool(dev, "adi,aux-output-fundamental-enable"))
  391. pdata->r4_user_settings |= ADF4350_REG4_AUX_OUTPUT_FUND;
  392. if (device_property_read_bool(dev, "adi,mute-till-lock-enable"))
  393. pdata->r4_user_settings |= ADF4350_REG4_MUTE_TILL_LOCK_EN;
  394. tmp = 0;
  395. device_property_read_u32(dev, "adi,output-power", &tmp);
  396. pdata->r4_user_settings |= ADF4350_REG4_OUTPUT_PWR(tmp);
  397. tmp = 0;
  398. device_property_read_u32(dev, "adi,aux-output-power", &tmp);
  399. pdata->r4_user_settings |= ADF4350_REG4_AUX_OUTPUT_PWR(tmp);
  400. return pdata;
  401. }
  402. static void adf4350_power_down(void *data)
  403. {
  404. struct iio_dev *indio_dev = data;
  405. struct adf4350_state *st = iio_priv(indio_dev);
  406. st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN;
  407. adf4350_sync_config(st);
  408. }
  409. static int adf4350_probe(struct spi_device *spi)
  410. {
  411. struct adf4350_platform_data *pdata;
  412. struct iio_dev *indio_dev;
  413. struct adf4350_state *st;
  414. struct clk *clk = NULL;
  415. int ret;
  416. if (dev_fwnode(&spi->dev)) {
  417. pdata = adf4350_parse_dt(&spi->dev);
  418. if (pdata == NULL)
  419. return -EINVAL;
  420. } else {
  421. pdata = spi->dev.platform_data;
  422. }
  423. if (!pdata) {
  424. dev_warn(&spi->dev, "no platform data? using default\n");
  425. pdata = &default_pdata;
  426. }
  427. if (!pdata->clkin) {
  428. clk = devm_clk_get_enabled(&spi->dev, "clkin");
  429. if (IS_ERR(clk))
  430. return PTR_ERR(clk);
  431. }
  432. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
  433. if (indio_dev == NULL)
  434. return -ENOMEM;
  435. st = iio_priv(indio_dev);
  436. ret = devm_regulator_get_enable(&spi->dev, "vcc");
  437. if (ret)
  438. return ret;
  439. st->spi = spi;
  440. st->pdata = pdata;
  441. indio_dev->name = (pdata->name[0] != 0) ? pdata->name :
  442. spi_get_device_id(spi)->name;
  443. indio_dev->info = &adf4350_info;
  444. indio_dev->modes = INDIO_DIRECT_MODE;
  445. indio_dev->channels = &adf4350_chan;
  446. indio_dev->num_channels = 1;
  447. mutex_init(&st->lock);
  448. st->chspc = pdata->channel_spacing;
  449. if (clk) {
  450. st->clk = clk;
  451. st->clkin = clk_get_rate(clk);
  452. } else {
  453. st->clkin = pdata->clkin;
  454. }
  455. st->min_out_freq = spi_get_device_id(spi)->driver_data == 4351 ?
  456. ADF4351_MIN_OUT_FREQ : ADF4350_MIN_OUT_FREQ;
  457. memset(st->regs_hw, 0xFF, sizeof(st->regs_hw));
  458. st->lock_detect_gpiod = devm_gpiod_get_optional(&spi->dev, NULL,
  459. GPIOD_IN);
  460. if (IS_ERR(st->lock_detect_gpiod))
  461. return PTR_ERR(st->lock_detect_gpiod);
  462. if (pdata->power_up_frequency) {
  463. ret = adf4350_set_freq(st, pdata->power_up_frequency);
  464. if (ret)
  465. return ret;
  466. }
  467. ret = devm_add_action_or_reset(&spi->dev, adf4350_power_down, indio_dev);
  468. if (ret)
  469. return dev_err_probe(&spi->dev, ret,
  470. "Failed to add action to managed power down\n");
  471. return devm_iio_device_register(&spi->dev, indio_dev);
  472. }
  473. static const struct of_device_id adf4350_of_match[] = {
  474. { .compatible = "adi,adf4350", },
  475. { .compatible = "adi,adf4351", },
  476. { /* sentinel */ },
  477. };
  478. MODULE_DEVICE_TABLE(of, adf4350_of_match);
  479. static const struct spi_device_id adf4350_id[] = {
  480. {"adf4350", 4350},
  481. {"adf4351", 4351},
  482. {}
  483. };
  484. MODULE_DEVICE_TABLE(spi, adf4350_id);
  485. static struct spi_driver adf4350_driver = {
  486. .driver = {
  487. .name = "adf4350",
  488. .of_match_table = adf4350_of_match,
  489. },
  490. .probe = adf4350_probe,
  491. .id_table = adf4350_id,
  492. };
  493. module_spi_driver(adf4350_driver);
  494. MODULE_AUTHOR("Michael Hennerich <[email protected]>");
  495. MODULE_DESCRIPTION("Analog Devices ADF4350/ADF4351 PLL");
  496. MODULE_LICENSE("GPL v2");