ad5764.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Analog devices AD5764, AD5764R, AD5744, AD5744R quad-channel
  4. * Digital to Analog Converters driver
  5. *
  6. * Copyright 2011 Analog Devices Inc.
  7. */
  8. #include <linux/device.h>
  9. #include <linux/err.h>
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/spi/spi.h>
  13. #include <linux/slab.h>
  14. #include <linux/sysfs.h>
  15. #include <linux/regulator/consumer.h>
  16. #include <linux/iio/iio.h>
  17. #include <linux/iio/sysfs.h>
  18. #define AD5764_REG_SF_NOP 0x0
  19. #define AD5764_REG_SF_CONFIG 0x1
  20. #define AD5764_REG_SF_CLEAR 0x4
  21. #define AD5764_REG_SF_LOAD 0x5
  22. #define AD5764_REG_DATA(x) ((2 << 3) | (x))
  23. #define AD5764_REG_COARSE_GAIN(x) ((3 << 3) | (x))
  24. #define AD5764_REG_FINE_GAIN(x) ((4 << 3) | (x))
  25. #define AD5764_REG_OFFSET(x) ((5 << 3) | (x))
  26. #define AD5764_NUM_CHANNELS 4
  27. /**
  28. * struct ad5764_chip_info - chip specific information
  29. * @int_vref: Value of the internal reference voltage in uV - 0 if external
  30. * reference voltage is used
  31. * @channels: channel specification
  32. */
  33. struct ad5764_chip_info {
  34. unsigned long int_vref;
  35. const struct iio_chan_spec *channels;
  36. };
  37. /**
  38. * struct ad5764_state - driver instance specific data
  39. * @spi: spi_device
  40. * @chip_info: chip info
  41. * @vref_reg: vref supply regulators
  42. * @lock: lock to protect the data buffer during SPI ops
  43. * @data: spi transfer buffers
  44. */
  45. struct ad5764_state {
  46. struct spi_device *spi;
  47. const struct ad5764_chip_info *chip_info;
  48. struct regulator_bulk_data vref_reg[2];
  49. struct mutex lock;
  50. /*
  51. * DMA (thus cache coherency maintenance) may require the
  52. * transfer buffers to live in their own cache lines.
  53. */
  54. union {
  55. __be32 d32;
  56. u8 d8[4];
  57. } data[2] __aligned(IIO_DMA_MINALIGN);
  58. };
  59. enum ad5764_type {
  60. ID_AD5744,
  61. ID_AD5744R,
  62. ID_AD5764,
  63. ID_AD5764R,
  64. };
  65. #define AD5764_CHANNEL(_chan, _bits) { \
  66. .type = IIO_VOLTAGE, \
  67. .indexed = 1, \
  68. .output = 1, \
  69. .channel = (_chan), \
  70. .address = (_chan), \
  71. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  72. BIT(IIO_CHAN_INFO_SCALE) | \
  73. BIT(IIO_CHAN_INFO_CALIBSCALE) | \
  74. BIT(IIO_CHAN_INFO_CALIBBIAS), \
  75. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET), \
  76. .scan_type = { \
  77. .sign = 'u', \
  78. .realbits = (_bits), \
  79. .storagebits = 16, \
  80. .shift = 16 - (_bits), \
  81. }, \
  82. }
  83. #define DECLARE_AD5764_CHANNELS(_name, _bits) \
  84. const struct iio_chan_spec _name##_channels[] = { \
  85. AD5764_CHANNEL(0, (_bits)), \
  86. AD5764_CHANNEL(1, (_bits)), \
  87. AD5764_CHANNEL(2, (_bits)), \
  88. AD5764_CHANNEL(3, (_bits)), \
  89. };
  90. static DECLARE_AD5764_CHANNELS(ad5764, 16);
  91. static DECLARE_AD5764_CHANNELS(ad5744, 14);
  92. static const struct ad5764_chip_info ad5764_chip_infos[] = {
  93. [ID_AD5744] = {
  94. .int_vref = 0,
  95. .channels = ad5744_channels,
  96. },
  97. [ID_AD5744R] = {
  98. .int_vref = 5000000,
  99. .channels = ad5744_channels,
  100. },
  101. [ID_AD5764] = {
  102. .int_vref = 0,
  103. .channels = ad5764_channels,
  104. },
  105. [ID_AD5764R] = {
  106. .int_vref = 5000000,
  107. .channels = ad5764_channels,
  108. },
  109. };
  110. static int ad5764_write(struct iio_dev *indio_dev, unsigned int reg,
  111. unsigned int val)
  112. {
  113. struct ad5764_state *st = iio_priv(indio_dev);
  114. int ret;
  115. mutex_lock(&st->lock);
  116. st->data[0].d32 = cpu_to_be32((reg << 16) | val);
  117. ret = spi_write(st->spi, &st->data[0].d8[1], 3);
  118. mutex_unlock(&st->lock);
  119. return ret;
  120. }
  121. static int ad5764_read(struct iio_dev *indio_dev, unsigned int reg,
  122. unsigned int *val)
  123. {
  124. struct ad5764_state *st = iio_priv(indio_dev);
  125. int ret;
  126. struct spi_transfer t[] = {
  127. {
  128. .tx_buf = &st->data[0].d8[1],
  129. .len = 3,
  130. .cs_change = 1,
  131. }, {
  132. .rx_buf = &st->data[1].d8[1],
  133. .len = 3,
  134. },
  135. };
  136. mutex_lock(&st->lock);
  137. st->data[0].d32 = cpu_to_be32((1 << 23) | (reg << 16));
  138. ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
  139. if (ret >= 0)
  140. *val = be32_to_cpu(st->data[1].d32) & 0xffff;
  141. mutex_unlock(&st->lock);
  142. return ret;
  143. }
  144. static int ad5764_chan_info_to_reg(struct iio_chan_spec const *chan, long info)
  145. {
  146. switch (info) {
  147. case IIO_CHAN_INFO_RAW:
  148. return AD5764_REG_DATA(chan->address);
  149. case IIO_CHAN_INFO_CALIBBIAS:
  150. return AD5764_REG_OFFSET(chan->address);
  151. case IIO_CHAN_INFO_CALIBSCALE:
  152. return AD5764_REG_FINE_GAIN(chan->address);
  153. default:
  154. break;
  155. }
  156. return 0;
  157. }
  158. static int ad5764_write_raw(struct iio_dev *indio_dev,
  159. struct iio_chan_spec const *chan, int val, int val2, long info)
  160. {
  161. const int max_val = (1 << chan->scan_type.realbits);
  162. unsigned int reg;
  163. switch (info) {
  164. case IIO_CHAN_INFO_RAW:
  165. if (val >= max_val || val < 0)
  166. return -EINVAL;
  167. val <<= chan->scan_type.shift;
  168. break;
  169. case IIO_CHAN_INFO_CALIBBIAS:
  170. if (val >= 128 || val < -128)
  171. return -EINVAL;
  172. break;
  173. case IIO_CHAN_INFO_CALIBSCALE:
  174. if (val >= 32 || val < -32)
  175. return -EINVAL;
  176. break;
  177. default:
  178. return -EINVAL;
  179. }
  180. reg = ad5764_chan_info_to_reg(chan, info);
  181. return ad5764_write(indio_dev, reg, (u16)val);
  182. }
  183. static int ad5764_get_channel_vref(struct ad5764_state *st,
  184. unsigned int channel)
  185. {
  186. if (st->chip_info->int_vref)
  187. return st->chip_info->int_vref;
  188. else
  189. return regulator_get_voltage(st->vref_reg[channel / 2].consumer);
  190. }
  191. static int ad5764_read_raw(struct iio_dev *indio_dev,
  192. struct iio_chan_spec const *chan, int *val, int *val2, long info)
  193. {
  194. struct ad5764_state *st = iio_priv(indio_dev);
  195. unsigned int reg;
  196. int vref;
  197. int ret;
  198. switch (info) {
  199. case IIO_CHAN_INFO_RAW:
  200. reg = AD5764_REG_DATA(chan->address);
  201. ret = ad5764_read(indio_dev, reg, val);
  202. if (ret < 0)
  203. return ret;
  204. *val >>= chan->scan_type.shift;
  205. return IIO_VAL_INT;
  206. case IIO_CHAN_INFO_CALIBBIAS:
  207. reg = AD5764_REG_OFFSET(chan->address);
  208. ret = ad5764_read(indio_dev, reg, val);
  209. if (ret < 0)
  210. return ret;
  211. *val = sign_extend32(*val, 7);
  212. return IIO_VAL_INT;
  213. case IIO_CHAN_INFO_CALIBSCALE:
  214. reg = AD5764_REG_FINE_GAIN(chan->address);
  215. ret = ad5764_read(indio_dev, reg, val);
  216. if (ret < 0)
  217. return ret;
  218. *val = sign_extend32(*val, 5);
  219. return IIO_VAL_INT;
  220. case IIO_CHAN_INFO_SCALE:
  221. /* vout = 4 * vref + ((dac_code / 65536) - 0.5) */
  222. vref = ad5764_get_channel_vref(st, chan->channel);
  223. if (vref < 0)
  224. return vref;
  225. *val = vref * 4 / 1000;
  226. *val2 = chan->scan_type.realbits;
  227. return IIO_VAL_FRACTIONAL_LOG2;
  228. case IIO_CHAN_INFO_OFFSET:
  229. *val = -(1 << chan->scan_type.realbits) / 2;
  230. return IIO_VAL_INT;
  231. }
  232. return -EINVAL;
  233. }
  234. static const struct iio_info ad5764_info = {
  235. .read_raw = ad5764_read_raw,
  236. .write_raw = ad5764_write_raw,
  237. };
  238. static int ad5764_probe(struct spi_device *spi)
  239. {
  240. enum ad5764_type type = spi_get_device_id(spi)->driver_data;
  241. struct iio_dev *indio_dev;
  242. struct ad5764_state *st;
  243. int ret;
  244. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
  245. if (indio_dev == NULL) {
  246. dev_err(&spi->dev, "Failed to allocate iio device\n");
  247. return -ENOMEM;
  248. }
  249. st = iio_priv(indio_dev);
  250. spi_set_drvdata(spi, indio_dev);
  251. st->spi = spi;
  252. st->chip_info = &ad5764_chip_infos[type];
  253. indio_dev->name = spi_get_device_id(spi)->name;
  254. indio_dev->info = &ad5764_info;
  255. indio_dev->modes = INDIO_DIRECT_MODE;
  256. indio_dev->num_channels = AD5764_NUM_CHANNELS;
  257. indio_dev->channels = st->chip_info->channels;
  258. mutex_init(&st->lock);
  259. if (st->chip_info->int_vref == 0) {
  260. st->vref_reg[0].supply = "vrefAB";
  261. st->vref_reg[1].supply = "vrefCD";
  262. ret = devm_regulator_bulk_get(&st->spi->dev,
  263. ARRAY_SIZE(st->vref_reg), st->vref_reg);
  264. if (ret) {
  265. dev_err(&spi->dev, "Failed to request vref regulators: %d\n",
  266. ret);
  267. return ret;
  268. }
  269. ret = regulator_bulk_enable(ARRAY_SIZE(st->vref_reg),
  270. st->vref_reg);
  271. if (ret) {
  272. dev_err(&spi->dev, "Failed to enable vref regulators: %d\n",
  273. ret);
  274. return ret;
  275. }
  276. }
  277. ret = iio_device_register(indio_dev);
  278. if (ret) {
  279. dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
  280. goto error_disable_reg;
  281. }
  282. return 0;
  283. error_disable_reg:
  284. if (st->chip_info->int_vref == 0)
  285. regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
  286. return ret;
  287. }
  288. static void ad5764_remove(struct spi_device *spi)
  289. {
  290. struct iio_dev *indio_dev = spi_get_drvdata(spi);
  291. struct ad5764_state *st = iio_priv(indio_dev);
  292. iio_device_unregister(indio_dev);
  293. if (st->chip_info->int_vref == 0)
  294. regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
  295. }
  296. static const struct spi_device_id ad5764_ids[] = {
  297. { "ad5744", ID_AD5744 },
  298. { "ad5744r", ID_AD5744R },
  299. { "ad5764", ID_AD5764 },
  300. { "ad5764r", ID_AD5764R },
  301. { }
  302. };
  303. MODULE_DEVICE_TABLE(spi, ad5764_ids);
  304. static struct spi_driver ad5764_driver = {
  305. .driver = {
  306. .name = "ad5764",
  307. },
  308. .probe = ad5764_probe,
  309. .remove = ad5764_remove,
  310. .id_table = ad5764_ids,
  311. };
  312. module_spi_driver(ad5764_driver);
  313. MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>");
  314. MODULE_DESCRIPTION("Analog Devices AD5744/AD5744R/AD5764/AD5764R DAC");
  315. MODULE_LICENSE("GPL v2");