nct7802.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * nct7802 - Driver for Nuvoton NCT7802Y
  4. *
  5. * Copyright (C) 2014 Guenter Roeck <[email protected]>
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/err.h>
  9. #include <linux/i2c.h>
  10. #include <linux/init.h>
  11. #include <linux/hwmon.h>
  12. #include <linux/hwmon-sysfs.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/module.h>
  15. #include <linux/mutex.h>
  16. #include <linux/regmap.h>
  17. #include <linux/slab.h>
  18. #define DRVNAME "nct7802"
  19. static const u8 REG_VOLTAGE[5] = { 0x09, 0x0a, 0x0c, 0x0d, 0x0e };
  20. static const u8 REG_VOLTAGE_LIMIT_LSB[2][5] = {
  21. { 0x46, 0x00, 0x40, 0x42, 0x44 },
  22. { 0x45, 0x00, 0x3f, 0x41, 0x43 },
  23. };
  24. static const u8 REG_VOLTAGE_LIMIT_MSB[5] = { 0x48, 0x00, 0x47, 0x47, 0x48 };
  25. static const u8 REG_VOLTAGE_LIMIT_MSB_SHIFT[2][5] = {
  26. { 0, 0, 4, 0, 4 },
  27. { 2, 0, 6, 2, 6 },
  28. };
  29. #define REG_BANK 0x00
  30. #define REG_TEMP_LSB 0x05
  31. #define REG_TEMP_PECI_LSB 0x08
  32. #define REG_VOLTAGE_LOW 0x0f
  33. #define REG_FANCOUNT_LOW 0x13
  34. #define REG_START 0x21
  35. #define REG_MODE 0x22 /* 7.2.32 Mode Selection Register */
  36. #define REG_PECI_ENABLE 0x23
  37. #define REG_FAN_ENABLE 0x24
  38. #define REG_VMON_ENABLE 0x25
  39. #define REG_PWM(x) (0x60 + (x))
  40. #define REG_SMARTFAN_EN(x) (0x64 + (x) / 2)
  41. #define SMARTFAN_EN_SHIFT(x) ((x) % 2 * 4)
  42. #define REG_VENDOR_ID 0xfd
  43. #define REG_CHIP_ID 0xfe
  44. #define REG_VERSION_ID 0xff
  45. /*
  46. * Resistance temperature detector (RTD) modes according to 7.2.32 Mode
  47. * Selection Register
  48. */
  49. #define RTD_MODE_CURRENT 0x1
  50. #define RTD_MODE_THERMISTOR 0x2
  51. #define RTD_MODE_VOLTAGE 0x3
  52. #define MODE_RTD_MASK 0x3
  53. #define MODE_LTD_EN 0x40
  54. /*
  55. * Bit offset for sensors modes in REG_MODE.
  56. * Valid for index 0..2, indicating RTD1..3.
  57. */
  58. #define MODE_BIT_OFFSET_RTD(index) ((index) * 2)
  59. /*
  60. * Data structures and manipulation thereof
  61. */
  62. struct nct7802_data {
  63. struct regmap *regmap;
  64. struct mutex access_lock; /* for multi-byte read and write operations */
  65. u8 in_status;
  66. struct mutex in_alarm_lock;
  67. };
  68. static ssize_t temp_type_show(struct device *dev,
  69. struct device_attribute *attr, char *buf)
  70. {
  71. struct nct7802_data *data = dev_get_drvdata(dev);
  72. struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
  73. unsigned int mode;
  74. int ret;
  75. ret = regmap_read(data->regmap, REG_MODE, &mode);
  76. if (ret < 0)
  77. return ret;
  78. return sprintf(buf, "%u\n", (mode >> (2 * sattr->index) & 3) + 2);
  79. }
  80. static ssize_t temp_type_store(struct device *dev,
  81. struct device_attribute *attr, const char *buf,
  82. size_t count)
  83. {
  84. struct nct7802_data *data = dev_get_drvdata(dev);
  85. struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
  86. unsigned int type;
  87. int err;
  88. err = kstrtouint(buf, 0, &type);
  89. if (err < 0)
  90. return err;
  91. if (sattr->index == 2 && type != 4) /* RD3 */
  92. return -EINVAL;
  93. if (type < 3 || type > 4)
  94. return -EINVAL;
  95. err = regmap_update_bits(data->regmap, REG_MODE,
  96. 3 << 2 * sattr->index, (type - 2) << 2 * sattr->index);
  97. return err ? : count;
  98. }
  99. static ssize_t pwm_mode_show(struct device *dev,
  100. struct device_attribute *attr, char *buf)
  101. {
  102. struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
  103. struct nct7802_data *data = dev_get_drvdata(dev);
  104. unsigned int regval;
  105. int ret;
  106. if (sattr->index > 1)
  107. return sprintf(buf, "1\n");
  108. ret = regmap_read(data->regmap, 0x5E, &regval);
  109. if (ret < 0)
  110. return ret;
  111. return sprintf(buf, "%u\n", !(regval & (1 << sattr->index)));
  112. }
  113. static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr,
  114. char *buf)
  115. {
  116. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  117. struct nct7802_data *data = dev_get_drvdata(dev);
  118. unsigned int val;
  119. int ret;
  120. if (!attr->index)
  121. return sprintf(buf, "255\n");
  122. ret = regmap_read(data->regmap, attr->index, &val);
  123. if (ret < 0)
  124. return ret;
  125. return sprintf(buf, "%d\n", val);
  126. }
  127. static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr,
  128. const char *buf, size_t count)
  129. {
  130. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  131. struct nct7802_data *data = dev_get_drvdata(dev);
  132. int err;
  133. u8 val;
  134. err = kstrtou8(buf, 0, &val);
  135. if (err < 0)
  136. return err;
  137. err = regmap_write(data->regmap, attr->index, val);
  138. return err ? : count;
  139. }
  140. static ssize_t pwm_enable_show(struct device *dev,
  141. struct device_attribute *attr, char *buf)
  142. {
  143. struct nct7802_data *data = dev_get_drvdata(dev);
  144. struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
  145. unsigned int reg, enabled;
  146. int ret;
  147. ret = regmap_read(data->regmap, REG_SMARTFAN_EN(sattr->index), &reg);
  148. if (ret < 0)
  149. return ret;
  150. enabled = reg >> SMARTFAN_EN_SHIFT(sattr->index) & 1;
  151. return sprintf(buf, "%u\n", enabled + 1);
  152. }
  153. static ssize_t pwm_enable_store(struct device *dev,
  154. struct device_attribute *attr,
  155. const char *buf, size_t count)
  156. {
  157. struct nct7802_data *data = dev_get_drvdata(dev);
  158. struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
  159. u8 val;
  160. int ret;
  161. ret = kstrtou8(buf, 0, &val);
  162. if (ret < 0)
  163. return ret;
  164. if (val < 1 || val > 2)
  165. return -EINVAL;
  166. ret = regmap_update_bits(data->regmap, REG_SMARTFAN_EN(sattr->index),
  167. 1 << SMARTFAN_EN_SHIFT(sattr->index),
  168. (val - 1) << SMARTFAN_EN_SHIFT(sattr->index));
  169. return ret ? : count;
  170. }
  171. static int nct7802_read_temp(struct nct7802_data *data,
  172. u8 reg_temp, u8 reg_temp_low, int *temp)
  173. {
  174. unsigned int t1, t2 = 0;
  175. int err;
  176. *temp = 0;
  177. mutex_lock(&data->access_lock);
  178. err = regmap_read(data->regmap, reg_temp, &t1);
  179. if (err < 0)
  180. goto abort;
  181. t1 <<= 8;
  182. if (reg_temp_low) { /* 11 bit data */
  183. err = regmap_read(data->regmap, reg_temp_low, &t2);
  184. if (err < 0)
  185. goto abort;
  186. }
  187. t1 |= t2 & 0xe0;
  188. *temp = (s16)t1 / 32 * 125;
  189. abort:
  190. mutex_unlock(&data->access_lock);
  191. return err;
  192. }
  193. static int nct7802_read_fan(struct nct7802_data *data, u8 reg_fan)
  194. {
  195. unsigned int f1, f2;
  196. int ret;
  197. mutex_lock(&data->access_lock);
  198. ret = regmap_read(data->regmap, reg_fan, &f1);
  199. if (ret < 0)
  200. goto abort;
  201. ret = regmap_read(data->regmap, REG_FANCOUNT_LOW, &f2);
  202. if (ret < 0)
  203. goto abort;
  204. ret = (f1 << 5) | (f2 >> 3);
  205. /* convert fan count to rpm */
  206. if (ret == 0x1fff) /* maximum value, assume fan is stopped */
  207. ret = 0;
  208. else if (ret)
  209. ret = DIV_ROUND_CLOSEST(1350000U, ret);
  210. abort:
  211. mutex_unlock(&data->access_lock);
  212. return ret;
  213. }
  214. static int nct7802_read_fan_min(struct nct7802_data *data, u8 reg_fan_low,
  215. u8 reg_fan_high)
  216. {
  217. unsigned int f1, f2;
  218. int ret;
  219. mutex_lock(&data->access_lock);
  220. ret = regmap_read(data->regmap, reg_fan_low, &f1);
  221. if (ret < 0)
  222. goto abort;
  223. ret = regmap_read(data->regmap, reg_fan_high, &f2);
  224. if (ret < 0)
  225. goto abort;
  226. ret = f1 | ((f2 & 0xf8) << 5);
  227. /* convert fan count to rpm */
  228. if (ret == 0x1fff) /* maximum value, assume no limit */
  229. ret = 0;
  230. else if (ret)
  231. ret = DIV_ROUND_CLOSEST(1350000U, ret);
  232. else
  233. ret = 1350000U;
  234. abort:
  235. mutex_unlock(&data->access_lock);
  236. return ret;
  237. }
  238. static int nct7802_write_fan_min(struct nct7802_data *data, u8 reg_fan_low,
  239. u8 reg_fan_high, unsigned long limit)
  240. {
  241. int err;
  242. if (limit)
  243. limit = DIV_ROUND_CLOSEST(1350000U, limit);
  244. else
  245. limit = 0x1fff;
  246. limit = clamp_val(limit, 0, 0x1fff);
  247. mutex_lock(&data->access_lock);
  248. err = regmap_write(data->regmap, reg_fan_low, limit & 0xff);
  249. if (err < 0)
  250. goto abort;
  251. err = regmap_write(data->regmap, reg_fan_high, (limit & 0x1f00) >> 5);
  252. abort:
  253. mutex_unlock(&data->access_lock);
  254. return err;
  255. }
  256. static u8 nct7802_vmul[] = { 4, 2, 2, 2, 2 };
  257. static int nct7802_read_voltage(struct nct7802_data *data, int nr, int index)
  258. {
  259. unsigned int v1, v2;
  260. int ret;
  261. mutex_lock(&data->access_lock);
  262. if (index == 0) { /* voltage */
  263. ret = regmap_read(data->regmap, REG_VOLTAGE[nr], &v1);
  264. if (ret < 0)
  265. goto abort;
  266. ret = regmap_read(data->regmap, REG_VOLTAGE_LOW, &v2);
  267. if (ret < 0)
  268. goto abort;
  269. ret = ((v1 << 2) | (v2 >> 6)) * nct7802_vmul[nr];
  270. } else { /* limit */
  271. int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr];
  272. ret = regmap_read(data->regmap,
  273. REG_VOLTAGE_LIMIT_LSB[index - 1][nr], &v1);
  274. if (ret < 0)
  275. goto abort;
  276. ret = regmap_read(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr],
  277. &v2);
  278. if (ret < 0)
  279. goto abort;
  280. ret = (v1 | ((v2 << shift) & 0x300)) * nct7802_vmul[nr];
  281. }
  282. abort:
  283. mutex_unlock(&data->access_lock);
  284. return ret;
  285. }
  286. static int nct7802_write_voltage(struct nct7802_data *data, int nr, int index,
  287. unsigned long voltage)
  288. {
  289. int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr];
  290. int err;
  291. voltage = clamp_val(voltage, 0, 0x3ff * nct7802_vmul[nr]);
  292. voltage = DIV_ROUND_CLOSEST(voltage, nct7802_vmul[nr]);
  293. mutex_lock(&data->access_lock);
  294. err = regmap_write(data->regmap,
  295. REG_VOLTAGE_LIMIT_LSB[index - 1][nr],
  296. voltage & 0xff);
  297. if (err < 0)
  298. goto abort;
  299. err = regmap_update_bits(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr],
  300. 0x0300 >> shift, (voltage & 0x0300) >> shift);
  301. abort:
  302. mutex_unlock(&data->access_lock);
  303. return err;
  304. }
  305. static ssize_t in_show(struct device *dev, struct device_attribute *attr,
  306. char *buf)
  307. {
  308. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  309. struct nct7802_data *data = dev_get_drvdata(dev);
  310. int voltage;
  311. voltage = nct7802_read_voltage(data, sattr->nr, sattr->index);
  312. if (voltage < 0)
  313. return voltage;
  314. return sprintf(buf, "%d\n", voltage);
  315. }
  316. static ssize_t in_store(struct device *dev, struct device_attribute *attr,
  317. const char *buf, size_t count)
  318. {
  319. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  320. struct nct7802_data *data = dev_get_drvdata(dev);
  321. int index = sattr->index;
  322. int nr = sattr->nr;
  323. unsigned long val;
  324. int err;
  325. err = kstrtoul(buf, 10, &val);
  326. if (err < 0)
  327. return err;
  328. err = nct7802_write_voltage(data, nr, index, val);
  329. return err ? : count;
  330. }
  331. static ssize_t in_alarm_show(struct device *dev, struct device_attribute *attr,
  332. char *buf)
  333. {
  334. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  335. struct nct7802_data *data = dev_get_drvdata(dev);
  336. int volt, min, max, ret;
  337. unsigned int val;
  338. mutex_lock(&data->in_alarm_lock);
  339. /*
  340. * The SMI Voltage status register is the only register giving a status
  341. * for voltages. A bit is set for each input crossing a threshold, in
  342. * both direction, but the "inside" or "outside" limits info is not
  343. * available. Also this register is cleared on read.
  344. * Note: this is not explicitly spelled out in the datasheet, but
  345. * from experiment.
  346. * To deal with this we use a status cache with one validity bit and
  347. * one status bit for each input. Validity is cleared at startup and
  348. * each time the register reports a change, and the status is processed
  349. * by software based on current input value and limits.
  350. */
  351. ret = regmap_read(data->regmap, 0x1e, &val); /* SMI Voltage status */
  352. if (ret < 0)
  353. goto abort;
  354. /* invalidate cached status for all inputs crossing a threshold */
  355. data->in_status &= ~((val & 0x0f) << 4);
  356. /* if cached status for requested input is invalid, update it */
  357. if (!(data->in_status & (0x10 << sattr->index))) {
  358. ret = nct7802_read_voltage(data, sattr->nr, 0);
  359. if (ret < 0)
  360. goto abort;
  361. volt = ret;
  362. ret = nct7802_read_voltage(data, sattr->nr, 1);
  363. if (ret < 0)
  364. goto abort;
  365. min = ret;
  366. ret = nct7802_read_voltage(data, sattr->nr, 2);
  367. if (ret < 0)
  368. goto abort;
  369. max = ret;
  370. if (volt < min || volt > max)
  371. data->in_status |= (1 << sattr->index);
  372. else
  373. data->in_status &= ~(1 << sattr->index);
  374. data->in_status |= 0x10 << sattr->index;
  375. }
  376. ret = sprintf(buf, "%u\n", !!(data->in_status & (1 << sattr->index)));
  377. abort:
  378. mutex_unlock(&data->in_alarm_lock);
  379. return ret;
  380. }
  381. static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
  382. char *buf)
  383. {
  384. struct nct7802_data *data = dev_get_drvdata(dev);
  385. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  386. int err, temp;
  387. err = nct7802_read_temp(data, sattr->nr, sattr->index, &temp);
  388. if (err < 0)
  389. return err;
  390. return sprintf(buf, "%d\n", temp);
  391. }
  392. static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
  393. const char *buf, size_t count)
  394. {
  395. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  396. struct nct7802_data *data = dev_get_drvdata(dev);
  397. int nr = sattr->nr;
  398. long val;
  399. int err;
  400. err = kstrtol(buf, 10, &val);
  401. if (err < 0)
  402. return err;
  403. val = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000);
  404. err = regmap_write(data->regmap, nr, val & 0xff);
  405. return err ? : count;
  406. }
  407. static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
  408. char *buf)
  409. {
  410. struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
  411. struct nct7802_data *data = dev_get_drvdata(dev);
  412. int speed;
  413. speed = nct7802_read_fan(data, sattr->index);
  414. if (speed < 0)
  415. return speed;
  416. return sprintf(buf, "%d\n", speed);
  417. }
  418. static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
  419. char *buf)
  420. {
  421. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  422. struct nct7802_data *data = dev_get_drvdata(dev);
  423. int speed;
  424. speed = nct7802_read_fan_min(data, sattr->nr, sattr->index);
  425. if (speed < 0)
  426. return speed;
  427. return sprintf(buf, "%d\n", speed);
  428. }
  429. static ssize_t fan_min_store(struct device *dev,
  430. struct device_attribute *attr, const char *buf,
  431. size_t count)
  432. {
  433. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  434. struct nct7802_data *data = dev_get_drvdata(dev);
  435. unsigned long val;
  436. int err;
  437. err = kstrtoul(buf, 10, &val);
  438. if (err < 0)
  439. return err;
  440. err = nct7802_write_fan_min(data, sattr->nr, sattr->index, val);
  441. return err ? : count;
  442. }
  443. static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
  444. char *buf)
  445. {
  446. struct nct7802_data *data = dev_get_drvdata(dev);
  447. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  448. int bit = sattr->index;
  449. unsigned int val;
  450. int ret;
  451. ret = regmap_read(data->regmap, sattr->nr, &val);
  452. if (ret < 0)
  453. return ret;
  454. return sprintf(buf, "%u\n", !!(val & (1 << bit)));
  455. }
  456. static ssize_t
  457. beep_show(struct device *dev, struct device_attribute *attr, char *buf)
  458. {
  459. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  460. struct nct7802_data *data = dev_get_drvdata(dev);
  461. unsigned int regval;
  462. int err;
  463. err = regmap_read(data->regmap, sattr->nr, &regval);
  464. if (err)
  465. return err;
  466. return sprintf(buf, "%u\n", !!(regval & (1 << sattr->index)));
  467. }
  468. static ssize_t
  469. beep_store(struct device *dev, struct device_attribute *attr, const char *buf,
  470. size_t count)
  471. {
  472. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  473. struct nct7802_data *data = dev_get_drvdata(dev);
  474. unsigned long val;
  475. int err;
  476. err = kstrtoul(buf, 10, &val);
  477. if (err < 0)
  478. return err;
  479. if (val > 1)
  480. return -EINVAL;
  481. err = regmap_update_bits(data->regmap, sattr->nr, 1 << sattr->index,
  482. val ? 1 << sattr->index : 0);
  483. return err ? : count;
  484. }
  485. static SENSOR_DEVICE_ATTR_RW(temp1_type, temp_type, 0);
  486. static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, 0x01, REG_TEMP_LSB);
  487. static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, 0x31, 0);
  488. static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, 0x30, 0);
  489. static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, 0x3a, 0);
  490. static SENSOR_DEVICE_ATTR_RW(temp2_type, temp_type, 1);
  491. static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, 0x02, REG_TEMP_LSB);
  492. static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, 0x33, 0);
  493. static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, 0x32, 0);
  494. static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, 0x3b, 0);
  495. static SENSOR_DEVICE_ATTR_RW(temp3_type, temp_type, 2);
  496. static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, 0x03, REG_TEMP_LSB);
  497. static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, 0x35, 0);
  498. static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, 0x34, 0);
  499. static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, 0x3c, 0);
  500. static SENSOR_DEVICE_ATTR_2_RO(temp4_input, temp, 0x04, 0);
  501. static SENSOR_DEVICE_ATTR_2_RW(temp4_min, temp, 0x37, 0);
  502. static SENSOR_DEVICE_ATTR_2_RW(temp4_max, temp, 0x36, 0);
  503. static SENSOR_DEVICE_ATTR_2_RW(temp4_crit, temp, 0x3d, 0);
  504. static SENSOR_DEVICE_ATTR_2_RO(temp5_input, temp, 0x06, REG_TEMP_PECI_LSB);
  505. static SENSOR_DEVICE_ATTR_2_RW(temp5_min, temp, 0x39, 0);
  506. static SENSOR_DEVICE_ATTR_2_RW(temp5_max, temp, 0x38, 0);
  507. static SENSOR_DEVICE_ATTR_2_RW(temp5_crit, temp, 0x3e, 0);
  508. static SENSOR_DEVICE_ATTR_2_RO(temp6_input, temp, 0x07, REG_TEMP_PECI_LSB);
  509. static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, alarm, 0x18, 0);
  510. static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, alarm, 0x18, 1);
  511. static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, alarm, 0x18, 2);
  512. static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, alarm, 0x18, 3);
  513. static SENSOR_DEVICE_ATTR_2_RO(temp5_min_alarm, alarm, 0x18, 4);
  514. static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, alarm, 0x19, 0);
  515. static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, alarm, 0x19, 1);
  516. static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, alarm, 0x19, 2);
  517. static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, alarm, 0x19, 3);
  518. static SENSOR_DEVICE_ATTR_2_RO(temp5_max_alarm, alarm, 0x19, 4);
  519. static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, alarm, 0x1b, 0);
  520. static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, alarm, 0x1b, 1);
  521. static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, alarm, 0x1b, 2);
  522. static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, alarm, 0x1b, 3);
  523. static SENSOR_DEVICE_ATTR_2_RO(temp5_crit_alarm, alarm, 0x1b, 4);
  524. static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, alarm, 0x17, 0);
  525. static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, alarm, 0x17, 1);
  526. static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, alarm, 0x17, 2);
  527. static SENSOR_DEVICE_ATTR_2_RW(temp1_beep, beep, 0x5c, 0);
  528. static SENSOR_DEVICE_ATTR_2_RW(temp2_beep, beep, 0x5c, 1);
  529. static SENSOR_DEVICE_ATTR_2_RW(temp3_beep, beep, 0x5c, 2);
  530. static SENSOR_DEVICE_ATTR_2_RW(temp4_beep, beep, 0x5c, 3);
  531. static SENSOR_DEVICE_ATTR_2_RW(temp5_beep, beep, 0x5c, 4);
  532. static SENSOR_DEVICE_ATTR_2_RW(temp6_beep, beep, 0x5c, 5);
  533. static struct attribute *nct7802_temp_attrs[] = {
  534. &sensor_dev_attr_temp1_type.dev_attr.attr,
  535. &sensor_dev_attr_temp1_input.dev_attr.attr,
  536. &sensor_dev_attr_temp1_min.dev_attr.attr,
  537. &sensor_dev_attr_temp1_max.dev_attr.attr,
  538. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  539. &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
  540. &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
  541. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  542. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  543. &sensor_dev_attr_temp1_beep.dev_attr.attr,
  544. &sensor_dev_attr_temp2_type.dev_attr.attr, /* 10 */
  545. &sensor_dev_attr_temp2_input.dev_attr.attr,
  546. &sensor_dev_attr_temp2_min.dev_attr.attr,
  547. &sensor_dev_attr_temp2_max.dev_attr.attr,
  548. &sensor_dev_attr_temp2_crit.dev_attr.attr,
  549. &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
  550. &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
  551. &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
  552. &sensor_dev_attr_temp2_fault.dev_attr.attr,
  553. &sensor_dev_attr_temp2_beep.dev_attr.attr,
  554. &sensor_dev_attr_temp3_type.dev_attr.attr, /* 20 */
  555. &sensor_dev_attr_temp3_input.dev_attr.attr,
  556. &sensor_dev_attr_temp3_min.dev_attr.attr,
  557. &sensor_dev_attr_temp3_max.dev_attr.attr,
  558. &sensor_dev_attr_temp3_crit.dev_attr.attr,
  559. &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
  560. &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
  561. &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
  562. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  563. &sensor_dev_attr_temp3_beep.dev_attr.attr,
  564. &sensor_dev_attr_temp4_input.dev_attr.attr, /* 30 */
  565. &sensor_dev_attr_temp4_min.dev_attr.attr,
  566. &sensor_dev_attr_temp4_max.dev_attr.attr,
  567. &sensor_dev_attr_temp4_crit.dev_attr.attr,
  568. &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
  569. &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
  570. &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
  571. &sensor_dev_attr_temp4_beep.dev_attr.attr,
  572. &sensor_dev_attr_temp5_input.dev_attr.attr, /* 38 */
  573. &sensor_dev_attr_temp5_min.dev_attr.attr,
  574. &sensor_dev_attr_temp5_max.dev_attr.attr,
  575. &sensor_dev_attr_temp5_crit.dev_attr.attr,
  576. &sensor_dev_attr_temp5_min_alarm.dev_attr.attr,
  577. &sensor_dev_attr_temp5_max_alarm.dev_attr.attr,
  578. &sensor_dev_attr_temp5_crit_alarm.dev_attr.attr,
  579. &sensor_dev_attr_temp5_beep.dev_attr.attr,
  580. &sensor_dev_attr_temp6_input.dev_attr.attr, /* 46 */
  581. &sensor_dev_attr_temp6_beep.dev_attr.attr,
  582. NULL
  583. };
  584. static umode_t nct7802_temp_is_visible(struct kobject *kobj,
  585. struct attribute *attr, int index)
  586. {
  587. struct device *dev = kobj_to_dev(kobj);
  588. struct nct7802_data *data = dev_get_drvdata(dev);
  589. unsigned int reg;
  590. int err;
  591. err = regmap_read(data->regmap, REG_MODE, &reg);
  592. if (err < 0)
  593. return 0;
  594. if (index < 10 &&
  595. (reg & 03) != 0x01 && (reg & 0x03) != 0x02) /* RD1 */
  596. return 0;
  597. if (index >= 10 && index < 20 &&
  598. (reg & 0x0c) != 0x04 && (reg & 0x0c) != 0x08) /* RD2 */
  599. return 0;
  600. if (index >= 20 && index < 30 && (reg & 0x30) != 0x20) /* RD3 */
  601. return 0;
  602. if (index >= 30 && index < 38) /* local */
  603. return attr->mode;
  604. err = regmap_read(data->regmap, REG_PECI_ENABLE, &reg);
  605. if (err < 0)
  606. return 0;
  607. if (index >= 38 && index < 46 && !(reg & 0x01)) /* PECI 0 */
  608. return 0;
  609. if (index >= 46 && !(reg & 0x02)) /* PECI 1 */
  610. return 0;
  611. return attr->mode;
  612. }
  613. static const struct attribute_group nct7802_temp_group = {
  614. .attrs = nct7802_temp_attrs,
  615. .is_visible = nct7802_temp_is_visible,
  616. };
  617. static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, 0, 0);
  618. static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, 0, 1);
  619. static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, 0, 2);
  620. static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, in_alarm, 0, 3);
  621. static SENSOR_DEVICE_ATTR_2_RW(in0_beep, beep, 0x5a, 3);
  622. static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, 1, 0);
  623. static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, 2, 0);
  624. static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, 2, 1);
  625. static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, 2, 2);
  626. static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, in_alarm, 2, 0);
  627. static SENSOR_DEVICE_ATTR_2_RW(in2_beep, beep, 0x5a, 0);
  628. static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, 3, 0);
  629. static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, 3, 1);
  630. static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, 3, 2);
  631. static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, in_alarm, 3, 1);
  632. static SENSOR_DEVICE_ATTR_2_RW(in3_beep, beep, 0x5a, 1);
  633. static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, 4, 0);
  634. static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, 4, 1);
  635. static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, 4, 2);
  636. static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, in_alarm, 4, 2);
  637. static SENSOR_DEVICE_ATTR_2_RW(in4_beep, beep, 0x5a, 2);
  638. static struct attribute *nct7802_in_attrs[] = {
  639. &sensor_dev_attr_in0_input.dev_attr.attr,
  640. &sensor_dev_attr_in0_min.dev_attr.attr,
  641. &sensor_dev_attr_in0_max.dev_attr.attr,
  642. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  643. &sensor_dev_attr_in0_beep.dev_attr.attr,
  644. &sensor_dev_attr_in1_input.dev_attr.attr, /* 5 */
  645. &sensor_dev_attr_in2_input.dev_attr.attr, /* 6 */
  646. &sensor_dev_attr_in2_min.dev_attr.attr,
  647. &sensor_dev_attr_in2_max.dev_attr.attr,
  648. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  649. &sensor_dev_attr_in2_beep.dev_attr.attr,
  650. &sensor_dev_attr_in3_input.dev_attr.attr, /* 11 */
  651. &sensor_dev_attr_in3_min.dev_attr.attr,
  652. &sensor_dev_attr_in3_max.dev_attr.attr,
  653. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  654. &sensor_dev_attr_in3_beep.dev_attr.attr,
  655. &sensor_dev_attr_in4_input.dev_attr.attr, /* 16 */
  656. &sensor_dev_attr_in4_min.dev_attr.attr,
  657. &sensor_dev_attr_in4_max.dev_attr.attr,
  658. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  659. &sensor_dev_attr_in4_beep.dev_attr.attr,
  660. NULL,
  661. };
  662. static umode_t nct7802_in_is_visible(struct kobject *kobj,
  663. struct attribute *attr, int index)
  664. {
  665. struct device *dev = kobj_to_dev(kobj);
  666. struct nct7802_data *data = dev_get_drvdata(dev);
  667. unsigned int reg;
  668. int err;
  669. if (index < 6) /* VCC, VCORE */
  670. return attr->mode;
  671. err = regmap_read(data->regmap, REG_MODE, &reg);
  672. if (err < 0)
  673. return 0;
  674. if (index >= 6 && index < 11 && (reg & 0x03) != 0x03) /* VSEN1 */
  675. return 0;
  676. if (index >= 11 && index < 16 && (reg & 0x0c) != 0x0c) /* VSEN2 */
  677. return 0;
  678. if (index >= 16 && (reg & 0x30) != 0x30) /* VSEN3 */
  679. return 0;
  680. return attr->mode;
  681. }
  682. static const struct attribute_group nct7802_in_group = {
  683. .attrs = nct7802_in_attrs,
  684. .is_visible = nct7802_in_is_visible,
  685. };
  686. static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0x10);
  687. static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan_min, 0x49, 0x4c);
  688. static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, alarm, 0x1a, 0);
  689. static SENSOR_DEVICE_ATTR_2_RW(fan1_beep, beep, 0x5b, 0);
  690. static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 0x11);
  691. static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan_min, 0x4a, 0x4d);
  692. static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, alarm, 0x1a, 1);
  693. static SENSOR_DEVICE_ATTR_2_RW(fan2_beep, beep, 0x5b, 1);
  694. static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 0x12);
  695. static SENSOR_DEVICE_ATTR_2_RW(fan3_min, fan_min, 0x4b, 0x4e);
  696. static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, alarm, 0x1a, 2);
  697. static SENSOR_DEVICE_ATTR_2_RW(fan3_beep, beep, 0x5b, 2);
  698. /* 7.2.89 Fan Control Output Type */
  699. static SENSOR_DEVICE_ATTR_RO(pwm1_mode, pwm_mode, 0);
  700. static SENSOR_DEVICE_ATTR_RO(pwm2_mode, pwm_mode, 1);
  701. static SENSOR_DEVICE_ATTR_RO(pwm3_mode, pwm_mode, 2);
  702. /* 7.2.91... Fan Control Output Value */
  703. static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, REG_PWM(0));
  704. static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, REG_PWM(1));
  705. static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, REG_PWM(2));
  706. /* 7.2.95... Temperature to Fan mapping Relationships Register */
  707. static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
  708. static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
  709. static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
  710. static struct attribute *nct7802_fan_attrs[] = {
  711. &sensor_dev_attr_fan1_input.dev_attr.attr,
  712. &sensor_dev_attr_fan1_min.dev_attr.attr,
  713. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  714. &sensor_dev_attr_fan1_beep.dev_attr.attr,
  715. &sensor_dev_attr_fan2_input.dev_attr.attr,
  716. &sensor_dev_attr_fan2_min.dev_attr.attr,
  717. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  718. &sensor_dev_attr_fan2_beep.dev_attr.attr,
  719. &sensor_dev_attr_fan3_input.dev_attr.attr,
  720. &sensor_dev_attr_fan3_min.dev_attr.attr,
  721. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  722. &sensor_dev_attr_fan3_beep.dev_attr.attr,
  723. NULL
  724. };
  725. static umode_t nct7802_fan_is_visible(struct kobject *kobj,
  726. struct attribute *attr, int index)
  727. {
  728. struct device *dev = kobj_to_dev(kobj);
  729. struct nct7802_data *data = dev_get_drvdata(dev);
  730. int fan = index / 4; /* 4 attributes per fan */
  731. unsigned int reg;
  732. int err;
  733. err = regmap_read(data->regmap, REG_FAN_ENABLE, &reg);
  734. if (err < 0 || !(reg & (1 << fan)))
  735. return 0;
  736. return attr->mode;
  737. }
  738. static const struct attribute_group nct7802_fan_group = {
  739. .attrs = nct7802_fan_attrs,
  740. .is_visible = nct7802_fan_is_visible,
  741. };
  742. static struct attribute *nct7802_pwm_attrs[] = {
  743. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  744. &sensor_dev_attr_pwm1_mode.dev_attr.attr,
  745. &sensor_dev_attr_pwm1.dev_attr.attr,
  746. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  747. &sensor_dev_attr_pwm2_mode.dev_attr.attr,
  748. &sensor_dev_attr_pwm2.dev_attr.attr,
  749. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  750. &sensor_dev_attr_pwm3_mode.dev_attr.attr,
  751. &sensor_dev_attr_pwm3.dev_attr.attr,
  752. NULL
  753. };
  754. static const struct attribute_group nct7802_pwm_group = {
  755. .attrs = nct7802_pwm_attrs,
  756. };
  757. /* 7.2.115... 0x80-0x83, 0x84 Temperature (X-axis) transition */
  758. static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, temp, 0x80, 0);
  759. static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, temp, 0x81, 0);
  760. static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, temp, 0x82, 0);
  761. static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, temp, 0x83, 0);
  762. static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, temp, 0x84, 0);
  763. /* 7.2.120... 0x85-0x88 PWM (Y-axis) transition */
  764. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm, 0x85);
  765. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm, 0x86);
  766. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_pwm, pwm, 0x87);
  767. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_pwm, pwm, 0x88);
  768. static SENSOR_DEVICE_ATTR_RO(pwm1_auto_point5_pwm, pwm, 0);
  769. /* 7.2.124 Table 2 X-axis Transition Point 1 Register */
  770. static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, temp, 0x90, 0);
  771. static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, temp, 0x91, 0);
  772. static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, temp, 0x92, 0);
  773. static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, temp, 0x93, 0);
  774. static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, temp, 0x94, 0);
  775. /* 7.2.129 Table 2 Y-axis Transition Point 1 Register */
  776. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm, 0x95);
  777. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm, 0x96);
  778. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point3_pwm, pwm, 0x97);
  779. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point4_pwm, pwm, 0x98);
  780. static SENSOR_DEVICE_ATTR_RO(pwm2_auto_point5_pwm, pwm, 0);
  781. /* 7.2.133 Table 3 X-axis Transition Point 1 Register */
  782. static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, temp, 0xA0, 0);
  783. static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, temp, 0xA1, 0);
  784. static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, temp, 0xA2, 0);
  785. static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, temp, 0xA3, 0);
  786. static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, temp, 0xA4, 0);
  787. /* 7.2.138 Table 3 Y-axis Transition Point 1 Register */
  788. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm, 0xA5);
  789. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm, 0xA6);
  790. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point3_pwm, pwm, 0xA7);
  791. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point4_pwm, pwm, 0xA8);
  792. static SENSOR_DEVICE_ATTR_RO(pwm3_auto_point5_pwm, pwm, 0);
  793. static struct attribute *nct7802_auto_point_attrs[] = {
  794. &sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
  795. &sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
  796. &sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
  797. &sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
  798. &sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr,
  799. &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
  800. &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
  801. &sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
  802. &sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr,
  803. &sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr,
  804. &sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr,
  805. &sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr,
  806. &sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr,
  807. &sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr,
  808. &sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr,
  809. &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
  810. &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
  811. &sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr,
  812. &sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr,
  813. &sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr,
  814. &sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr,
  815. &sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr,
  816. &sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr,
  817. &sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr,
  818. &sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr,
  819. &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
  820. &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
  821. &sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr,
  822. &sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr,
  823. &sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr,
  824. NULL
  825. };
  826. static const struct attribute_group nct7802_auto_point_group = {
  827. .attrs = nct7802_auto_point_attrs,
  828. };
  829. static const struct attribute_group *nct7802_groups[] = {
  830. &nct7802_temp_group,
  831. &nct7802_in_group,
  832. &nct7802_fan_group,
  833. &nct7802_pwm_group,
  834. &nct7802_auto_point_group,
  835. NULL
  836. };
  837. static int nct7802_detect(struct i2c_client *client,
  838. struct i2c_board_info *info)
  839. {
  840. int reg;
  841. /*
  842. * Chip identification registers are only available in bank 0,
  843. * so only attempt chip detection if bank 0 is selected
  844. */
  845. reg = i2c_smbus_read_byte_data(client, REG_BANK);
  846. if (reg != 0x00)
  847. return -ENODEV;
  848. reg = i2c_smbus_read_byte_data(client, REG_VENDOR_ID);
  849. if (reg != 0x50)
  850. return -ENODEV;
  851. reg = i2c_smbus_read_byte_data(client, REG_CHIP_ID);
  852. if (reg != 0xc3)
  853. return -ENODEV;
  854. reg = i2c_smbus_read_byte_data(client, REG_VERSION_ID);
  855. if (reg < 0 || (reg & 0xf0) != 0x20)
  856. return -ENODEV;
  857. /* Also validate lower bits of voltage and temperature registers */
  858. reg = i2c_smbus_read_byte_data(client, REG_TEMP_LSB);
  859. if (reg < 0 || (reg & 0x1f))
  860. return -ENODEV;
  861. reg = i2c_smbus_read_byte_data(client, REG_TEMP_PECI_LSB);
  862. if (reg < 0 || (reg & 0x3f))
  863. return -ENODEV;
  864. reg = i2c_smbus_read_byte_data(client, REG_VOLTAGE_LOW);
  865. if (reg < 0 || (reg & 0x3f))
  866. return -ENODEV;
  867. strscpy(info->type, "nct7802", I2C_NAME_SIZE);
  868. return 0;
  869. }
  870. static bool nct7802_regmap_is_volatile(struct device *dev, unsigned int reg)
  871. {
  872. return (reg != REG_BANK && reg <= 0x20) ||
  873. (reg >= REG_PWM(0) && reg <= REG_PWM(2));
  874. }
  875. static const struct regmap_config nct7802_regmap_config = {
  876. .reg_bits = 8,
  877. .val_bits = 8,
  878. .cache_type = REGCACHE_RBTREE,
  879. .volatile_reg = nct7802_regmap_is_volatile,
  880. };
  881. static int nct7802_get_channel_config(struct device *dev,
  882. struct device_node *node, u8 *mode_mask,
  883. u8 *mode_val)
  884. {
  885. u32 reg;
  886. const char *type_str, *md_str;
  887. u8 md;
  888. if (!node->name || of_node_cmp(node->name, "channel"))
  889. return 0;
  890. if (of_property_read_u32(node, "reg", &reg)) {
  891. dev_err(dev, "Could not read reg value for '%s'\n",
  892. node->full_name);
  893. return -EINVAL;
  894. }
  895. if (reg > 3) {
  896. dev_err(dev, "Invalid reg (%u) in '%s'\n", reg,
  897. node->full_name);
  898. return -EINVAL;
  899. }
  900. if (reg == 0) {
  901. if (!of_device_is_available(node))
  902. *mode_val &= ~MODE_LTD_EN;
  903. else
  904. *mode_val |= MODE_LTD_EN;
  905. *mode_mask |= MODE_LTD_EN;
  906. return 0;
  907. }
  908. /* At this point we have reg >= 1 && reg <= 3 */
  909. if (!of_device_is_available(node)) {
  910. *mode_val &= ~(MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1));
  911. *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1);
  912. return 0;
  913. }
  914. if (of_property_read_string(node, "sensor-type", &type_str)) {
  915. dev_err(dev, "No type for '%s'\n", node->full_name);
  916. return -EINVAL;
  917. }
  918. if (!strcmp(type_str, "voltage")) {
  919. *mode_val |= (RTD_MODE_VOLTAGE & MODE_RTD_MASK)
  920. << MODE_BIT_OFFSET_RTD(reg - 1);
  921. *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1);
  922. return 0;
  923. }
  924. if (strcmp(type_str, "temperature")) {
  925. dev_err(dev, "Invalid type '%s' for '%s'\n", type_str,
  926. node->full_name);
  927. return -EINVAL;
  928. }
  929. if (reg == 3) {
  930. /* RTD3 only supports thermistor mode */
  931. md = RTD_MODE_THERMISTOR;
  932. } else {
  933. if (of_property_read_string(node, "temperature-mode",
  934. &md_str)) {
  935. dev_err(dev, "No mode for '%s'\n", node->full_name);
  936. return -EINVAL;
  937. }
  938. if (!strcmp(md_str, "thermal-diode"))
  939. md = RTD_MODE_CURRENT;
  940. else if (!strcmp(md_str, "thermistor"))
  941. md = RTD_MODE_THERMISTOR;
  942. else {
  943. dev_err(dev, "Invalid mode '%s' for '%s'\n", md_str,
  944. node->full_name);
  945. return -EINVAL;
  946. }
  947. }
  948. *mode_val |= (md & MODE_RTD_MASK) << MODE_BIT_OFFSET_RTD(reg - 1);
  949. *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1);
  950. return 0;
  951. }
  952. static int nct7802_configure_channels(struct device *dev,
  953. struct nct7802_data *data)
  954. {
  955. /* Enable local temperature sensor by default */
  956. u8 mode_mask = MODE_LTD_EN, mode_val = MODE_LTD_EN;
  957. struct device_node *node;
  958. int err;
  959. if (dev->of_node) {
  960. for_each_child_of_node(dev->of_node, node) {
  961. err = nct7802_get_channel_config(dev, node, &mode_mask,
  962. &mode_val);
  963. if (err) {
  964. of_node_put(node);
  965. return err;
  966. }
  967. }
  968. }
  969. return regmap_update_bits(data->regmap, REG_MODE, mode_mask, mode_val);
  970. }
  971. static int nct7802_init_chip(struct device *dev, struct nct7802_data *data)
  972. {
  973. int err;
  974. /* Enable ADC */
  975. err = regmap_update_bits(data->regmap, REG_START, 0x01, 0x01);
  976. if (err)
  977. return err;
  978. err = nct7802_configure_channels(dev, data);
  979. if (err)
  980. return err;
  981. /* Enable Vcore and VCC voltage monitoring */
  982. return regmap_update_bits(data->regmap, REG_VMON_ENABLE, 0x03, 0x03);
  983. }
  984. static int nct7802_probe(struct i2c_client *client)
  985. {
  986. struct device *dev = &client->dev;
  987. struct nct7802_data *data;
  988. struct device *hwmon_dev;
  989. int ret;
  990. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  991. if (data == NULL)
  992. return -ENOMEM;
  993. data->regmap = devm_regmap_init_i2c(client, &nct7802_regmap_config);
  994. if (IS_ERR(data->regmap))
  995. return PTR_ERR(data->regmap);
  996. mutex_init(&data->access_lock);
  997. mutex_init(&data->in_alarm_lock);
  998. ret = nct7802_init_chip(dev, data);
  999. if (ret < 0)
  1000. return ret;
  1001. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  1002. data,
  1003. nct7802_groups);
  1004. return PTR_ERR_OR_ZERO(hwmon_dev);
  1005. }
  1006. static const unsigned short nct7802_address_list[] = {
  1007. 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END
  1008. };
  1009. static const struct i2c_device_id nct7802_idtable[] = {
  1010. { "nct7802", 0 },
  1011. { }
  1012. };
  1013. MODULE_DEVICE_TABLE(i2c, nct7802_idtable);
  1014. static struct i2c_driver nct7802_driver = {
  1015. .class = I2C_CLASS_HWMON,
  1016. .driver = {
  1017. .name = DRVNAME,
  1018. },
  1019. .detect = nct7802_detect,
  1020. .probe_new = nct7802_probe,
  1021. .id_table = nct7802_idtable,
  1022. .address_list = nct7802_address_list,
  1023. };
  1024. module_i2c_driver(nct7802_driver);
  1025. MODULE_AUTHOR("Guenter Roeck <[email protected]>");
  1026. MODULE_DESCRIPTION("NCT7802Y Hardware Monitoring Driver");
  1027. MODULE_LICENSE("GPL v2");