lochnagar-hwmon.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Lochnagar hardware monitoring features
  4. *
  5. * Copyright (c) 2016-2019 Cirrus Logic, Inc. and
  6. * Cirrus Logic International Semiconductor Ltd.
  7. *
  8. * Author: Lucas Tanure <[email protected]>
  9. */
  10. #include <linux/delay.h>
  11. #include <linux/hwmon.h>
  12. #include <linux/hwmon-sysfs.h>
  13. #include <linux/i2c.h>
  14. #include <linux/math64.h>
  15. #include <linux/mfd/lochnagar.h>
  16. #include <linux/mfd/lochnagar2_regs.h>
  17. #include <linux/module.h>
  18. #include <linux/of.h>
  19. #include <linux/of_device.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/regmap.h>
  22. #define LN2_MAX_NSAMPLE 1023
  23. #define LN2_SAMPLE_US 1670
  24. #define LN2_CURR_UNITS 1000
  25. #define LN2_VOLT_UNITS 1000
  26. #define LN2_TEMP_UNITS 1000
  27. #define LN2_PWR_UNITS 1000000
  28. static const char * const lochnagar_chan_names[] = {
  29. "DBVDD1",
  30. "1V8 DSP",
  31. "1V8 CDC",
  32. "VDDCORE DSP",
  33. "AVDD 1V8",
  34. "SYSVDD",
  35. "VDDCORE CDC",
  36. "MICVDD",
  37. };
  38. struct lochnagar_hwmon {
  39. struct regmap *regmap;
  40. long power_nsamples[ARRAY_SIZE(lochnagar_chan_names)];
  41. /* Lock to ensure only a single sensor is read at a time */
  42. struct mutex sensor_lock;
  43. };
  44. enum lochnagar_measure_mode {
  45. LN2_CURR = 0,
  46. LN2_VOLT,
  47. LN2_TEMP,
  48. };
  49. /**
  50. * float_to_long - Convert ieee754 reading from hardware to an integer
  51. *
  52. * @data: Value read from the hardware
  53. * @precision: Units to multiply up to eg. 1000 = milli, 1000000 = micro
  54. *
  55. * Return: Converted integer reading
  56. *
  57. * Depending on the measurement type the hardware returns an ieee754
  58. * floating point value in either volts, amps or celsius. This function
  59. * will convert that into an integer in a smaller unit such as micro-amps
  60. * or milli-celsius. The hardware does not return NaN, so consideration of
  61. * that is not required.
  62. */
  63. static long float_to_long(u32 data, u32 precision)
  64. {
  65. u64 man = data & 0x007FFFFF;
  66. int exp = ((data & 0x7F800000) >> 23) - 127 - 23;
  67. bool negative = data & 0x80000000;
  68. long result;
  69. man = (man + (1 << 23)) * precision;
  70. if (fls64(man) + exp > (int)sizeof(long) * 8 - 1)
  71. result = LONG_MAX;
  72. else if (exp < 0)
  73. result = (man + (1ull << (-exp - 1))) >> -exp;
  74. else
  75. result = man << exp;
  76. return negative ? -result : result;
  77. }
  78. static int do_measurement(struct regmap *regmap, int chan,
  79. enum lochnagar_measure_mode mode, int nsamples)
  80. {
  81. unsigned int val;
  82. int ret;
  83. chan = 1 << (chan + LOCHNAGAR2_IMON_MEASURED_CHANNELS_SHIFT);
  84. ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL1,
  85. LOCHNAGAR2_IMON_ENA_MASK | chan | mode);
  86. if (ret < 0)
  87. return ret;
  88. ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL2, nsamples);
  89. if (ret < 0)
  90. return ret;
  91. ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3,
  92. LOCHNAGAR2_IMON_CONFIGURE_MASK);
  93. if (ret < 0)
  94. return ret;
  95. ret = regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL3, val,
  96. val & LOCHNAGAR2_IMON_DONE_MASK,
  97. 1000, 10000);
  98. if (ret < 0)
  99. return ret;
  100. ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3,
  101. LOCHNAGAR2_IMON_MEASURE_MASK);
  102. if (ret < 0)
  103. return ret;
  104. /*
  105. * Actual measurement time is ~1.67mS per sample, approximate this
  106. * with a 1.5mS per sample msleep and then poll for success up to
  107. * ~0.17mS * 1023 (LN2_MAX_NSAMPLES). Normally for smaller values
  108. * of nsamples the poll will complete on the first loop due to
  109. * other latency in the system.
  110. */
  111. msleep((nsamples * 3) / 2);
  112. ret = regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL3, val,
  113. val & LOCHNAGAR2_IMON_DONE_MASK,
  114. 5000, 200000);
  115. if (ret < 0)
  116. return ret;
  117. return regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3, 0);
  118. }
  119. static int request_data(struct regmap *regmap, int chan, u32 *data)
  120. {
  121. unsigned int val;
  122. int ret;
  123. ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL4,
  124. LOCHNAGAR2_IMON_DATA_REQ_MASK |
  125. chan << LOCHNAGAR2_IMON_CH_SEL_SHIFT);
  126. if (ret < 0)
  127. return ret;
  128. ret = regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL4, val,
  129. val & LOCHNAGAR2_IMON_DATA_RDY_MASK,
  130. 1000, 10000);
  131. if (ret < 0)
  132. return ret;
  133. ret = regmap_read(regmap, LOCHNAGAR2_IMON_DATA1, &val);
  134. if (ret < 0)
  135. return ret;
  136. *data = val << 16;
  137. ret = regmap_read(regmap, LOCHNAGAR2_IMON_DATA2, &val);
  138. if (ret < 0)
  139. return ret;
  140. *data |= val;
  141. return regmap_write(regmap, LOCHNAGAR2_IMON_CTRL4, 0);
  142. }
  143. static int read_sensor(struct device *dev, int chan,
  144. enum lochnagar_measure_mode mode, int nsamples,
  145. unsigned int precision, long *val)
  146. {
  147. struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
  148. struct regmap *regmap = priv->regmap;
  149. u32 data;
  150. int ret;
  151. mutex_lock(&priv->sensor_lock);
  152. ret = do_measurement(regmap, chan, mode, nsamples);
  153. if (ret < 0) {
  154. dev_err(dev, "Failed to perform measurement: %d\n", ret);
  155. goto error;
  156. }
  157. ret = request_data(regmap, chan, &data);
  158. if (ret < 0) {
  159. dev_err(dev, "Failed to read measurement: %d\n", ret);
  160. goto error;
  161. }
  162. *val = float_to_long(data, precision);
  163. error:
  164. mutex_unlock(&priv->sensor_lock);
  165. return ret;
  166. }
  167. static int read_power(struct device *dev, int chan, long *val)
  168. {
  169. struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
  170. int nsamples = priv->power_nsamples[chan];
  171. u64 power;
  172. int ret;
  173. if (!strcmp("SYSVDD", lochnagar_chan_names[chan])) {
  174. power = 5 * LN2_PWR_UNITS;
  175. } else {
  176. ret = read_sensor(dev, chan, LN2_VOLT, 1, LN2_PWR_UNITS, val);
  177. if (ret < 0)
  178. return ret;
  179. power = abs(*val);
  180. }
  181. ret = read_sensor(dev, chan, LN2_CURR, nsamples, LN2_PWR_UNITS, val);
  182. if (ret < 0)
  183. return ret;
  184. power *= abs(*val);
  185. power = DIV_ROUND_CLOSEST_ULL(power, LN2_PWR_UNITS);
  186. if (power > LONG_MAX)
  187. *val = LONG_MAX;
  188. else
  189. *val = power;
  190. return 0;
  191. }
  192. static umode_t lochnagar_is_visible(const void *drvdata,
  193. enum hwmon_sensor_types type,
  194. u32 attr, int chan)
  195. {
  196. switch (type) {
  197. case hwmon_in:
  198. if (!strcmp("SYSVDD", lochnagar_chan_names[chan]))
  199. return 0;
  200. break;
  201. case hwmon_power:
  202. if (attr == hwmon_power_average_interval)
  203. return 0644;
  204. break;
  205. default:
  206. break;
  207. }
  208. return 0444;
  209. }
  210. static int lochnagar_read(struct device *dev, enum hwmon_sensor_types type,
  211. u32 attr, int chan, long *val)
  212. {
  213. struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
  214. int interval;
  215. switch (type) {
  216. case hwmon_in:
  217. return read_sensor(dev, chan, LN2_VOLT, 1, LN2_VOLT_UNITS, val);
  218. case hwmon_curr:
  219. return read_sensor(dev, chan, LN2_CURR, 1, LN2_CURR_UNITS, val);
  220. case hwmon_temp:
  221. return read_sensor(dev, chan, LN2_TEMP, 1, LN2_TEMP_UNITS, val);
  222. case hwmon_power:
  223. switch (attr) {
  224. case hwmon_power_average:
  225. return read_power(dev, chan, val);
  226. case hwmon_power_average_interval:
  227. interval = priv->power_nsamples[chan] * LN2_SAMPLE_US;
  228. *val = DIV_ROUND_CLOSEST(interval, 1000);
  229. return 0;
  230. default:
  231. return -EOPNOTSUPP;
  232. }
  233. default:
  234. return -EOPNOTSUPP;
  235. }
  236. }
  237. static int lochnagar_read_string(struct device *dev,
  238. enum hwmon_sensor_types type, u32 attr,
  239. int chan, const char **str)
  240. {
  241. switch (type) {
  242. case hwmon_in:
  243. case hwmon_curr:
  244. case hwmon_power:
  245. *str = lochnagar_chan_names[chan];
  246. return 0;
  247. default:
  248. return -EOPNOTSUPP;
  249. }
  250. }
  251. static int lochnagar_write(struct device *dev, enum hwmon_sensor_types type,
  252. u32 attr, int chan, long val)
  253. {
  254. struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
  255. if (type != hwmon_power || attr != hwmon_power_average_interval)
  256. return -EOPNOTSUPP;
  257. val = clamp_t(long, val, 1, (LN2_MAX_NSAMPLE * LN2_SAMPLE_US) / 1000);
  258. val = DIV_ROUND_CLOSEST(val * 1000, LN2_SAMPLE_US);
  259. priv->power_nsamples[chan] = val;
  260. return 0;
  261. }
  262. static const struct hwmon_ops lochnagar_ops = {
  263. .is_visible = lochnagar_is_visible,
  264. .read = lochnagar_read,
  265. .read_string = lochnagar_read_string,
  266. .write = lochnagar_write,
  267. };
  268. static const struct hwmon_channel_info *lochnagar_info[] = {
  269. HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
  270. HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL,
  271. HWMON_I_INPUT | HWMON_I_LABEL,
  272. HWMON_I_INPUT | HWMON_I_LABEL,
  273. HWMON_I_INPUT | HWMON_I_LABEL,
  274. HWMON_I_INPUT | HWMON_I_LABEL,
  275. HWMON_I_INPUT | HWMON_I_LABEL,
  276. HWMON_I_INPUT | HWMON_I_LABEL,
  277. HWMON_I_INPUT | HWMON_I_LABEL),
  278. HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LABEL,
  279. HWMON_C_INPUT | HWMON_C_LABEL,
  280. HWMON_C_INPUT | HWMON_C_LABEL,
  281. HWMON_C_INPUT | HWMON_C_LABEL,
  282. HWMON_C_INPUT | HWMON_C_LABEL,
  283. HWMON_C_INPUT | HWMON_C_LABEL,
  284. HWMON_C_INPUT | HWMON_C_LABEL,
  285. HWMON_C_INPUT | HWMON_C_LABEL),
  286. HWMON_CHANNEL_INFO(power, HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  287. HWMON_P_LABEL,
  288. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  289. HWMON_P_LABEL,
  290. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  291. HWMON_P_LABEL,
  292. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  293. HWMON_P_LABEL,
  294. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  295. HWMON_P_LABEL,
  296. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  297. HWMON_P_LABEL,
  298. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  299. HWMON_P_LABEL,
  300. HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
  301. HWMON_P_LABEL),
  302. NULL
  303. };
  304. static const struct hwmon_chip_info lochnagar_chip_info = {
  305. .ops = &lochnagar_ops,
  306. .info = lochnagar_info,
  307. };
  308. static const struct of_device_id lochnagar_of_match[] = {
  309. { .compatible = "cirrus,lochnagar2-hwmon" },
  310. {}
  311. };
  312. MODULE_DEVICE_TABLE(of, lochnagar_of_match);
  313. static int lochnagar_hwmon_probe(struct platform_device *pdev)
  314. {
  315. struct device *dev = &pdev->dev;
  316. struct device *hwmon_dev;
  317. struct lochnagar_hwmon *priv;
  318. int i;
  319. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  320. if (!priv)
  321. return -ENOMEM;
  322. mutex_init(&priv->sensor_lock);
  323. priv->regmap = dev_get_regmap(dev->parent, NULL);
  324. if (!priv->regmap) {
  325. dev_err(dev, "No register map found\n");
  326. return -EINVAL;
  327. }
  328. for (i = 0; i < ARRAY_SIZE(priv->power_nsamples); i++)
  329. priv->power_nsamples[i] = 96;
  330. hwmon_dev = devm_hwmon_device_register_with_info(dev, "Lochnagar", priv,
  331. &lochnagar_chip_info,
  332. NULL);
  333. return PTR_ERR_OR_ZERO(hwmon_dev);
  334. }
  335. static struct platform_driver lochnagar_hwmon_driver = {
  336. .driver = {
  337. .name = "lochnagar-hwmon",
  338. .of_match_table = lochnagar_of_match,
  339. },
  340. .probe = lochnagar_hwmon_probe,
  341. };
  342. module_platform_driver(lochnagar_hwmon_driver);
  343. MODULE_AUTHOR("Lucas Tanure <[email protected]>");
  344. MODULE_DESCRIPTION("Lochnagar hardware monitoring features");
  345. MODULE_LICENSE("GPL");