lm80.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * lm80.c - From lm_sensors, Linux kernel modules for hardware
  4. * monitoring
  5. * Copyright (C) 1998, 1999 Frodo Looijaard <[email protected]>
  6. * and Philip Edelbrock <[email protected]>
  7. *
  8. * Ported to Linux 2.6 by Tiago Sousa <[email protected]>
  9. */
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/slab.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/i2c.h>
  15. #include <linux/hwmon.h>
  16. #include <linux/hwmon-sysfs.h>
  17. #include <linux/err.h>
  18. #include <linux/mutex.h>
  19. /* Addresses to scan */
  20. static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
  21. 0x2e, 0x2f, I2C_CLIENT_END };
  22. /* Many LM80 constants specified below */
  23. /* The LM80 registers */
  24. #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
  25. #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
  26. #define LM80_REG_IN(nr) (0x20 + (nr))
  27. #define LM80_REG_FAN1 0x28
  28. #define LM80_REG_FAN2 0x29
  29. #define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
  30. #define LM80_REG_TEMP 0x27
  31. #define LM80_REG_TEMP_HOT_MAX 0x38
  32. #define LM80_REG_TEMP_HOT_HYST 0x39
  33. #define LM80_REG_TEMP_OS_MAX 0x3a
  34. #define LM80_REG_TEMP_OS_HYST 0x3b
  35. #define LM80_REG_CONFIG 0x00
  36. #define LM80_REG_ALARM1 0x01
  37. #define LM80_REG_ALARM2 0x02
  38. #define LM80_REG_MASK1 0x03
  39. #define LM80_REG_MASK2 0x04
  40. #define LM80_REG_FANDIV 0x05
  41. #define LM80_REG_RES 0x06
  42. #define LM96080_REG_CONV_RATE 0x07
  43. #define LM96080_REG_MAN_ID 0x3e
  44. #define LM96080_REG_DEV_ID 0x3f
  45. /*
  46. * Conversions. Rounding and limit checking is only done on the TO_REG
  47. * variants. Note that you should be a bit careful with which arguments
  48. * these macros are called: arguments may be evaluated more than once.
  49. * Fixing this is just not worth it.
  50. */
  51. #define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
  52. #define IN_FROM_REG(val) ((val) * 10)
  53. static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
  54. {
  55. if (rpm == 0)
  56. return 255;
  57. rpm = clamp_val(rpm, 1, 1000000);
  58. return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
  59. }
  60. #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
  61. (val) == 255 ? 0 : 1350000/((div) * (val)))
  62. #define TEMP_FROM_REG(reg) ((reg) * 125 / 32)
  63. #define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \
  64. -128000, 127000), 1000) << 8)
  65. #define DIV_FROM_REG(val) (1 << (val))
  66. enum temp_index {
  67. t_input = 0,
  68. t_hot_max,
  69. t_hot_hyst,
  70. t_os_max,
  71. t_os_hyst,
  72. t_num_temp
  73. };
  74. static const u8 temp_regs[t_num_temp] = {
  75. [t_input] = LM80_REG_TEMP,
  76. [t_hot_max] = LM80_REG_TEMP_HOT_MAX,
  77. [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
  78. [t_os_max] = LM80_REG_TEMP_OS_MAX,
  79. [t_os_hyst] = LM80_REG_TEMP_OS_HYST,
  80. };
  81. enum in_index {
  82. i_input = 0,
  83. i_max,
  84. i_min,
  85. i_num_in
  86. };
  87. enum fan_index {
  88. f_input,
  89. f_min,
  90. f_num_fan
  91. };
  92. /*
  93. * Client data (each client gets its own)
  94. */
  95. struct lm80_data {
  96. struct i2c_client *client;
  97. struct mutex update_lock;
  98. char error; /* !=0 if error occurred during last update */
  99. bool valid; /* true if following fields are valid */
  100. unsigned long last_updated; /* In jiffies */
  101. u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */
  102. u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */
  103. u8 fan_div[2]; /* Register encoding, shifted right */
  104. s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */
  105. u16 alarms; /* Register encoding, combined */
  106. };
  107. static int lm80_read_value(struct i2c_client *client, u8 reg)
  108. {
  109. return i2c_smbus_read_byte_data(client, reg);
  110. }
  111. static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
  112. {
  113. return i2c_smbus_write_byte_data(client, reg, value);
  114. }
  115. /* Called when we have found a new LM80 and after read errors */
  116. static void lm80_init_client(struct i2c_client *client)
  117. {
  118. /*
  119. * Reset all except Watchdog values and last conversion values
  120. * This sets fan-divs to 2, among others. This makes most other
  121. * initializations unnecessary
  122. */
  123. lm80_write_value(client, LM80_REG_CONFIG, 0x80);
  124. /* Set 11-bit temperature resolution */
  125. lm80_write_value(client, LM80_REG_RES, 0x08);
  126. /* Start monitoring */
  127. lm80_write_value(client, LM80_REG_CONFIG, 0x01);
  128. }
  129. static struct lm80_data *lm80_update_device(struct device *dev)
  130. {
  131. struct lm80_data *data = dev_get_drvdata(dev);
  132. struct i2c_client *client = data->client;
  133. int i;
  134. int rv;
  135. int prev_rv;
  136. struct lm80_data *ret = data;
  137. mutex_lock(&data->update_lock);
  138. if (data->error)
  139. lm80_init_client(client);
  140. if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
  141. dev_dbg(dev, "Starting lm80 update\n");
  142. for (i = 0; i <= 6; i++) {
  143. rv = lm80_read_value(client, LM80_REG_IN(i));
  144. if (rv < 0)
  145. goto abort;
  146. data->in[i_input][i] = rv;
  147. rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
  148. if (rv < 0)
  149. goto abort;
  150. data->in[i_min][i] = rv;
  151. rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
  152. if (rv < 0)
  153. goto abort;
  154. data->in[i_max][i] = rv;
  155. }
  156. rv = lm80_read_value(client, LM80_REG_FAN1);
  157. if (rv < 0)
  158. goto abort;
  159. data->fan[f_input][0] = rv;
  160. rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
  161. if (rv < 0)
  162. goto abort;
  163. data->fan[f_min][0] = rv;
  164. rv = lm80_read_value(client, LM80_REG_FAN2);
  165. if (rv < 0)
  166. goto abort;
  167. data->fan[f_input][1] = rv;
  168. rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
  169. if (rv < 0)
  170. goto abort;
  171. data->fan[f_min][1] = rv;
  172. prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
  173. if (rv < 0)
  174. goto abort;
  175. rv = lm80_read_value(client, LM80_REG_RES);
  176. if (rv < 0)
  177. goto abort;
  178. data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
  179. for (i = t_input + 1; i < t_num_temp; i++) {
  180. rv = lm80_read_value(client, temp_regs[i]);
  181. if (rv < 0)
  182. goto abort;
  183. data->temp[i] = rv << 8;
  184. }
  185. rv = lm80_read_value(client, LM80_REG_FANDIV);
  186. if (rv < 0)
  187. goto abort;
  188. data->fan_div[0] = (rv >> 2) & 0x03;
  189. data->fan_div[1] = (rv >> 4) & 0x03;
  190. prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
  191. if (rv < 0)
  192. goto abort;
  193. rv = lm80_read_value(client, LM80_REG_ALARM2);
  194. if (rv < 0)
  195. goto abort;
  196. data->alarms = prev_rv + (rv << 8);
  197. data->last_updated = jiffies;
  198. data->valid = true;
  199. data->error = 0;
  200. }
  201. goto done;
  202. abort:
  203. ret = ERR_PTR(rv);
  204. data->valid = false;
  205. data->error = 1;
  206. done:
  207. mutex_unlock(&data->update_lock);
  208. return ret;
  209. }
  210. /*
  211. * Sysfs stuff
  212. */
  213. static ssize_t in_show(struct device *dev, struct device_attribute *attr,
  214. char *buf)
  215. {
  216. struct lm80_data *data = lm80_update_device(dev);
  217. int index = to_sensor_dev_attr_2(attr)->index;
  218. int nr = to_sensor_dev_attr_2(attr)->nr;
  219. if (IS_ERR(data))
  220. return PTR_ERR(data);
  221. return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
  222. }
  223. static ssize_t in_store(struct device *dev, struct device_attribute *attr,
  224. const char *buf, size_t count)
  225. {
  226. struct lm80_data *data = dev_get_drvdata(dev);
  227. struct i2c_client *client = data->client;
  228. int index = to_sensor_dev_attr_2(attr)->index;
  229. int nr = to_sensor_dev_attr_2(attr)->nr;
  230. long val;
  231. u8 reg;
  232. int err = kstrtol(buf, 10, &val);
  233. if (err < 0)
  234. return err;
  235. reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
  236. mutex_lock(&data->update_lock);
  237. data->in[nr][index] = IN_TO_REG(val);
  238. lm80_write_value(client, reg, data->in[nr][index]);
  239. mutex_unlock(&data->update_lock);
  240. return count;
  241. }
  242. static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
  243. char *buf)
  244. {
  245. int index = to_sensor_dev_attr_2(attr)->index;
  246. int nr = to_sensor_dev_attr_2(attr)->nr;
  247. struct lm80_data *data = lm80_update_device(dev);
  248. if (IS_ERR(data))
  249. return PTR_ERR(data);
  250. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
  251. DIV_FROM_REG(data->fan_div[index])));
  252. }
  253. static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
  254. char *buf)
  255. {
  256. int nr = to_sensor_dev_attr(attr)->index;
  257. struct lm80_data *data = lm80_update_device(dev);
  258. if (IS_ERR(data))
  259. return PTR_ERR(data);
  260. return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
  261. }
  262. static ssize_t fan_store(struct device *dev, struct device_attribute *attr,
  263. const char *buf, size_t count)
  264. {
  265. int index = to_sensor_dev_attr_2(attr)->index;
  266. int nr = to_sensor_dev_attr_2(attr)->nr;
  267. struct lm80_data *data = dev_get_drvdata(dev);
  268. struct i2c_client *client = data->client;
  269. unsigned long val;
  270. int err = kstrtoul(buf, 10, &val);
  271. if (err < 0)
  272. return err;
  273. mutex_lock(&data->update_lock);
  274. data->fan[nr][index] = FAN_TO_REG(val,
  275. DIV_FROM_REG(data->fan_div[index]));
  276. lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
  277. data->fan[nr][index]);
  278. mutex_unlock(&data->update_lock);
  279. return count;
  280. }
  281. /*
  282. * Note: we save and restore the fan minimum here, because its value is
  283. * determined in part by the fan divisor. This follows the principle of
  284. * least surprise; the user doesn't expect the fan minimum to change just
  285. * because the divisor changed.
  286. */
  287. static ssize_t fan_div_store(struct device *dev,
  288. struct device_attribute *attr, const char *buf,
  289. size_t count)
  290. {
  291. int nr = to_sensor_dev_attr(attr)->index;
  292. struct lm80_data *data = dev_get_drvdata(dev);
  293. struct i2c_client *client = data->client;
  294. unsigned long min, val;
  295. u8 reg;
  296. int rv;
  297. rv = kstrtoul(buf, 10, &val);
  298. if (rv < 0)
  299. return rv;
  300. /* Save fan_min */
  301. mutex_lock(&data->update_lock);
  302. min = FAN_FROM_REG(data->fan[f_min][nr],
  303. DIV_FROM_REG(data->fan_div[nr]));
  304. switch (val) {
  305. case 1:
  306. data->fan_div[nr] = 0;
  307. break;
  308. case 2:
  309. data->fan_div[nr] = 1;
  310. break;
  311. case 4:
  312. data->fan_div[nr] = 2;
  313. break;
  314. case 8:
  315. data->fan_div[nr] = 3;
  316. break;
  317. default:
  318. dev_err(dev,
  319. "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
  320. val);
  321. mutex_unlock(&data->update_lock);
  322. return -EINVAL;
  323. }
  324. rv = lm80_read_value(client, LM80_REG_FANDIV);
  325. if (rv < 0) {
  326. mutex_unlock(&data->update_lock);
  327. return rv;
  328. }
  329. reg = (rv & ~(3 << (2 * (nr + 1))))
  330. | (data->fan_div[nr] << (2 * (nr + 1)));
  331. lm80_write_value(client, LM80_REG_FANDIV, reg);
  332. /* Restore fan_min */
  333. data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
  334. lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
  335. data->fan[f_min][nr]);
  336. mutex_unlock(&data->update_lock);
  337. return count;
  338. }
  339. static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
  340. char *buf)
  341. {
  342. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  343. struct lm80_data *data = lm80_update_device(dev);
  344. if (IS_ERR(data))
  345. return PTR_ERR(data);
  346. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
  347. }
  348. static ssize_t temp_store(struct device *dev,
  349. struct device_attribute *devattr, const char *buf,
  350. size_t count)
  351. {
  352. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  353. struct lm80_data *data = dev_get_drvdata(dev);
  354. struct i2c_client *client = data->client;
  355. int nr = attr->index;
  356. long val;
  357. int err = kstrtol(buf, 10, &val);
  358. if (err < 0)
  359. return err;
  360. mutex_lock(&data->update_lock);
  361. data->temp[nr] = TEMP_TO_REG(val);
  362. lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
  363. mutex_unlock(&data->update_lock);
  364. return count;
  365. }
  366. static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
  367. char *buf)
  368. {
  369. struct lm80_data *data = lm80_update_device(dev);
  370. if (IS_ERR(data))
  371. return PTR_ERR(data);
  372. return sprintf(buf, "%u\n", data->alarms);
  373. }
  374. static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
  375. char *buf)
  376. {
  377. int bitnr = to_sensor_dev_attr(attr)->index;
  378. struct lm80_data *data = lm80_update_device(dev);
  379. if (IS_ERR(data))
  380. return PTR_ERR(data);
  381. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  382. }
  383. static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, i_min, 0);
  384. static SENSOR_DEVICE_ATTR_2_RW(in1_min, in, i_min, 1);
  385. static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, i_min, 2);
  386. static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, i_min, 3);
  387. static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, i_min, 4);
  388. static SENSOR_DEVICE_ATTR_2_RW(in5_min, in, i_min, 5);
  389. static SENSOR_DEVICE_ATTR_2_RW(in6_min, in, i_min, 6);
  390. static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, i_max, 0);
  391. static SENSOR_DEVICE_ATTR_2_RW(in1_max, in, i_max, 1);
  392. static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, i_max, 2);
  393. static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, i_max, 3);
  394. static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, i_max, 4);
  395. static SENSOR_DEVICE_ATTR_2_RW(in5_max, in, i_max, 5);
  396. static SENSOR_DEVICE_ATTR_2_RW(in6_max, in, i_max, 6);
  397. static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, i_input, 0);
  398. static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, i_input, 1);
  399. static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, i_input, 2);
  400. static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, i_input, 3);
  401. static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, i_input, 4);
  402. static SENSOR_DEVICE_ATTR_2_RO(in5_input, in, i_input, 5);
  403. static SENSOR_DEVICE_ATTR_2_RO(in6_input, in, i_input, 6);
  404. static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan, f_min, 0);
  405. static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan, f_min, 1);
  406. static SENSOR_DEVICE_ATTR_2_RO(fan1_input, fan, f_input, 0);
  407. static SENSOR_DEVICE_ATTR_2_RO(fan2_input, fan, f_input, 1);
  408. static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
  409. static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
  410. static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, t_input);
  411. static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, t_hot_max);
  412. static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp, t_hot_hyst);
  413. static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, t_os_max);
  414. static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, temp, t_os_hyst);
  415. static DEVICE_ATTR_RO(alarms);
  416. static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
  417. static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
  418. static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
  419. static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
  420. static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 4);
  421. static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 5);
  422. static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6);
  423. static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
  424. static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
  425. static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 8);
  426. static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 13);
  427. /*
  428. * Real code
  429. */
  430. static struct attribute *lm80_attrs[] = {
  431. &sensor_dev_attr_in0_min.dev_attr.attr,
  432. &sensor_dev_attr_in1_min.dev_attr.attr,
  433. &sensor_dev_attr_in2_min.dev_attr.attr,
  434. &sensor_dev_attr_in3_min.dev_attr.attr,
  435. &sensor_dev_attr_in4_min.dev_attr.attr,
  436. &sensor_dev_attr_in5_min.dev_attr.attr,
  437. &sensor_dev_attr_in6_min.dev_attr.attr,
  438. &sensor_dev_attr_in0_max.dev_attr.attr,
  439. &sensor_dev_attr_in1_max.dev_attr.attr,
  440. &sensor_dev_attr_in2_max.dev_attr.attr,
  441. &sensor_dev_attr_in3_max.dev_attr.attr,
  442. &sensor_dev_attr_in4_max.dev_attr.attr,
  443. &sensor_dev_attr_in5_max.dev_attr.attr,
  444. &sensor_dev_attr_in6_max.dev_attr.attr,
  445. &sensor_dev_attr_in0_input.dev_attr.attr,
  446. &sensor_dev_attr_in1_input.dev_attr.attr,
  447. &sensor_dev_attr_in2_input.dev_attr.attr,
  448. &sensor_dev_attr_in3_input.dev_attr.attr,
  449. &sensor_dev_attr_in4_input.dev_attr.attr,
  450. &sensor_dev_attr_in5_input.dev_attr.attr,
  451. &sensor_dev_attr_in6_input.dev_attr.attr,
  452. &sensor_dev_attr_fan1_min.dev_attr.attr,
  453. &sensor_dev_attr_fan2_min.dev_attr.attr,
  454. &sensor_dev_attr_fan1_input.dev_attr.attr,
  455. &sensor_dev_attr_fan2_input.dev_attr.attr,
  456. &sensor_dev_attr_fan1_div.dev_attr.attr,
  457. &sensor_dev_attr_fan2_div.dev_attr.attr,
  458. &sensor_dev_attr_temp1_input.dev_attr.attr,
  459. &sensor_dev_attr_temp1_max.dev_attr.attr,
  460. &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
  461. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  462. &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
  463. &dev_attr_alarms.attr,
  464. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  465. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  466. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  467. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  468. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  469. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  470. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  471. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  472. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  473. &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
  474. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  475. NULL
  476. };
  477. ATTRIBUTE_GROUPS(lm80);
  478. /* Return 0 if detection is successful, -ENODEV otherwise */
  479. static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
  480. {
  481. struct i2c_adapter *adapter = client->adapter;
  482. int i, cur, man_id, dev_id;
  483. const char *name = NULL;
  484. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  485. return -ENODEV;
  486. /* First check for unused bits, common to both chip types */
  487. if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
  488. || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
  489. return -ENODEV;
  490. /*
  491. * The LM96080 has manufacturer and stepping/die rev registers so we
  492. * can just check that. The LM80 does not have such registers so we
  493. * have to use a more expensive trick.
  494. */
  495. man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
  496. dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
  497. if (man_id == 0x01 && dev_id == 0x08) {
  498. /* Check more unused bits for confirmation */
  499. if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
  500. return -ENODEV;
  501. name = "lm96080";
  502. } else {
  503. /* Check 6-bit addressing */
  504. for (i = 0x2a; i <= 0x3d; i++) {
  505. cur = i2c_smbus_read_byte_data(client, i);
  506. if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
  507. || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
  508. || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
  509. return -ENODEV;
  510. }
  511. name = "lm80";
  512. }
  513. strscpy(info->type, name, I2C_NAME_SIZE);
  514. return 0;
  515. }
  516. static int lm80_probe(struct i2c_client *client)
  517. {
  518. struct device *dev = &client->dev;
  519. struct device *hwmon_dev;
  520. struct lm80_data *data;
  521. data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
  522. if (!data)
  523. return -ENOMEM;
  524. data->client = client;
  525. mutex_init(&data->update_lock);
  526. /* Initialize the LM80 chip */
  527. lm80_init_client(client);
  528. /* A few vars need to be filled upon startup */
  529. data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
  530. data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
  531. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  532. data, lm80_groups);
  533. return PTR_ERR_OR_ZERO(hwmon_dev);
  534. }
  535. /*
  536. * Driver data (common to all clients)
  537. */
  538. static const struct i2c_device_id lm80_id[] = {
  539. { "lm80", 0 },
  540. { "lm96080", 1 },
  541. { }
  542. };
  543. MODULE_DEVICE_TABLE(i2c, lm80_id);
  544. static struct i2c_driver lm80_driver = {
  545. .class = I2C_CLASS_HWMON,
  546. .driver = {
  547. .name = "lm80",
  548. },
  549. .probe_new = lm80_probe,
  550. .id_table = lm80_id,
  551. .detect = lm80_detect,
  552. .address_list = normal_i2c,
  553. };
  554. module_i2c_driver(lm80_driver);
  555. MODULE_AUTHOR("Frodo Looijaard <[email protected]> and "
  556. "Philip Edelbrock <[email protected]>");
  557. MODULE_DESCRIPTION("LM80 driver");
  558. MODULE_LICENSE("GPL");