12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
- *
- * Authors:
- * Maxim Kaurkin <[email protected]>
- * Serge Semin <[email protected]>
- *
- * Baikal-T1 Process, Voltage, Temperature sensor driver
- */
- #include <linux/bitfield.h>
- #include <linux/bitops.h>
- #include <linux/clk.h>
- #include <linux/completion.h>
- #include <linux/delay.h>
- #include <linux/device.h>
- #include <linux/hwmon-sysfs.h>
- #include <linux/hwmon.h>
- #include <linux/interrupt.h>
- #include <linux/io.h>
- #include <linux/kernel.h>
- #include <linux/ktime.h>
- #include <linux/limits.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/of.h>
- #include <linux/platform_device.h>
- #include <linux/polynomial.h>
- #include <linux/seqlock.h>
- #include <linux/sysfs.h>
- #include <linux/types.h>
- #include "bt1-pvt.h"
- /*
- * For the sake of the code simplification we created the sensors info table
- * with the sensor names, activation modes, threshold registers base address
- * and the thresholds bit fields.
- */
- static const struct pvt_sensor_info pvt_info[] = {
- PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
- PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
- PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
- PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
- PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
- };
- /*
- * The original translation formulae of the temperature (in degrees of Celsius)
- * to PVT data and vice-versa are following:
- * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
- * 1.7204e2,
- * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
- * 3.1020e-1*(N^1) - 4.838e1,
- * where T = [-48.380, 147.438]C and N = [0, 1023].
- * They must be accordingly altered to be suitable for the integer arithmetics.
- * The technique is called 'factor redistribution', which just makes sure the
- * multiplications and divisions are made so to have a result of the operations
- * within the integer numbers limit. In addition we need to translate the
- * formulae to accept millidegrees of Celsius. Here what they look like after
- * the alterations:
- * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
- * 17204e2) / 1e4,
- * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
- * 48380,
- * where T = [-48380, 147438] mC and N = [0, 1023].
- */
- static const struct polynomial __maybe_unused poly_temp_to_N = {
- .total_divider = 10000,
- .terms = {
- {4, 18322, 10000, 10000},
- {3, 2343, 10000, 10},
- {2, 87018, 10000, 10},
- {1, 39269, 1000, 1},
- {0, 1720400, 1, 1}
- }
- };
- static const struct polynomial poly_N_to_temp = {
- .total_divider = 1,
- .terms = {
- {4, -16743, 1000, 1},
- {3, 81542, 1000, 1},
- {2, -182010, 1000, 1},
- {1, 310200, 1000, 1},
- {0, -48380, 1, 1}
- }
- };
- /*
- * Similar alterations are performed for the voltage conversion equations.
- * The original formulae are:
- * N = 1.8658e3*V - 1.1572e3,
- * V = (N + 1.1572e3) / 1.8658e3,
- * where V = [0.620, 1.168] V and N = [0, 1023].
- * After the optimization they looks as follows:
- * N = (18658e-3*V - 11572) / 10,
- * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
- */
- static const struct polynomial __maybe_unused poly_volt_to_N = {
- .total_divider = 10,
- .terms = {
- {1, 18658, 1000, 1},
- {0, -11572, 1, 1}
- }
- };
- static const struct polynomial poly_N_to_volt = {
- .total_divider = 10,
- .terms = {
- {1, 100000, 18658, 1},
- {0, 115720000, 1, 18658}
- }
- };
- static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
- {
- u32 old;
- old = readl_relaxed(reg);
- writel((old & ~mask) | (data & mask), reg);
- return old & mask;
- }
- /*
- * Baikal-T1 PVT mode can be updated only when the controller is disabled.
- * So first we disable it, then set the new mode together with the controller
- * getting back enabled. The same concerns the temperature trim and
- * measurements timeout. If it is necessary the interface mutex is supposed
- * to be locked at the time the operations are performed.
- */
- static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
- {
- u32 old;
- mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
- old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
- mode | old);
- }
- static inline u32 pvt_calc_trim(long temp)
- {
- temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
- return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
- }
- static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
- {
- u32 old;
- trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
- old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
- trim | old);
- }
- static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
- {
- u32 old;
- old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- writel(tout, pvt->regs + PVT_TTIMEOUT);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
- }
- /*
- * This driver can optionally provide the hwmon alarms for each sensor the PVT
- * controller supports. The alarms functionality is made compile-time
- * configurable due to the hardware interface implementation peculiarity
- * described further in this comment. So in case if alarms are unnecessary in
- * your system design it's recommended to have them disabled to prevent the PVT
- * IRQs being periodically raised to get the data cache/alarms status up to
- * date.
- *
- * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
- * but is equipped with a dedicated control wrapper. It exposes the PVT
- * sub-block registers space via the APB3 bus. In addition the wrapper provides
- * a common interrupt vector of the sensors conversion completion events and
- * threshold value alarms. Alas the wrapper interface hasn't been fully thought
- * through. There is only one sensor can be activated at a time, for which the
- * thresholds comparator is enabled right after the data conversion is
- * completed. Due to this if alarms need to be implemented for all available
- * sensors we can't just set the thresholds and enable the interrupts. We need
- * to enable the sensors one after another and let the controller to detect
- * the alarms by itself at each conversion. This also makes pointless to handle
- * the alarms interrupts, since in occasion they happen synchronously with
- * data conversion completion. The best driver design would be to have the
- * completion interrupts enabled only and keep the converted value in the
- * driver data cache. This solution is implemented if hwmon alarms are enabled
- * in this driver. In case if the alarms are disabled, the conversion is
- * performed on demand at the time a sensors input file is read.
- */
- #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- #define pvt_hard_isr NULL
- static irqreturn_t pvt_soft_isr(int irq, void *data)
- {
- const struct pvt_sensor_info *info;
- struct pvt_hwmon *pvt = data;
- struct pvt_cache *cache;
- u32 val, thres_sts, old;
- /*
- * DVALID bit will be cleared by reading the data. We need to save the
- * status before the next conversion happens. Threshold events will be
- * handled a bit later.
- */
- thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
- /*
- * Then lets recharge the PVT interface with the next sampling mode.
- * Lock the interface mutex to serialize trim, timeouts and alarm
- * thresholds settings.
- */
- cache = &pvt->cache[pvt->sensor];
- info = &pvt_info[pvt->sensor];
- pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
- PVT_SENSOR_FIRST : (pvt->sensor + 1);
- /*
- * For some reason we have to mask the interrupt before changing the
- * mode, otherwise sometimes the temperature mode doesn't get
- * activated even though the actual mode in the ctrl register
- * corresponds to one. Then we read the data. By doing so we also
- * recharge the data conversion. After this the mode corresponding
- * to the next sensor in the row is set. Finally we enable the
- * interrupts back.
- */
- mutex_lock(&pvt->iface_mtx);
- old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
- PVT_INTR_DVALID);
- val = readl(pvt->regs + PVT_DATA);
- pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
- mutex_unlock(&pvt->iface_mtx);
- /*
- * We can now update the data cache with data just retrieved from the
- * sensor. Lock write-seqlock to make sure the reader has a coherent
- * data.
- */
- write_seqlock(&cache->data_seqlock);
- cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
- write_sequnlock(&cache->data_seqlock);
- /*
- * While PVT core is doing the next mode data conversion, we'll check
- * whether the alarms were triggered for the current sensor. Note that
- * according to the documentation only one threshold IRQ status can be
- * set at a time, that's why if-else statement is utilized.
- */
- if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
- WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
- hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
- info->channel);
- } else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
- WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
- hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
- info->channel);
- }
- return IRQ_HANDLED;
- }
- static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
- {
- return 0644;
- }
- static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
- {
- return 0444;
- }
- static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- long *val)
- {
- struct pvt_cache *cache = &pvt->cache[type];
- unsigned int seq;
- u32 data;
- do {
- seq = read_seqbegin(&cache->data_seqlock);
- data = cache->data;
- } while (read_seqretry(&cache->data_seqlock, seq));
- if (type == PVT_TEMP)
- *val = polynomial_calc(&poly_N_to_temp, data);
- else
- *val = polynomial_calc(&poly_N_to_volt, data);
- return 0;
- }
- static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- bool is_low, long *val)
- {
- u32 data;
- /* No need in serialization, since it is just read from MMIO. */
- data = readl(pvt->regs + pvt_info[type].thres_base);
- if (is_low)
- data = FIELD_GET(PVT_THRES_LO_MASK, data);
- else
- data = FIELD_GET(PVT_THRES_HI_MASK, data);
- if (type == PVT_TEMP)
- *val = polynomial_calc(&poly_N_to_temp, data);
- else
- *val = polynomial_calc(&poly_N_to_volt, data);
- return 0;
- }
- static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- bool is_low, long val)
- {
- u32 data, limit, mask;
- int ret;
- if (type == PVT_TEMP) {
- val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
- data = polynomial_calc(&poly_temp_to_N, val);
- } else {
- val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
- data = polynomial_calc(&poly_volt_to_N, val);
- }
- /* Serialize limit update, since a part of the register is changed. */
- ret = mutex_lock_interruptible(&pvt->iface_mtx);
- if (ret)
- return ret;
- /* Make sure the upper and lower ranges don't intersect. */
- limit = readl(pvt->regs + pvt_info[type].thres_base);
- if (is_low) {
- limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
- data = clamp_val(data, PVT_DATA_MIN, limit);
- data = FIELD_PREP(PVT_THRES_LO_MASK, data);
- mask = PVT_THRES_LO_MASK;
- } else {
- limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
- data = clamp_val(data, limit, PVT_DATA_MAX);
- data = FIELD_PREP(PVT_THRES_HI_MASK, data);
- mask = PVT_THRES_HI_MASK;
- }
- pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
- mutex_unlock(&pvt->iface_mtx);
- return 0;
- }
- static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- bool is_low, long *val)
- {
- if (is_low)
- *val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
- else
- *val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
- return 0;
- }
- static const struct hwmon_channel_info *pvt_channel_info[] = {
- HWMON_CHANNEL_INFO(chip,
- HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
- HWMON_CHANNEL_INFO(temp,
- HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
- HWMON_T_MIN | HWMON_T_MIN_ALARM |
- HWMON_T_MAX | HWMON_T_MAX_ALARM |
- HWMON_T_OFFSET),
- HWMON_CHANNEL_INFO(in,
- HWMON_I_INPUT | HWMON_I_LABEL |
- HWMON_I_MIN | HWMON_I_MIN_ALARM |
- HWMON_I_MAX | HWMON_I_MAX_ALARM,
- HWMON_I_INPUT | HWMON_I_LABEL |
- HWMON_I_MIN | HWMON_I_MIN_ALARM |
- HWMON_I_MAX | HWMON_I_MAX_ALARM,
- HWMON_I_INPUT | HWMON_I_LABEL |
- HWMON_I_MIN | HWMON_I_MIN_ALARM |
- HWMON_I_MAX | HWMON_I_MAX_ALARM,
- HWMON_I_INPUT | HWMON_I_LABEL |
- HWMON_I_MIN | HWMON_I_MIN_ALARM |
- HWMON_I_MAX | HWMON_I_MAX_ALARM),
- NULL
- };
- #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
- static irqreturn_t pvt_hard_isr(int irq, void *data)
- {
- struct pvt_hwmon *pvt = data;
- struct pvt_cache *cache;
- u32 val;
- /*
- * Mask the DVALID interrupt so after exiting from the handler a
- * repeated conversion wouldn't happen.
- */
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
- PVT_INTR_DVALID);
- /*
- * Nothing special for alarm-less driver. Just read the data, update
- * the cache and notify a waiter of this event.
- */
- val = readl(pvt->regs + PVT_DATA);
- if (!(val & PVT_DATA_VALID)) {
- dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
- return IRQ_HANDLED;
- }
- cache = &pvt->cache[pvt->sensor];
- WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
- complete(&cache->conversion);
- return IRQ_HANDLED;
- }
- #define pvt_soft_isr NULL
- static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
- {
- return 0;
- }
- static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
- {
- return 0;
- }
- static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- long *val)
- {
- struct pvt_cache *cache = &pvt->cache[type];
- unsigned long timeout;
- u32 data;
- int ret;
- /*
- * Lock PVT conversion interface until data cache is updated. The
- * data read procedure is following: set the requested PVT sensor
- * mode, enable IRQ and conversion, wait until conversion is finished,
- * then disable conversion and IRQ, and read the cached data.
- */
- ret = mutex_lock_interruptible(&pvt->iface_mtx);
- if (ret)
- return ret;
- pvt->sensor = type;
- pvt_set_mode(pvt, pvt_info[type].mode);
- /*
- * Unmask the DVALID interrupt and enable the sensors conversions.
- * Do the reverse procedure when conversion is done.
- */
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
- /*
- * Wait with timeout since in case if the sensor is suddenly powered
- * down the request won't be completed and the caller will hang up on
- * this procedure until the power is back up again. Multiply the
- * timeout by the factor of two to prevent a false timeout.
- */
- timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
- ret = wait_for_completion_timeout(&cache->conversion, timeout);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
- PVT_INTR_DVALID);
- data = READ_ONCE(cache->data);
- mutex_unlock(&pvt->iface_mtx);
- if (!ret)
- return -ETIMEDOUT;
- if (type == PVT_TEMP)
- *val = polynomial_calc(&poly_N_to_temp, data);
- else
- *val = polynomial_calc(&poly_N_to_volt, data);
- return 0;
- }
- static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- bool is_low, long *val)
- {
- return -EOPNOTSUPP;
- }
- static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- bool is_low, long val)
- {
- return -EOPNOTSUPP;
- }
- static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
- bool is_low, long *val)
- {
- return -EOPNOTSUPP;
- }
- static const struct hwmon_channel_info *pvt_channel_info[] = {
- HWMON_CHANNEL_INFO(chip,
- HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
- HWMON_CHANNEL_INFO(temp,
- HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
- HWMON_T_OFFSET),
- HWMON_CHANNEL_INFO(in,
- HWMON_I_INPUT | HWMON_I_LABEL,
- HWMON_I_INPUT | HWMON_I_LABEL,
- HWMON_I_INPUT | HWMON_I_LABEL,
- HWMON_I_INPUT | HWMON_I_LABEL),
- NULL
- };
- #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
- static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
- int ch)
- {
- switch (type) {
- case hwmon_temp:
- if (ch < 0 || ch >= PVT_TEMP_CHS)
- return false;
- break;
- case hwmon_in:
- if (ch < 0 || ch >= PVT_VOLT_CHS)
- return false;
- break;
- default:
- break;
- }
- /* The rest of the types are independent from the channel number. */
- return true;
- }
- static umode_t pvt_hwmon_is_visible(const void *data,
- enum hwmon_sensor_types type,
- u32 attr, int ch)
- {
- if (!pvt_hwmon_channel_is_valid(type, ch))
- return 0;
- switch (type) {
- case hwmon_chip:
- switch (attr) {
- case hwmon_chip_update_interval:
- return 0644;
- }
- break;
- case hwmon_temp:
- switch (attr) {
- case hwmon_temp_input:
- case hwmon_temp_type:
- case hwmon_temp_label:
- return 0444;
- case hwmon_temp_min:
- case hwmon_temp_max:
- return pvt_limit_is_visible(ch);
- case hwmon_temp_min_alarm:
- case hwmon_temp_max_alarm:
- return pvt_alarm_is_visible(ch);
- case hwmon_temp_offset:
- return 0644;
- }
- break;
- case hwmon_in:
- switch (attr) {
- case hwmon_in_input:
- case hwmon_in_label:
- return 0444;
- case hwmon_in_min:
- case hwmon_in_max:
- return pvt_limit_is_visible(PVT_VOLT + ch);
- case hwmon_in_min_alarm:
- case hwmon_in_max_alarm:
- return pvt_alarm_is_visible(PVT_VOLT + ch);
- }
- break;
- default:
- break;
- }
- return 0;
- }
- static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
- {
- u32 data;
- data = readl(pvt->regs + PVT_CTRL);
- *val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
- return 0;
- }
- static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
- {
- u32 trim;
- int ret;
- /*
- * Serialize trim update, since a part of the register is changed and
- * the controller is supposed to be disabled during this operation.
- */
- ret = mutex_lock_interruptible(&pvt->iface_mtx);
- if (ret)
- return ret;
- trim = pvt_calc_trim(val);
- pvt_set_trim(pvt, trim);
- mutex_unlock(&pvt->iface_mtx);
- return 0;
- }
- static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
- {
- int ret;
- ret = mutex_lock_interruptible(&pvt->iface_mtx);
- if (ret)
- return ret;
- /* Return the result in msec as hwmon sysfs interface requires. */
- *val = ktime_to_ms(pvt->timeout);
- mutex_unlock(&pvt->iface_mtx);
- return 0;
- }
- static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
- {
- unsigned long rate;
- ktime_t kt, cache;
- u32 data;
- int ret;
- rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
- if (!rate)
- return -ENODEV;
- /*
- * If alarms are enabled, the requested timeout must be divided
- * between all available sensors to have the requested delay
- * applicable to each individual sensor.
- */
- cache = kt = ms_to_ktime(val);
- #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- kt = ktime_divns(kt, PVT_SENSORS_NUM);
- #endif
- /*
- * Subtract a constant lag, which always persists due to the limited
- * PVT sampling rate. Make sure the timeout is not negative.
- */
- kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
- if (ktime_to_ns(kt) < 0)
- kt = ktime_set(0, 0);
- /*
- * Finally recalculate the timeout in terms of the reference clock
- * period.
- */
- data = ktime_divns(kt * rate, NSEC_PER_SEC);
- /*
- * Update the measurements delay, but lock the interface first, since
- * we have to disable PVT in order to have the new delay actually
- * updated.
- */
- ret = mutex_lock_interruptible(&pvt->iface_mtx);
- if (ret)
- return ret;
- pvt_set_tout(pvt, data);
- pvt->timeout = cache;
- mutex_unlock(&pvt->iface_mtx);
- return 0;
- }
- static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
- u32 attr, int ch, long *val)
- {
- struct pvt_hwmon *pvt = dev_get_drvdata(dev);
- if (!pvt_hwmon_channel_is_valid(type, ch))
- return -EINVAL;
- switch (type) {
- case hwmon_chip:
- switch (attr) {
- case hwmon_chip_update_interval:
- return pvt_read_timeout(pvt, val);
- }
- break;
- case hwmon_temp:
- switch (attr) {
- case hwmon_temp_input:
- return pvt_read_data(pvt, ch, val);
- case hwmon_temp_type:
- *val = 1;
- return 0;
- case hwmon_temp_min:
- return pvt_read_limit(pvt, ch, true, val);
- case hwmon_temp_max:
- return pvt_read_limit(pvt, ch, false, val);
- case hwmon_temp_min_alarm:
- return pvt_read_alarm(pvt, ch, true, val);
- case hwmon_temp_max_alarm:
- return pvt_read_alarm(pvt, ch, false, val);
- case hwmon_temp_offset:
- return pvt_read_trim(pvt, val);
- }
- break;
- case hwmon_in:
- switch (attr) {
- case hwmon_in_input:
- return pvt_read_data(pvt, PVT_VOLT + ch, val);
- case hwmon_in_min:
- return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
- case hwmon_in_max:
- return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
- case hwmon_in_min_alarm:
- return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
- case hwmon_in_max_alarm:
- return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
- }
- break;
- default:
- break;
- }
- return -EOPNOTSUPP;
- }
- static int pvt_hwmon_read_string(struct device *dev,
- enum hwmon_sensor_types type,
- u32 attr, int ch, const char **str)
- {
- if (!pvt_hwmon_channel_is_valid(type, ch))
- return -EINVAL;
- switch (type) {
- case hwmon_temp:
- switch (attr) {
- case hwmon_temp_label:
- *str = pvt_info[ch].label;
- return 0;
- }
- break;
- case hwmon_in:
- switch (attr) {
- case hwmon_in_label:
- *str = pvt_info[PVT_VOLT + ch].label;
- return 0;
- }
- break;
- default:
- break;
- }
- return -EOPNOTSUPP;
- }
- static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
- u32 attr, int ch, long val)
- {
- struct pvt_hwmon *pvt = dev_get_drvdata(dev);
- if (!pvt_hwmon_channel_is_valid(type, ch))
- return -EINVAL;
- switch (type) {
- case hwmon_chip:
- switch (attr) {
- case hwmon_chip_update_interval:
- return pvt_write_timeout(pvt, val);
- }
- break;
- case hwmon_temp:
- switch (attr) {
- case hwmon_temp_min:
- return pvt_write_limit(pvt, ch, true, val);
- case hwmon_temp_max:
- return pvt_write_limit(pvt, ch, false, val);
- case hwmon_temp_offset:
- return pvt_write_trim(pvt, val);
- }
- break;
- case hwmon_in:
- switch (attr) {
- case hwmon_in_min:
- return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
- case hwmon_in_max:
- return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
- }
- break;
- default:
- break;
- }
- return -EOPNOTSUPP;
- }
- static const struct hwmon_ops pvt_hwmon_ops = {
- .is_visible = pvt_hwmon_is_visible,
- .read = pvt_hwmon_read,
- .read_string = pvt_hwmon_read_string,
- .write = pvt_hwmon_write
- };
- static const struct hwmon_chip_info pvt_hwmon_info = {
- .ops = &pvt_hwmon_ops,
- .info = pvt_channel_info
- };
- static void pvt_clear_data(void *data)
- {
- struct pvt_hwmon *pvt = data;
- #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- int idx;
- for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
- complete_all(&pvt->cache[idx].conversion);
- #endif
- mutex_destroy(&pvt->iface_mtx);
- }
- static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
- {
- struct device *dev = &pdev->dev;
- struct pvt_hwmon *pvt;
- int ret, idx;
- pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
- if (!pvt)
- return ERR_PTR(-ENOMEM);
- ret = devm_add_action(dev, pvt_clear_data, pvt);
- if (ret) {
- dev_err(dev, "Can't add PVT data clear action\n");
- return ERR_PTR(ret);
- }
- pvt->dev = dev;
- pvt->sensor = PVT_SENSOR_FIRST;
- mutex_init(&pvt->iface_mtx);
- #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
- seqlock_init(&pvt->cache[idx].data_seqlock);
- #else
- for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
- init_completion(&pvt->cache[idx].conversion);
- #endif
- return pvt;
- }
- static int pvt_request_regs(struct pvt_hwmon *pvt)
- {
- struct platform_device *pdev = to_platform_device(pvt->dev);
- struct resource *res;
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- if (!res) {
- dev_err(pvt->dev, "Couldn't find PVT memresource\n");
- return -EINVAL;
- }
- pvt->regs = devm_ioremap_resource(pvt->dev, res);
- if (IS_ERR(pvt->regs))
- return PTR_ERR(pvt->regs);
- return 0;
- }
- static void pvt_disable_clks(void *data)
- {
- struct pvt_hwmon *pvt = data;
- clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
- }
- static int pvt_request_clks(struct pvt_hwmon *pvt)
- {
- int ret;
- pvt->clks[PVT_CLOCK_APB].id = "pclk";
- pvt->clks[PVT_CLOCK_REF].id = "ref";
- ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
- if (ret) {
- dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
- return ret;
- }
- ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
- if (ret) {
- dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
- return ret;
- }
- ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
- if (ret) {
- dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
- return ret;
- }
- return 0;
- }
- static int pvt_check_pwr(struct pvt_hwmon *pvt)
- {
- unsigned long tout;
- int ret = 0;
- u32 data;
- /*
- * Test out the sensor conversion functionality. If it is not done on
- * time then the domain must have been unpowered and we won't be able
- * to use the device later in this driver.
- * Note If the power source is lost during the normal driver work the
- * data read procedure will either return -ETIMEDOUT (for the
- * alarm-less driver configuration) or just stop the repeated
- * conversion. In the later case alas we won't be able to detect the
- * problem.
- */
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
- pvt_set_tout(pvt, 0);
- readl(pvt->regs + PVT_DATA);
- tout = PVT_TOUT_MIN / NSEC_PER_USEC;
- usleep_range(tout, 2 * tout);
- data = readl(pvt->regs + PVT_DATA);
- if (!(data & PVT_DATA_VALID)) {
- ret = -ENODEV;
- dev_err(pvt->dev, "Sensor is powered down\n");
- }
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- return ret;
- }
- static int pvt_init_iface(struct pvt_hwmon *pvt)
- {
- unsigned long rate;
- u32 trim, temp;
- rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
- if (!rate) {
- dev_err(pvt->dev, "Invalid reference clock rate\n");
- return -ENODEV;
- }
- /*
- * Make sure all interrupts and controller are disabled so not to
- * accidentally have ISR executed before the driver data is fully
- * initialized. Clear the IRQ status as well.
- */
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- readl(pvt->regs + PVT_CLR_INTR);
- readl(pvt->regs + PVT_DATA);
- /* Setup default sensor mode, timeout and temperature trim. */
- pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
- pvt_set_tout(pvt, PVT_TOUT_DEF);
- /*
- * Preserve the current ref-clock based delay (Ttotal) between the
- * sensors data samples in the driver data so not to recalculate it
- * each time on the data requests and timeout reads. It consists of the
- * delay introduced by the internal ref-clock timer (N / Fclk) and the
- * constant timeout caused by each conversion latency (Tmin):
- * Ttotal = N / Fclk + Tmin
- * If alarms are enabled the sensors are polled one after another and
- * in order to get the next measurement of a particular sensor the
- * caller will have to wait for at most until all the others are
- * polled. In that case the formulae will look a bit different:
- * Ttotal = 5 * (N / Fclk + Tmin)
- */
- #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
- pvt->timeout = ktime_divns(pvt->timeout, rate);
- pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
- #else
- pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
- pvt->timeout = ktime_divns(pvt->timeout, rate);
- pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
- #endif
- trim = PVT_TRIM_DEF;
- if (!of_property_read_u32(pvt->dev->of_node,
- "baikal,pvt-temp-offset-millicelsius", &temp))
- trim = pvt_calc_trim(temp);
- pvt_set_trim(pvt, trim);
- return 0;
- }
- static int pvt_request_irq(struct pvt_hwmon *pvt)
- {
- struct platform_device *pdev = to_platform_device(pvt->dev);
- int ret;
- pvt->irq = platform_get_irq(pdev, 0);
- if (pvt->irq < 0)
- return pvt->irq;
- ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
- pvt_hard_isr, pvt_soft_isr,
- #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- IRQF_SHARED | IRQF_TRIGGER_HIGH |
- IRQF_ONESHOT,
- #else
- IRQF_SHARED | IRQF_TRIGGER_HIGH,
- #endif
- "pvt", pvt);
- if (ret) {
- dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
- return ret;
- }
- return 0;
- }
- static int pvt_create_hwmon(struct pvt_hwmon *pvt)
- {
- pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
- &pvt_hwmon_info, NULL);
- if (IS_ERR(pvt->hwmon)) {
- dev_err(pvt->dev, "Couldn't create hwmon device\n");
- return PTR_ERR(pvt->hwmon);
- }
- return 0;
- }
- #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
- static void pvt_disable_iface(void *data)
- {
- struct pvt_hwmon *pvt = data;
- mutex_lock(&pvt->iface_mtx);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
- PVT_INTR_DVALID);
- mutex_unlock(&pvt->iface_mtx);
- }
- static int pvt_enable_iface(struct pvt_hwmon *pvt)
- {
- int ret;
- ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
- if (ret) {
- dev_err(pvt->dev, "Can't add PVT disable interface action\n");
- return ret;
- }
- /*
- * Enable sensors data conversion and IRQ. We need to lock the
- * interface mutex since hwmon has just been created and the
- * corresponding sysfs files are accessible from user-space,
- * which theoretically may cause races.
- */
- mutex_lock(&pvt->iface_mtx);
- pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
- pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
- mutex_unlock(&pvt->iface_mtx);
- return 0;
- }
- #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
- static int pvt_enable_iface(struct pvt_hwmon *pvt)
- {
- return 0;
- }
- #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
- static int pvt_probe(struct platform_device *pdev)
- {
- struct pvt_hwmon *pvt;
- int ret;
- pvt = pvt_create_data(pdev);
- if (IS_ERR(pvt))
- return PTR_ERR(pvt);
- ret = pvt_request_regs(pvt);
- if (ret)
- return ret;
- ret = pvt_request_clks(pvt);
- if (ret)
- return ret;
- ret = pvt_check_pwr(pvt);
- if (ret)
- return ret;
- ret = pvt_init_iface(pvt);
- if (ret)
- return ret;
- ret = pvt_request_irq(pvt);
- if (ret)
- return ret;
- ret = pvt_create_hwmon(pvt);
- if (ret)
- return ret;
- ret = pvt_enable_iface(pvt);
- if (ret)
- return ret;
- return 0;
- }
- static const struct of_device_id pvt_of_match[] = {
- { .compatible = "baikal,bt1-pvt" },
- { }
- };
- MODULE_DEVICE_TABLE(of, pvt_of_match);
- static struct platform_driver pvt_driver = {
- .probe = pvt_probe,
- .driver = {
- .name = "bt1-pvt",
- .of_match_table = pvt_of_match
- }
- };
- module_platform_driver(pvt_driver);
- MODULE_AUTHOR("Maxim Kaurkin <[email protected]>");
- MODULE_DESCRIPTION("Baikal-T1 PVT driver");
- MODULE_LICENSE("GPL v2");
|