device.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright(c) 2016-2018 Intel Corporation. All rights reserved. */
  3. #include <linux/memremap.h>
  4. #include <linux/pagemap.h>
  5. #include <linux/module.h>
  6. #include <linux/device.h>
  7. #include <linux/pfn_t.h>
  8. #include <linux/cdev.h>
  9. #include <linux/slab.h>
  10. #include <linux/dax.h>
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/mman.h>
  14. #include "dax-private.h"
  15. #include "bus.h"
  16. static int check_vma(struct dev_dax *dev_dax, struct vm_area_struct *vma,
  17. const char *func)
  18. {
  19. struct device *dev = &dev_dax->dev;
  20. unsigned long mask;
  21. if (!dax_alive(dev_dax->dax_dev))
  22. return -ENXIO;
  23. /* prevent private mappings from being established */
  24. if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) {
  25. dev_info_ratelimited(dev,
  26. "%s: %s: fail, attempted private mapping\n",
  27. current->comm, func);
  28. return -EINVAL;
  29. }
  30. mask = dev_dax->align - 1;
  31. if (vma->vm_start & mask || vma->vm_end & mask) {
  32. dev_info_ratelimited(dev,
  33. "%s: %s: fail, unaligned vma (%#lx - %#lx, %#lx)\n",
  34. current->comm, func, vma->vm_start, vma->vm_end,
  35. mask);
  36. return -EINVAL;
  37. }
  38. if (!vma_is_dax(vma)) {
  39. dev_info_ratelimited(dev,
  40. "%s: %s: fail, vma is not DAX capable\n",
  41. current->comm, func);
  42. return -EINVAL;
  43. }
  44. return 0;
  45. }
  46. /* see "strong" declaration in tools/testing/nvdimm/dax-dev.c */
  47. __weak phys_addr_t dax_pgoff_to_phys(struct dev_dax *dev_dax, pgoff_t pgoff,
  48. unsigned long size)
  49. {
  50. int i;
  51. for (i = 0; i < dev_dax->nr_range; i++) {
  52. struct dev_dax_range *dax_range = &dev_dax->ranges[i];
  53. struct range *range = &dax_range->range;
  54. unsigned long long pgoff_end;
  55. phys_addr_t phys;
  56. pgoff_end = dax_range->pgoff + PHYS_PFN(range_len(range)) - 1;
  57. if (pgoff < dax_range->pgoff || pgoff > pgoff_end)
  58. continue;
  59. phys = PFN_PHYS(pgoff - dax_range->pgoff) + range->start;
  60. if (phys + size - 1 <= range->end)
  61. return phys;
  62. break;
  63. }
  64. return -1;
  65. }
  66. static void dax_set_mapping(struct vm_fault *vmf, pfn_t pfn,
  67. unsigned long fault_size)
  68. {
  69. unsigned long i, nr_pages = fault_size / PAGE_SIZE;
  70. struct file *filp = vmf->vma->vm_file;
  71. struct dev_dax *dev_dax = filp->private_data;
  72. pgoff_t pgoff;
  73. /* mapping is only set on the head */
  74. if (dev_dax->pgmap->vmemmap_shift)
  75. nr_pages = 1;
  76. pgoff = linear_page_index(vmf->vma,
  77. ALIGN(vmf->address, fault_size));
  78. for (i = 0; i < nr_pages; i++) {
  79. struct page *page = pfn_to_page(pfn_t_to_pfn(pfn) + i);
  80. page = compound_head(page);
  81. if (page->mapping)
  82. continue;
  83. page->mapping = filp->f_mapping;
  84. page->index = pgoff + i;
  85. }
  86. }
  87. static vm_fault_t __dev_dax_pte_fault(struct dev_dax *dev_dax,
  88. struct vm_fault *vmf)
  89. {
  90. struct device *dev = &dev_dax->dev;
  91. phys_addr_t phys;
  92. pfn_t pfn;
  93. unsigned int fault_size = PAGE_SIZE;
  94. if (check_vma(dev_dax, vmf->vma, __func__))
  95. return VM_FAULT_SIGBUS;
  96. if (dev_dax->align > PAGE_SIZE) {
  97. dev_dbg(dev, "alignment (%#x) > fault size (%#x)\n",
  98. dev_dax->align, fault_size);
  99. return VM_FAULT_SIGBUS;
  100. }
  101. if (fault_size != dev_dax->align)
  102. return VM_FAULT_SIGBUS;
  103. phys = dax_pgoff_to_phys(dev_dax, vmf->pgoff, PAGE_SIZE);
  104. if (phys == -1) {
  105. dev_dbg(dev, "pgoff_to_phys(%#lx) failed\n", vmf->pgoff);
  106. return VM_FAULT_SIGBUS;
  107. }
  108. pfn = phys_to_pfn_t(phys, PFN_DEV|PFN_MAP);
  109. dax_set_mapping(vmf, pfn, fault_size);
  110. return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
  111. }
  112. static vm_fault_t __dev_dax_pmd_fault(struct dev_dax *dev_dax,
  113. struct vm_fault *vmf)
  114. {
  115. unsigned long pmd_addr = vmf->address & PMD_MASK;
  116. struct device *dev = &dev_dax->dev;
  117. phys_addr_t phys;
  118. pgoff_t pgoff;
  119. pfn_t pfn;
  120. unsigned int fault_size = PMD_SIZE;
  121. if (check_vma(dev_dax, vmf->vma, __func__))
  122. return VM_FAULT_SIGBUS;
  123. if (dev_dax->align > PMD_SIZE) {
  124. dev_dbg(dev, "alignment (%#x) > fault size (%#x)\n",
  125. dev_dax->align, fault_size);
  126. return VM_FAULT_SIGBUS;
  127. }
  128. if (fault_size < dev_dax->align)
  129. return VM_FAULT_SIGBUS;
  130. else if (fault_size > dev_dax->align)
  131. return VM_FAULT_FALLBACK;
  132. /* if we are outside of the VMA */
  133. if (pmd_addr < vmf->vma->vm_start ||
  134. (pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
  135. return VM_FAULT_SIGBUS;
  136. pgoff = linear_page_index(vmf->vma, pmd_addr);
  137. phys = dax_pgoff_to_phys(dev_dax, pgoff, PMD_SIZE);
  138. if (phys == -1) {
  139. dev_dbg(dev, "pgoff_to_phys(%#lx) failed\n", pgoff);
  140. return VM_FAULT_SIGBUS;
  141. }
  142. pfn = phys_to_pfn_t(phys, PFN_DEV|PFN_MAP);
  143. dax_set_mapping(vmf, pfn, fault_size);
  144. return vmf_insert_pfn_pmd(vmf, pfn, vmf->flags & FAULT_FLAG_WRITE);
  145. }
  146. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  147. static vm_fault_t __dev_dax_pud_fault(struct dev_dax *dev_dax,
  148. struct vm_fault *vmf)
  149. {
  150. unsigned long pud_addr = vmf->address & PUD_MASK;
  151. struct device *dev = &dev_dax->dev;
  152. phys_addr_t phys;
  153. pgoff_t pgoff;
  154. pfn_t pfn;
  155. unsigned int fault_size = PUD_SIZE;
  156. if (check_vma(dev_dax, vmf->vma, __func__))
  157. return VM_FAULT_SIGBUS;
  158. if (dev_dax->align > PUD_SIZE) {
  159. dev_dbg(dev, "alignment (%#x) > fault size (%#x)\n",
  160. dev_dax->align, fault_size);
  161. return VM_FAULT_SIGBUS;
  162. }
  163. if (fault_size < dev_dax->align)
  164. return VM_FAULT_SIGBUS;
  165. else if (fault_size > dev_dax->align)
  166. return VM_FAULT_FALLBACK;
  167. /* if we are outside of the VMA */
  168. if (pud_addr < vmf->vma->vm_start ||
  169. (pud_addr + PUD_SIZE) > vmf->vma->vm_end)
  170. return VM_FAULT_SIGBUS;
  171. pgoff = linear_page_index(vmf->vma, pud_addr);
  172. phys = dax_pgoff_to_phys(dev_dax, pgoff, PUD_SIZE);
  173. if (phys == -1) {
  174. dev_dbg(dev, "pgoff_to_phys(%#lx) failed\n", pgoff);
  175. return VM_FAULT_SIGBUS;
  176. }
  177. pfn = phys_to_pfn_t(phys, PFN_DEV|PFN_MAP);
  178. dax_set_mapping(vmf, pfn, fault_size);
  179. return vmf_insert_pfn_pud(vmf, pfn, vmf->flags & FAULT_FLAG_WRITE);
  180. }
  181. #else
  182. static vm_fault_t __dev_dax_pud_fault(struct dev_dax *dev_dax,
  183. struct vm_fault *vmf)
  184. {
  185. return VM_FAULT_FALLBACK;
  186. }
  187. #endif /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  188. static vm_fault_t dev_dax_huge_fault(struct vm_fault *vmf,
  189. enum page_entry_size pe_size)
  190. {
  191. struct file *filp = vmf->vma->vm_file;
  192. vm_fault_t rc = VM_FAULT_SIGBUS;
  193. int id;
  194. struct dev_dax *dev_dax = filp->private_data;
  195. dev_dbg(&dev_dax->dev, "%s: %s (%#lx - %#lx) size = %d\n", current->comm,
  196. (vmf->flags & FAULT_FLAG_WRITE) ? "write" : "read",
  197. vmf->vma->vm_start, vmf->vma->vm_end, pe_size);
  198. id = dax_read_lock();
  199. switch (pe_size) {
  200. case PE_SIZE_PTE:
  201. rc = __dev_dax_pte_fault(dev_dax, vmf);
  202. break;
  203. case PE_SIZE_PMD:
  204. rc = __dev_dax_pmd_fault(dev_dax, vmf);
  205. break;
  206. case PE_SIZE_PUD:
  207. rc = __dev_dax_pud_fault(dev_dax, vmf);
  208. break;
  209. default:
  210. rc = VM_FAULT_SIGBUS;
  211. }
  212. dax_read_unlock(id);
  213. return rc;
  214. }
  215. static vm_fault_t dev_dax_fault(struct vm_fault *vmf)
  216. {
  217. return dev_dax_huge_fault(vmf, PE_SIZE_PTE);
  218. }
  219. static int dev_dax_may_split(struct vm_area_struct *vma, unsigned long addr)
  220. {
  221. struct file *filp = vma->vm_file;
  222. struct dev_dax *dev_dax = filp->private_data;
  223. if (!IS_ALIGNED(addr, dev_dax->align))
  224. return -EINVAL;
  225. return 0;
  226. }
  227. static unsigned long dev_dax_pagesize(struct vm_area_struct *vma)
  228. {
  229. struct file *filp = vma->vm_file;
  230. struct dev_dax *dev_dax = filp->private_data;
  231. return dev_dax->align;
  232. }
  233. static const struct vm_operations_struct dax_vm_ops = {
  234. .fault = dev_dax_fault,
  235. .huge_fault = dev_dax_huge_fault,
  236. .may_split = dev_dax_may_split,
  237. .pagesize = dev_dax_pagesize,
  238. };
  239. static int dax_mmap(struct file *filp, struct vm_area_struct *vma)
  240. {
  241. struct dev_dax *dev_dax = filp->private_data;
  242. int rc, id;
  243. dev_dbg(&dev_dax->dev, "trace\n");
  244. /*
  245. * We lock to check dax_dev liveness and will re-check at
  246. * fault time.
  247. */
  248. id = dax_read_lock();
  249. rc = check_vma(dev_dax, vma, __func__);
  250. dax_read_unlock(id);
  251. if (rc)
  252. return rc;
  253. vma->vm_ops = &dax_vm_ops;
  254. vm_flags_set(vma, VM_HUGEPAGE);
  255. return 0;
  256. }
  257. /* return an unmapped area aligned to the dax region specified alignment */
  258. static unsigned long dax_get_unmapped_area(struct file *filp,
  259. unsigned long addr, unsigned long len, unsigned long pgoff,
  260. unsigned long flags)
  261. {
  262. unsigned long off, off_end, off_align, len_align, addr_align, align;
  263. struct dev_dax *dev_dax = filp ? filp->private_data : NULL;
  264. if (!dev_dax || addr)
  265. goto out;
  266. align = dev_dax->align;
  267. off = pgoff << PAGE_SHIFT;
  268. off_end = off + len;
  269. off_align = round_up(off, align);
  270. if ((off_end <= off_align) || ((off_end - off_align) < align))
  271. goto out;
  272. len_align = len + align;
  273. if ((off + len_align) < off)
  274. goto out;
  275. addr_align = current->mm->get_unmapped_area(filp, addr, len_align,
  276. pgoff, flags);
  277. if (!IS_ERR_VALUE(addr_align)) {
  278. addr_align += (off - addr_align) & (align - 1);
  279. return addr_align;
  280. }
  281. out:
  282. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  283. }
  284. static const struct address_space_operations dev_dax_aops = {
  285. .dirty_folio = noop_dirty_folio,
  286. };
  287. static int dax_open(struct inode *inode, struct file *filp)
  288. {
  289. struct dax_device *dax_dev = inode_dax(inode);
  290. struct inode *__dax_inode = dax_inode(dax_dev);
  291. struct dev_dax *dev_dax = dax_get_private(dax_dev);
  292. dev_dbg(&dev_dax->dev, "trace\n");
  293. inode->i_mapping = __dax_inode->i_mapping;
  294. inode->i_mapping->host = __dax_inode;
  295. inode->i_mapping->a_ops = &dev_dax_aops;
  296. filp->f_mapping = inode->i_mapping;
  297. filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
  298. filp->f_sb_err = file_sample_sb_err(filp);
  299. filp->private_data = dev_dax;
  300. inode->i_flags = S_DAX;
  301. return 0;
  302. }
  303. static int dax_release(struct inode *inode, struct file *filp)
  304. {
  305. struct dev_dax *dev_dax = filp->private_data;
  306. dev_dbg(&dev_dax->dev, "trace\n");
  307. return 0;
  308. }
  309. static const struct file_operations dax_fops = {
  310. .llseek = noop_llseek,
  311. .owner = THIS_MODULE,
  312. .open = dax_open,
  313. .release = dax_release,
  314. .get_unmapped_area = dax_get_unmapped_area,
  315. .mmap = dax_mmap,
  316. .mmap_supported_flags = MAP_SYNC,
  317. };
  318. static void dev_dax_cdev_del(void *cdev)
  319. {
  320. cdev_del(cdev);
  321. }
  322. static void dev_dax_kill(void *dev_dax)
  323. {
  324. kill_dev_dax(dev_dax);
  325. }
  326. int dev_dax_probe(struct dev_dax *dev_dax)
  327. {
  328. struct dax_device *dax_dev = dev_dax->dax_dev;
  329. struct device *dev = &dev_dax->dev;
  330. struct dev_pagemap *pgmap;
  331. struct inode *inode;
  332. struct cdev *cdev;
  333. void *addr;
  334. int rc, i;
  335. if (static_dev_dax(dev_dax)) {
  336. if (dev_dax->nr_range > 1) {
  337. dev_warn(dev,
  338. "static pgmap / multi-range device conflict\n");
  339. return -EINVAL;
  340. }
  341. pgmap = dev_dax->pgmap;
  342. } else {
  343. if (dev_dax->pgmap) {
  344. dev_warn(dev,
  345. "dynamic-dax with pre-populated page map\n");
  346. return -EINVAL;
  347. }
  348. pgmap = devm_kzalloc(dev,
  349. struct_size(pgmap, ranges, dev_dax->nr_range - 1),
  350. GFP_KERNEL);
  351. if (!pgmap)
  352. return -ENOMEM;
  353. pgmap->nr_range = dev_dax->nr_range;
  354. dev_dax->pgmap = pgmap;
  355. for (i = 0; i < dev_dax->nr_range; i++) {
  356. struct range *range = &dev_dax->ranges[i].range;
  357. pgmap->ranges[i] = *range;
  358. }
  359. }
  360. for (i = 0; i < dev_dax->nr_range; i++) {
  361. struct range *range = &dev_dax->ranges[i].range;
  362. if (!devm_request_mem_region(dev, range->start,
  363. range_len(range), dev_name(dev))) {
  364. dev_warn(dev, "mapping%d: %#llx-%#llx could not reserve range\n",
  365. i, range->start, range->end);
  366. return -EBUSY;
  367. }
  368. }
  369. pgmap->type = MEMORY_DEVICE_GENERIC;
  370. if (dev_dax->align > PAGE_SIZE)
  371. pgmap->vmemmap_shift =
  372. order_base_2(dev_dax->align >> PAGE_SHIFT);
  373. addr = devm_memremap_pages(dev, pgmap);
  374. if (IS_ERR(addr))
  375. return PTR_ERR(addr);
  376. inode = dax_inode(dax_dev);
  377. cdev = inode->i_cdev;
  378. cdev_init(cdev, &dax_fops);
  379. cdev->owner = dev->driver->owner;
  380. cdev_set_parent(cdev, &dev->kobj);
  381. rc = cdev_add(cdev, dev->devt, 1);
  382. if (rc)
  383. return rc;
  384. rc = devm_add_action_or_reset(dev, dev_dax_cdev_del, cdev);
  385. if (rc)
  386. return rc;
  387. run_dax(dax_dev);
  388. return devm_add_action_or_reset(dev, dev_dax_kill, dev_dax);
  389. }
  390. EXPORT_SYMBOL_GPL(dev_dax_probe);
  391. static struct dax_device_driver device_dax_driver = {
  392. .probe = dev_dax_probe,
  393. /* all probe actions are unwound by devm, so .remove isn't necessary */
  394. .match_always = 1,
  395. };
  396. static int __init dax_init(void)
  397. {
  398. return dax_driver_register(&device_dax_driver);
  399. }
  400. static void __exit dax_exit(void)
  401. {
  402. dax_driver_unregister(&device_dax_driver);
  403. }
  404. MODULE_AUTHOR("Intel Corporation");
  405. MODULE_LICENSE("GPL v2");
  406. module_init(dax_init);
  407. module_exit(dax_exit);
  408. MODULE_ALIAS_DAX_DEVICE(0);