stm32-hash.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * This file is part of STM32 Crypto driver for Linux.
  4. *
  5. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  6. * Author(s): Lionel DEBIEVE <[email protected]> for STMicroelectronics.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/crypto.h>
  10. #include <linux/delay.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/io.h>
  15. #include <linux/iopoll.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/of_device.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/reset.h>
  22. #include <crypto/engine.h>
  23. #include <crypto/hash.h>
  24. #include <crypto/md5.h>
  25. #include <crypto/scatterwalk.h>
  26. #include <crypto/sha1.h>
  27. #include <crypto/sha2.h>
  28. #include <crypto/internal/hash.h>
  29. #define HASH_CR 0x00
  30. #define HASH_DIN 0x04
  31. #define HASH_STR 0x08
  32. #define HASH_IMR 0x20
  33. #define HASH_SR 0x24
  34. #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
  35. #define HASH_HREG(x) (0x310 + ((x) * 0x04))
  36. #define HASH_HWCFGR 0x3F0
  37. #define HASH_VER 0x3F4
  38. #define HASH_ID 0x3F8
  39. /* Control Register */
  40. #define HASH_CR_INIT BIT(2)
  41. #define HASH_CR_DMAE BIT(3)
  42. #define HASH_CR_DATATYPE_POS 4
  43. #define HASH_CR_MODE BIT(6)
  44. #define HASH_CR_MDMAT BIT(13)
  45. #define HASH_CR_DMAA BIT(14)
  46. #define HASH_CR_LKEY BIT(16)
  47. #define HASH_CR_ALGO_SHA1 0x0
  48. #define HASH_CR_ALGO_MD5 0x80
  49. #define HASH_CR_ALGO_SHA224 0x40000
  50. #define HASH_CR_ALGO_SHA256 0x40080
  51. /* Interrupt */
  52. #define HASH_DINIE BIT(0)
  53. #define HASH_DCIE BIT(1)
  54. /* Interrupt Mask */
  55. #define HASH_MASK_CALC_COMPLETION BIT(0)
  56. #define HASH_MASK_DATA_INPUT BIT(1)
  57. /* Context swap register */
  58. #define HASH_CSR_REGISTER_NUMBER 53
  59. /* Status Flags */
  60. #define HASH_SR_DATA_INPUT_READY BIT(0)
  61. #define HASH_SR_OUTPUT_READY BIT(1)
  62. #define HASH_SR_DMA_ACTIVE BIT(2)
  63. #define HASH_SR_BUSY BIT(3)
  64. /* STR Register */
  65. #define HASH_STR_NBLW_MASK GENMASK(4, 0)
  66. #define HASH_STR_DCAL BIT(8)
  67. #define HASH_FLAGS_INIT BIT(0)
  68. #define HASH_FLAGS_OUTPUT_READY BIT(1)
  69. #define HASH_FLAGS_CPU BIT(2)
  70. #define HASH_FLAGS_DMA_READY BIT(3)
  71. #define HASH_FLAGS_DMA_ACTIVE BIT(4)
  72. #define HASH_FLAGS_HMAC_INIT BIT(5)
  73. #define HASH_FLAGS_HMAC_FINAL BIT(6)
  74. #define HASH_FLAGS_HMAC_KEY BIT(7)
  75. #define HASH_FLAGS_FINAL BIT(15)
  76. #define HASH_FLAGS_FINUP BIT(16)
  77. #define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
  78. #define HASH_FLAGS_MD5 BIT(18)
  79. #define HASH_FLAGS_SHA1 BIT(19)
  80. #define HASH_FLAGS_SHA224 BIT(20)
  81. #define HASH_FLAGS_SHA256 BIT(21)
  82. #define HASH_FLAGS_ERRORS BIT(22)
  83. #define HASH_FLAGS_HMAC BIT(23)
  84. #define HASH_OP_UPDATE 1
  85. #define HASH_OP_FINAL 2
  86. enum stm32_hash_data_format {
  87. HASH_DATA_32_BITS = 0x0,
  88. HASH_DATA_16_BITS = 0x1,
  89. HASH_DATA_8_BITS = 0x2,
  90. HASH_DATA_1_BIT = 0x3
  91. };
  92. #define HASH_BUFLEN 256
  93. #define HASH_LONG_KEY 64
  94. #define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
  95. #define HASH_QUEUE_LENGTH 16
  96. #define HASH_DMA_THRESHOLD 50
  97. #define HASH_AUTOSUSPEND_DELAY 50
  98. struct stm32_hash_ctx {
  99. struct crypto_engine_ctx enginectx;
  100. struct stm32_hash_dev *hdev;
  101. unsigned long flags;
  102. u8 key[HASH_MAX_KEY_SIZE];
  103. int keylen;
  104. };
  105. struct stm32_hash_request_ctx {
  106. struct stm32_hash_dev *hdev;
  107. unsigned long flags;
  108. unsigned long op;
  109. u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
  110. size_t digcnt;
  111. size_t bufcnt;
  112. size_t buflen;
  113. /* DMA */
  114. struct scatterlist *sg;
  115. unsigned int offset;
  116. unsigned int total;
  117. struct scatterlist sg_key;
  118. dma_addr_t dma_addr;
  119. size_t dma_ct;
  120. int nents;
  121. u8 data_type;
  122. u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
  123. /* Export Context */
  124. u32 *hw_context;
  125. };
  126. struct stm32_hash_algs_info {
  127. struct ahash_alg *algs_list;
  128. size_t size;
  129. };
  130. struct stm32_hash_pdata {
  131. struct stm32_hash_algs_info *algs_info;
  132. size_t algs_info_size;
  133. };
  134. struct stm32_hash_dev {
  135. struct list_head list;
  136. struct device *dev;
  137. struct clk *clk;
  138. struct reset_control *rst;
  139. void __iomem *io_base;
  140. phys_addr_t phys_base;
  141. u32 dma_mode;
  142. u32 dma_maxburst;
  143. struct ahash_request *req;
  144. struct crypto_engine *engine;
  145. int err;
  146. unsigned long flags;
  147. struct dma_chan *dma_lch;
  148. struct completion dma_completion;
  149. const struct stm32_hash_pdata *pdata;
  150. };
  151. struct stm32_hash_drv {
  152. struct list_head dev_list;
  153. spinlock_t lock; /* List protection access */
  154. };
  155. static struct stm32_hash_drv stm32_hash = {
  156. .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
  157. .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
  158. };
  159. static void stm32_hash_dma_callback(void *param);
  160. static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
  161. {
  162. return readl_relaxed(hdev->io_base + offset);
  163. }
  164. static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
  165. u32 offset, u32 value)
  166. {
  167. writel_relaxed(value, hdev->io_base + offset);
  168. }
  169. static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
  170. {
  171. u32 status;
  172. return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
  173. !(status & HASH_SR_BUSY), 10, 10000);
  174. }
  175. static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
  176. {
  177. u32 reg;
  178. reg = stm32_hash_read(hdev, HASH_STR);
  179. reg &= ~(HASH_STR_NBLW_MASK);
  180. reg |= (8U * ((length) % 4U));
  181. stm32_hash_write(hdev, HASH_STR, reg);
  182. }
  183. static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
  184. {
  185. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  186. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  187. u32 reg;
  188. int keylen = ctx->keylen;
  189. void *key = ctx->key;
  190. if (keylen) {
  191. stm32_hash_set_nblw(hdev, keylen);
  192. while (keylen > 0) {
  193. stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
  194. keylen -= 4;
  195. key += 4;
  196. }
  197. reg = stm32_hash_read(hdev, HASH_STR);
  198. reg |= HASH_STR_DCAL;
  199. stm32_hash_write(hdev, HASH_STR, reg);
  200. return -EINPROGRESS;
  201. }
  202. return 0;
  203. }
  204. static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
  205. {
  206. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  207. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  208. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  209. u32 reg = HASH_CR_INIT;
  210. if (!(hdev->flags & HASH_FLAGS_INIT)) {
  211. switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
  212. case HASH_FLAGS_MD5:
  213. reg |= HASH_CR_ALGO_MD5;
  214. break;
  215. case HASH_FLAGS_SHA1:
  216. reg |= HASH_CR_ALGO_SHA1;
  217. break;
  218. case HASH_FLAGS_SHA224:
  219. reg |= HASH_CR_ALGO_SHA224;
  220. break;
  221. case HASH_FLAGS_SHA256:
  222. reg |= HASH_CR_ALGO_SHA256;
  223. break;
  224. default:
  225. reg |= HASH_CR_ALGO_MD5;
  226. }
  227. reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
  228. if (rctx->flags & HASH_FLAGS_HMAC) {
  229. hdev->flags |= HASH_FLAGS_HMAC;
  230. reg |= HASH_CR_MODE;
  231. if (ctx->keylen > HASH_LONG_KEY)
  232. reg |= HASH_CR_LKEY;
  233. }
  234. stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
  235. stm32_hash_write(hdev, HASH_CR, reg);
  236. hdev->flags |= HASH_FLAGS_INIT;
  237. dev_dbg(hdev->dev, "Write Control %x\n", reg);
  238. }
  239. }
  240. static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
  241. {
  242. size_t count;
  243. while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
  244. count = min(rctx->sg->length - rctx->offset, rctx->total);
  245. count = min(count, rctx->buflen - rctx->bufcnt);
  246. if (count <= 0) {
  247. if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
  248. rctx->sg = sg_next(rctx->sg);
  249. continue;
  250. } else {
  251. break;
  252. }
  253. }
  254. scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
  255. rctx->offset, count, 0);
  256. rctx->bufcnt += count;
  257. rctx->offset += count;
  258. rctx->total -= count;
  259. if (rctx->offset == rctx->sg->length) {
  260. rctx->sg = sg_next(rctx->sg);
  261. if (rctx->sg)
  262. rctx->offset = 0;
  263. else
  264. rctx->total = 0;
  265. }
  266. }
  267. }
  268. static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
  269. const u8 *buf, size_t length, int final)
  270. {
  271. unsigned int count, len32;
  272. const u32 *buffer = (const u32 *)buf;
  273. u32 reg;
  274. if (final)
  275. hdev->flags |= HASH_FLAGS_FINAL;
  276. len32 = DIV_ROUND_UP(length, sizeof(u32));
  277. dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
  278. __func__, length, final, len32);
  279. hdev->flags |= HASH_FLAGS_CPU;
  280. stm32_hash_write_ctrl(hdev);
  281. if (stm32_hash_wait_busy(hdev))
  282. return -ETIMEDOUT;
  283. if ((hdev->flags & HASH_FLAGS_HMAC) &&
  284. (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
  285. hdev->flags |= HASH_FLAGS_HMAC_KEY;
  286. stm32_hash_write_key(hdev);
  287. if (stm32_hash_wait_busy(hdev))
  288. return -ETIMEDOUT;
  289. }
  290. for (count = 0; count < len32; count++)
  291. stm32_hash_write(hdev, HASH_DIN, buffer[count]);
  292. if (final) {
  293. stm32_hash_set_nblw(hdev, length);
  294. reg = stm32_hash_read(hdev, HASH_STR);
  295. reg |= HASH_STR_DCAL;
  296. stm32_hash_write(hdev, HASH_STR, reg);
  297. if (hdev->flags & HASH_FLAGS_HMAC) {
  298. if (stm32_hash_wait_busy(hdev))
  299. return -ETIMEDOUT;
  300. stm32_hash_write_key(hdev);
  301. }
  302. return -EINPROGRESS;
  303. }
  304. return 0;
  305. }
  306. static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
  307. {
  308. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  309. int bufcnt, err = 0, final;
  310. dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
  311. final = (rctx->flags & HASH_FLAGS_FINUP);
  312. while ((rctx->total >= rctx->buflen) ||
  313. (rctx->bufcnt + rctx->total >= rctx->buflen)) {
  314. stm32_hash_append_sg(rctx);
  315. bufcnt = rctx->bufcnt;
  316. rctx->bufcnt = 0;
  317. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
  318. }
  319. stm32_hash_append_sg(rctx);
  320. if (final) {
  321. bufcnt = rctx->bufcnt;
  322. rctx->bufcnt = 0;
  323. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
  324. (rctx->flags & HASH_FLAGS_FINUP));
  325. }
  326. return err;
  327. }
  328. static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
  329. struct scatterlist *sg, int length, int mdma)
  330. {
  331. struct dma_async_tx_descriptor *in_desc;
  332. dma_cookie_t cookie;
  333. u32 reg;
  334. int err;
  335. in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
  336. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
  337. DMA_CTRL_ACK);
  338. if (!in_desc) {
  339. dev_err(hdev->dev, "dmaengine_prep_slave error\n");
  340. return -ENOMEM;
  341. }
  342. reinit_completion(&hdev->dma_completion);
  343. in_desc->callback = stm32_hash_dma_callback;
  344. in_desc->callback_param = hdev;
  345. hdev->flags |= HASH_FLAGS_FINAL;
  346. hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
  347. reg = stm32_hash_read(hdev, HASH_CR);
  348. if (mdma)
  349. reg |= HASH_CR_MDMAT;
  350. else
  351. reg &= ~HASH_CR_MDMAT;
  352. reg |= HASH_CR_DMAE;
  353. stm32_hash_write(hdev, HASH_CR, reg);
  354. stm32_hash_set_nblw(hdev, length);
  355. cookie = dmaengine_submit(in_desc);
  356. err = dma_submit_error(cookie);
  357. if (err)
  358. return -ENOMEM;
  359. dma_async_issue_pending(hdev->dma_lch);
  360. if (!wait_for_completion_timeout(&hdev->dma_completion,
  361. msecs_to_jiffies(100)))
  362. err = -ETIMEDOUT;
  363. if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
  364. NULL, NULL) != DMA_COMPLETE)
  365. err = -ETIMEDOUT;
  366. if (err) {
  367. dev_err(hdev->dev, "DMA Error %i\n", err);
  368. dmaengine_terminate_all(hdev->dma_lch);
  369. return err;
  370. }
  371. return -EINPROGRESS;
  372. }
  373. static void stm32_hash_dma_callback(void *param)
  374. {
  375. struct stm32_hash_dev *hdev = param;
  376. complete(&hdev->dma_completion);
  377. hdev->flags |= HASH_FLAGS_DMA_READY;
  378. }
  379. static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
  380. {
  381. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  382. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  383. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  384. int err;
  385. if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
  386. err = stm32_hash_write_key(hdev);
  387. if (stm32_hash_wait_busy(hdev))
  388. return -ETIMEDOUT;
  389. } else {
  390. if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
  391. sg_init_one(&rctx->sg_key, ctx->key,
  392. ALIGN(ctx->keylen, sizeof(u32)));
  393. rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
  394. DMA_TO_DEVICE);
  395. if (rctx->dma_ct == 0) {
  396. dev_err(hdev->dev, "dma_map_sg error\n");
  397. return -ENOMEM;
  398. }
  399. err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
  400. dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
  401. }
  402. return err;
  403. }
  404. static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
  405. {
  406. struct dma_slave_config dma_conf;
  407. struct dma_chan *chan;
  408. int err;
  409. memset(&dma_conf, 0, sizeof(dma_conf));
  410. dma_conf.direction = DMA_MEM_TO_DEV;
  411. dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
  412. dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  413. dma_conf.src_maxburst = hdev->dma_maxburst;
  414. dma_conf.dst_maxburst = hdev->dma_maxburst;
  415. dma_conf.device_fc = false;
  416. chan = dma_request_chan(hdev->dev, "in");
  417. if (IS_ERR(chan))
  418. return PTR_ERR(chan);
  419. hdev->dma_lch = chan;
  420. err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
  421. if (err) {
  422. dma_release_channel(hdev->dma_lch);
  423. hdev->dma_lch = NULL;
  424. dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
  425. return err;
  426. }
  427. init_completion(&hdev->dma_completion);
  428. return 0;
  429. }
  430. static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
  431. {
  432. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  433. struct scatterlist sg[1], *tsg;
  434. int err = 0, len = 0, reg, ncp = 0;
  435. unsigned int i;
  436. u32 *buffer = (void *)rctx->buffer;
  437. rctx->sg = hdev->req->src;
  438. rctx->total = hdev->req->nbytes;
  439. rctx->nents = sg_nents(rctx->sg);
  440. if (rctx->nents < 0)
  441. return -EINVAL;
  442. stm32_hash_write_ctrl(hdev);
  443. if (hdev->flags & HASH_FLAGS_HMAC) {
  444. err = stm32_hash_hmac_dma_send(hdev);
  445. if (err != -EINPROGRESS)
  446. return err;
  447. }
  448. for_each_sg(rctx->sg, tsg, rctx->nents, i) {
  449. sg[0] = *tsg;
  450. len = sg->length;
  451. if (sg_is_last(sg)) {
  452. if (hdev->dma_mode == 1) {
  453. len = (ALIGN(sg->length, 16) - 16);
  454. ncp = sg_pcopy_to_buffer(
  455. rctx->sg, rctx->nents,
  456. rctx->buffer, sg->length - len,
  457. rctx->total - sg->length + len);
  458. sg->length = len;
  459. } else {
  460. if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
  461. len = sg->length;
  462. sg->length = ALIGN(sg->length,
  463. sizeof(u32));
  464. }
  465. }
  466. }
  467. rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
  468. DMA_TO_DEVICE);
  469. if (rctx->dma_ct == 0) {
  470. dev_err(hdev->dev, "dma_map_sg error\n");
  471. return -ENOMEM;
  472. }
  473. err = stm32_hash_xmit_dma(hdev, sg, len,
  474. !sg_is_last(sg));
  475. dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
  476. if (err == -ENOMEM)
  477. return err;
  478. }
  479. if (hdev->dma_mode == 1) {
  480. if (stm32_hash_wait_busy(hdev))
  481. return -ETIMEDOUT;
  482. reg = stm32_hash_read(hdev, HASH_CR);
  483. reg &= ~HASH_CR_DMAE;
  484. reg |= HASH_CR_DMAA;
  485. stm32_hash_write(hdev, HASH_CR, reg);
  486. if (ncp) {
  487. memset(buffer + ncp, 0,
  488. DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
  489. writesl(hdev->io_base + HASH_DIN, buffer,
  490. DIV_ROUND_UP(ncp, sizeof(u32)));
  491. }
  492. stm32_hash_set_nblw(hdev, ncp);
  493. reg = stm32_hash_read(hdev, HASH_STR);
  494. reg |= HASH_STR_DCAL;
  495. stm32_hash_write(hdev, HASH_STR, reg);
  496. err = -EINPROGRESS;
  497. }
  498. if (hdev->flags & HASH_FLAGS_HMAC) {
  499. if (stm32_hash_wait_busy(hdev))
  500. return -ETIMEDOUT;
  501. err = stm32_hash_hmac_dma_send(hdev);
  502. }
  503. return err;
  504. }
  505. static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
  506. {
  507. struct stm32_hash_dev *hdev = NULL, *tmp;
  508. spin_lock_bh(&stm32_hash.lock);
  509. if (!ctx->hdev) {
  510. list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
  511. hdev = tmp;
  512. break;
  513. }
  514. ctx->hdev = hdev;
  515. } else {
  516. hdev = ctx->hdev;
  517. }
  518. spin_unlock_bh(&stm32_hash.lock);
  519. return hdev;
  520. }
  521. static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
  522. {
  523. struct scatterlist *sg;
  524. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  525. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  526. int i;
  527. if (req->nbytes <= HASH_DMA_THRESHOLD)
  528. return false;
  529. if (sg_nents(req->src) > 1) {
  530. if (hdev->dma_mode == 1)
  531. return false;
  532. for_each_sg(req->src, sg, sg_nents(req->src), i) {
  533. if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
  534. (!sg_is_last(sg)))
  535. return false;
  536. }
  537. }
  538. if (req->src->offset % 4)
  539. return false;
  540. return true;
  541. }
  542. static int stm32_hash_init(struct ahash_request *req)
  543. {
  544. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  545. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  546. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  547. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  548. rctx->hdev = hdev;
  549. rctx->flags = HASH_FLAGS_CPU;
  550. rctx->digcnt = crypto_ahash_digestsize(tfm);
  551. switch (rctx->digcnt) {
  552. case MD5_DIGEST_SIZE:
  553. rctx->flags |= HASH_FLAGS_MD5;
  554. break;
  555. case SHA1_DIGEST_SIZE:
  556. rctx->flags |= HASH_FLAGS_SHA1;
  557. break;
  558. case SHA224_DIGEST_SIZE:
  559. rctx->flags |= HASH_FLAGS_SHA224;
  560. break;
  561. case SHA256_DIGEST_SIZE:
  562. rctx->flags |= HASH_FLAGS_SHA256;
  563. break;
  564. default:
  565. return -EINVAL;
  566. }
  567. rctx->bufcnt = 0;
  568. rctx->buflen = HASH_BUFLEN;
  569. rctx->total = 0;
  570. rctx->offset = 0;
  571. rctx->data_type = HASH_DATA_8_BITS;
  572. memset(rctx->buffer, 0, HASH_BUFLEN);
  573. if (ctx->flags & HASH_FLAGS_HMAC)
  574. rctx->flags |= HASH_FLAGS_HMAC;
  575. dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
  576. return 0;
  577. }
  578. static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
  579. {
  580. return stm32_hash_update_cpu(hdev);
  581. }
  582. static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
  583. {
  584. struct ahash_request *req = hdev->req;
  585. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  586. int err;
  587. int buflen = rctx->bufcnt;
  588. rctx->bufcnt = 0;
  589. if (!(rctx->flags & HASH_FLAGS_CPU))
  590. err = stm32_hash_dma_send(hdev);
  591. else
  592. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
  593. return err;
  594. }
  595. static void stm32_hash_copy_hash(struct ahash_request *req)
  596. {
  597. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  598. __be32 *hash = (void *)rctx->digest;
  599. unsigned int i, hashsize;
  600. switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
  601. case HASH_FLAGS_MD5:
  602. hashsize = MD5_DIGEST_SIZE;
  603. break;
  604. case HASH_FLAGS_SHA1:
  605. hashsize = SHA1_DIGEST_SIZE;
  606. break;
  607. case HASH_FLAGS_SHA224:
  608. hashsize = SHA224_DIGEST_SIZE;
  609. break;
  610. case HASH_FLAGS_SHA256:
  611. hashsize = SHA256_DIGEST_SIZE;
  612. break;
  613. default:
  614. return;
  615. }
  616. for (i = 0; i < hashsize / sizeof(u32); i++)
  617. hash[i] = cpu_to_be32(stm32_hash_read(rctx->hdev,
  618. HASH_HREG(i)));
  619. }
  620. static int stm32_hash_finish(struct ahash_request *req)
  621. {
  622. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  623. if (!req->result)
  624. return -EINVAL;
  625. memcpy(req->result, rctx->digest, rctx->digcnt);
  626. return 0;
  627. }
  628. static void stm32_hash_finish_req(struct ahash_request *req, int err)
  629. {
  630. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  631. struct stm32_hash_dev *hdev = rctx->hdev;
  632. if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
  633. stm32_hash_copy_hash(req);
  634. err = stm32_hash_finish(req);
  635. hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
  636. HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
  637. HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
  638. HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
  639. HASH_FLAGS_HMAC_KEY);
  640. } else {
  641. rctx->flags |= HASH_FLAGS_ERRORS;
  642. }
  643. pm_runtime_mark_last_busy(hdev->dev);
  644. pm_runtime_put_autosuspend(hdev->dev);
  645. crypto_finalize_hash_request(hdev->engine, req, err);
  646. }
  647. static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
  648. struct stm32_hash_request_ctx *rctx)
  649. {
  650. pm_runtime_get_sync(hdev->dev);
  651. if (!(HASH_FLAGS_INIT & hdev->flags)) {
  652. stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
  653. stm32_hash_write(hdev, HASH_STR, 0);
  654. stm32_hash_write(hdev, HASH_DIN, 0);
  655. stm32_hash_write(hdev, HASH_IMR, 0);
  656. hdev->err = 0;
  657. }
  658. return 0;
  659. }
  660. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
  661. static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
  662. static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
  663. struct ahash_request *req)
  664. {
  665. return crypto_transfer_hash_request_to_engine(hdev->engine, req);
  666. }
  667. static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
  668. {
  669. struct ahash_request *req = container_of(areq, struct ahash_request,
  670. base);
  671. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  672. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  673. struct stm32_hash_request_ctx *rctx;
  674. if (!hdev)
  675. return -ENODEV;
  676. hdev->req = req;
  677. rctx = ahash_request_ctx(req);
  678. dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
  679. rctx->op, req->nbytes);
  680. return stm32_hash_hw_init(hdev, rctx);
  681. }
  682. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
  683. {
  684. struct ahash_request *req = container_of(areq, struct ahash_request,
  685. base);
  686. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  687. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  688. struct stm32_hash_request_ctx *rctx;
  689. int err = 0;
  690. if (!hdev)
  691. return -ENODEV;
  692. hdev->req = req;
  693. rctx = ahash_request_ctx(req);
  694. if (rctx->op == HASH_OP_UPDATE)
  695. err = stm32_hash_update_req(hdev);
  696. else if (rctx->op == HASH_OP_FINAL)
  697. err = stm32_hash_final_req(hdev);
  698. if (err != -EINPROGRESS)
  699. /* done task will not finish it, so do it here */
  700. stm32_hash_finish_req(req, err);
  701. return 0;
  702. }
  703. static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
  704. {
  705. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  706. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  707. struct stm32_hash_dev *hdev = ctx->hdev;
  708. rctx->op = op;
  709. return stm32_hash_handle_queue(hdev, req);
  710. }
  711. static int stm32_hash_update(struct ahash_request *req)
  712. {
  713. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  714. if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
  715. return 0;
  716. rctx->total = req->nbytes;
  717. rctx->sg = req->src;
  718. rctx->offset = 0;
  719. if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
  720. stm32_hash_append_sg(rctx);
  721. return 0;
  722. }
  723. return stm32_hash_enqueue(req, HASH_OP_UPDATE);
  724. }
  725. static int stm32_hash_final(struct ahash_request *req)
  726. {
  727. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  728. rctx->flags |= HASH_FLAGS_FINUP;
  729. return stm32_hash_enqueue(req, HASH_OP_FINAL);
  730. }
  731. static int stm32_hash_finup(struct ahash_request *req)
  732. {
  733. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  734. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  735. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  736. int err1, err2;
  737. rctx->flags |= HASH_FLAGS_FINUP;
  738. if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
  739. rctx->flags &= ~HASH_FLAGS_CPU;
  740. err1 = stm32_hash_update(req);
  741. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  742. return err1;
  743. /*
  744. * final() has to be always called to cleanup resources
  745. * even if update() failed, except EINPROGRESS
  746. */
  747. err2 = stm32_hash_final(req);
  748. return err1 ?: err2;
  749. }
  750. static int stm32_hash_digest(struct ahash_request *req)
  751. {
  752. return stm32_hash_init(req) ?: stm32_hash_finup(req);
  753. }
  754. static int stm32_hash_export(struct ahash_request *req, void *out)
  755. {
  756. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  757. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  758. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  759. u32 *preg;
  760. unsigned int i;
  761. pm_runtime_get_sync(hdev->dev);
  762. while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
  763. cpu_relax();
  764. rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
  765. sizeof(u32),
  766. GFP_KERNEL);
  767. preg = rctx->hw_context;
  768. *preg++ = stm32_hash_read(hdev, HASH_IMR);
  769. *preg++ = stm32_hash_read(hdev, HASH_STR);
  770. *preg++ = stm32_hash_read(hdev, HASH_CR);
  771. for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
  772. *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
  773. pm_runtime_mark_last_busy(hdev->dev);
  774. pm_runtime_put_autosuspend(hdev->dev);
  775. memcpy(out, rctx, sizeof(*rctx));
  776. return 0;
  777. }
  778. static int stm32_hash_import(struct ahash_request *req, const void *in)
  779. {
  780. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  781. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  782. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  783. const u32 *preg = in;
  784. u32 reg;
  785. unsigned int i;
  786. memcpy(rctx, in, sizeof(*rctx));
  787. preg = rctx->hw_context;
  788. pm_runtime_get_sync(hdev->dev);
  789. stm32_hash_write(hdev, HASH_IMR, *preg++);
  790. stm32_hash_write(hdev, HASH_STR, *preg++);
  791. stm32_hash_write(hdev, HASH_CR, *preg);
  792. reg = *preg++ | HASH_CR_INIT;
  793. stm32_hash_write(hdev, HASH_CR, reg);
  794. for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
  795. stm32_hash_write(hdev, HASH_CSR(i), *preg++);
  796. pm_runtime_mark_last_busy(hdev->dev);
  797. pm_runtime_put_autosuspend(hdev->dev);
  798. kfree(rctx->hw_context);
  799. return 0;
  800. }
  801. static int stm32_hash_setkey(struct crypto_ahash *tfm,
  802. const u8 *key, unsigned int keylen)
  803. {
  804. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  805. if (keylen <= HASH_MAX_KEY_SIZE) {
  806. memcpy(ctx->key, key, keylen);
  807. ctx->keylen = keylen;
  808. } else {
  809. return -ENOMEM;
  810. }
  811. return 0;
  812. }
  813. static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
  814. const char *algs_hmac_name)
  815. {
  816. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  817. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  818. sizeof(struct stm32_hash_request_ctx));
  819. ctx->keylen = 0;
  820. if (algs_hmac_name)
  821. ctx->flags |= HASH_FLAGS_HMAC;
  822. ctx->enginectx.op.do_one_request = stm32_hash_one_request;
  823. ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
  824. ctx->enginectx.op.unprepare_request = NULL;
  825. return 0;
  826. }
  827. static int stm32_hash_cra_init(struct crypto_tfm *tfm)
  828. {
  829. return stm32_hash_cra_init_algs(tfm, NULL);
  830. }
  831. static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
  832. {
  833. return stm32_hash_cra_init_algs(tfm, "md5");
  834. }
  835. static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
  836. {
  837. return stm32_hash_cra_init_algs(tfm, "sha1");
  838. }
  839. static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
  840. {
  841. return stm32_hash_cra_init_algs(tfm, "sha224");
  842. }
  843. static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
  844. {
  845. return stm32_hash_cra_init_algs(tfm, "sha256");
  846. }
  847. static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
  848. {
  849. struct stm32_hash_dev *hdev = dev_id;
  850. if (HASH_FLAGS_CPU & hdev->flags) {
  851. if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
  852. hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
  853. goto finish;
  854. }
  855. } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
  856. if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
  857. hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
  858. goto finish;
  859. }
  860. }
  861. return IRQ_HANDLED;
  862. finish:
  863. /* Finish current request */
  864. stm32_hash_finish_req(hdev->req, 0);
  865. return IRQ_HANDLED;
  866. }
  867. static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
  868. {
  869. struct stm32_hash_dev *hdev = dev_id;
  870. u32 reg;
  871. reg = stm32_hash_read(hdev, HASH_SR);
  872. if (reg & HASH_SR_OUTPUT_READY) {
  873. reg &= ~HASH_SR_OUTPUT_READY;
  874. stm32_hash_write(hdev, HASH_SR, reg);
  875. hdev->flags |= HASH_FLAGS_OUTPUT_READY;
  876. /* Disable IT*/
  877. stm32_hash_write(hdev, HASH_IMR, 0);
  878. return IRQ_WAKE_THREAD;
  879. }
  880. return IRQ_NONE;
  881. }
  882. static struct ahash_alg algs_md5_sha1[] = {
  883. {
  884. .init = stm32_hash_init,
  885. .update = stm32_hash_update,
  886. .final = stm32_hash_final,
  887. .finup = stm32_hash_finup,
  888. .digest = stm32_hash_digest,
  889. .export = stm32_hash_export,
  890. .import = stm32_hash_import,
  891. .halg = {
  892. .digestsize = MD5_DIGEST_SIZE,
  893. .statesize = sizeof(struct stm32_hash_request_ctx),
  894. .base = {
  895. .cra_name = "md5",
  896. .cra_driver_name = "stm32-md5",
  897. .cra_priority = 200,
  898. .cra_flags = CRYPTO_ALG_ASYNC |
  899. CRYPTO_ALG_KERN_DRIVER_ONLY,
  900. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  901. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  902. .cra_alignmask = 3,
  903. .cra_init = stm32_hash_cra_init,
  904. .cra_module = THIS_MODULE,
  905. }
  906. }
  907. },
  908. {
  909. .init = stm32_hash_init,
  910. .update = stm32_hash_update,
  911. .final = stm32_hash_final,
  912. .finup = stm32_hash_finup,
  913. .digest = stm32_hash_digest,
  914. .export = stm32_hash_export,
  915. .import = stm32_hash_import,
  916. .setkey = stm32_hash_setkey,
  917. .halg = {
  918. .digestsize = MD5_DIGEST_SIZE,
  919. .statesize = sizeof(struct stm32_hash_request_ctx),
  920. .base = {
  921. .cra_name = "hmac(md5)",
  922. .cra_driver_name = "stm32-hmac-md5",
  923. .cra_priority = 200,
  924. .cra_flags = CRYPTO_ALG_ASYNC |
  925. CRYPTO_ALG_KERN_DRIVER_ONLY,
  926. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  927. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  928. .cra_alignmask = 3,
  929. .cra_init = stm32_hash_cra_md5_init,
  930. .cra_module = THIS_MODULE,
  931. }
  932. }
  933. },
  934. {
  935. .init = stm32_hash_init,
  936. .update = stm32_hash_update,
  937. .final = stm32_hash_final,
  938. .finup = stm32_hash_finup,
  939. .digest = stm32_hash_digest,
  940. .export = stm32_hash_export,
  941. .import = stm32_hash_import,
  942. .halg = {
  943. .digestsize = SHA1_DIGEST_SIZE,
  944. .statesize = sizeof(struct stm32_hash_request_ctx),
  945. .base = {
  946. .cra_name = "sha1",
  947. .cra_driver_name = "stm32-sha1",
  948. .cra_priority = 200,
  949. .cra_flags = CRYPTO_ALG_ASYNC |
  950. CRYPTO_ALG_KERN_DRIVER_ONLY,
  951. .cra_blocksize = SHA1_BLOCK_SIZE,
  952. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  953. .cra_alignmask = 3,
  954. .cra_init = stm32_hash_cra_init,
  955. .cra_module = THIS_MODULE,
  956. }
  957. }
  958. },
  959. {
  960. .init = stm32_hash_init,
  961. .update = stm32_hash_update,
  962. .final = stm32_hash_final,
  963. .finup = stm32_hash_finup,
  964. .digest = stm32_hash_digest,
  965. .export = stm32_hash_export,
  966. .import = stm32_hash_import,
  967. .setkey = stm32_hash_setkey,
  968. .halg = {
  969. .digestsize = SHA1_DIGEST_SIZE,
  970. .statesize = sizeof(struct stm32_hash_request_ctx),
  971. .base = {
  972. .cra_name = "hmac(sha1)",
  973. .cra_driver_name = "stm32-hmac-sha1",
  974. .cra_priority = 200,
  975. .cra_flags = CRYPTO_ALG_ASYNC |
  976. CRYPTO_ALG_KERN_DRIVER_ONLY,
  977. .cra_blocksize = SHA1_BLOCK_SIZE,
  978. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  979. .cra_alignmask = 3,
  980. .cra_init = stm32_hash_cra_sha1_init,
  981. .cra_module = THIS_MODULE,
  982. }
  983. }
  984. },
  985. };
  986. static struct ahash_alg algs_sha224_sha256[] = {
  987. {
  988. .init = stm32_hash_init,
  989. .update = stm32_hash_update,
  990. .final = stm32_hash_final,
  991. .finup = stm32_hash_finup,
  992. .digest = stm32_hash_digest,
  993. .export = stm32_hash_export,
  994. .import = stm32_hash_import,
  995. .halg = {
  996. .digestsize = SHA224_DIGEST_SIZE,
  997. .statesize = sizeof(struct stm32_hash_request_ctx),
  998. .base = {
  999. .cra_name = "sha224",
  1000. .cra_driver_name = "stm32-sha224",
  1001. .cra_priority = 200,
  1002. .cra_flags = CRYPTO_ALG_ASYNC |
  1003. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1004. .cra_blocksize = SHA224_BLOCK_SIZE,
  1005. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1006. .cra_alignmask = 3,
  1007. .cra_init = stm32_hash_cra_init,
  1008. .cra_module = THIS_MODULE,
  1009. }
  1010. }
  1011. },
  1012. {
  1013. .init = stm32_hash_init,
  1014. .update = stm32_hash_update,
  1015. .final = stm32_hash_final,
  1016. .finup = stm32_hash_finup,
  1017. .digest = stm32_hash_digest,
  1018. .setkey = stm32_hash_setkey,
  1019. .export = stm32_hash_export,
  1020. .import = stm32_hash_import,
  1021. .halg = {
  1022. .digestsize = SHA224_DIGEST_SIZE,
  1023. .statesize = sizeof(struct stm32_hash_request_ctx),
  1024. .base = {
  1025. .cra_name = "hmac(sha224)",
  1026. .cra_driver_name = "stm32-hmac-sha224",
  1027. .cra_priority = 200,
  1028. .cra_flags = CRYPTO_ALG_ASYNC |
  1029. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1030. .cra_blocksize = SHA224_BLOCK_SIZE,
  1031. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1032. .cra_alignmask = 3,
  1033. .cra_init = stm32_hash_cra_sha224_init,
  1034. .cra_module = THIS_MODULE,
  1035. }
  1036. }
  1037. },
  1038. {
  1039. .init = stm32_hash_init,
  1040. .update = stm32_hash_update,
  1041. .final = stm32_hash_final,
  1042. .finup = stm32_hash_finup,
  1043. .digest = stm32_hash_digest,
  1044. .export = stm32_hash_export,
  1045. .import = stm32_hash_import,
  1046. .halg = {
  1047. .digestsize = SHA256_DIGEST_SIZE,
  1048. .statesize = sizeof(struct stm32_hash_request_ctx),
  1049. .base = {
  1050. .cra_name = "sha256",
  1051. .cra_driver_name = "stm32-sha256",
  1052. .cra_priority = 200,
  1053. .cra_flags = CRYPTO_ALG_ASYNC |
  1054. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1055. .cra_blocksize = SHA256_BLOCK_SIZE,
  1056. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1057. .cra_alignmask = 3,
  1058. .cra_init = stm32_hash_cra_init,
  1059. .cra_module = THIS_MODULE,
  1060. }
  1061. }
  1062. },
  1063. {
  1064. .init = stm32_hash_init,
  1065. .update = stm32_hash_update,
  1066. .final = stm32_hash_final,
  1067. .finup = stm32_hash_finup,
  1068. .digest = stm32_hash_digest,
  1069. .export = stm32_hash_export,
  1070. .import = stm32_hash_import,
  1071. .setkey = stm32_hash_setkey,
  1072. .halg = {
  1073. .digestsize = SHA256_DIGEST_SIZE,
  1074. .statesize = sizeof(struct stm32_hash_request_ctx),
  1075. .base = {
  1076. .cra_name = "hmac(sha256)",
  1077. .cra_driver_name = "stm32-hmac-sha256",
  1078. .cra_priority = 200,
  1079. .cra_flags = CRYPTO_ALG_ASYNC |
  1080. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1081. .cra_blocksize = SHA256_BLOCK_SIZE,
  1082. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1083. .cra_alignmask = 3,
  1084. .cra_init = stm32_hash_cra_sha256_init,
  1085. .cra_module = THIS_MODULE,
  1086. }
  1087. }
  1088. },
  1089. };
  1090. static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
  1091. {
  1092. unsigned int i, j;
  1093. int err;
  1094. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1095. for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
  1096. err = crypto_register_ahash(
  1097. &hdev->pdata->algs_info[i].algs_list[j]);
  1098. if (err)
  1099. goto err_algs;
  1100. }
  1101. }
  1102. return 0;
  1103. err_algs:
  1104. dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
  1105. for (; i--; ) {
  1106. for (; j--;)
  1107. crypto_unregister_ahash(
  1108. &hdev->pdata->algs_info[i].algs_list[j]);
  1109. }
  1110. return err;
  1111. }
  1112. static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
  1113. {
  1114. unsigned int i, j;
  1115. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1116. for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
  1117. crypto_unregister_ahash(
  1118. &hdev->pdata->algs_info[i].algs_list[j]);
  1119. }
  1120. return 0;
  1121. }
  1122. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
  1123. {
  1124. .algs_list = algs_md5_sha1,
  1125. .size = ARRAY_SIZE(algs_md5_sha1),
  1126. },
  1127. };
  1128. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
  1129. .algs_info = stm32_hash_algs_info_stm32f4,
  1130. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
  1131. };
  1132. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
  1133. {
  1134. .algs_list = algs_md5_sha1,
  1135. .size = ARRAY_SIZE(algs_md5_sha1),
  1136. },
  1137. {
  1138. .algs_list = algs_sha224_sha256,
  1139. .size = ARRAY_SIZE(algs_sha224_sha256),
  1140. },
  1141. };
  1142. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
  1143. .algs_info = stm32_hash_algs_info_stm32f7,
  1144. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
  1145. };
  1146. static const struct of_device_id stm32_hash_of_match[] = {
  1147. {
  1148. .compatible = "st,stm32f456-hash",
  1149. .data = &stm32_hash_pdata_stm32f4,
  1150. },
  1151. {
  1152. .compatible = "st,stm32f756-hash",
  1153. .data = &stm32_hash_pdata_stm32f7,
  1154. },
  1155. {},
  1156. };
  1157. MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
  1158. static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
  1159. struct device *dev)
  1160. {
  1161. hdev->pdata = of_device_get_match_data(dev);
  1162. if (!hdev->pdata) {
  1163. dev_err(dev, "no compatible OF match\n");
  1164. return -EINVAL;
  1165. }
  1166. if (of_property_read_u32(dev->of_node, "dma-maxburst",
  1167. &hdev->dma_maxburst)) {
  1168. dev_info(dev, "dma-maxburst not specified, using 0\n");
  1169. hdev->dma_maxburst = 0;
  1170. }
  1171. return 0;
  1172. }
  1173. static int stm32_hash_probe(struct platform_device *pdev)
  1174. {
  1175. struct stm32_hash_dev *hdev;
  1176. struct device *dev = &pdev->dev;
  1177. struct resource *res;
  1178. int ret, irq;
  1179. hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
  1180. if (!hdev)
  1181. return -ENOMEM;
  1182. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1183. hdev->io_base = devm_ioremap_resource(dev, res);
  1184. if (IS_ERR(hdev->io_base))
  1185. return PTR_ERR(hdev->io_base);
  1186. hdev->phys_base = res->start;
  1187. ret = stm32_hash_get_of_match(hdev, dev);
  1188. if (ret)
  1189. return ret;
  1190. irq = platform_get_irq(pdev, 0);
  1191. if (irq < 0)
  1192. return irq;
  1193. ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
  1194. stm32_hash_irq_thread, IRQF_ONESHOT,
  1195. dev_name(dev), hdev);
  1196. if (ret) {
  1197. dev_err(dev, "Cannot grab IRQ\n");
  1198. return ret;
  1199. }
  1200. hdev->clk = devm_clk_get(&pdev->dev, NULL);
  1201. if (IS_ERR(hdev->clk))
  1202. return dev_err_probe(dev, PTR_ERR(hdev->clk),
  1203. "failed to get clock for hash\n");
  1204. ret = clk_prepare_enable(hdev->clk);
  1205. if (ret) {
  1206. dev_err(dev, "failed to enable hash clock (%d)\n", ret);
  1207. return ret;
  1208. }
  1209. pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
  1210. pm_runtime_use_autosuspend(dev);
  1211. pm_runtime_get_noresume(dev);
  1212. pm_runtime_set_active(dev);
  1213. pm_runtime_enable(dev);
  1214. hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
  1215. if (IS_ERR(hdev->rst)) {
  1216. if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
  1217. ret = -EPROBE_DEFER;
  1218. goto err_reset;
  1219. }
  1220. } else {
  1221. reset_control_assert(hdev->rst);
  1222. udelay(2);
  1223. reset_control_deassert(hdev->rst);
  1224. }
  1225. hdev->dev = dev;
  1226. platform_set_drvdata(pdev, hdev);
  1227. ret = stm32_hash_dma_init(hdev);
  1228. switch (ret) {
  1229. case 0:
  1230. break;
  1231. case -ENOENT:
  1232. dev_dbg(dev, "DMA mode not available\n");
  1233. break;
  1234. default:
  1235. goto err_dma;
  1236. }
  1237. spin_lock(&stm32_hash.lock);
  1238. list_add_tail(&hdev->list, &stm32_hash.dev_list);
  1239. spin_unlock(&stm32_hash.lock);
  1240. /* Initialize crypto engine */
  1241. hdev->engine = crypto_engine_alloc_init(dev, 1);
  1242. if (!hdev->engine) {
  1243. ret = -ENOMEM;
  1244. goto err_engine;
  1245. }
  1246. ret = crypto_engine_start(hdev->engine);
  1247. if (ret)
  1248. goto err_engine_start;
  1249. hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
  1250. /* Register algos */
  1251. ret = stm32_hash_register_algs(hdev);
  1252. if (ret)
  1253. goto err_algs;
  1254. dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
  1255. stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
  1256. pm_runtime_put_sync(dev);
  1257. return 0;
  1258. err_algs:
  1259. err_engine_start:
  1260. crypto_engine_exit(hdev->engine);
  1261. err_engine:
  1262. spin_lock(&stm32_hash.lock);
  1263. list_del(&hdev->list);
  1264. spin_unlock(&stm32_hash.lock);
  1265. err_dma:
  1266. if (hdev->dma_lch)
  1267. dma_release_channel(hdev->dma_lch);
  1268. err_reset:
  1269. pm_runtime_disable(dev);
  1270. pm_runtime_put_noidle(dev);
  1271. clk_disable_unprepare(hdev->clk);
  1272. return ret;
  1273. }
  1274. static int stm32_hash_remove(struct platform_device *pdev)
  1275. {
  1276. struct stm32_hash_dev *hdev;
  1277. int ret;
  1278. hdev = platform_get_drvdata(pdev);
  1279. if (!hdev)
  1280. return -ENODEV;
  1281. ret = pm_runtime_get_sync(hdev->dev);
  1282. stm32_hash_unregister_algs(hdev);
  1283. crypto_engine_exit(hdev->engine);
  1284. spin_lock(&stm32_hash.lock);
  1285. list_del(&hdev->list);
  1286. spin_unlock(&stm32_hash.lock);
  1287. if (hdev->dma_lch)
  1288. dma_release_channel(hdev->dma_lch);
  1289. pm_runtime_disable(hdev->dev);
  1290. pm_runtime_put_noidle(hdev->dev);
  1291. if (ret >= 0)
  1292. clk_disable_unprepare(hdev->clk);
  1293. return 0;
  1294. }
  1295. #ifdef CONFIG_PM
  1296. static int stm32_hash_runtime_suspend(struct device *dev)
  1297. {
  1298. struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
  1299. clk_disable_unprepare(hdev->clk);
  1300. return 0;
  1301. }
  1302. static int stm32_hash_runtime_resume(struct device *dev)
  1303. {
  1304. struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
  1305. int ret;
  1306. ret = clk_prepare_enable(hdev->clk);
  1307. if (ret) {
  1308. dev_err(hdev->dev, "Failed to prepare_enable clock\n");
  1309. return ret;
  1310. }
  1311. return 0;
  1312. }
  1313. #endif
  1314. static const struct dev_pm_ops stm32_hash_pm_ops = {
  1315. SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  1316. pm_runtime_force_resume)
  1317. SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
  1318. stm32_hash_runtime_resume, NULL)
  1319. };
  1320. static struct platform_driver stm32_hash_driver = {
  1321. .probe = stm32_hash_probe,
  1322. .remove = stm32_hash_remove,
  1323. .driver = {
  1324. .name = "stm32-hash",
  1325. .pm = &stm32_hash_pm_ops,
  1326. .of_match_table = stm32_hash_of_match,
  1327. }
  1328. };
  1329. module_platform_driver(stm32_hash_driver);
  1330. MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
  1331. MODULE_AUTHOR("Lionel Debieve <[email protected]>");
  1332. MODULE_LICENSE("GPL v2");