cc_aead.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
  3. #include <linux/kernel.h>
  4. #include <linux/module.h>
  5. #include <crypto/algapi.h>
  6. #include <crypto/internal/aead.h>
  7. #include <crypto/authenc.h>
  8. #include <crypto/gcm.h>
  9. #include <linux/rtnetlink.h>
  10. #include <crypto/internal/des.h>
  11. #include "cc_driver.h"
  12. #include "cc_buffer_mgr.h"
  13. #include "cc_aead.h"
  14. #include "cc_request_mgr.h"
  15. #include "cc_hash.h"
  16. #include "cc_sram_mgr.h"
  17. #define template_aead template_u.aead
  18. #define MAX_AEAD_SETKEY_SEQ 12
  19. #define MAX_AEAD_PROCESS_SEQ 23
  20. #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
  21. #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
  22. #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
  23. struct cc_aead_handle {
  24. u32 sram_workspace_addr;
  25. struct list_head aead_list;
  26. };
  27. struct cc_hmac_s {
  28. u8 *padded_authkey;
  29. u8 *ipad_opad; /* IPAD, OPAD*/
  30. dma_addr_t padded_authkey_dma_addr;
  31. dma_addr_t ipad_opad_dma_addr;
  32. };
  33. struct cc_xcbc_s {
  34. u8 *xcbc_keys; /* K1,K2,K3 */
  35. dma_addr_t xcbc_keys_dma_addr;
  36. };
  37. struct cc_aead_ctx {
  38. struct cc_drvdata *drvdata;
  39. u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
  40. u8 *enckey;
  41. dma_addr_t enckey_dma_addr;
  42. union {
  43. struct cc_hmac_s hmac;
  44. struct cc_xcbc_s xcbc;
  45. } auth_state;
  46. unsigned int enc_keylen;
  47. unsigned int auth_keylen;
  48. unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
  49. unsigned int hash_len;
  50. enum drv_cipher_mode cipher_mode;
  51. enum cc_flow_mode flow_mode;
  52. enum drv_hash_mode auth_mode;
  53. };
  54. static void cc_aead_exit(struct crypto_aead *tfm)
  55. {
  56. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  57. struct device *dev = drvdata_to_dev(ctx->drvdata);
  58. dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
  59. crypto_tfm_alg_name(&tfm->base));
  60. /* Unmap enckey buffer */
  61. if (ctx->enckey) {
  62. dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
  63. ctx->enckey_dma_addr);
  64. dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
  65. &ctx->enckey_dma_addr);
  66. ctx->enckey_dma_addr = 0;
  67. ctx->enckey = NULL;
  68. }
  69. if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
  70. struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
  71. if (xcbc->xcbc_keys) {
  72. dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
  73. xcbc->xcbc_keys,
  74. xcbc->xcbc_keys_dma_addr);
  75. }
  76. dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
  77. &xcbc->xcbc_keys_dma_addr);
  78. xcbc->xcbc_keys_dma_addr = 0;
  79. xcbc->xcbc_keys = NULL;
  80. } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
  81. struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
  82. if (hmac->ipad_opad) {
  83. dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
  84. hmac->ipad_opad,
  85. hmac->ipad_opad_dma_addr);
  86. dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
  87. &hmac->ipad_opad_dma_addr);
  88. hmac->ipad_opad_dma_addr = 0;
  89. hmac->ipad_opad = NULL;
  90. }
  91. if (hmac->padded_authkey) {
  92. dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
  93. hmac->padded_authkey,
  94. hmac->padded_authkey_dma_addr);
  95. dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
  96. &hmac->padded_authkey_dma_addr);
  97. hmac->padded_authkey_dma_addr = 0;
  98. hmac->padded_authkey = NULL;
  99. }
  100. }
  101. }
  102. static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
  103. {
  104. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  105. return cc_get_default_hash_len(ctx->drvdata);
  106. }
  107. static int cc_aead_init(struct crypto_aead *tfm)
  108. {
  109. struct aead_alg *alg = crypto_aead_alg(tfm);
  110. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  111. struct cc_crypto_alg *cc_alg =
  112. container_of(alg, struct cc_crypto_alg, aead_alg);
  113. struct device *dev = drvdata_to_dev(cc_alg->drvdata);
  114. dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
  115. crypto_tfm_alg_name(&tfm->base));
  116. /* Initialize modes in instance */
  117. ctx->cipher_mode = cc_alg->cipher_mode;
  118. ctx->flow_mode = cc_alg->flow_mode;
  119. ctx->auth_mode = cc_alg->auth_mode;
  120. ctx->drvdata = cc_alg->drvdata;
  121. crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
  122. /* Allocate key buffer, cache line aligned */
  123. ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
  124. &ctx->enckey_dma_addr, GFP_KERNEL);
  125. if (!ctx->enckey) {
  126. dev_err(dev, "Failed allocating key buffer\n");
  127. goto init_failed;
  128. }
  129. dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
  130. ctx->enckey);
  131. /* Set default authlen value */
  132. if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
  133. struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
  134. const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
  135. /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
  136. /* (and temporary for user key - up to 256b) */
  137. xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
  138. &xcbc->xcbc_keys_dma_addr,
  139. GFP_KERNEL);
  140. if (!xcbc->xcbc_keys) {
  141. dev_err(dev, "Failed allocating buffer for XCBC keys\n");
  142. goto init_failed;
  143. }
  144. } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
  145. struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
  146. const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
  147. dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
  148. /* Allocate dma-coherent buffer for IPAD + OPAD */
  149. hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
  150. &hmac->ipad_opad_dma_addr,
  151. GFP_KERNEL);
  152. if (!hmac->ipad_opad) {
  153. dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
  154. goto init_failed;
  155. }
  156. dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
  157. hmac->ipad_opad);
  158. hmac->padded_authkey = dma_alloc_coherent(dev,
  159. MAX_HMAC_BLOCK_SIZE,
  160. pkey_dma,
  161. GFP_KERNEL);
  162. if (!hmac->padded_authkey) {
  163. dev_err(dev, "failed to allocate padded_authkey\n");
  164. goto init_failed;
  165. }
  166. } else {
  167. ctx->auth_state.hmac.ipad_opad = NULL;
  168. ctx->auth_state.hmac.padded_authkey = NULL;
  169. }
  170. ctx->hash_len = cc_get_aead_hash_len(tfm);
  171. return 0;
  172. init_failed:
  173. cc_aead_exit(tfm);
  174. return -ENOMEM;
  175. }
  176. static void cc_aead_complete(struct device *dev, void *cc_req, int err)
  177. {
  178. struct aead_request *areq = (struct aead_request *)cc_req;
  179. struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
  180. struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
  181. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  182. /* BACKLOG notification */
  183. if (err == -EINPROGRESS)
  184. goto done;
  185. cc_unmap_aead_request(dev, areq);
  186. /* Restore ordinary iv pointer */
  187. areq->iv = areq_ctx->backup_iv;
  188. if (err)
  189. goto done;
  190. if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
  191. if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
  192. ctx->authsize) != 0) {
  193. dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
  194. ctx->authsize, ctx->cipher_mode);
  195. /* In case of payload authentication failure, MUST NOT
  196. * revealed the decrypted message --> zero its memory.
  197. */
  198. sg_zero_buffer(areq->dst, sg_nents(areq->dst),
  199. areq->cryptlen, areq->assoclen);
  200. err = -EBADMSG;
  201. }
  202. /*ENCRYPT*/
  203. } else if (areq_ctx->is_icv_fragmented) {
  204. u32 skip = areq->cryptlen + areq_ctx->dst_offset;
  205. cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
  206. skip, (skip + ctx->authsize),
  207. CC_SG_FROM_BUF);
  208. }
  209. done:
  210. aead_request_complete(areq, err);
  211. }
  212. static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
  213. struct cc_aead_ctx *ctx)
  214. {
  215. /* Load the AES key */
  216. hw_desc_init(&desc[0]);
  217. /* We are using for the source/user key the same buffer
  218. * as for the output keys, * because after this key loading it
  219. * is not needed anymore
  220. */
  221. set_din_type(&desc[0], DMA_DLLI,
  222. ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
  223. NS_BIT);
  224. set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
  225. set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
  226. set_key_size_aes(&desc[0], ctx->auth_keylen);
  227. set_flow_mode(&desc[0], S_DIN_to_AES);
  228. set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
  229. hw_desc_init(&desc[1]);
  230. set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
  231. set_flow_mode(&desc[1], DIN_AES_DOUT);
  232. set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
  233. AES_KEYSIZE_128, NS_BIT, 0);
  234. hw_desc_init(&desc[2]);
  235. set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
  236. set_flow_mode(&desc[2], DIN_AES_DOUT);
  237. set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
  238. + AES_KEYSIZE_128),
  239. AES_KEYSIZE_128, NS_BIT, 0);
  240. hw_desc_init(&desc[3]);
  241. set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
  242. set_flow_mode(&desc[3], DIN_AES_DOUT);
  243. set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
  244. + 2 * AES_KEYSIZE_128),
  245. AES_KEYSIZE_128, NS_BIT, 0);
  246. return 4;
  247. }
  248. static unsigned int hmac_setkey(struct cc_hw_desc *desc,
  249. struct cc_aead_ctx *ctx)
  250. {
  251. unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
  252. unsigned int digest_ofs = 0;
  253. unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
  254. DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
  255. unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
  256. CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
  257. struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
  258. unsigned int idx = 0;
  259. int i;
  260. /* calc derived HMAC key */
  261. for (i = 0; i < 2; i++) {
  262. /* Load hash initial state */
  263. hw_desc_init(&desc[idx]);
  264. set_cipher_mode(&desc[idx], hash_mode);
  265. set_din_sram(&desc[idx],
  266. cc_larval_digest_addr(ctx->drvdata,
  267. ctx->auth_mode),
  268. digest_size);
  269. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  270. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  271. idx++;
  272. /* Load the hash current length*/
  273. hw_desc_init(&desc[idx]);
  274. set_cipher_mode(&desc[idx], hash_mode);
  275. set_din_const(&desc[idx], 0, ctx->hash_len);
  276. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  277. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  278. idx++;
  279. /* Prepare ipad key */
  280. hw_desc_init(&desc[idx]);
  281. set_xor_val(&desc[idx], hmac_pad_const[i]);
  282. set_cipher_mode(&desc[idx], hash_mode);
  283. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  284. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  285. idx++;
  286. /* Perform HASH update */
  287. hw_desc_init(&desc[idx]);
  288. set_din_type(&desc[idx], DMA_DLLI,
  289. hmac->padded_authkey_dma_addr,
  290. SHA256_BLOCK_SIZE, NS_BIT);
  291. set_cipher_mode(&desc[idx], hash_mode);
  292. set_xor_active(&desc[idx]);
  293. set_flow_mode(&desc[idx], DIN_HASH);
  294. idx++;
  295. /* Get the digset */
  296. hw_desc_init(&desc[idx]);
  297. set_cipher_mode(&desc[idx], hash_mode);
  298. set_dout_dlli(&desc[idx],
  299. (hmac->ipad_opad_dma_addr + digest_ofs),
  300. digest_size, NS_BIT, 0);
  301. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  302. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  303. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  304. idx++;
  305. digest_ofs += digest_size;
  306. }
  307. return idx;
  308. }
  309. static int validate_keys_sizes(struct cc_aead_ctx *ctx)
  310. {
  311. struct device *dev = drvdata_to_dev(ctx->drvdata);
  312. dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
  313. ctx->enc_keylen, ctx->auth_keylen);
  314. switch (ctx->auth_mode) {
  315. case DRV_HASH_SHA1:
  316. case DRV_HASH_SHA256:
  317. break;
  318. case DRV_HASH_XCBC_MAC:
  319. if (ctx->auth_keylen != AES_KEYSIZE_128 &&
  320. ctx->auth_keylen != AES_KEYSIZE_192 &&
  321. ctx->auth_keylen != AES_KEYSIZE_256)
  322. return -ENOTSUPP;
  323. break;
  324. case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
  325. if (ctx->auth_keylen > 0)
  326. return -EINVAL;
  327. break;
  328. default:
  329. dev_dbg(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
  330. return -EINVAL;
  331. }
  332. /* Check cipher key size */
  333. if (ctx->flow_mode == S_DIN_to_DES) {
  334. if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
  335. dev_dbg(dev, "Invalid cipher(3DES) key size: %u\n",
  336. ctx->enc_keylen);
  337. return -EINVAL;
  338. }
  339. } else { /* Default assumed to be AES ciphers */
  340. if (ctx->enc_keylen != AES_KEYSIZE_128 &&
  341. ctx->enc_keylen != AES_KEYSIZE_192 &&
  342. ctx->enc_keylen != AES_KEYSIZE_256) {
  343. dev_dbg(dev, "Invalid cipher(AES) key size: %u\n",
  344. ctx->enc_keylen);
  345. return -EINVAL;
  346. }
  347. }
  348. return 0; /* All tests of keys sizes passed */
  349. }
  350. /* This function prepers the user key so it can pass to the hmac processing
  351. * (copy to intenral buffer or hash in case of key longer than block
  352. */
  353. static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
  354. unsigned int keylen)
  355. {
  356. dma_addr_t key_dma_addr = 0;
  357. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  358. struct device *dev = drvdata_to_dev(ctx->drvdata);
  359. u32 larval_addr;
  360. struct cc_crypto_req cc_req = {};
  361. unsigned int blocksize;
  362. unsigned int digestsize;
  363. unsigned int hashmode;
  364. unsigned int idx = 0;
  365. int rc = 0;
  366. u8 *key = NULL;
  367. struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
  368. dma_addr_t padded_authkey_dma_addr =
  369. ctx->auth_state.hmac.padded_authkey_dma_addr;
  370. switch (ctx->auth_mode) { /* auth_key required and >0 */
  371. case DRV_HASH_SHA1:
  372. blocksize = SHA1_BLOCK_SIZE;
  373. digestsize = SHA1_DIGEST_SIZE;
  374. hashmode = DRV_HASH_HW_SHA1;
  375. break;
  376. case DRV_HASH_SHA256:
  377. default:
  378. blocksize = SHA256_BLOCK_SIZE;
  379. digestsize = SHA256_DIGEST_SIZE;
  380. hashmode = DRV_HASH_HW_SHA256;
  381. }
  382. if (keylen != 0) {
  383. key = kmemdup(authkey, keylen, GFP_KERNEL);
  384. if (!key)
  385. return -ENOMEM;
  386. key_dma_addr = dma_map_single(dev, key, keylen, DMA_TO_DEVICE);
  387. if (dma_mapping_error(dev, key_dma_addr)) {
  388. dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
  389. key, keylen);
  390. kfree_sensitive(key);
  391. return -ENOMEM;
  392. }
  393. if (keylen > blocksize) {
  394. /* Load hash initial state */
  395. hw_desc_init(&desc[idx]);
  396. set_cipher_mode(&desc[idx], hashmode);
  397. larval_addr = cc_larval_digest_addr(ctx->drvdata,
  398. ctx->auth_mode);
  399. set_din_sram(&desc[idx], larval_addr, digestsize);
  400. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  401. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  402. idx++;
  403. /* Load the hash current length*/
  404. hw_desc_init(&desc[idx]);
  405. set_cipher_mode(&desc[idx], hashmode);
  406. set_din_const(&desc[idx], 0, ctx->hash_len);
  407. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  408. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  409. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  410. idx++;
  411. hw_desc_init(&desc[idx]);
  412. set_din_type(&desc[idx], DMA_DLLI,
  413. key_dma_addr, keylen, NS_BIT);
  414. set_flow_mode(&desc[idx], DIN_HASH);
  415. idx++;
  416. /* Get hashed key */
  417. hw_desc_init(&desc[idx]);
  418. set_cipher_mode(&desc[idx], hashmode);
  419. set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
  420. digestsize, NS_BIT, 0);
  421. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  422. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  423. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  424. set_cipher_config0(&desc[idx],
  425. HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  426. idx++;
  427. hw_desc_init(&desc[idx]);
  428. set_din_const(&desc[idx], 0, (blocksize - digestsize));
  429. set_flow_mode(&desc[idx], BYPASS);
  430. set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
  431. digestsize), (blocksize - digestsize),
  432. NS_BIT, 0);
  433. idx++;
  434. } else {
  435. hw_desc_init(&desc[idx]);
  436. set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
  437. keylen, NS_BIT);
  438. set_flow_mode(&desc[idx], BYPASS);
  439. set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
  440. keylen, NS_BIT, 0);
  441. idx++;
  442. if ((blocksize - keylen) != 0) {
  443. hw_desc_init(&desc[idx]);
  444. set_din_const(&desc[idx], 0,
  445. (blocksize - keylen));
  446. set_flow_mode(&desc[idx], BYPASS);
  447. set_dout_dlli(&desc[idx],
  448. (padded_authkey_dma_addr +
  449. keylen),
  450. (blocksize - keylen), NS_BIT, 0);
  451. idx++;
  452. }
  453. }
  454. } else {
  455. hw_desc_init(&desc[idx]);
  456. set_din_const(&desc[idx], 0, (blocksize - keylen));
  457. set_flow_mode(&desc[idx], BYPASS);
  458. set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
  459. blocksize, NS_BIT, 0);
  460. idx++;
  461. }
  462. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  463. if (rc)
  464. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  465. if (key_dma_addr)
  466. dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
  467. kfree_sensitive(key);
  468. return rc;
  469. }
  470. static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
  471. unsigned int keylen)
  472. {
  473. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  474. struct cc_crypto_req cc_req = {};
  475. struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
  476. unsigned int seq_len = 0;
  477. struct device *dev = drvdata_to_dev(ctx->drvdata);
  478. const u8 *enckey, *authkey;
  479. int rc;
  480. dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
  481. ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
  482. /* STAT_PHASE_0: Init and sanity checks */
  483. if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
  484. struct crypto_authenc_keys keys;
  485. rc = crypto_authenc_extractkeys(&keys, key, keylen);
  486. if (rc)
  487. return rc;
  488. enckey = keys.enckey;
  489. authkey = keys.authkey;
  490. ctx->enc_keylen = keys.enckeylen;
  491. ctx->auth_keylen = keys.authkeylen;
  492. if (ctx->cipher_mode == DRV_CIPHER_CTR) {
  493. /* the nonce is stored in bytes at end of key */
  494. if (ctx->enc_keylen <
  495. (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
  496. return -EINVAL;
  497. /* Copy nonce from last 4 bytes in CTR key to
  498. * first 4 bytes in CTR IV
  499. */
  500. memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
  501. CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
  502. /* Set CTR key size */
  503. ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
  504. }
  505. } else { /* non-authenc - has just one key */
  506. enckey = key;
  507. authkey = NULL;
  508. ctx->enc_keylen = keylen;
  509. ctx->auth_keylen = 0;
  510. }
  511. rc = validate_keys_sizes(ctx);
  512. if (rc)
  513. return rc;
  514. /* STAT_PHASE_1: Copy key to ctx */
  515. /* Get key material */
  516. memcpy(ctx->enckey, enckey, ctx->enc_keylen);
  517. if (ctx->enc_keylen == 24)
  518. memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
  519. if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
  520. memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
  521. ctx->auth_keylen);
  522. } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
  523. rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
  524. if (rc)
  525. return rc;
  526. }
  527. /* STAT_PHASE_2: Create sequence */
  528. switch (ctx->auth_mode) {
  529. case DRV_HASH_SHA1:
  530. case DRV_HASH_SHA256:
  531. seq_len = hmac_setkey(desc, ctx);
  532. break;
  533. case DRV_HASH_XCBC_MAC:
  534. seq_len = xcbc_setkey(desc, ctx);
  535. break;
  536. case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
  537. break; /* No auth. key setup */
  538. default:
  539. dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
  540. return -ENOTSUPP;
  541. }
  542. /* STAT_PHASE_3: Submit sequence to HW */
  543. if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
  544. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
  545. if (rc) {
  546. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  547. return rc;
  548. }
  549. }
  550. /* Update STAT_PHASE_3 */
  551. return rc;
  552. }
  553. static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
  554. unsigned int keylen)
  555. {
  556. struct crypto_authenc_keys keys;
  557. int err;
  558. err = crypto_authenc_extractkeys(&keys, key, keylen);
  559. if (unlikely(err))
  560. return err;
  561. err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
  562. cc_aead_setkey(aead, key, keylen);
  563. memzero_explicit(&keys, sizeof(keys));
  564. return err;
  565. }
  566. static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
  567. unsigned int keylen)
  568. {
  569. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  570. if (keylen < 3)
  571. return -EINVAL;
  572. keylen -= 3;
  573. memcpy(ctx->ctr_nonce, key + keylen, 3);
  574. return cc_aead_setkey(tfm, key, keylen);
  575. }
  576. static int cc_aead_setauthsize(struct crypto_aead *authenc,
  577. unsigned int authsize)
  578. {
  579. struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
  580. struct device *dev = drvdata_to_dev(ctx->drvdata);
  581. /* Unsupported auth. sizes */
  582. if (authsize == 0 ||
  583. authsize > crypto_aead_maxauthsize(authenc)) {
  584. return -ENOTSUPP;
  585. }
  586. ctx->authsize = authsize;
  587. dev_dbg(dev, "authlen=%d\n", ctx->authsize);
  588. return 0;
  589. }
  590. static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
  591. unsigned int authsize)
  592. {
  593. switch (authsize) {
  594. case 8:
  595. case 12:
  596. case 16:
  597. break;
  598. default:
  599. return -EINVAL;
  600. }
  601. return cc_aead_setauthsize(authenc, authsize);
  602. }
  603. static int cc_ccm_setauthsize(struct crypto_aead *authenc,
  604. unsigned int authsize)
  605. {
  606. switch (authsize) {
  607. case 4:
  608. case 6:
  609. case 8:
  610. case 10:
  611. case 12:
  612. case 14:
  613. case 16:
  614. break;
  615. default:
  616. return -EINVAL;
  617. }
  618. return cc_aead_setauthsize(authenc, authsize);
  619. }
  620. static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
  621. struct cc_hw_desc desc[], unsigned int *seq_size)
  622. {
  623. struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
  624. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  625. struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
  626. enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
  627. unsigned int idx = *seq_size;
  628. struct device *dev = drvdata_to_dev(ctx->drvdata);
  629. switch (assoc_dma_type) {
  630. case CC_DMA_BUF_DLLI:
  631. dev_dbg(dev, "ASSOC buffer type DLLI\n");
  632. hw_desc_init(&desc[idx]);
  633. set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
  634. areq_ctx->assoclen, NS_BIT);
  635. set_flow_mode(&desc[idx], flow_mode);
  636. if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
  637. areq_ctx->cryptlen > 0)
  638. set_din_not_last_indication(&desc[idx]);
  639. break;
  640. case CC_DMA_BUF_MLLI:
  641. dev_dbg(dev, "ASSOC buffer type MLLI\n");
  642. hw_desc_init(&desc[idx]);
  643. set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
  644. areq_ctx->assoc.mlli_nents, NS_BIT);
  645. set_flow_mode(&desc[idx], flow_mode);
  646. if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
  647. areq_ctx->cryptlen > 0)
  648. set_din_not_last_indication(&desc[idx]);
  649. break;
  650. case CC_DMA_BUF_NULL:
  651. default:
  652. dev_err(dev, "Invalid ASSOC buffer type\n");
  653. }
  654. *seq_size = (++idx);
  655. }
  656. static void cc_proc_authen_desc(struct aead_request *areq,
  657. unsigned int flow_mode,
  658. struct cc_hw_desc desc[],
  659. unsigned int *seq_size, int direct)
  660. {
  661. struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
  662. enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
  663. unsigned int idx = *seq_size;
  664. struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
  665. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  666. struct device *dev = drvdata_to_dev(ctx->drvdata);
  667. switch (data_dma_type) {
  668. case CC_DMA_BUF_DLLI:
  669. {
  670. struct scatterlist *cipher =
  671. (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
  672. areq_ctx->dst_sgl : areq_ctx->src_sgl;
  673. unsigned int offset =
  674. (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
  675. areq_ctx->dst_offset : areq_ctx->src_offset;
  676. dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
  677. hw_desc_init(&desc[idx]);
  678. set_din_type(&desc[idx], DMA_DLLI,
  679. (sg_dma_address(cipher) + offset),
  680. areq_ctx->cryptlen, NS_BIT);
  681. set_flow_mode(&desc[idx], flow_mode);
  682. break;
  683. }
  684. case CC_DMA_BUF_MLLI:
  685. {
  686. /* DOUBLE-PASS flow (as default)
  687. * assoc. + iv + data -compact in one table
  688. * if assoclen is ZERO only IV perform
  689. */
  690. u32 mlli_addr = areq_ctx->assoc.sram_addr;
  691. u32 mlli_nents = areq_ctx->assoc.mlli_nents;
  692. if (areq_ctx->is_single_pass) {
  693. if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
  694. mlli_addr = areq_ctx->dst.sram_addr;
  695. mlli_nents = areq_ctx->dst.mlli_nents;
  696. } else {
  697. mlli_addr = areq_ctx->src.sram_addr;
  698. mlli_nents = areq_ctx->src.mlli_nents;
  699. }
  700. }
  701. dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
  702. hw_desc_init(&desc[idx]);
  703. set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
  704. NS_BIT);
  705. set_flow_mode(&desc[idx], flow_mode);
  706. break;
  707. }
  708. case CC_DMA_BUF_NULL:
  709. default:
  710. dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
  711. }
  712. *seq_size = (++idx);
  713. }
  714. static void cc_proc_cipher_desc(struct aead_request *areq,
  715. unsigned int flow_mode,
  716. struct cc_hw_desc desc[],
  717. unsigned int *seq_size)
  718. {
  719. unsigned int idx = *seq_size;
  720. struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
  721. enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
  722. struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
  723. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  724. struct device *dev = drvdata_to_dev(ctx->drvdata);
  725. if (areq_ctx->cryptlen == 0)
  726. return; /*null processing*/
  727. switch (data_dma_type) {
  728. case CC_DMA_BUF_DLLI:
  729. dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
  730. hw_desc_init(&desc[idx]);
  731. set_din_type(&desc[idx], DMA_DLLI,
  732. (sg_dma_address(areq_ctx->src_sgl) +
  733. areq_ctx->src_offset), areq_ctx->cryptlen,
  734. NS_BIT);
  735. set_dout_dlli(&desc[idx],
  736. (sg_dma_address(areq_ctx->dst_sgl) +
  737. areq_ctx->dst_offset),
  738. areq_ctx->cryptlen, NS_BIT, 0);
  739. set_flow_mode(&desc[idx], flow_mode);
  740. break;
  741. case CC_DMA_BUF_MLLI:
  742. dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
  743. hw_desc_init(&desc[idx]);
  744. set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
  745. areq_ctx->src.mlli_nents, NS_BIT);
  746. set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
  747. areq_ctx->dst.mlli_nents, NS_BIT, 0);
  748. set_flow_mode(&desc[idx], flow_mode);
  749. break;
  750. case CC_DMA_BUF_NULL:
  751. default:
  752. dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
  753. }
  754. *seq_size = (++idx);
  755. }
  756. static void cc_proc_digest_desc(struct aead_request *req,
  757. struct cc_hw_desc desc[],
  758. unsigned int *seq_size)
  759. {
  760. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  761. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  762. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  763. unsigned int idx = *seq_size;
  764. unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
  765. DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
  766. int direct = req_ctx->gen_ctx.op_type;
  767. /* Get final ICV result */
  768. if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
  769. hw_desc_init(&desc[idx]);
  770. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  771. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  772. set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
  773. NS_BIT, 1);
  774. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  775. if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
  776. set_aes_not_hash_mode(&desc[idx]);
  777. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  778. } else {
  779. set_cipher_config0(&desc[idx],
  780. HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  781. set_cipher_mode(&desc[idx], hash_mode);
  782. }
  783. } else { /*Decrypt*/
  784. /* Get ICV out from hardware */
  785. hw_desc_init(&desc[idx]);
  786. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  787. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  788. set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
  789. ctx->authsize, NS_BIT, 1);
  790. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  791. set_cipher_config0(&desc[idx],
  792. HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  793. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  794. if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
  795. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  796. set_aes_not_hash_mode(&desc[idx]);
  797. } else {
  798. set_cipher_mode(&desc[idx], hash_mode);
  799. }
  800. }
  801. *seq_size = (++idx);
  802. }
  803. static void cc_set_cipher_desc(struct aead_request *req,
  804. struct cc_hw_desc desc[],
  805. unsigned int *seq_size)
  806. {
  807. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  808. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  809. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  810. unsigned int hw_iv_size = req_ctx->hw_iv_size;
  811. unsigned int idx = *seq_size;
  812. int direct = req_ctx->gen_ctx.op_type;
  813. /* Setup cipher state */
  814. hw_desc_init(&desc[idx]);
  815. set_cipher_config0(&desc[idx], direct);
  816. set_flow_mode(&desc[idx], ctx->flow_mode);
  817. set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
  818. hw_iv_size, NS_BIT);
  819. if (ctx->cipher_mode == DRV_CIPHER_CTR)
  820. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  821. else
  822. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  823. set_cipher_mode(&desc[idx], ctx->cipher_mode);
  824. idx++;
  825. /* Setup enc. key */
  826. hw_desc_init(&desc[idx]);
  827. set_cipher_config0(&desc[idx], direct);
  828. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  829. set_flow_mode(&desc[idx], ctx->flow_mode);
  830. if (ctx->flow_mode == S_DIN_to_AES) {
  831. set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
  832. ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
  833. ctx->enc_keylen), NS_BIT);
  834. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  835. } else {
  836. set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
  837. ctx->enc_keylen, NS_BIT);
  838. set_key_size_des(&desc[idx], ctx->enc_keylen);
  839. }
  840. set_cipher_mode(&desc[idx], ctx->cipher_mode);
  841. idx++;
  842. *seq_size = idx;
  843. }
  844. static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
  845. unsigned int *seq_size, unsigned int data_flow_mode)
  846. {
  847. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  848. int direct = req_ctx->gen_ctx.op_type;
  849. unsigned int idx = *seq_size;
  850. if (req_ctx->cryptlen == 0)
  851. return; /*null processing*/
  852. cc_set_cipher_desc(req, desc, &idx);
  853. cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
  854. if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
  855. /* We must wait for DMA to write all cipher */
  856. hw_desc_init(&desc[idx]);
  857. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  858. set_dout_no_dma(&desc[idx], 0, 0, 1);
  859. idx++;
  860. }
  861. *seq_size = idx;
  862. }
  863. static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
  864. unsigned int *seq_size)
  865. {
  866. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  867. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  868. unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
  869. DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
  870. unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
  871. CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
  872. unsigned int idx = *seq_size;
  873. /* Loading hash ipad xor key state */
  874. hw_desc_init(&desc[idx]);
  875. set_cipher_mode(&desc[idx], hash_mode);
  876. set_din_type(&desc[idx], DMA_DLLI,
  877. ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
  878. NS_BIT);
  879. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  880. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  881. idx++;
  882. /* Load init. digest len (64 bytes) */
  883. hw_desc_init(&desc[idx]);
  884. set_cipher_mode(&desc[idx], hash_mode);
  885. set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
  886. ctx->hash_len);
  887. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  888. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  889. idx++;
  890. *seq_size = idx;
  891. }
  892. static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
  893. unsigned int *seq_size)
  894. {
  895. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  896. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  897. unsigned int idx = *seq_size;
  898. /* Loading MAC state */
  899. hw_desc_init(&desc[idx]);
  900. set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
  901. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  902. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  903. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  904. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  905. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  906. set_aes_not_hash_mode(&desc[idx]);
  907. idx++;
  908. /* Setup XCBC MAC K1 */
  909. hw_desc_init(&desc[idx]);
  910. set_din_type(&desc[idx], DMA_DLLI,
  911. ctx->auth_state.xcbc.xcbc_keys_dma_addr,
  912. AES_KEYSIZE_128, NS_BIT);
  913. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  914. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  915. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  916. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  917. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  918. set_aes_not_hash_mode(&desc[idx]);
  919. idx++;
  920. /* Setup XCBC MAC K2 */
  921. hw_desc_init(&desc[idx]);
  922. set_din_type(&desc[idx], DMA_DLLI,
  923. (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
  924. AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
  925. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  926. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  927. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  928. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  929. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  930. set_aes_not_hash_mode(&desc[idx]);
  931. idx++;
  932. /* Setup XCBC MAC K3 */
  933. hw_desc_init(&desc[idx]);
  934. set_din_type(&desc[idx], DMA_DLLI,
  935. (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
  936. 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
  937. set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
  938. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  939. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  940. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  941. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  942. set_aes_not_hash_mode(&desc[idx]);
  943. idx++;
  944. *seq_size = idx;
  945. }
  946. static void cc_proc_header_desc(struct aead_request *req,
  947. struct cc_hw_desc desc[],
  948. unsigned int *seq_size)
  949. {
  950. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  951. unsigned int idx = *seq_size;
  952. /* Hash associated data */
  953. if (areq_ctx->assoclen > 0)
  954. cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
  955. /* Hash IV */
  956. *seq_size = idx;
  957. }
  958. static void cc_proc_scheme_desc(struct aead_request *req,
  959. struct cc_hw_desc desc[],
  960. unsigned int *seq_size)
  961. {
  962. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  963. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  964. struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
  965. unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
  966. DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
  967. unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
  968. CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
  969. unsigned int idx = *seq_size;
  970. hw_desc_init(&desc[idx]);
  971. set_cipher_mode(&desc[idx], hash_mode);
  972. set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
  973. ctx->hash_len);
  974. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  975. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  976. set_cipher_do(&desc[idx], DO_PAD);
  977. idx++;
  978. /* Get final ICV result */
  979. hw_desc_init(&desc[idx]);
  980. set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
  981. digest_size);
  982. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  983. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  984. set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  985. set_cipher_mode(&desc[idx], hash_mode);
  986. idx++;
  987. /* Loading hash opad xor key state */
  988. hw_desc_init(&desc[idx]);
  989. set_cipher_mode(&desc[idx], hash_mode);
  990. set_din_type(&desc[idx], DMA_DLLI,
  991. (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
  992. digest_size, NS_BIT);
  993. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  994. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  995. idx++;
  996. /* Load init. digest len (64 bytes) */
  997. hw_desc_init(&desc[idx]);
  998. set_cipher_mode(&desc[idx], hash_mode);
  999. set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
  1000. ctx->hash_len);
  1001. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  1002. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  1003. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1004. idx++;
  1005. /* Perform HASH update */
  1006. hw_desc_init(&desc[idx]);
  1007. set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
  1008. digest_size);
  1009. set_flow_mode(&desc[idx], DIN_HASH);
  1010. idx++;
  1011. *seq_size = idx;
  1012. }
  1013. static void cc_mlli_to_sram(struct aead_request *req,
  1014. struct cc_hw_desc desc[], unsigned int *seq_size)
  1015. {
  1016. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1017. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1018. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1019. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1020. if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
  1021. req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
  1022. !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
  1023. dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
  1024. ctx->drvdata->mlli_sram_addr,
  1025. req_ctx->mlli_params.mlli_len);
  1026. /* Copy MLLI table host-to-sram */
  1027. hw_desc_init(&desc[*seq_size]);
  1028. set_din_type(&desc[*seq_size], DMA_DLLI,
  1029. req_ctx->mlli_params.mlli_dma_addr,
  1030. req_ctx->mlli_params.mlli_len, NS_BIT);
  1031. set_dout_sram(&desc[*seq_size],
  1032. ctx->drvdata->mlli_sram_addr,
  1033. req_ctx->mlli_params.mlli_len);
  1034. set_flow_mode(&desc[*seq_size], BYPASS);
  1035. (*seq_size)++;
  1036. }
  1037. }
  1038. static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
  1039. enum cc_flow_mode setup_flow_mode,
  1040. bool is_single_pass)
  1041. {
  1042. enum cc_flow_mode data_flow_mode;
  1043. if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
  1044. if (setup_flow_mode == S_DIN_to_AES)
  1045. data_flow_mode = is_single_pass ?
  1046. AES_to_HASH_and_DOUT : DIN_AES_DOUT;
  1047. else
  1048. data_flow_mode = is_single_pass ?
  1049. DES_to_HASH_and_DOUT : DIN_DES_DOUT;
  1050. } else { /* Decrypt */
  1051. if (setup_flow_mode == S_DIN_to_AES)
  1052. data_flow_mode = is_single_pass ?
  1053. AES_and_HASH : DIN_AES_DOUT;
  1054. else
  1055. data_flow_mode = is_single_pass ?
  1056. DES_and_HASH : DIN_DES_DOUT;
  1057. }
  1058. return data_flow_mode;
  1059. }
  1060. static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
  1061. unsigned int *seq_size)
  1062. {
  1063. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1064. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1065. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1066. int direct = req_ctx->gen_ctx.op_type;
  1067. unsigned int data_flow_mode =
  1068. cc_get_data_flow(direct, ctx->flow_mode,
  1069. req_ctx->is_single_pass);
  1070. if (req_ctx->is_single_pass) {
  1071. /*
  1072. * Single-pass flow
  1073. */
  1074. cc_set_hmac_desc(req, desc, seq_size);
  1075. cc_set_cipher_desc(req, desc, seq_size);
  1076. cc_proc_header_desc(req, desc, seq_size);
  1077. cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
  1078. cc_proc_scheme_desc(req, desc, seq_size);
  1079. cc_proc_digest_desc(req, desc, seq_size);
  1080. return;
  1081. }
  1082. /*
  1083. * Double-pass flow
  1084. * Fallback for unsupported single-pass modes,
  1085. * i.e. using assoc. data of non-word-multiple
  1086. */
  1087. if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
  1088. /* encrypt first.. */
  1089. cc_proc_cipher(req, desc, seq_size, data_flow_mode);
  1090. /* authenc after..*/
  1091. cc_set_hmac_desc(req, desc, seq_size);
  1092. cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
  1093. cc_proc_scheme_desc(req, desc, seq_size);
  1094. cc_proc_digest_desc(req, desc, seq_size);
  1095. } else { /*DECRYPT*/
  1096. /* authenc first..*/
  1097. cc_set_hmac_desc(req, desc, seq_size);
  1098. cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
  1099. cc_proc_scheme_desc(req, desc, seq_size);
  1100. /* decrypt after.. */
  1101. cc_proc_cipher(req, desc, seq_size, data_flow_mode);
  1102. /* read the digest result with setting the completion bit
  1103. * must be after the cipher operation
  1104. */
  1105. cc_proc_digest_desc(req, desc, seq_size);
  1106. }
  1107. }
  1108. static void
  1109. cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
  1110. unsigned int *seq_size)
  1111. {
  1112. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1113. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1114. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1115. int direct = req_ctx->gen_ctx.op_type;
  1116. unsigned int data_flow_mode =
  1117. cc_get_data_flow(direct, ctx->flow_mode,
  1118. req_ctx->is_single_pass);
  1119. if (req_ctx->is_single_pass) {
  1120. /*
  1121. * Single-pass flow
  1122. */
  1123. cc_set_xcbc_desc(req, desc, seq_size);
  1124. cc_set_cipher_desc(req, desc, seq_size);
  1125. cc_proc_header_desc(req, desc, seq_size);
  1126. cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
  1127. cc_proc_digest_desc(req, desc, seq_size);
  1128. return;
  1129. }
  1130. /*
  1131. * Double-pass flow
  1132. * Fallback for unsupported single-pass modes,
  1133. * i.e. using assoc. data of non-word-multiple
  1134. */
  1135. if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
  1136. /* encrypt first.. */
  1137. cc_proc_cipher(req, desc, seq_size, data_flow_mode);
  1138. /* authenc after.. */
  1139. cc_set_xcbc_desc(req, desc, seq_size);
  1140. cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
  1141. cc_proc_digest_desc(req, desc, seq_size);
  1142. } else { /*DECRYPT*/
  1143. /* authenc first.. */
  1144. cc_set_xcbc_desc(req, desc, seq_size);
  1145. cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
  1146. /* decrypt after..*/
  1147. cc_proc_cipher(req, desc, seq_size, data_flow_mode);
  1148. /* read the digest result with setting the completion bit
  1149. * must be after the cipher operation
  1150. */
  1151. cc_proc_digest_desc(req, desc, seq_size);
  1152. }
  1153. }
  1154. static int validate_data_size(struct cc_aead_ctx *ctx,
  1155. enum drv_crypto_direction direct,
  1156. struct aead_request *req)
  1157. {
  1158. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1159. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1160. unsigned int assoclen = areq_ctx->assoclen;
  1161. unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
  1162. (req->cryptlen - ctx->authsize) : req->cryptlen;
  1163. if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
  1164. req->cryptlen < ctx->authsize)
  1165. goto data_size_err;
  1166. areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
  1167. switch (ctx->flow_mode) {
  1168. case S_DIN_to_AES:
  1169. if (ctx->cipher_mode == DRV_CIPHER_CBC &&
  1170. !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
  1171. goto data_size_err;
  1172. if (ctx->cipher_mode == DRV_CIPHER_CCM)
  1173. break;
  1174. if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
  1175. if (areq_ctx->plaintext_authenticate_only)
  1176. areq_ctx->is_single_pass = false;
  1177. break;
  1178. }
  1179. if (!IS_ALIGNED(assoclen, sizeof(u32)))
  1180. areq_ctx->is_single_pass = false;
  1181. if (ctx->cipher_mode == DRV_CIPHER_CTR &&
  1182. !IS_ALIGNED(cipherlen, sizeof(u32)))
  1183. areq_ctx->is_single_pass = false;
  1184. break;
  1185. case S_DIN_to_DES:
  1186. if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
  1187. goto data_size_err;
  1188. if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
  1189. areq_ctx->is_single_pass = false;
  1190. break;
  1191. default:
  1192. dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
  1193. goto data_size_err;
  1194. }
  1195. return 0;
  1196. data_size_err:
  1197. return -EINVAL;
  1198. }
  1199. static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
  1200. {
  1201. unsigned int len = 0;
  1202. if (header_size == 0)
  1203. return 0;
  1204. if (header_size < ((1UL << 16) - (1UL << 8))) {
  1205. len = 2;
  1206. pa0_buff[0] = (header_size >> 8) & 0xFF;
  1207. pa0_buff[1] = header_size & 0xFF;
  1208. } else {
  1209. len = 6;
  1210. pa0_buff[0] = 0xFF;
  1211. pa0_buff[1] = 0xFE;
  1212. pa0_buff[2] = (header_size >> 24) & 0xFF;
  1213. pa0_buff[3] = (header_size >> 16) & 0xFF;
  1214. pa0_buff[4] = (header_size >> 8) & 0xFF;
  1215. pa0_buff[5] = header_size & 0xFF;
  1216. }
  1217. return len;
  1218. }
  1219. static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
  1220. {
  1221. __be32 data;
  1222. memset(block, 0, csize);
  1223. block += csize;
  1224. if (csize >= 4)
  1225. csize = 4;
  1226. else if (msglen > (1 << (8 * csize)))
  1227. return -EOVERFLOW;
  1228. data = cpu_to_be32(msglen);
  1229. memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
  1230. return 0;
  1231. }
  1232. static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
  1233. unsigned int *seq_size)
  1234. {
  1235. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1236. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1237. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1238. unsigned int idx = *seq_size;
  1239. unsigned int cipher_flow_mode;
  1240. dma_addr_t mac_result;
  1241. if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
  1242. cipher_flow_mode = AES_to_HASH_and_DOUT;
  1243. mac_result = req_ctx->mac_buf_dma_addr;
  1244. } else { /* Encrypt */
  1245. cipher_flow_mode = AES_and_HASH;
  1246. mac_result = req_ctx->icv_dma_addr;
  1247. }
  1248. /* load key */
  1249. hw_desc_init(&desc[idx]);
  1250. set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
  1251. set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
  1252. ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
  1253. ctx->enc_keylen), NS_BIT);
  1254. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1255. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1256. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1257. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1258. idx++;
  1259. /* load ctr state */
  1260. hw_desc_init(&desc[idx]);
  1261. set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
  1262. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1263. set_din_type(&desc[idx], DMA_DLLI,
  1264. req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
  1265. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1266. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  1267. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1268. idx++;
  1269. /* load MAC key */
  1270. hw_desc_init(&desc[idx]);
  1271. set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
  1272. set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
  1273. ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
  1274. ctx->enc_keylen), NS_BIT);
  1275. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1276. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1277. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1278. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  1279. set_aes_not_hash_mode(&desc[idx]);
  1280. idx++;
  1281. /* load MAC state */
  1282. hw_desc_init(&desc[idx]);
  1283. set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
  1284. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1285. set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
  1286. AES_BLOCK_SIZE, NS_BIT);
  1287. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1288. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  1289. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  1290. set_aes_not_hash_mode(&desc[idx]);
  1291. idx++;
  1292. /* process assoc data */
  1293. if (req_ctx->assoclen > 0) {
  1294. cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
  1295. } else {
  1296. hw_desc_init(&desc[idx]);
  1297. set_din_type(&desc[idx], DMA_DLLI,
  1298. sg_dma_address(&req_ctx->ccm_adata_sg),
  1299. AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
  1300. set_flow_mode(&desc[idx], DIN_HASH);
  1301. idx++;
  1302. }
  1303. /* process the cipher */
  1304. if (req_ctx->cryptlen)
  1305. cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
  1306. /* Read temporal MAC */
  1307. hw_desc_init(&desc[idx]);
  1308. set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
  1309. set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
  1310. NS_BIT, 0);
  1311. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1312. set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  1313. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  1314. set_aes_not_hash_mode(&desc[idx]);
  1315. idx++;
  1316. /* load AES-CTR state (for last MAC calculation)*/
  1317. hw_desc_init(&desc[idx]);
  1318. set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
  1319. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  1320. set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
  1321. AES_BLOCK_SIZE, NS_BIT);
  1322. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1323. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  1324. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1325. idx++;
  1326. hw_desc_init(&desc[idx]);
  1327. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1328. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1329. idx++;
  1330. /* encrypt the "T" value and store MAC in mac_state */
  1331. hw_desc_init(&desc[idx]);
  1332. set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
  1333. ctx->authsize, NS_BIT);
  1334. set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
  1335. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1336. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1337. idx++;
  1338. *seq_size = idx;
  1339. return 0;
  1340. }
  1341. static int config_ccm_adata(struct aead_request *req)
  1342. {
  1343. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1344. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1345. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1346. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1347. //unsigned int size_of_a = 0, rem_a_size = 0;
  1348. unsigned int lp = req->iv[0];
  1349. /* Note: The code assume that req->iv[0] already contains the value
  1350. * of L' of RFC3610
  1351. */
  1352. unsigned int l = lp + 1; /* This is L' of RFC 3610. */
  1353. unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
  1354. u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
  1355. u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
  1356. u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
  1357. unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
  1358. DRV_CRYPTO_DIRECTION_ENCRYPT) ?
  1359. req->cryptlen :
  1360. (req->cryptlen - ctx->authsize);
  1361. int rc;
  1362. memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
  1363. memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
  1364. /* taken from crypto/ccm.c */
  1365. /* 2 <= L <= 8, so 1 <= L' <= 7. */
  1366. if (l < 2 || l > 8) {
  1367. dev_dbg(dev, "illegal iv value %X\n", req->iv[0]);
  1368. return -EINVAL;
  1369. }
  1370. memcpy(b0, req->iv, AES_BLOCK_SIZE);
  1371. /* format control info per RFC 3610 and
  1372. * NIST Special Publication 800-38C
  1373. */
  1374. *b0 |= (8 * ((m - 2) / 2));
  1375. if (req_ctx->assoclen > 0)
  1376. *b0 |= 64; /* Enable bit 6 if Adata exists. */
  1377. rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
  1378. if (rc) {
  1379. dev_err(dev, "message len overflow detected");
  1380. return rc;
  1381. }
  1382. /* END of "taken from crypto/ccm.c" */
  1383. /* l(a) - size of associated data. */
  1384. req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
  1385. memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
  1386. req->iv[15] = 1;
  1387. memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
  1388. ctr_count_0[15] = 0;
  1389. return 0;
  1390. }
  1391. static void cc_proc_rfc4309_ccm(struct aead_request *req)
  1392. {
  1393. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1394. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1395. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1396. /* L' */
  1397. memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
  1398. /* For RFC 4309, always use 4 bytes for message length
  1399. * (at most 2^32-1 bytes).
  1400. */
  1401. areq_ctx->ctr_iv[0] = 3;
  1402. /* In RFC 4309 there is an 11-bytes nonce+IV part,
  1403. * that we build here.
  1404. */
  1405. memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
  1406. CCM_BLOCK_NONCE_SIZE);
  1407. memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
  1408. CCM_BLOCK_IV_SIZE);
  1409. req->iv = areq_ctx->ctr_iv;
  1410. }
  1411. static void cc_set_ghash_desc(struct aead_request *req,
  1412. struct cc_hw_desc desc[], unsigned int *seq_size)
  1413. {
  1414. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1415. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1416. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1417. unsigned int idx = *seq_size;
  1418. /* load key to AES*/
  1419. hw_desc_init(&desc[idx]);
  1420. set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
  1421. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  1422. set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
  1423. ctx->enc_keylen, NS_BIT);
  1424. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1425. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1426. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1427. idx++;
  1428. /* process one zero block to generate hkey */
  1429. hw_desc_init(&desc[idx]);
  1430. set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
  1431. set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
  1432. NS_BIT, 0);
  1433. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1434. idx++;
  1435. /* Memory Barrier */
  1436. hw_desc_init(&desc[idx]);
  1437. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1438. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1439. idx++;
  1440. /* Load GHASH subkey */
  1441. hw_desc_init(&desc[idx]);
  1442. set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
  1443. AES_BLOCK_SIZE, NS_BIT);
  1444. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1445. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  1446. set_aes_not_hash_mode(&desc[idx]);
  1447. set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
  1448. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  1449. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1450. idx++;
  1451. /* Configure Hash Engine to work with GHASH.
  1452. * Since it was not possible to extend HASH submodes to add GHASH,
  1453. * The following command is necessary in order to
  1454. * select GHASH (according to HW designers)
  1455. */
  1456. hw_desc_init(&desc[idx]);
  1457. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1458. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1459. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  1460. set_aes_not_hash_mode(&desc[idx]);
  1461. set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
  1462. set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
  1463. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  1464. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  1465. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1466. idx++;
  1467. /* Load GHASH initial STATE (which is 0). (for any hash there is an
  1468. * initial state)
  1469. */
  1470. hw_desc_init(&desc[idx]);
  1471. set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
  1472. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1473. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  1474. set_aes_not_hash_mode(&desc[idx]);
  1475. set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
  1476. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  1477. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  1478. idx++;
  1479. *seq_size = idx;
  1480. }
  1481. static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
  1482. unsigned int *seq_size)
  1483. {
  1484. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1485. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1486. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1487. unsigned int idx = *seq_size;
  1488. /* load key to AES*/
  1489. hw_desc_init(&desc[idx]);
  1490. set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
  1491. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  1492. set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
  1493. ctx->enc_keylen, NS_BIT);
  1494. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1495. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1496. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1497. idx++;
  1498. if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
  1499. /* load AES/CTR initial CTR value inc by 2*/
  1500. hw_desc_init(&desc[idx]);
  1501. set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
  1502. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1503. set_din_type(&desc[idx], DMA_DLLI,
  1504. req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
  1505. NS_BIT);
  1506. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  1507. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  1508. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1509. idx++;
  1510. }
  1511. *seq_size = idx;
  1512. }
  1513. static void cc_proc_gcm_result(struct aead_request *req,
  1514. struct cc_hw_desc desc[],
  1515. unsigned int *seq_size)
  1516. {
  1517. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1518. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1519. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1520. dma_addr_t mac_result;
  1521. unsigned int idx = *seq_size;
  1522. if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
  1523. mac_result = req_ctx->mac_buf_dma_addr;
  1524. } else { /* Encrypt */
  1525. mac_result = req_ctx->icv_dma_addr;
  1526. }
  1527. /* process(ghash) gcm_block_len */
  1528. hw_desc_init(&desc[idx]);
  1529. set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
  1530. AES_BLOCK_SIZE, NS_BIT);
  1531. set_flow_mode(&desc[idx], DIN_HASH);
  1532. idx++;
  1533. /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
  1534. hw_desc_init(&desc[idx]);
  1535. set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
  1536. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1537. set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
  1538. NS_BIT, 0);
  1539. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1540. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  1541. set_aes_not_hash_mode(&desc[idx]);
  1542. idx++;
  1543. /* load AES/CTR initial CTR value inc by 1*/
  1544. hw_desc_init(&desc[idx]);
  1545. set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
  1546. set_key_size_aes(&desc[idx], ctx->enc_keylen);
  1547. set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
  1548. AES_BLOCK_SIZE, NS_BIT);
  1549. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  1550. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  1551. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1552. idx++;
  1553. /* Memory Barrier */
  1554. hw_desc_init(&desc[idx]);
  1555. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1556. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1557. idx++;
  1558. /* process GCTR on stored GHASH and store MAC in mac_state*/
  1559. hw_desc_init(&desc[idx]);
  1560. set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
  1561. set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
  1562. AES_BLOCK_SIZE, NS_BIT);
  1563. set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
  1564. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1565. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1566. idx++;
  1567. *seq_size = idx;
  1568. }
  1569. static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
  1570. unsigned int *seq_size)
  1571. {
  1572. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1573. unsigned int cipher_flow_mode;
  1574. //in RFC4543 no data to encrypt. just copy data from src to dest.
  1575. if (req_ctx->plaintext_authenticate_only) {
  1576. cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
  1577. cc_set_ghash_desc(req, desc, seq_size);
  1578. /* process(ghash) assoc data */
  1579. cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
  1580. cc_set_gctr_desc(req, desc, seq_size);
  1581. cc_proc_gcm_result(req, desc, seq_size);
  1582. return 0;
  1583. }
  1584. if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
  1585. cipher_flow_mode = AES_and_HASH;
  1586. } else { /* Encrypt */
  1587. cipher_flow_mode = AES_to_HASH_and_DOUT;
  1588. }
  1589. // for gcm and rfc4106.
  1590. cc_set_ghash_desc(req, desc, seq_size);
  1591. /* process(ghash) assoc data */
  1592. if (req_ctx->assoclen > 0)
  1593. cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
  1594. cc_set_gctr_desc(req, desc, seq_size);
  1595. /* process(gctr+ghash) */
  1596. if (req_ctx->cryptlen)
  1597. cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
  1598. cc_proc_gcm_result(req, desc, seq_size);
  1599. return 0;
  1600. }
  1601. static int config_gcm_context(struct aead_request *req)
  1602. {
  1603. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1604. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1605. struct aead_req_ctx *req_ctx = aead_request_ctx(req);
  1606. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1607. unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
  1608. DRV_CRYPTO_DIRECTION_ENCRYPT) ?
  1609. req->cryptlen :
  1610. (req->cryptlen - ctx->authsize);
  1611. __be32 counter = cpu_to_be32(2);
  1612. dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
  1613. __func__, cryptlen, req_ctx->assoclen, ctx->authsize);
  1614. memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
  1615. memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
  1616. memcpy(req->iv + 12, &counter, 4);
  1617. memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
  1618. counter = cpu_to_be32(1);
  1619. memcpy(req->iv + 12, &counter, 4);
  1620. memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
  1621. if (!req_ctx->plaintext_authenticate_only) {
  1622. __be64 temp64;
  1623. temp64 = cpu_to_be64(req_ctx->assoclen * 8);
  1624. memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
  1625. temp64 = cpu_to_be64(cryptlen * 8);
  1626. memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
  1627. } else {
  1628. /* rfc4543=> all data(AAD,IV,Plain) are considered additional
  1629. * data that is nothing is encrypted.
  1630. */
  1631. __be64 temp64;
  1632. temp64 = cpu_to_be64((req_ctx->assoclen + cryptlen) * 8);
  1633. memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
  1634. temp64 = 0;
  1635. memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
  1636. }
  1637. return 0;
  1638. }
  1639. static void cc_proc_rfc4_gcm(struct aead_request *req)
  1640. {
  1641. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1642. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1643. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1644. memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
  1645. ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
  1646. memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
  1647. GCM_BLOCK_RFC4_IV_SIZE);
  1648. req->iv = areq_ctx->ctr_iv;
  1649. }
  1650. static int cc_proc_aead(struct aead_request *req,
  1651. enum drv_crypto_direction direct)
  1652. {
  1653. int rc = 0;
  1654. int seq_len = 0;
  1655. struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
  1656. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1657. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1658. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1659. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1660. struct cc_crypto_req cc_req = {};
  1661. dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
  1662. ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
  1663. ctx, req, req->iv, sg_virt(req->src), req->src->offset,
  1664. sg_virt(req->dst), req->dst->offset, req->cryptlen);
  1665. /* STAT_PHASE_0: Init and sanity checks */
  1666. /* Check data length according to mode */
  1667. if (validate_data_size(ctx, direct, req)) {
  1668. dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
  1669. req->cryptlen, areq_ctx->assoclen);
  1670. return -EINVAL;
  1671. }
  1672. /* Setup request structure */
  1673. cc_req.user_cb = cc_aead_complete;
  1674. cc_req.user_arg = req;
  1675. /* Setup request context */
  1676. areq_ctx->gen_ctx.op_type = direct;
  1677. areq_ctx->req_authsize = ctx->authsize;
  1678. areq_ctx->cipher_mode = ctx->cipher_mode;
  1679. /* STAT_PHASE_1: Map buffers */
  1680. if (ctx->cipher_mode == DRV_CIPHER_CTR) {
  1681. /* Build CTR IV - Copy nonce from last 4 bytes in
  1682. * CTR key to first 4 bytes in CTR IV
  1683. */
  1684. memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
  1685. CTR_RFC3686_NONCE_SIZE);
  1686. memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
  1687. CTR_RFC3686_IV_SIZE);
  1688. /* Initialize counter portion of counter block */
  1689. *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
  1690. CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
  1691. /* Replace with counter iv */
  1692. req->iv = areq_ctx->ctr_iv;
  1693. areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
  1694. } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
  1695. (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
  1696. areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
  1697. if (areq_ctx->ctr_iv != req->iv) {
  1698. memcpy(areq_ctx->ctr_iv, req->iv,
  1699. crypto_aead_ivsize(tfm));
  1700. req->iv = areq_ctx->ctr_iv;
  1701. }
  1702. } else {
  1703. areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
  1704. }
  1705. if (ctx->cipher_mode == DRV_CIPHER_CCM) {
  1706. rc = config_ccm_adata(req);
  1707. if (rc) {
  1708. dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
  1709. rc);
  1710. goto exit;
  1711. }
  1712. } else {
  1713. areq_ctx->ccm_hdr_size = ccm_header_size_null;
  1714. }
  1715. if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
  1716. rc = config_gcm_context(req);
  1717. if (rc) {
  1718. dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
  1719. rc);
  1720. goto exit;
  1721. }
  1722. }
  1723. rc = cc_map_aead_request(ctx->drvdata, req);
  1724. if (rc) {
  1725. dev_err(dev, "map_request() failed\n");
  1726. goto exit;
  1727. }
  1728. /* STAT_PHASE_2: Create sequence */
  1729. /* Load MLLI tables to SRAM if necessary */
  1730. cc_mlli_to_sram(req, desc, &seq_len);
  1731. switch (ctx->auth_mode) {
  1732. case DRV_HASH_SHA1:
  1733. case DRV_HASH_SHA256:
  1734. cc_hmac_authenc(req, desc, &seq_len);
  1735. break;
  1736. case DRV_HASH_XCBC_MAC:
  1737. cc_xcbc_authenc(req, desc, &seq_len);
  1738. break;
  1739. case DRV_HASH_NULL:
  1740. if (ctx->cipher_mode == DRV_CIPHER_CCM)
  1741. cc_ccm(req, desc, &seq_len);
  1742. if (ctx->cipher_mode == DRV_CIPHER_GCTR)
  1743. cc_gcm(req, desc, &seq_len);
  1744. break;
  1745. default:
  1746. dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
  1747. cc_unmap_aead_request(dev, req);
  1748. rc = -ENOTSUPP;
  1749. goto exit;
  1750. }
  1751. /* STAT_PHASE_3: Lock HW and push sequence */
  1752. rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
  1753. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1754. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1755. cc_unmap_aead_request(dev, req);
  1756. }
  1757. exit:
  1758. return rc;
  1759. }
  1760. static int cc_aead_encrypt(struct aead_request *req)
  1761. {
  1762. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1763. int rc;
  1764. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1765. /* No generated IV required */
  1766. areq_ctx->backup_iv = req->iv;
  1767. areq_ctx->assoclen = req->assoclen;
  1768. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
  1769. if (rc != -EINPROGRESS && rc != -EBUSY)
  1770. req->iv = areq_ctx->backup_iv;
  1771. return rc;
  1772. }
  1773. static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
  1774. {
  1775. /* Very similar to cc_aead_encrypt() above. */
  1776. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1777. int rc;
  1778. rc = crypto_ipsec_check_assoclen(req->assoclen);
  1779. if (rc)
  1780. goto out;
  1781. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1782. /* No generated IV required */
  1783. areq_ctx->backup_iv = req->iv;
  1784. areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
  1785. cc_proc_rfc4309_ccm(req);
  1786. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
  1787. if (rc != -EINPROGRESS && rc != -EBUSY)
  1788. req->iv = areq_ctx->backup_iv;
  1789. out:
  1790. return rc;
  1791. }
  1792. static int cc_aead_decrypt(struct aead_request *req)
  1793. {
  1794. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1795. int rc;
  1796. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1797. /* No generated IV required */
  1798. areq_ctx->backup_iv = req->iv;
  1799. areq_ctx->assoclen = req->assoclen;
  1800. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
  1801. if (rc != -EINPROGRESS && rc != -EBUSY)
  1802. req->iv = areq_ctx->backup_iv;
  1803. return rc;
  1804. }
  1805. static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
  1806. {
  1807. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1808. int rc;
  1809. rc = crypto_ipsec_check_assoclen(req->assoclen);
  1810. if (rc)
  1811. goto out;
  1812. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1813. /* No generated IV required */
  1814. areq_ctx->backup_iv = req->iv;
  1815. areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
  1816. cc_proc_rfc4309_ccm(req);
  1817. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
  1818. if (rc != -EINPROGRESS && rc != -EBUSY)
  1819. req->iv = areq_ctx->backup_iv;
  1820. out:
  1821. return rc;
  1822. }
  1823. static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1824. unsigned int keylen)
  1825. {
  1826. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1827. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1828. dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
  1829. if (keylen < 4)
  1830. return -EINVAL;
  1831. keylen -= 4;
  1832. memcpy(ctx->ctr_nonce, key + keylen, 4);
  1833. return cc_aead_setkey(tfm, key, keylen);
  1834. }
  1835. static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1836. unsigned int keylen)
  1837. {
  1838. struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
  1839. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1840. dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
  1841. if (keylen < 4)
  1842. return -EINVAL;
  1843. keylen -= 4;
  1844. memcpy(ctx->ctr_nonce, key + keylen, 4);
  1845. return cc_aead_setkey(tfm, key, keylen);
  1846. }
  1847. static int cc_gcm_setauthsize(struct crypto_aead *authenc,
  1848. unsigned int authsize)
  1849. {
  1850. switch (authsize) {
  1851. case 4:
  1852. case 8:
  1853. case 12:
  1854. case 13:
  1855. case 14:
  1856. case 15:
  1857. case 16:
  1858. break;
  1859. default:
  1860. return -EINVAL;
  1861. }
  1862. return cc_aead_setauthsize(authenc, authsize);
  1863. }
  1864. static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
  1865. unsigned int authsize)
  1866. {
  1867. struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
  1868. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1869. dev_dbg(dev, "authsize %d\n", authsize);
  1870. switch (authsize) {
  1871. case 8:
  1872. case 12:
  1873. case 16:
  1874. break;
  1875. default:
  1876. return -EINVAL;
  1877. }
  1878. return cc_aead_setauthsize(authenc, authsize);
  1879. }
  1880. static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
  1881. unsigned int authsize)
  1882. {
  1883. struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
  1884. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1885. dev_dbg(dev, "authsize %d\n", authsize);
  1886. if (authsize != 16)
  1887. return -EINVAL;
  1888. return cc_aead_setauthsize(authenc, authsize);
  1889. }
  1890. static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
  1891. {
  1892. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1893. int rc;
  1894. rc = crypto_ipsec_check_assoclen(req->assoclen);
  1895. if (rc)
  1896. goto out;
  1897. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1898. /* No generated IV required */
  1899. areq_ctx->backup_iv = req->iv;
  1900. areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
  1901. cc_proc_rfc4_gcm(req);
  1902. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
  1903. if (rc != -EINPROGRESS && rc != -EBUSY)
  1904. req->iv = areq_ctx->backup_iv;
  1905. out:
  1906. return rc;
  1907. }
  1908. static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
  1909. {
  1910. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1911. int rc;
  1912. rc = crypto_ipsec_check_assoclen(req->assoclen);
  1913. if (rc)
  1914. goto out;
  1915. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1916. //plaintext is not encryped with rfc4543
  1917. areq_ctx->plaintext_authenticate_only = true;
  1918. /* No generated IV required */
  1919. areq_ctx->backup_iv = req->iv;
  1920. areq_ctx->assoclen = req->assoclen;
  1921. cc_proc_rfc4_gcm(req);
  1922. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
  1923. if (rc != -EINPROGRESS && rc != -EBUSY)
  1924. req->iv = areq_ctx->backup_iv;
  1925. out:
  1926. return rc;
  1927. }
  1928. static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
  1929. {
  1930. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1931. int rc;
  1932. rc = crypto_ipsec_check_assoclen(req->assoclen);
  1933. if (rc)
  1934. goto out;
  1935. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1936. /* No generated IV required */
  1937. areq_ctx->backup_iv = req->iv;
  1938. areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
  1939. cc_proc_rfc4_gcm(req);
  1940. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
  1941. if (rc != -EINPROGRESS && rc != -EBUSY)
  1942. req->iv = areq_ctx->backup_iv;
  1943. out:
  1944. return rc;
  1945. }
  1946. static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
  1947. {
  1948. struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
  1949. int rc;
  1950. rc = crypto_ipsec_check_assoclen(req->assoclen);
  1951. if (rc)
  1952. goto out;
  1953. memset(areq_ctx, 0, sizeof(*areq_ctx));
  1954. //plaintext is not decryped with rfc4543
  1955. areq_ctx->plaintext_authenticate_only = true;
  1956. /* No generated IV required */
  1957. areq_ctx->backup_iv = req->iv;
  1958. areq_ctx->assoclen = req->assoclen;
  1959. cc_proc_rfc4_gcm(req);
  1960. rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
  1961. if (rc != -EINPROGRESS && rc != -EBUSY)
  1962. req->iv = areq_ctx->backup_iv;
  1963. out:
  1964. return rc;
  1965. }
  1966. /* aead alg */
  1967. static struct cc_alg_template aead_algs[] = {
  1968. {
  1969. .name = "authenc(hmac(sha1),cbc(aes))",
  1970. .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
  1971. .blocksize = AES_BLOCK_SIZE,
  1972. .template_aead = {
  1973. .setkey = cc_aead_setkey,
  1974. .setauthsize = cc_aead_setauthsize,
  1975. .encrypt = cc_aead_encrypt,
  1976. .decrypt = cc_aead_decrypt,
  1977. .init = cc_aead_init,
  1978. .exit = cc_aead_exit,
  1979. .ivsize = AES_BLOCK_SIZE,
  1980. .maxauthsize = SHA1_DIGEST_SIZE,
  1981. },
  1982. .cipher_mode = DRV_CIPHER_CBC,
  1983. .flow_mode = S_DIN_to_AES,
  1984. .auth_mode = DRV_HASH_SHA1,
  1985. .min_hw_rev = CC_HW_REV_630,
  1986. .std_body = CC_STD_NIST,
  1987. },
  1988. {
  1989. .name = "authenc(hmac(sha1),cbc(des3_ede))",
  1990. .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
  1991. .blocksize = DES3_EDE_BLOCK_SIZE,
  1992. .template_aead = {
  1993. .setkey = cc_des3_aead_setkey,
  1994. .setauthsize = cc_aead_setauthsize,
  1995. .encrypt = cc_aead_encrypt,
  1996. .decrypt = cc_aead_decrypt,
  1997. .init = cc_aead_init,
  1998. .exit = cc_aead_exit,
  1999. .ivsize = DES3_EDE_BLOCK_SIZE,
  2000. .maxauthsize = SHA1_DIGEST_SIZE,
  2001. },
  2002. .cipher_mode = DRV_CIPHER_CBC,
  2003. .flow_mode = S_DIN_to_DES,
  2004. .auth_mode = DRV_HASH_SHA1,
  2005. .min_hw_rev = CC_HW_REV_630,
  2006. .std_body = CC_STD_NIST,
  2007. },
  2008. {
  2009. .name = "authenc(hmac(sha256),cbc(aes))",
  2010. .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
  2011. .blocksize = AES_BLOCK_SIZE,
  2012. .template_aead = {
  2013. .setkey = cc_aead_setkey,
  2014. .setauthsize = cc_aead_setauthsize,
  2015. .encrypt = cc_aead_encrypt,
  2016. .decrypt = cc_aead_decrypt,
  2017. .init = cc_aead_init,
  2018. .exit = cc_aead_exit,
  2019. .ivsize = AES_BLOCK_SIZE,
  2020. .maxauthsize = SHA256_DIGEST_SIZE,
  2021. },
  2022. .cipher_mode = DRV_CIPHER_CBC,
  2023. .flow_mode = S_DIN_to_AES,
  2024. .auth_mode = DRV_HASH_SHA256,
  2025. .min_hw_rev = CC_HW_REV_630,
  2026. .std_body = CC_STD_NIST,
  2027. },
  2028. {
  2029. .name = "authenc(hmac(sha256),cbc(des3_ede))",
  2030. .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
  2031. .blocksize = DES3_EDE_BLOCK_SIZE,
  2032. .template_aead = {
  2033. .setkey = cc_des3_aead_setkey,
  2034. .setauthsize = cc_aead_setauthsize,
  2035. .encrypt = cc_aead_encrypt,
  2036. .decrypt = cc_aead_decrypt,
  2037. .init = cc_aead_init,
  2038. .exit = cc_aead_exit,
  2039. .ivsize = DES3_EDE_BLOCK_SIZE,
  2040. .maxauthsize = SHA256_DIGEST_SIZE,
  2041. },
  2042. .cipher_mode = DRV_CIPHER_CBC,
  2043. .flow_mode = S_DIN_to_DES,
  2044. .auth_mode = DRV_HASH_SHA256,
  2045. .min_hw_rev = CC_HW_REV_630,
  2046. .std_body = CC_STD_NIST,
  2047. },
  2048. {
  2049. .name = "authenc(xcbc(aes),cbc(aes))",
  2050. .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
  2051. .blocksize = AES_BLOCK_SIZE,
  2052. .template_aead = {
  2053. .setkey = cc_aead_setkey,
  2054. .setauthsize = cc_aead_setauthsize,
  2055. .encrypt = cc_aead_encrypt,
  2056. .decrypt = cc_aead_decrypt,
  2057. .init = cc_aead_init,
  2058. .exit = cc_aead_exit,
  2059. .ivsize = AES_BLOCK_SIZE,
  2060. .maxauthsize = AES_BLOCK_SIZE,
  2061. },
  2062. .cipher_mode = DRV_CIPHER_CBC,
  2063. .flow_mode = S_DIN_to_AES,
  2064. .auth_mode = DRV_HASH_XCBC_MAC,
  2065. .min_hw_rev = CC_HW_REV_630,
  2066. .std_body = CC_STD_NIST,
  2067. },
  2068. {
  2069. .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
  2070. .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
  2071. .blocksize = 1,
  2072. .template_aead = {
  2073. .setkey = cc_aead_setkey,
  2074. .setauthsize = cc_aead_setauthsize,
  2075. .encrypt = cc_aead_encrypt,
  2076. .decrypt = cc_aead_decrypt,
  2077. .init = cc_aead_init,
  2078. .exit = cc_aead_exit,
  2079. .ivsize = CTR_RFC3686_IV_SIZE,
  2080. .maxauthsize = SHA1_DIGEST_SIZE,
  2081. },
  2082. .cipher_mode = DRV_CIPHER_CTR,
  2083. .flow_mode = S_DIN_to_AES,
  2084. .auth_mode = DRV_HASH_SHA1,
  2085. .min_hw_rev = CC_HW_REV_630,
  2086. .std_body = CC_STD_NIST,
  2087. },
  2088. {
  2089. .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
  2090. .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
  2091. .blocksize = 1,
  2092. .template_aead = {
  2093. .setkey = cc_aead_setkey,
  2094. .setauthsize = cc_aead_setauthsize,
  2095. .encrypt = cc_aead_encrypt,
  2096. .decrypt = cc_aead_decrypt,
  2097. .init = cc_aead_init,
  2098. .exit = cc_aead_exit,
  2099. .ivsize = CTR_RFC3686_IV_SIZE,
  2100. .maxauthsize = SHA256_DIGEST_SIZE,
  2101. },
  2102. .cipher_mode = DRV_CIPHER_CTR,
  2103. .flow_mode = S_DIN_to_AES,
  2104. .auth_mode = DRV_HASH_SHA256,
  2105. .min_hw_rev = CC_HW_REV_630,
  2106. .std_body = CC_STD_NIST,
  2107. },
  2108. {
  2109. .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
  2110. .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
  2111. .blocksize = 1,
  2112. .template_aead = {
  2113. .setkey = cc_aead_setkey,
  2114. .setauthsize = cc_aead_setauthsize,
  2115. .encrypt = cc_aead_encrypt,
  2116. .decrypt = cc_aead_decrypt,
  2117. .init = cc_aead_init,
  2118. .exit = cc_aead_exit,
  2119. .ivsize = CTR_RFC3686_IV_SIZE,
  2120. .maxauthsize = AES_BLOCK_SIZE,
  2121. },
  2122. .cipher_mode = DRV_CIPHER_CTR,
  2123. .flow_mode = S_DIN_to_AES,
  2124. .auth_mode = DRV_HASH_XCBC_MAC,
  2125. .min_hw_rev = CC_HW_REV_630,
  2126. .std_body = CC_STD_NIST,
  2127. },
  2128. {
  2129. .name = "ccm(aes)",
  2130. .driver_name = "ccm-aes-ccree",
  2131. .blocksize = 1,
  2132. .template_aead = {
  2133. .setkey = cc_aead_setkey,
  2134. .setauthsize = cc_ccm_setauthsize,
  2135. .encrypt = cc_aead_encrypt,
  2136. .decrypt = cc_aead_decrypt,
  2137. .init = cc_aead_init,
  2138. .exit = cc_aead_exit,
  2139. .ivsize = AES_BLOCK_SIZE,
  2140. .maxauthsize = AES_BLOCK_SIZE,
  2141. },
  2142. .cipher_mode = DRV_CIPHER_CCM,
  2143. .flow_mode = S_DIN_to_AES,
  2144. .auth_mode = DRV_HASH_NULL,
  2145. .min_hw_rev = CC_HW_REV_630,
  2146. .std_body = CC_STD_NIST,
  2147. },
  2148. {
  2149. .name = "rfc4309(ccm(aes))",
  2150. .driver_name = "rfc4309-ccm-aes-ccree",
  2151. .blocksize = 1,
  2152. .template_aead = {
  2153. .setkey = cc_rfc4309_ccm_setkey,
  2154. .setauthsize = cc_rfc4309_ccm_setauthsize,
  2155. .encrypt = cc_rfc4309_ccm_encrypt,
  2156. .decrypt = cc_rfc4309_ccm_decrypt,
  2157. .init = cc_aead_init,
  2158. .exit = cc_aead_exit,
  2159. .ivsize = CCM_BLOCK_IV_SIZE,
  2160. .maxauthsize = AES_BLOCK_SIZE,
  2161. },
  2162. .cipher_mode = DRV_CIPHER_CCM,
  2163. .flow_mode = S_DIN_to_AES,
  2164. .auth_mode = DRV_HASH_NULL,
  2165. .min_hw_rev = CC_HW_REV_630,
  2166. .std_body = CC_STD_NIST,
  2167. },
  2168. {
  2169. .name = "gcm(aes)",
  2170. .driver_name = "gcm-aes-ccree",
  2171. .blocksize = 1,
  2172. .template_aead = {
  2173. .setkey = cc_aead_setkey,
  2174. .setauthsize = cc_gcm_setauthsize,
  2175. .encrypt = cc_aead_encrypt,
  2176. .decrypt = cc_aead_decrypt,
  2177. .init = cc_aead_init,
  2178. .exit = cc_aead_exit,
  2179. .ivsize = 12,
  2180. .maxauthsize = AES_BLOCK_SIZE,
  2181. },
  2182. .cipher_mode = DRV_CIPHER_GCTR,
  2183. .flow_mode = S_DIN_to_AES,
  2184. .auth_mode = DRV_HASH_NULL,
  2185. .min_hw_rev = CC_HW_REV_630,
  2186. .std_body = CC_STD_NIST,
  2187. },
  2188. {
  2189. .name = "rfc4106(gcm(aes))",
  2190. .driver_name = "rfc4106-gcm-aes-ccree",
  2191. .blocksize = 1,
  2192. .template_aead = {
  2193. .setkey = cc_rfc4106_gcm_setkey,
  2194. .setauthsize = cc_rfc4106_gcm_setauthsize,
  2195. .encrypt = cc_rfc4106_gcm_encrypt,
  2196. .decrypt = cc_rfc4106_gcm_decrypt,
  2197. .init = cc_aead_init,
  2198. .exit = cc_aead_exit,
  2199. .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
  2200. .maxauthsize = AES_BLOCK_SIZE,
  2201. },
  2202. .cipher_mode = DRV_CIPHER_GCTR,
  2203. .flow_mode = S_DIN_to_AES,
  2204. .auth_mode = DRV_HASH_NULL,
  2205. .min_hw_rev = CC_HW_REV_630,
  2206. .std_body = CC_STD_NIST,
  2207. },
  2208. {
  2209. .name = "rfc4543(gcm(aes))",
  2210. .driver_name = "rfc4543-gcm-aes-ccree",
  2211. .blocksize = 1,
  2212. .template_aead = {
  2213. .setkey = cc_rfc4543_gcm_setkey,
  2214. .setauthsize = cc_rfc4543_gcm_setauthsize,
  2215. .encrypt = cc_rfc4543_gcm_encrypt,
  2216. .decrypt = cc_rfc4543_gcm_decrypt,
  2217. .init = cc_aead_init,
  2218. .exit = cc_aead_exit,
  2219. .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
  2220. .maxauthsize = AES_BLOCK_SIZE,
  2221. },
  2222. .cipher_mode = DRV_CIPHER_GCTR,
  2223. .flow_mode = S_DIN_to_AES,
  2224. .auth_mode = DRV_HASH_NULL,
  2225. .min_hw_rev = CC_HW_REV_630,
  2226. .std_body = CC_STD_NIST,
  2227. },
  2228. };
  2229. static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
  2230. struct device *dev)
  2231. {
  2232. struct cc_crypto_alg *t_alg;
  2233. struct aead_alg *alg;
  2234. t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
  2235. if (!t_alg)
  2236. return ERR_PTR(-ENOMEM);
  2237. alg = &tmpl->template_aead;
  2238. snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
  2239. snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  2240. tmpl->driver_name);
  2241. alg->base.cra_module = THIS_MODULE;
  2242. alg->base.cra_priority = CC_CRA_PRIO;
  2243. alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
  2244. alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
  2245. alg->base.cra_blocksize = tmpl->blocksize;
  2246. alg->init = cc_aead_init;
  2247. alg->exit = cc_aead_exit;
  2248. t_alg->aead_alg = *alg;
  2249. t_alg->cipher_mode = tmpl->cipher_mode;
  2250. t_alg->flow_mode = tmpl->flow_mode;
  2251. t_alg->auth_mode = tmpl->auth_mode;
  2252. return t_alg;
  2253. }
  2254. int cc_aead_free(struct cc_drvdata *drvdata)
  2255. {
  2256. struct cc_crypto_alg *t_alg, *n;
  2257. struct cc_aead_handle *aead_handle = drvdata->aead_handle;
  2258. /* Remove registered algs */
  2259. list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) {
  2260. crypto_unregister_aead(&t_alg->aead_alg);
  2261. list_del(&t_alg->entry);
  2262. }
  2263. return 0;
  2264. }
  2265. int cc_aead_alloc(struct cc_drvdata *drvdata)
  2266. {
  2267. struct cc_aead_handle *aead_handle;
  2268. struct cc_crypto_alg *t_alg;
  2269. int rc = -ENOMEM;
  2270. int alg;
  2271. struct device *dev = drvdata_to_dev(drvdata);
  2272. aead_handle = devm_kmalloc(dev, sizeof(*aead_handle), GFP_KERNEL);
  2273. if (!aead_handle) {
  2274. rc = -ENOMEM;
  2275. goto fail0;
  2276. }
  2277. INIT_LIST_HEAD(&aead_handle->aead_list);
  2278. drvdata->aead_handle = aead_handle;
  2279. aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
  2280. MAX_HMAC_DIGEST_SIZE);
  2281. if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
  2282. rc = -ENOMEM;
  2283. goto fail1;
  2284. }
  2285. /* Linux crypto */
  2286. for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
  2287. if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
  2288. !(drvdata->std_bodies & aead_algs[alg].std_body))
  2289. continue;
  2290. t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
  2291. if (IS_ERR(t_alg)) {
  2292. rc = PTR_ERR(t_alg);
  2293. dev_err(dev, "%s alg allocation failed\n",
  2294. aead_algs[alg].driver_name);
  2295. goto fail1;
  2296. }
  2297. t_alg->drvdata = drvdata;
  2298. rc = crypto_register_aead(&t_alg->aead_alg);
  2299. if (rc) {
  2300. dev_err(dev, "%s alg registration failed\n",
  2301. t_alg->aead_alg.base.cra_driver_name);
  2302. goto fail1;
  2303. }
  2304. list_add_tail(&t_alg->entry, &aead_handle->aead_list);
  2305. dev_dbg(dev, "Registered %s\n",
  2306. t_alg->aead_alg.base.cra_driver_name);
  2307. }
  2308. return 0;
  2309. fail1:
  2310. cc_aead_free(drvdata);
  2311. fail0:
  2312. return rc;
  2313. }