nitrox_hal.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/delay.h>
  3. #include "nitrox_dev.h"
  4. #include "nitrox_csr.h"
  5. #include "nitrox_hal.h"
  6. #define PLL_REF_CLK 50
  7. #define MAX_CSR_RETRIES 10
  8. /**
  9. * emu_enable_cores - Enable EMU cluster cores.
  10. * @ndev: NITROX device
  11. */
  12. static void emu_enable_cores(struct nitrox_device *ndev)
  13. {
  14. union emu_se_enable emu_se;
  15. union emu_ae_enable emu_ae;
  16. int i;
  17. /* AE cores 20 per cluster */
  18. emu_ae.value = 0;
  19. emu_ae.s.enable = 0xfffff;
  20. /* SE cores 16 per cluster */
  21. emu_se.value = 0;
  22. emu_se.s.enable = 0xffff;
  23. /* enable per cluster cores */
  24. for (i = 0; i < NR_CLUSTERS; i++) {
  25. nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
  26. nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
  27. }
  28. }
  29. /**
  30. * nitrox_config_emu_unit - configure EMU unit.
  31. * @ndev: NITROX device
  32. */
  33. void nitrox_config_emu_unit(struct nitrox_device *ndev)
  34. {
  35. union emu_wd_int_ena_w1s emu_wd_int;
  36. union emu_ge_int_ena_w1s emu_ge_int;
  37. u64 offset;
  38. int i;
  39. /* enable cores */
  40. emu_enable_cores(ndev);
  41. /* enable general error and watch dog interrupts */
  42. emu_ge_int.value = 0;
  43. emu_ge_int.s.se_ge = 0xffff;
  44. emu_ge_int.s.ae_ge = 0xfffff;
  45. emu_wd_int.value = 0;
  46. emu_wd_int.s.se_wd = 1;
  47. for (i = 0; i < NR_CLUSTERS; i++) {
  48. offset = EMU_WD_INT_ENA_W1SX(i);
  49. nitrox_write_csr(ndev, offset, emu_wd_int.value);
  50. offset = EMU_GE_INT_ENA_W1SX(i);
  51. nitrox_write_csr(ndev, offset, emu_ge_int.value);
  52. }
  53. }
  54. static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
  55. {
  56. union nps_pkt_in_instr_ctl pkt_in_ctl;
  57. union nps_pkt_in_done_cnts pkt_in_cnts;
  58. int max_retries = MAX_CSR_RETRIES;
  59. u64 offset;
  60. /* step 1: disable the ring, clear enable bit */
  61. offset = NPS_PKT_IN_INSTR_CTLX(ring);
  62. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  63. pkt_in_ctl.s.enb = 0;
  64. nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
  65. /* step 2: wait to clear [ENB] */
  66. usleep_range(100, 150);
  67. do {
  68. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  69. if (!pkt_in_ctl.s.enb)
  70. break;
  71. udelay(50);
  72. } while (max_retries--);
  73. /* step 3: clear done counts */
  74. offset = NPS_PKT_IN_DONE_CNTSX(ring);
  75. pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
  76. nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
  77. usleep_range(50, 100);
  78. }
  79. void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
  80. {
  81. union nps_pkt_in_instr_ctl pkt_in_ctl;
  82. int max_retries = MAX_CSR_RETRIES;
  83. u64 offset;
  84. /* 64-byte instruction size */
  85. offset = NPS_PKT_IN_INSTR_CTLX(ring);
  86. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  87. pkt_in_ctl.s.is64b = 1;
  88. pkt_in_ctl.s.enb = 1;
  89. nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
  90. /* wait for set [ENB] */
  91. do {
  92. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  93. if (pkt_in_ctl.s.enb)
  94. break;
  95. udelay(50);
  96. } while (max_retries--);
  97. }
  98. /**
  99. * nitrox_config_pkt_input_rings - configure Packet Input Rings
  100. * @ndev: NITROX device
  101. */
  102. void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
  103. {
  104. int i;
  105. for (i = 0; i < ndev->nr_queues; i++) {
  106. struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
  107. union nps_pkt_in_instr_rsize pkt_in_rsize;
  108. union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
  109. u64 offset;
  110. reset_pkt_input_ring(ndev, i);
  111. /**
  112. * step 4:
  113. * configure ring base address 16-byte aligned,
  114. * size and interrupt threshold.
  115. */
  116. offset = NPS_PKT_IN_INSTR_BADDRX(i);
  117. nitrox_write_csr(ndev, offset, cmdq->dma);
  118. /* configure ring size */
  119. offset = NPS_PKT_IN_INSTR_RSIZEX(i);
  120. pkt_in_rsize.value = 0;
  121. pkt_in_rsize.s.rsize = ndev->qlen;
  122. nitrox_write_csr(ndev, offset, pkt_in_rsize.value);
  123. /* set high threshold for pkt input ring interrupts */
  124. offset = NPS_PKT_IN_INT_LEVELSX(i);
  125. nitrox_write_csr(ndev, offset, 0xffffffff);
  126. /* step 5: clear off door bell counts */
  127. offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i);
  128. pkt_in_dbell.value = 0;
  129. pkt_in_dbell.s.dbell = 0xffffffff;
  130. nitrox_write_csr(ndev, offset, pkt_in_dbell.value);
  131. /* enable the ring */
  132. enable_pkt_input_ring(ndev, i);
  133. }
  134. }
  135. static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
  136. {
  137. union nps_pkt_slc_ctl pkt_slc_ctl;
  138. union nps_pkt_slc_cnts pkt_slc_cnts;
  139. int max_retries = MAX_CSR_RETRIES;
  140. u64 offset;
  141. /* step 1: disable slc port */
  142. offset = NPS_PKT_SLC_CTLX(port);
  143. pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
  144. pkt_slc_ctl.s.enb = 0;
  145. nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
  146. /* step 2 */
  147. usleep_range(100, 150);
  148. /* wait to clear [ENB] */
  149. do {
  150. pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
  151. if (!pkt_slc_ctl.s.enb)
  152. break;
  153. udelay(50);
  154. } while (max_retries--);
  155. /* step 3: clear slc counters */
  156. offset = NPS_PKT_SLC_CNTSX(port);
  157. pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
  158. nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
  159. usleep_range(50, 100);
  160. }
  161. void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
  162. {
  163. union nps_pkt_slc_ctl pkt_slc_ctl;
  164. int max_retries = MAX_CSR_RETRIES;
  165. u64 offset;
  166. offset = NPS_PKT_SLC_CTLX(port);
  167. pkt_slc_ctl.value = 0;
  168. pkt_slc_ctl.s.enb = 1;
  169. /*
  170. * 8 trailing 0x00 bytes will be added
  171. * to the end of the outgoing packet.
  172. */
  173. pkt_slc_ctl.s.z = 1;
  174. /* enable response header */
  175. pkt_slc_ctl.s.rh = 1;
  176. nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
  177. /* wait to set [ENB] */
  178. do {
  179. pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
  180. if (pkt_slc_ctl.s.enb)
  181. break;
  182. udelay(50);
  183. } while (max_retries--);
  184. }
  185. static void config_pkt_solicit_port(struct nitrox_device *ndev, int port)
  186. {
  187. union nps_pkt_slc_int_levels pkt_slc_int;
  188. u64 offset;
  189. reset_pkt_solicit_port(ndev, port);
  190. /* step 4: configure interrupt levels */
  191. offset = NPS_PKT_SLC_INT_LEVELSX(port);
  192. pkt_slc_int.value = 0;
  193. /* time interrupt threshold */
  194. pkt_slc_int.s.timet = 0x3fffff;
  195. nitrox_write_csr(ndev, offset, pkt_slc_int.value);
  196. /* enable the solicit port */
  197. enable_pkt_solicit_port(ndev, port);
  198. }
  199. void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
  200. {
  201. int i;
  202. for (i = 0; i < ndev->nr_queues; i++)
  203. config_pkt_solicit_port(ndev, i);
  204. }
  205. /**
  206. * enable_nps_core_interrupts - enable NPS core interrutps
  207. * @ndev: NITROX device.
  208. *
  209. * This includes NPS core interrupts.
  210. */
  211. static void enable_nps_core_interrupts(struct nitrox_device *ndev)
  212. {
  213. union nps_core_int_ena_w1s core_int;
  214. /* NPS core interrutps */
  215. core_int.value = 0;
  216. core_int.s.host_wr_err = 1;
  217. core_int.s.host_wr_timeout = 1;
  218. core_int.s.exec_wr_timeout = 1;
  219. core_int.s.npco_dma_malform = 1;
  220. core_int.s.host_nps_wr_err = 1;
  221. nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
  222. }
  223. void nitrox_config_nps_core_unit(struct nitrox_device *ndev)
  224. {
  225. union nps_core_gbl_vfcfg core_gbl_vfcfg;
  226. /* endian control information */
  227. nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);
  228. /* disable ILK interface */
  229. core_gbl_vfcfg.value = 0;
  230. core_gbl_vfcfg.s.ilk_disable = 1;
  231. core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
  232. nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);
  233. /* enable nps core interrupts */
  234. enable_nps_core_interrupts(ndev);
  235. }
  236. /**
  237. * enable_nps_pkt_interrupts - enable NPS packet interrutps
  238. * @ndev: NITROX device.
  239. *
  240. * This includes NPS packet in and slc interrupts.
  241. */
  242. static void enable_nps_pkt_interrupts(struct nitrox_device *ndev)
  243. {
  244. /* NPS packet in ring interrupts */
  245. nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
  246. nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
  247. nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
  248. /* NPS packet slc port interrupts */
  249. nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
  250. nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
  251. nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
  252. }
  253. void nitrox_config_nps_pkt_unit(struct nitrox_device *ndev)
  254. {
  255. /* config input and solicit ports */
  256. nitrox_config_pkt_input_rings(ndev);
  257. nitrox_config_pkt_solicit_ports(ndev);
  258. /* enable nps packet interrupts */
  259. enable_nps_pkt_interrupts(ndev);
  260. }
  261. static void reset_aqm_ring(struct nitrox_device *ndev, int ring)
  262. {
  263. union aqmq_en aqmq_en_reg;
  264. union aqmq_activity_stat activity_stat;
  265. union aqmq_cmp_cnt cmp_cnt;
  266. int max_retries = MAX_CSR_RETRIES;
  267. u64 offset;
  268. /* step 1: disable the queue */
  269. offset = AQMQ_ENX(ring);
  270. aqmq_en_reg.value = 0;
  271. aqmq_en_reg.queue_enable = 0;
  272. nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
  273. /* step 2: wait for AQMQ_ACTIVITY_STATX[QUEUE_ACTIVE] to clear */
  274. usleep_range(100, 150);
  275. offset = AQMQ_ACTIVITY_STATX(ring);
  276. do {
  277. activity_stat.value = nitrox_read_csr(ndev, offset);
  278. if (!activity_stat.queue_active)
  279. break;
  280. udelay(50);
  281. } while (max_retries--);
  282. /* step 3: clear commands completed count */
  283. offset = AQMQ_CMP_CNTX(ring);
  284. cmp_cnt.value = nitrox_read_csr(ndev, offset);
  285. nitrox_write_csr(ndev, offset, cmp_cnt.value);
  286. usleep_range(50, 100);
  287. }
  288. void enable_aqm_ring(struct nitrox_device *ndev, int ring)
  289. {
  290. union aqmq_en aqmq_en_reg;
  291. u64 offset;
  292. offset = AQMQ_ENX(ring);
  293. aqmq_en_reg.value = 0;
  294. aqmq_en_reg.queue_enable = 1;
  295. nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
  296. usleep_range(50, 100);
  297. }
  298. void nitrox_config_aqm_rings(struct nitrox_device *ndev)
  299. {
  300. int ring;
  301. for (ring = 0; ring < ndev->nr_queues; ring++) {
  302. struct nitrox_cmdq *cmdq = ndev->aqmq[ring];
  303. union aqmq_drbl drbl;
  304. union aqmq_qsz qsize;
  305. union aqmq_cmp_thr cmp_thr;
  306. u64 offset;
  307. /* steps 1 - 3 */
  308. reset_aqm_ring(ndev, ring);
  309. /* step 4: clear doorbell count of ring */
  310. offset = AQMQ_DRBLX(ring);
  311. drbl.value = 0;
  312. drbl.dbell_count = 0xFFFFFFFF;
  313. nitrox_write_csr(ndev, offset, drbl.value);
  314. /* step 5: configure host ring details */
  315. /* set host address for next command of ring */
  316. offset = AQMQ_NXT_CMDX(ring);
  317. nitrox_write_csr(ndev, offset, 0ULL);
  318. /* set host address of ring base */
  319. offset = AQMQ_BADRX(ring);
  320. nitrox_write_csr(ndev, offset, cmdq->dma);
  321. /* set ring size */
  322. offset = AQMQ_QSZX(ring);
  323. qsize.value = 0;
  324. qsize.host_queue_size = ndev->qlen;
  325. nitrox_write_csr(ndev, offset, qsize.value);
  326. /* set command completion threshold */
  327. offset = AQMQ_CMP_THRX(ring);
  328. cmp_thr.value = 0;
  329. cmp_thr.commands_completed_threshold = 1;
  330. nitrox_write_csr(ndev, offset, cmp_thr.value);
  331. /* step 6: enable the queue */
  332. enable_aqm_ring(ndev, ring);
  333. }
  334. }
  335. static void enable_aqm_interrupts(struct nitrox_device *ndev)
  336. {
  337. /* clear interrupt enable bits */
  338. nitrox_write_csr(ndev, AQM_DBELL_OVF_LO_ENA_W1S, (~0ULL));
  339. nitrox_write_csr(ndev, AQM_DBELL_OVF_HI_ENA_W1S, (~0ULL));
  340. nitrox_write_csr(ndev, AQM_DMA_RD_ERR_LO_ENA_W1S, (~0ULL));
  341. nitrox_write_csr(ndev, AQM_DMA_RD_ERR_HI_ENA_W1S, (~0ULL));
  342. nitrox_write_csr(ndev, AQM_EXEC_NA_LO_ENA_W1S, (~0ULL));
  343. nitrox_write_csr(ndev, AQM_EXEC_NA_HI_ENA_W1S, (~0ULL));
  344. nitrox_write_csr(ndev, AQM_EXEC_ERR_LO_ENA_W1S, (~0ULL));
  345. nitrox_write_csr(ndev, AQM_EXEC_ERR_HI_ENA_W1S, (~0ULL));
  346. }
  347. void nitrox_config_aqm_unit(struct nitrox_device *ndev)
  348. {
  349. /* config aqm command queues */
  350. nitrox_config_aqm_rings(ndev);
  351. /* enable aqm interrupts */
  352. enable_aqm_interrupts(ndev);
  353. }
  354. void nitrox_config_pom_unit(struct nitrox_device *ndev)
  355. {
  356. union pom_int_ena_w1s pom_int;
  357. int i;
  358. /* enable pom interrupts */
  359. pom_int.value = 0;
  360. pom_int.s.illegal_dport = 1;
  361. nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);
  362. /* enable perf counters */
  363. for (i = 0; i < ndev->hw.se_cores; i++)
  364. nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
  365. }
  366. /**
  367. * nitrox_config_rand_unit - enable NITROX random number unit
  368. * @ndev: NITROX device
  369. */
  370. void nitrox_config_rand_unit(struct nitrox_device *ndev)
  371. {
  372. union efl_rnm_ctl_status efl_rnm_ctl;
  373. u64 offset;
  374. offset = EFL_RNM_CTL_STATUS;
  375. efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
  376. efl_rnm_ctl.s.ent_en = 1;
  377. efl_rnm_ctl.s.rng_en = 1;
  378. nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
  379. }
  380. void nitrox_config_efl_unit(struct nitrox_device *ndev)
  381. {
  382. int i;
  383. for (i = 0; i < NR_CLUSTERS; i++) {
  384. union efl_core_int_ena_w1s efl_core_int;
  385. u64 offset;
  386. /* EFL core interrupts */
  387. offset = EFL_CORE_INT_ENA_W1SX(i);
  388. efl_core_int.value = 0;
  389. efl_core_int.s.len_ovr = 1;
  390. efl_core_int.s.d_left = 1;
  391. efl_core_int.s.epci_decode_err = 1;
  392. nitrox_write_csr(ndev, offset, efl_core_int.value);
  393. offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
  394. nitrox_write_csr(ndev, offset, (~0ULL));
  395. offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
  396. nitrox_write_csr(ndev, offset, (~0ULL));
  397. }
  398. }
  399. void nitrox_config_bmi_unit(struct nitrox_device *ndev)
  400. {
  401. union bmi_ctl bmi_ctl;
  402. union bmi_int_ena_w1s bmi_int_ena;
  403. u64 offset;
  404. /* no threshold limits for PCIe */
  405. offset = BMI_CTL;
  406. bmi_ctl.value = nitrox_read_csr(ndev, offset);
  407. bmi_ctl.s.max_pkt_len = 0xff;
  408. bmi_ctl.s.nps_free_thrsh = 0xff;
  409. bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
  410. nitrox_write_csr(ndev, offset, bmi_ctl.value);
  411. /* enable interrupts */
  412. offset = BMI_INT_ENA_W1S;
  413. bmi_int_ena.value = 0;
  414. bmi_int_ena.s.max_len_err_nps = 1;
  415. bmi_int_ena.s.pkt_rcv_err_nps = 1;
  416. bmi_int_ena.s.fpf_undrrn = 1;
  417. nitrox_write_csr(ndev, offset, bmi_int_ena.value);
  418. }
  419. void nitrox_config_bmo_unit(struct nitrox_device *ndev)
  420. {
  421. union bmo_ctl2 bmo_ctl2;
  422. u64 offset;
  423. /* no threshold limits for PCIe */
  424. offset = BMO_CTL2;
  425. bmo_ctl2.value = nitrox_read_csr(ndev, offset);
  426. bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
  427. nitrox_write_csr(ndev, offset, bmo_ctl2.value);
  428. }
  429. void invalidate_lbc(struct nitrox_device *ndev)
  430. {
  431. union lbc_inval_ctl lbc_ctl;
  432. union lbc_inval_status lbc_stat;
  433. int max_retries = MAX_CSR_RETRIES;
  434. u64 offset;
  435. /* invalidate LBC */
  436. offset = LBC_INVAL_CTL;
  437. lbc_ctl.value = nitrox_read_csr(ndev, offset);
  438. lbc_ctl.s.cam_inval_start = 1;
  439. nitrox_write_csr(ndev, offset, lbc_ctl.value);
  440. offset = LBC_INVAL_STATUS;
  441. do {
  442. lbc_stat.value = nitrox_read_csr(ndev, offset);
  443. if (lbc_stat.s.done)
  444. break;
  445. udelay(50);
  446. } while (max_retries--);
  447. }
  448. void nitrox_config_lbc_unit(struct nitrox_device *ndev)
  449. {
  450. union lbc_int_ena_w1s lbc_int_ena;
  451. u64 offset;
  452. invalidate_lbc(ndev);
  453. /* enable interrupts */
  454. offset = LBC_INT_ENA_W1S;
  455. lbc_int_ena.value = 0;
  456. lbc_int_ena.s.dma_rd_err = 1;
  457. lbc_int_ena.s.over_fetch_err = 1;
  458. lbc_int_ena.s.cam_inval_abort = 1;
  459. lbc_int_ena.s.cam_hard_err = 1;
  460. nitrox_write_csr(ndev, offset, lbc_int_ena.value);
  461. offset = LBC_PLM_VF1_64_INT_ENA_W1S;
  462. nitrox_write_csr(ndev, offset, (~0ULL));
  463. offset = LBC_PLM_VF65_128_INT_ENA_W1S;
  464. nitrox_write_csr(ndev, offset, (~0ULL));
  465. offset = LBC_ELM_VF1_64_INT_ENA_W1S;
  466. nitrox_write_csr(ndev, offset, (~0ULL));
  467. offset = LBC_ELM_VF65_128_INT_ENA_W1S;
  468. nitrox_write_csr(ndev, offset, (~0ULL));
  469. }
  470. void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
  471. {
  472. union nps_core_gbl_vfcfg vfcfg;
  473. vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
  474. vfcfg.s.cfg = mode & 0x7;
  475. nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
  476. }
  477. static const char *get_core_option(u8 se_cores, u8 ae_cores)
  478. {
  479. const char *option = "";
  480. if (ae_cores == AE_MAX_CORES) {
  481. switch (se_cores) {
  482. case SE_MAX_CORES:
  483. option = "60";
  484. break;
  485. case 40:
  486. option = "60s";
  487. break;
  488. }
  489. } else if (ae_cores == (AE_MAX_CORES / 2)) {
  490. option = "30";
  491. } else {
  492. option = "60i";
  493. }
  494. return option;
  495. }
  496. static const char *get_feature_option(u8 zip_cores, int core_freq)
  497. {
  498. if (zip_cores == 0)
  499. return "";
  500. else if (zip_cores < ZIP_MAX_CORES)
  501. return "-C15";
  502. if (core_freq >= 850)
  503. return "-C45";
  504. else if (core_freq >= 750)
  505. return "-C35";
  506. else if (core_freq >= 550)
  507. return "-C25";
  508. return "";
  509. }
  510. void nitrox_get_hwinfo(struct nitrox_device *ndev)
  511. {
  512. union emu_fuse_map emu_fuse;
  513. union rst_boot rst_boot;
  514. union fus_dat1 fus_dat1;
  515. unsigned char name[IFNAMSIZ * 2] = {};
  516. int i, dead_cores;
  517. u64 offset;
  518. /* get core frequency */
  519. offset = RST_BOOT;
  520. rst_boot.value = nitrox_read_csr(ndev, offset);
  521. ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;
  522. for (i = 0; i < NR_CLUSTERS; i++) {
  523. offset = EMU_FUSE_MAPX(i);
  524. emu_fuse.value = nitrox_read_csr(ndev, offset);
  525. if (emu_fuse.s.valid) {
  526. dead_cores = hweight32(emu_fuse.s.ae_fuse);
  527. ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
  528. dead_cores = hweight16(emu_fuse.s.se_fuse);
  529. ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
  530. }
  531. }
  532. /* find zip hardware availability */
  533. offset = FUS_DAT1;
  534. fus_dat1.value = nitrox_read_csr(ndev, offset);
  535. if (!fus_dat1.nozip) {
  536. dead_cores = hweight8(fus_dat1.zip_info);
  537. ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
  538. }
  539. /* determine the partname
  540. * CNN55<core option>-<freq><pincount>-<feature option>-<rev>
  541. */
  542. snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u",
  543. get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores),
  544. ndev->hw.freq,
  545. get_feature_option(ndev->hw.zip_cores, ndev->hw.freq),
  546. ndev->hw.revision_id);
  547. /* copy partname */
  548. strncpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
  549. }
  550. void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
  551. {
  552. u64 value = ~0ULL;
  553. u64 reg_addr;
  554. /* Mailbox interrupt low enable set register */
  555. reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S;
  556. nitrox_write_csr(ndev, reg_addr, value);
  557. /* Mailbox interrupt high enable set register */
  558. reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S;
  559. nitrox_write_csr(ndev, reg_addr, value);
  560. }
  561. void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
  562. {
  563. u64 value = ~0ULL;
  564. u64 reg_addr;
  565. /* Mailbox interrupt low enable clear register */
  566. reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C;
  567. nitrox_write_csr(ndev, reg_addr, value);
  568. /* Mailbox interrupt high enable clear register */
  569. reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C;
  570. nitrox_write_csr(ndev, reg_addr, value);
  571. }