cptvf_main.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2016 Cavium, Inc.
  4. */
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include "cptvf.h"
  8. #define DRV_NAME "thunder-cptvf"
  9. #define DRV_VERSION "1.0"
  10. struct cptvf_wqe {
  11. struct tasklet_struct twork;
  12. void *cptvf;
  13. u32 qno;
  14. };
  15. struct cptvf_wqe_info {
  16. struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
  17. };
  18. static void vq_work_handler(unsigned long data)
  19. {
  20. struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
  21. struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
  22. vq_post_process(cwqe->cptvf, cwqe->qno);
  23. }
  24. static int init_worker_threads(struct cpt_vf *cptvf)
  25. {
  26. struct pci_dev *pdev = cptvf->pdev;
  27. struct cptvf_wqe_info *cwqe_info;
  28. int i;
  29. cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
  30. if (!cwqe_info)
  31. return -ENOMEM;
  32. if (cptvf->nr_queues) {
  33. dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
  34. cptvf->nr_queues);
  35. }
  36. for (i = 0; i < cptvf->nr_queues; i++) {
  37. tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
  38. (u64)cwqe_info);
  39. cwqe_info->vq_wqe[i].qno = i;
  40. cwqe_info->vq_wqe[i].cptvf = cptvf;
  41. }
  42. cptvf->wqe_info = cwqe_info;
  43. return 0;
  44. }
  45. static void cleanup_worker_threads(struct cpt_vf *cptvf)
  46. {
  47. struct cptvf_wqe_info *cwqe_info;
  48. struct pci_dev *pdev = cptvf->pdev;
  49. int i;
  50. cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
  51. if (!cwqe_info)
  52. return;
  53. if (cptvf->nr_queues) {
  54. dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
  55. cptvf->nr_queues);
  56. }
  57. for (i = 0; i < cptvf->nr_queues; i++)
  58. tasklet_kill(&cwqe_info->vq_wqe[i].twork);
  59. kfree_sensitive(cwqe_info);
  60. cptvf->wqe_info = NULL;
  61. }
  62. static void free_pending_queues(struct pending_qinfo *pqinfo)
  63. {
  64. int i;
  65. struct pending_queue *queue;
  66. for_each_pending_queue(pqinfo, queue, i) {
  67. if (!queue->head)
  68. continue;
  69. /* free single queue */
  70. kfree_sensitive((queue->head));
  71. queue->front = 0;
  72. queue->rear = 0;
  73. return;
  74. }
  75. pqinfo->qlen = 0;
  76. pqinfo->nr_queues = 0;
  77. }
  78. static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
  79. u32 nr_queues)
  80. {
  81. u32 i;
  82. int ret;
  83. struct pending_queue *queue = NULL;
  84. pqinfo->nr_queues = nr_queues;
  85. pqinfo->qlen = qlen;
  86. for_each_pending_queue(pqinfo, queue, i) {
  87. queue->head = kcalloc(qlen, sizeof(*queue->head), GFP_KERNEL);
  88. if (!queue->head) {
  89. ret = -ENOMEM;
  90. goto pending_qfail;
  91. }
  92. queue->front = 0;
  93. queue->rear = 0;
  94. atomic64_set((&queue->pending_count), (0));
  95. /* init queue spin lock */
  96. spin_lock_init(&queue->lock);
  97. }
  98. return 0;
  99. pending_qfail:
  100. free_pending_queues(pqinfo);
  101. return ret;
  102. }
  103. static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
  104. {
  105. struct pci_dev *pdev = cptvf->pdev;
  106. int ret;
  107. if (!nr_queues)
  108. return 0;
  109. ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
  110. if (ret) {
  111. dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
  112. nr_queues);
  113. return ret;
  114. }
  115. return 0;
  116. }
  117. static void cleanup_pending_queues(struct cpt_vf *cptvf)
  118. {
  119. struct pci_dev *pdev = cptvf->pdev;
  120. if (!cptvf->nr_queues)
  121. return;
  122. dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
  123. cptvf->nr_queues);
  124. free_pending_queues(&cptvf->pqinfo);
  125. }
  126. static void free_command_queues(struct cpt_vf *cptvf,
  127. struct command_qinfo *cqinfo)
  128. {
  129. int i;
  130. struct command_queue *queue = NULL;
  131. struct command_chunk *chunk = NULL;
  132. struct pci_dev *pdev = cptvf->pdev;
  133. struct hlist_node *node;
  134. /* clean up for each queue */
  135. for (i = 0; i < cptvf->nr_queues; i++) {
  136. queue = &cqinfo->queue[i];
  137. if (hlist_empty(&cqinfo->queue[i].chead))
  138. continue;
  139. hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
  140. nextchunk) {
  141. dma_free_coherent(&pdev->dev, chunk->size,
  142. chunk->head,
  143. chunk->dma_addr);
  144. chunk->head = NULL;
  145. chunk->dma_addr = 0;
  146. hlist_del(&chunk->nextchunk);
  147. kfree_sensitive(chunk);
  148. }
  149. queue->nchunks = 0;
  150. queue->idx = 0;
  151. }
  152. /* common cleanup */
  153. cqinfo->cmd_size = 0;
  154. }
  155. static int alloc_command_queues(struct cpt_vf *cptvf,
  156. struct command_qinfo *cqinfo, size_t cmd_size,
  157. u32 qlen)
  158. {
  159. int i;
  160. size_t q_size;
  161. struct command_queue *queue = NULL;
  162. struct pci_dev *pdev = cptvf->pdev;
  163. /* common init */
  164. cqinfo->cmd_size = cmd_size;
  165. /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */
  166. cptvf->qsize = min(qlen, cqinfo->qchunksize) *
  167. CPT_NEXT_CHUNK_PTR_SIZE + 1;
  168. /* Qsize in bytes to create space for alignment */
  169. q_size = qlen * cqinfo->cmd_size;
  170. /* per queue initialization */
  171. for (i = 0; i < cptvf->nr_queues; i++) {
  172. size_t c_size = 0;
  173. size_t rem_q_size = q_size;
  174. struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
  175. u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
  176. queue = &cqinfo->queue[i];
  177. INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
  178. do {
  179. curr = kzalloc(sizeof(*curr), GFP_KERNEL);
  180. if (!curr)
  181. goto cmd_qfail;
  182. c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
  183. rem_q_size;
  184. curr->head = dma_alloc_coherent(&pdev->dev,
  185. c_size + CPT_NEXT_CHUNK_PTR_SIZE,
  186. &curr->dma_addr,
  187. GFP_KERNEL);
  188. if (!curr->head) {
  189. dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
  190. i, queue->nchunks);
  191. kfree(curr);
  192. goto cmd_qfail;
  193. }
  194. curr->size = c_size;
  195. if (queue->nchunks == 0) {
  196. hlist_add_head(&curr->nextchunk,
  197. &cqinfo->queue[i].chead);
  198. first = curr;
  199. } else {
  200. hlist_add_behind(&curr->nextchunk,
  201. &last->nextchunk);
  202. }
  203. queue->nchunks++;
  204. rem_q_size -= c_size;
  205. if (last)
  206. *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
  207. last = curr;
  208. } while (rem_q_size);
  209. /* Make the queue circular */
  210. /* Tie back last chunk entry to head */
  211. curr = first;
  212. *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
  213. queue->qhead = curr;
  214. spin_lock_init(&queue->lock);
  215. }
  216. return 0;
  217. cmd_qfail:
  218. free_command_queues(cptvf, cqinfo);
  219. return -ENOMEM;
  220. }
  221. static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
  222. {
  223. struct pci_dev *pdev = cptvf->pdev;
  224. int ret;
  225. /* setup AE command queues */
  226. ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
  227. qlen);
  228. if (ret) {
  229. dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
  230. cptvf->nr_queues);
  231. return ret;
  232. }
  233. return ret;
  234. }
  235. static void cleanup_command_queues(struct cpt_vf *cptvf)
  236. {
  237. struct pci_dev *pdev = cptvf->pdev;
  238. if (!cptvf->nr_queues)
  239. return;
  240. dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
  241. cptvf->nr_queues);
  242. free_command_queues(cptvf, &cptvf->cqinfo);
  243. }
  244. static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
  245. {
  246. cleanup_worker_threads(cptvf);
  247. cleanup_pending_queues(cptvf);
  248. cleanup_command_queues(cptvf);
  249. }
  250. static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
  251. {
  252. struct pci_dev *pdev = cptvf->pdev;
  253. int ret = 0;
  254. u32 max_dev_queues = 0;
  255. max_dev_queues = CPT_NUM_QS_PER_VF;
  256. /* possible cpus */
  257. nr_queues = min_t(u32, nr_queues, max_dev_queues);
  258. cptvf->nr_queues = nr_queues;
  259. ret = init_command_queues(cptvf, qlen);
  260. if (ret) {
  261. dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
  262. nr_queues);
  263. return ret;
  264. }
  265. ret = init_pending_queues(cptvf, qlen, nr_queues);
  266. if (ret) {
  267. dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
  268. nr_queues);
  269. goto setup_pqfail;
  270. }
  271. /* Create worker threads for BH processing */
  272. ret = init_worker_threads(cptvf);
  273. if (ret) {
  274. dev_err(&pdev->dev, "Failed to setup worker threads\n");
  275. goto init_work_fail;
  276. }
  277. return 0;
  278. init_work_fail:
  279. cleanup_worker_threads(cptvf);
  280. cleanup_pending_queues(cptvf);
  281. setup_pqfail:
  282. cleanup_command_queues(cptvf);
  283. return ret;
  284. }
  285. static void cptvf_free_irq_affinity(struct cpt_vf *cptvf, int vec)
  286. {
  287. irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL);
  288. free_cpumask_var(cptvf->affinity_mask[vec]);
  289. }
  290. static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
  291. {
  292. union cptx_vqx_ctl vqx_ctl;
  293. vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
  294. vqx_ctl.s.ena = val;
  295. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
  296. }
  297. void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
  298. {
  299. union cptx_vqx_doorbell vqx_dbell;
  300. vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
  301. CPTX_VQX_DOORBELL(0, 0));
  302. vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
  303. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
  304. vqx_dbell.u);
  305. }
  306. static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
  307. {
  308. union cptx_vqx_inprog vqx_inprg;
  309. vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
  310. vqx_inprg.s.inflight = val;
  311. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
  312. }
  313. static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
  314. {
  315. union cptx_vqx_done_wait vqx_dwait;
  316. vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
  317. CPTX_VQX_DONE_WAIT(0, 0));
  318. vqx_dwait.s.num_wait = val;
  319. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
  320. vqx_dwait.u);
  321. }
  322. static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
  323. {
  324. union cptx_vqx_done_wait vqx_dwait;
  325. vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
  326. CPTX_VQX_DONE_WAIT(0, 0));
  327. vqx_dwait.s.time_wait = time;
  328. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
  329. vqx_dwait.u);
  330. }
  331. static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
  332. {
  333. union cptx_vqx_misc_ena_w1s vqx_misc_ena;
  334. vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
  335. CPTX_VQX_MISC_ENA_W1S(0, 0));
  336. /* Set mbox(0) interupts for the requested vf */
  337. vqx_misc_ena.s.swerr = 1;
  338. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
  339. vqx_misc_ena.u);
  340. }
  341. static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
  342. {
  343. union cptx_vqx_misc_ena_w1s vqx_misc_ena;
  344. vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
  345. CPTX_VQX_MISC_ENA_W1S(0, 0));
  346. /* Set mbox(0) interupts for the requested vf */
  347. vqx_misc_ena.s.mbox = 1;
  348. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
  349. vqx_misc_ena.u);
  350. }
  351. static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
  352. {
  353. union cptx_vqx_done_ena_w1s vqx_done_ena;
  354. vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
  355. CPTX_VQX_DONE_ENA_W1S(0, 0));
  356. /* Set DONE interrupt for the requested vf */
  357. vqx_done_ena.s.done = 1;
  358. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
  359. vqx_done_ena.u);
  360. }
  361. static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
  362. {
  363. union cptx_vqx_misc_int vqx_misc_int;
  364. vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
  365. CPTX_VQX_MISC_INT(0, 0));
  366. /* W1C for the VF */
  367. vqx_misc_int.s.dovf = 1;
  368. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
  369. vqx_misc_int.u);
  370. }
  371. static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
  372. {
  373. union cptx_vqx_misc_int vqx_misc_int;
  374. vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
  375. CPTX_VQX_MISC_INT(0, 0));
  376. /* W1C for the VF */
  377. vqx_misc_int.s.irde = 1;
  378. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
  379. vqx_misc_int.u);
  380. }
  381. static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
  382. {
  383. union cptx_vqx_misc_int vqx_misc_int;
  384. vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
  385. CPTX_VQX_MISC_INT(0, 0));
  386. /* W1C for the VF */
  387. vqx_misc_int.s.nwrp = 1;
  388. cpt_write_csr64(cptvf->reg_base,
  389. CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
  390. }
  391. static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
  392. {
  393. union cptx_vqx_misc_int vqx_misc_int;
  394. vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
  395. CPTX_VQX_MISC_INT(0, 0));
  396. /* W1C for the VF */
  397. vqx_misc_int.s.mbox = 1;
  398. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
  399. vqx_misc_int.u);
  400. }
  401. static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
  402. {
  403. union cptx_vqx_misc_int vqx_misc_int;
  404. vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
  405. CPTX_VQX_MISC_INT(0, 0));
  406. /* W1C for the VF */
  407. vqx_misc_int.s.swerr = 1;
  408. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
  409. vqx_misc_int.u);
  410. }
  411. static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
  412. {
  413. return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
  414. }
  415. static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
  416. {
  417. struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
  418. struct pci_dev *pdev = cptvf->pdev;
  419. u64 intr;
  420. intr = cptvf_read_vf_misc_intr_status(cptvf);
  421. /*Check for MISC interrupt types*/
  422. if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
  423. dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
  424. intr, cptvf->vfid);
  425. cptvf_handle_mbox_intr(cptvf);
  426. cptvf_clear_mbox_intr(cptvf);
  427. } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
  428. cptvf_clear_dovf_intr(cptvf);
  429. /*Clear doorbell count*/
  430. cptvf_write_vq_doorbell(cptvf, 0);
  431. dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
  432. intr, cptvf->vfid);
  433. } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
  434. cptvf_clear_irde_intr(cptvf);
  435. dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
  436. intr, cptvf->vfid);
  437. } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
  438. cptvf_clear_nwrp_intr(cptvf);
  439. dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
  440. intr, cptvf->vfid);
  441. } else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
  442. cptvf_clear_swerr_intr(cptvf);
  443. dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
  444. intr, cptvf->vfid);
  445. } else {
  446. dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
  447. cptvf->vfid);
  448. }
  449. return IRQ_HANDLED;
  450. }
  451. static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
  452. int qno)
  453. {
  454. struct cptvf_wqe_info *nwqe_info;
  455. if (unlikely(qno >= cptvf->nr_queues))
  456. return NULL;
  457. nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
  458. return &nwqe_info->vq_wqe[qno];
  459. }
  460. static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
  461. {
  462. union cptx_vqx_done vqx_done;
  463. vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
  464. return vqx_done.s.done;
  465. }
  466. static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
  467. u32 ackcnt)
  468. {
  469. union cptx_vqx_done_ack vqx_dack_cnt;
  470. vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
  471. CPTX_VQX_DONE_ACK(0, 0));
  472. vqx_dack_cnt.s.done_ack = ackcnt;
  473. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
  474. vqx_dack_cnt.u);
  475. }
  476. static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
  477. {
  478. struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
  479. struct pci_dev *pdev = cptvf->pdev;
  480. /* Read the number of completions */
  481. u32 intr = cptvf_read_vq_done_count(cptvf);
  482. if (intr) {
  483. struct cptvf_wqe *wqe;
  484. /* Acknowledge the number of
  485. * scheduled completions for processing
  486. */
  487. cptvf_write_vq_done_ack(cptvf, intr);
  488. wqe = get_cptvf_vq_wqe(cptvf, 0);
  489. if (unlikely(!wqe)) {
  490. dev_err(&pdev->dev, "No work to schedule for VF (%d)",
  491. cptvf->vfid);
  492. return IRQ_NONE;
  493. }
  494. tasklet_hi_schedule(&wqe->twork);
  495. }
  496. return IRQ_HANDLED;
  497. }
  498. static void cptvf_set_irq_affinity(struct cpt_vf *cptvf, int vec)
  499. {
  500. struct pci_dev *pdev = cptvf->pdev;
  501. int cpu;
  502. if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
  503. GFP_KERNEL)) {
  504. dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
  505. cptvf->vfid);
  506. return;
  507. }
  508. cpu = cptvf->vfid % num_online_cpus();
  509. cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
  510. cptvf->affinity_mask[vec]);
  511. irq_set_affinity_hint(pci_irq_vector(pdev, vec),
  512. cptvf->affinity_mask[vec]);
  513. }
  514. static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
  515. {
  516. union cptx_vqx_saddr vqx_saddr;
  517. vqx_saddr.u = val;
  518. cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
  519. }
  520. static void cptvf_device_init(struct cpt_vf *cptvf)
  521. {
  522. u64 base_addr = 0;
  523. /* Disable the VQ */
  524. cptvf_write_vq_ctl(cptvf, 0);
  525. /* Reset the doorbell */
  526. cptvf_write_vq_doorbell(cptvf, 0);
  527. /* Clear inflight */
  528. cptvf_write_vq_inprog(cptvf, 0);
  529. /* Write VQ SADDR */
  530. /* TODO: for now only one queue, so hard coded */
  531. base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
  532. cptvf_write_vq_saddr(cptvf, base_addr);
  533. /* Configure timerhold / coalescence */
  534. cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
  535. cptvf_write_vq_done_numwait(cptvf, 1);
  536. /* Enable the VQ */
  537. cptvf_write_vq_ctl(cptvf, 1);
  538. /* Flag the VF ready */
  539. cptvf->flags |= CPT_FLAG_DEVICE_READY;
  540. }
  541. static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  542. {
  543. struct device *dev = &pdev->dev;
  544. struct cpt_vf *cptvf;
  545. int err;
  546. cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
  547. if (!cptvf)
  548. return -ENOMEM;
  549. pci_set_drvdata(pdev, cptvf);
  550. cptvf->pdev = pdev;
  551. err = pci_enable_device(pdev);
  552. if (err) {
  553. dev_err(dev, "Failed to enable PCI device\n");
  554. pci_set_drvdata(pdev, NULL);
  555. return err;
  556. }
  557. err = pci_request_regions(pdev, DRV_NAME);
  558. if (err) {
  559. dev_err(dev, "PCI request regions failed 0x%x\n", err);
  560. goto cptvf_err_disable_device;
  561. }
  562. /* Mark as VF driver */
  563. cptvf->flags |= CPT_FLAG_VF_DRIVER;
  564. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
  565. if (err) {
  566. dev_err(dev, "Unable to get usable 48-bit DMA configuration\n");
  567. goto cptvf_err_release_regions;
  568. }
  569. /* MAP PF's configuration registers */
  570. cptvf->reg_base = pcim_iomap(pdev, 0, 0);
  571. if (!cptvf->reg_base) {
  572. dev_err(dev, "Cannot map config register space, aborting\n");
  573. err = -ENOMEM;
  574. goto cptvf_err_release_regions;
  575. }
  576. cptvf->node = dev_to_node(&pdev->dev);
  577. err = pci_alloc_irq_vectors(pdev, CPT_VF_MSIX_VECTORS,
  578. CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX);
  579. if (err < 0) {
  580. dev_err(dev, "Request for #%d msix vectors failed\n",
  581. CPT_VF_MSIX_VECTORS);
  582. goto cptvf_err_release_regions;
  583. }
  584. err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC),
  585. cptvf_misc_intr_handler, 0, "CPT VF misc intr",
  586. cptvf);
  587. if (err) {
  588. dev_err(dev, "Request misc irq failed");
  589. goto cptvf_free_vectors;
  590. }
  591. /* Enable mailbox interrupt */
  592. cptvf_enable_mbox_interrupts(cptvf);
  593. cptvf_enable_swerr_interrupts(cptvf);
  594. /* Check ready with PF */
  595. /* Gets chip ID / device Id from PF if ready */
  596. err = cptvf_check_pf_ready(cptvf);
  597. if (err) {
  598. dev_err(dev, "PF not responding to READY msg");
  599. goto cptvf_free_misc_irq;
  600. }
  601. /* CPT VF software resources initialization */
  602. cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
  603. err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
  604. if (err) {
  605. dev_err(dev, "cptvf_sw_init() failed");
  606. goto cptvf_free_misc_irq;
  607. }
  608. /* Convey VQ LEN to PF */
  609. err = cptvf_send_vq_size_msg(cptvf);
  610. if (err) {
  611. dev_err(dev, "PF not responding to QLEN msg");
  612. goto cptvf_free_misc_irq;
  613. }
  614. /* CPT VF device initialization */
  615. cptvf_device_init(cptvf);
  616. /* Send msg to PF to assign currnet Q to required group */
  617. cptvf->vfgrp = 1;
  618. err = cptvf_send_vf_to_grp_msg(cptvf);
  619. if (err) {
  620. dev_err(dev, "PF not responding to VF_GRP msg");
  621. goto cptvf_free_misc_irq;
  622. }
  623. cptvf->priority = 1;
  624. err = cptvf_send_vf_priority_msg(cptvf);
  625. if (err) {
  626. dev_err(dev, "PF not responding to VF_PRIO msg");
  627. goto cptvf_free_misc_irq;
  628. }
  629. err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE),
  630. cptvf_done_intr_handler, 0, "CPT VF done intr",
  631. cptvf);
  632. if (err) {
  633. dev_err(dev, "Request done irq failed\n");
  634. goto cptvf_free_misc_irq;
  635. }
  636. /* Enable mailbox interrupt */
  637. cptvf_enable_done_interrupts(cptvf);
  638. /* Set irq affinity masks */
  639. cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
  640. cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
  641. err = cptvf_send_vf_up(cptvf);
  642. if (err) {
  643. dev_err(dev, "PF not responding to UP msg");
  644. goto cptvf_free_irq_affinity;
  645. }
  646. err = cvm_crypto_init(cptvf);
  647. if (err) {
  648. dev_err(dev, "Algorithm register failed\n");
  649. goto cptvf_free_irq_affinity;
  650. }
  651. return 0;
  652. cptvf_free_irq_affinity:
  653. cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
  654. cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
  655. cptvf_free_misc_irq:
  656. free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
  657. cptvf_free_vectors:
  658. pci_free_irq_vectors(cptvf->pdev);
  659. cptvf_err_release_regions:
  660. pci_release_regions(pdev);
  661. cptvf_err_disable_device:
  662. pci_disable_device(pdev);
  663. pci_set_drvdata(pdev, NULL);
  664. return err;
  665. }
  666. static void cptvf_remove(struct pci_dev *pdev)
  667. {
  668. struct cpt_vf *cptvf = pci_get_drvdata(pdev);
  669. if (!cptvf) {
  670. dev_err(&pdev->dev, "Invalid CPT-VF device\n");
  671. return;
  672. }
  673. /* Convey DOWN to PF */
  674. if (cptvf_send_vf_down(cptvf)) {
  675. dev_err(&pdev->dev, "PF not responding to DOWN msg");
  676. } else {
  677. cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
  678. cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
  679. free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf);
  680. free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
  681. pci_free_irq_vectors(cptvf->pdev);
  682. cptvf_sw_cleanup(cptvf);
  683. pci_set_drvdata(pdev, NULL);
  684. pci_release_regions(pdev);
  685. pci_disable_device(pdev);
  686. cvm_crypto_exit();
  687. }
  688. }
  689. static void cptvf_shutdown(struct pci_dev *pdev)
  690. {
  691. cptvf_remove(pdev);
  692. }
  693. /* Supported devices */
  694. static const struct pci_device_id cptvf_id_table[] = {
  695. {PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
  696. { 0, } /* end of table */
  697. };
  698. static struct pci_driver cptvf_pci_driver = {
  699. .name = DRV_NAME,
  700. .id_table = cptvf_id_table,
  701. .probe = cptvf_probe,
  702. .remove = cptvf_remove,
  703. .shutdown = cptvf_shutdown,
  704. };
  705. module_pci_driver(cptvf_pci_driver);
  706. MODULE_AUTHOR("George Cherian <[email protected]>");
  707. MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
  708. MODULE_LICENSE("GPL v2");
  709. MODULE_VERSION(DRV_VERSION);
  710. MODULE_DEVICE_TABLE(pci, cptvf_id_table);