caamalg_qi2.c 149 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522
  1. // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
  2. /*
  3. * Copyright 2015-2016 Freescale Semiconductor Inc.
  4. * Copyright 2017-2019 NXP
  5. */
  6. #include "compat.h"
  7. #include "regs.h"
  8. #include "caamalg_qi2.h"
  9. #include "dpseci_cmd.h"
  10. #include "desc_constr.h"
  11. #include "error.h"
  12. #include "sg_sw_sec4.h"
  13. #include "sg_sw_qm2.h"
  14. #include "key_gen.h"
  15. #include "caamalg_desc.h"
  16. #include "caamhash_desc.h"
  17. #include "dpseci-debugfs.h"
  18. #include <linux/fsl/mc.h>
  19. #include <soc/fsl/dpaa2-io.h>
  20. #include <soc/fsl/dpaa2-fd.h>
  21. #include <crypto/xts.h>
  22. #include <asm/unaligned.h>
  23. #define CAAM_CRA_PRIORITY 2000
  24. /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
  25. #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE + \
  26. SHA512_DIGEST_SIZE * 2)
  27. /*
  28. * This is a cache of buffers, from which the users of CAAM QI driver
  29. * can allocate short buffers. It's speedier than doing kmalloc on the hotpath.
  30. * NOTE: A more elegant solution would be to have some headroom in the frames
  31. * being processed. This can be added by the dpaa2-eth driver. This would
  32. * pose a problem for userspace application processing which cannot
  33. * know of this limitation. So for now, this will work.
  34. * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
  35. */
  36. static struct kmem_cache *qi_cache;
  37. struct caam_alg_entry {
  38. struct device *dev;
  39. int class1_alg_type;
  40. int class2_alg_type;
  41. bool rfc3686;
  42. bool geniv;
  43. bool nodkp;
  44. };
  45. struct caam_aead_alg {
  46. struct aead_alg aead;
  47. struct caam_alg_entry caam;
  48. bool registered;
  49. };
  50. struct caam_skcipher_alg {
  51. struct skcipher_alg skcipher;
  52. struct caam_alg_entry caam;
  53. bool registered;
  54. };
  55. /**
  56. * struct caam_ctx - per-session context
  57. * @flc: Flow Contexts array
  58. * @key: [authentication key], encryption key
  59. * @flc_dma: I/O virtual addresses of the Flow Contexts
  60. * @key_dma: I/O virtual address of the key
  61. * @dir: DMA direction for mapping key and Flow Contexts
  62. * @dev: dpseci device
  63. * @adata: authentication algorithm details
  64. * @cdata: encryption algorithm details
  65. * @authsize: authentication tag (a.k.a. ICV / MAC) size
  66. * @xts_key_fallback: true if fallback tfm needs to be used due
  67. * to unsupported xts key lengths
  68. * @fallback: xts fallback tfm
  69. */
  70. struct caam_ctx {
  71. struct caam_flc flc[NUM_OP];
  72. u8 key[CAAM_MAX_KEY_SIZE];
  73. dma_addr_t flc_dma[NUM_OP];
  74. dma_addr_t key_dma;
  75. enum dma_data_direction dir;
  76. struct device *dev;
  77. struct alginfo adata;
  78. struct alginfo cdata;
  79. unsigned int authsize;
  80. bool xts_key_fallback;
  81. struct crypto_skcipher *fallback;
  82. };
  83. static void *dpaa2_caam_iova_to_virt(struct dpaa2_caam_priv *priv,
  84. dma_addr_t iova_addr)
  85. {
  86. phys_addr_t phys_addr;
  87. phys_addr = priv->domain ? iommu_iova_to_phys(priv->domain, iova_addr) :
  88. iova_addr;
  89. return phys_to_virt(phys_addr);
  90. }
  91. /*
  92. * qi_cache_zalloc - Allocate buffers from CAAM-QI cache
  93. *
  94. * Allocate data on the hotpath. Instead of using kzalloc, one can use the
  95. * services of the CAAM QI memory cache (backed by kmem_cache). The buffers
  96. * will have a size of CAAM_QI_MEMCACHE_SIZE, which should be sufficient for
  97. * hosting 16 SG entries.
  98. *
  99. * @flags - flags that would be used for the equivalent kmalloc(..) call
  100. *
  101. * Returns a pointer to a retrieved buffer on success or NULL on failure.
  102. */
  103. static inline void *qi_cache_zalloc(gfp_t flags)
  104. {
  105. return kmem_cache_zalloc(qi_cache, flags);
  106. }
  107. /*
  108. * qi_cache_free - Frees buffers allocated from CAAM-QI cache
  109. *
  110. * @obj - buffer previously allocated by qi_cache_zalloc
  111. *
  112. * No checking is being done, the call is a passthrough call to
  113. * kmem_cache_free(...)
  114. */
  115. static inline void qi_cache_free(void *obj)
  116. {
  117. kmem_cache_free(qi_cache, obj);
  118. }
  119. static struct caam_request *to_caam_req(struct crypto_async_request *areq)
  120. {
  121. switch (crypto_tfm_alg_type(areq->tfm)) {
  122. case CRYPTO_ALG_TYPE_SKCIPHER:
  123. return skcipher_request_ctx(skcipher_request_cast(areq));
  124. case CRYPTO_ALG_TYPE_AEAD:
  125. return aead_request_ctx(container_of(areq, struct aead_request,
  126. base));
  127. case CRYPTO_ALG_TYPE_AHASH:
  128. return ahash_request_ctx(ahash_request_cast(areq));
  129. default:
  130. return ERR_PTR(-EINVAL);
  131. }
  132. }
  133. static void caam_unmap(struct device *dev, struct scatterlist *src,
  134. struct scatterlist *dst, int src_nents,
  135. int dst_nents, dma_addr_t iv_dma, int ivsize,
  136. enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma,
  137. int qm_sg_bytes)
  138. {
  139. if (dst != src) {
  140. if (src_nents)
  141. dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
  142. if (dst_nents)
  143. dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
  144. } else {
  145. dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
  146. }
  147. if (iv_dma)
  148. dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
  149. if (qm_sg_bytes)
  150. dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
  151. }
  152. static int aead_set_sh_desc(struct crypto_aead *aead)
  153. {
  154. struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
  155. typeof(*alg), aead);
  156. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  157. unsigned int ivsize = crypto_aead_ivsize(aead);
  158. struct device *dev = ctx->dev;
  159. struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
  160. struct caam_flc *flc;
  161. u32 *desc;
  162. u32 ctx1_iv_off = 0;
  163. u32 *nonce = NULL;
  164. unsigned int data_len[2];
  165. u32 inl_mask;
  166. const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
  167. OP_ALG_AAI_CTR_MOD128);
  168. const bool is_rfc3686 = alg->caam.rfc3686;
  169. if (!ctx->cdata.keylen || !ctx->authsize)
  170. return 0;
  171. /*
  172. * AES-CTR needs to load IV in CONTEXT1 reg
  173. * at an offset of 128bits (16bytes)
  174. * CONTEXT1[255:128] = IV
  175. */
  176. if (ctr_mode)
  177. ctx1_iv_off = 16;
  178. /*
  179. * RFC3686 specific:
  180. * CONTEXT1[255:128] = {NONCE, IV, COUNTER}
  181. */
  182. if (is_rfc3686) {
  183. ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
  184. nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
  185. ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
  186. }
  187. /*
  188. * In case |user key| > |derived key|, using DKP<imm,imm> would result
  189. * in invalid opcodes (last bytes of user key) in the resulting
  190. * descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
  191. * addresses are needed.
  192. */
  193. ctx->adata.key_virt = ctx->key;
  194. ctx->adata.key_dma = ctx->key_dma;
  195. ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
  196. ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
  197. data_len[0] = ctx->adata.keylen_pad;
  198. data_len[1] = ctx->cdata.keylen;
  199. /* aead_encrypt shared descriptor */
  200. if (desc_inline_query((alg->caam.geniv ? DESC_QI_AEAD_GIVENC_LEN :
  201. DESC_QI_AEAD_ENC_LEN) +
  202. (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
  203. DESC_JOB_IO_LEN, data_len, &inl_mask,
  204. ARRAY_SIZE(data_len)) < 0)
  205. return -EINVAL;
  206. ctx->adata.key_inline = !!(inl_mask & 1);
  207. ctx->cdata.key_inline = !!(inl_mask & 2);
  208. flc = &ctx->flc[ENCRYPT];
  209. desc = flc->sh_desc;
  210. if (alg->caam.geniv)
  211. cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata,
  212. ivsize, ctx->authsize, is_rfc3686,
  213. nonce, ctx1_iv_off, true,
  214. priv->sec_attr.era);
  215. else
  216. cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata,
  217. ivsize, ctx->authsize, is_rfc3686, nonce,
  218. ctx1_iv_off, true, priv->sec_attr.era);
  219. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  220. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  221. sizeof(flc->flc) + desc_bytes(desc),
  222. ctx->dir);
  223. /* aead_decrypt shared descriptor */
  224. if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
  225. (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
  226. DESC_JOB_IO_LEN, data_len, &inl_mask,
  227. ARRAY_SIZE(data_len)) < 0)
  228. return -EINVAL;
  229. ctx->adata.key_inline = !!(inl_mask & 1);
  230. ctx->cdata.key_inline = !!(inl_mask & 2);
  231. flc = &ctx->flc[DECRYPT];
  232. desc = flc->sh_desc;
  233. cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata,
  234. ivsize, ctx->authsize, alg->caam.geniv,
  235. is_rfc3686, nonce, ctx1_iv_off, true,
  236. priv->sec_attr.era);
  237. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  238. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  239. sizeof(flc->flc) + desc_bytes(desc),
  240. ctx->dir);
  241. return 0;
  242. }
  243. static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
  244. {
  245. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  246. ctx->authsize = authsize;
  247. aead_set_sh_desc(authenc);
  248. return 0;
  249. }
  250. static int aead_setkey(struct crypto_aead *aead, const u8 *key,
  251. unsigned int keylen)
  252. {
  253. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  254. struct device *dev = ctx->dev;
  255. struct crypto_authenc_keys keys;
  256. if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
  257. goto badkey;
  258. dev_dbg(dev, "keylen %d enckeylen %d authkeylen %d\n",
  259. keys.authkeylen + keys.enckeylen, keys.enckeylen,
  260. keys.authkeylen);
  261. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  262. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  263. ctx->adata.keylen = keys.authkeylen;
  264. ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
  265. OP_ALG_ALGSEL_MASK);
  266. if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
  267. goto badkey;
  268. memcpy(ctx->key, keys.authkey, keys.authkeylen);
  269. memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
  270. dma_sync_single_for_device(dev, ctx->key_dma, ctx->adata.keylen_pad +
  271. keys.enckeylen, ctx->dir);
  272. print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ",
  273. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  274. ctx->adata.keylen_pad + keys.enckeylen, 1);
  275. ctx->cdata.keylen = keys.enckeylen;
  276. memzero_explicit(&keys, sizeof(keys));
  277. return aead_set_sh_desc(aead);
  278. badkey:
  279. memzero_explicit(&keys, sizeof(keys));
  280. return -EINVAL;
  281. }
  282. static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
  283. unsigned int keylen)
  284. {
  285. struct crypto_authenc_keys keys;
  286. int err;
  287. err = crypto_authenc_extractkeys(&keys, key, keylen);
  288. if (unlikely(err))
  289. goto out;
  290. err = -EINVAL;
  291. if (keys.enckeylen != DES3_EDE_KEY_SIZE)
  292. goto out;
  293. err = crypto_des3_ede_verify_key(crypto_aead_tfm(aead), keys.enckey) ?:
  294. aead_setkey(aead, key, keylen);
  295. out:
  296. memzero_explicit(&keys, sizeof(keys));
  297. return err;
  298. }
  299. static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
  300. bool encrypt)
  301. {
  302. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  303. struct caam_request *req_ctx = aead_request_ctx(req);
  304. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  305. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  306. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  307. struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
  308. typeof(*alg), aead);
  309. struct device *dev = ctx->dev;
  310. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  311. GFP_KERNEL : GFP_ATOMIC;
  312. int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
  313. int src_len, dst_len = 0;
  314. struct aead_edesc *edesc;
  315. dma_addr_t qm_sg_dma, iv_dma = 0;
  316. int ivsize = 0;
  317. unsigned int authsize = ctx->authsize;
  318. int qm_sg_index = 0, qm_sg_nents = 0, qm_sg_bytes;
  319. int in_len, out_len;
  320. struct dpaa2_sg_entry *sg_table;
  321. /* allocate space for base edesc, link tables and IV */
  322. edesc = qi_cache_zalloc(GFP_DMA | flags);
  323. if (unlikely(!edesc)) {
  324. dev_err(dev, "could not allocate extended descriptor\n");
  325. return ERR_PTR(-ENOMEM);
  326. }
  327. if (unlikely(req->dst != req->src)) {
  328. src_len = req->assoclen + req->cryptlen;
  329. dst_len = src_len + (encrypt ? authsize : (-authsize));
  330. src_nents = sg_nents_for_len(req->src, src_len);
  331. if (unlikely(src_nents < 0)) {
  332. dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
  333. src_len);
  334. qi_cache_free(edesc);
  335. return ERR_PTR(src_nents);
  336. }
  337. dst_nents = sg_nents_for_len(req->dst, dst_len);
  338. if (unlikely(dst_nents < 0)) {
  339. dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
  340. dst_len);
  341. qi_cache_free(edesc);
  342. return ERR_PTR(dst_nents);
  343. }
  344. if (src_nents) {
  345. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  346. DMA_TO_DEVICE);
  347. if (unlikely(!mapped_src_nents)) {
  348. dev_err(dev, "unable to map source\n");
  349. qi_cache_free(edesc);
  350. return ERR_PTR(-ENOMEM);
  351. }
  352. } else {
  353. mapped_src_nents = 0;
  354. }
  355. if (dst_nents) {
  356. mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
  357. DMA_FROM_DEVICE);
  358. if (unlikely(!mapped_dst_nents)) {
  359. dev_err(dev, "unable to map destination\n");
  360. dma_unmap_sg(dev, req->src, src_nents,
  361. DMA_TO_DEVICE);
  362. qi_cache_free(edesc);
  363. return ERR_PTR(-ENOMEM);
  364. }
  365. } else {
  366. mapped_dst_nents = 0;
  367. }
  368. } else {
  369. src_len = req->assoclen + req->cryptlen +
  370. (encrypt ? authsize : 0);
  371. src_nents = sg_nents_for_len(req->src, src_len);
  372. if (unlikely(src_nents < 0)) {
  373. dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
  374. src_len);
  375. qi_cache_free(edesc);
  376. return ERR_PTR(src_nents);
  377. }
  378. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  379. DMA_BIDIRECTIONAL);
  380. if (unlikely(!mapped_src_nents)) {
  381. dev_err(dev, "unable to map source\n");
  382. qi_cache_free(edesc);
  383. return ERR_PTR(-ENOMEM);
  384. }
  385. }
  386. if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
  387. ivsize = crypto_aead_ivsize(aead);
  388. /*
  389. * Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
  390. * Input is not contiguous.
  391. * HW reads 4 S/G entries at a time; make sure the reads don't go beyond
  392. * the end of the table by allocating more S/G entries. Logic:
  393. * if (src != dst && output S/G)
  394. * pad output S/G, if needed
  395. * else if (src == dst && S/G)
  396. * overlapping S/Gs; pad one of them
  397. * else if (input S/G) ...
  398. * pad input S/G, if needed
  399. */
  400. qm_sg_nents = 1 + !!ivsize + mapped_src_nents;
  401. if (mapped_dst_nents > 1)
  402. qm_sg_nents += pad_sg_nents(mapped_dst_nents);
  403. else if ((req->src == req->dst) && (mapped_src_nents > 1))
  404. qm_sg_nents = max(pad_sg_nents(qm_sg_nents),
  405. 1 + !!ivsize +
  406. pad_sg_nents(mapped_src_nents));
  407. else
  408. qm_sg_nents = pad_sg_nents(qm_sg_nents);
  409. sg_table = &edesc->sgt[0];
  410. qm_sg_bytes = qm_sg_nents * sizeof(*sg_table);
  411. if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
  412. CAAM_QI_MEMCACHE_SIZE)) {
  413. dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
  414. qm_sg_nents, ivsize);
  415. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  416. 0, DMA_NONE, 0, 0);
  417. qi_cache_free(edesc);
  418. return ERR_PTR(-ENOMEM);
  419. }
  420. if (ivsize) {
  421. u8 *iv = (u8 *)(sg_table + qm_sg_nents);
  422. /* Make sure IV is located in a DMAable area */
  423. memcpy(iv, req->iv, ivsize);
  424. iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
  425. if (dma_mapping_error(dev, iv_dma)) {
  426. dev_err(dev, "unable to map IV\n");
  427. caam_unmap(dev, req->src, req->dst, src_nents,
  428. dst_nents, 0, 0, DMA_NONE, 0, 0);
  429. qi_cache_free(edesc);
  430. return ERR_PTR(-ENOMEM);
  431. }
  432. }
  433. edesc->src_nents = src_nents;
  434. edesc->dst_nents = dst_nents;
  435. edesc->iv_dma = iv_dma;
  436. if ((alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK) ==
  437. OP_ALG_ALGSEL_CHACHA20 && ivsize != CHACHAPOLY_IV_SIZE)
  438. /*
  439. * The associated data comes already with the IV but we need
  440. * to skip it when we authenticate or encrypt...
  441. */
  442. edesc->assoclen = cpu_to_caam32(req->assoclen - ivsize);
  443. else
  444. edesc->assoclen = cpu_to_caam32(req->assoclen);
  445. edesc->assoclen_dma = dma_map_single(dev, &edesc->assoclen, 4,
  446. DMA_TO_DEVICE);
  447. if (dma_mapping_error(dev, edesc->assoclen_dma)) {
  448. dev_err(dev, "unable to map assoclen\n");
  449. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
  450. iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
  451. qi_cache_free(edesc);
  452. return ERR_PTR(-ENOMEM);
  453. }
  454. dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
  455. qm_sg_index++;
  456. if (ivsize) {
  457. dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
  458. qm_sg_index++;
  459. }
  460. sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0);
  461. qm_sg_index += mapped_src_nents;
  462. if (mapped_dst_nents > 1)
  463. sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0);
  464. qm_sg_dma = dma_map_single(dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
  465. if (dma_mapping_error(dev, qm_sg_dma)) {
  466. dev_err(dev, "unable to map S/G table\n");
  467. dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
  468. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
  469. iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
  470. qi_cache_free(edesc);
  471. return ERR_PTR(-ENOMEM);
  472. }
  473. edesc->qm_sg_dma = qm_sg_dma;
  474. edesc->qm_sg_bytes = qm_sg_bytes;
  475. out_len = req->assoclen + req->cryptlen +
  476. (encrypt ? ctx->authsize : (-ctx->authsize));
  477. in_len = 4 + ivsize + req->assoclen + req->cryptlen;
  478. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  479. dpaa2_fl_set_final(in_fle, true);
  480. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  481. dpaa2_fl_set_addr(in_fle, qm_sg_dma);
  482. dpaa2_fl_set_len(in_fle, in_len);
  483. if (req->dst == req->src) {
  484. if (mapped_src_nents == 1) {
  485. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  486. dpaa2_fl_set_addr(out_fle, sg_dma_address(req->src));
  487. } else {
  488. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  489. dpaa2_fl_set_addr(out_fle, qm_sg_dma +
  490. (1 + !!ivsize) * sizeof(*sg_table));
  491. }
  492. } else if (!mapped_dst_nents) {
  493. /*
  494. * crypto engine requires the output entry to be present when
  495. * "frame list" FD is used.
  496. * Since engine does not support FMT=2'b11 (unused entry type),
  497. * leaving out_fle zeroized is the best option.
  498. */
  499. goto skip_out_fle;
  500. } else if (mapped_dst_nents == 1) {
  501. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  502. dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst));
  503. } else {
  504. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  505. dpaa2_fl_set_addr(out_fle, qm_sg_dma + qm_sg_index *
  506. sizeof(*sg_table));
  507. }
  508. dpaa2_fl_set_len(out_fle, out_len);
  509. skip_out_fle:
  510. return edesc;
  511. }
  512. static int chachapoly_set_sh_desc(struct crypto_aead *aead)
  513. {
  514. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  515. unsigned int ivsize = crypto_aead_ivsize(aead);
  516. struct device *dev = ctx->dev;
  517. struct caam_flc *flc;
  518. u32 *desc;
  519. if (!ctx->cdata.keylen || !ctx->authsize)
  520. return 0;
  521. flc = &ctx->flc[ENCRYPT];
  522. desc = flc->sh_desc;
  523. cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize,
  524. ctx->authsize, true, true);
  525. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  526. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  527. sizeof(flc->flc) + desc_bytes(desc),
  528. ctx->dir);
  529. flc = &ctx->flc[DECRYPT];
  530. desc = flc->sh_desc;
  531. cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize,
  532. ctx->authsize, false, true);
  533. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  534. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  535. sizeof(flc->flc) + desc_bytes(desc),
  536. ctx->dir);
  537. return 0;
  538. }
  539. static int chachapoly_setauthsize(struct crypto_aead *aead,
  540. unsigned int authsize)
  541. {
  542. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  543. if (authsize != POLY1305_DIGEST_SIZE)
  544. return -EINVAL;
  545. ctx->authsize = authsize;
  546. return chachapoly_set_sh_desc(aead);
  547. }
  548. static int chachapoly_setkey(struct crypto_aead *aead, const u8 *key,
  549. unsigned int keylen)
  550. {
  551. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  552. unsigned int ivsize = crypto_aead_ivsize(aead);
  553. unsigned int saltlen = CHACHAPOLY_IV_SIZE - ivsize;
  554. if (keylen != CHACHA_KEY_SIZE + saltlen)
  555. return -EINVAL;
  556. memcpy(ctx->key, key, keylen);
  557. ctx->cdata.key_virt = ctx->key;
  558. ctx->cdata.keylen = keylen - saltlen;
  559. return chachapoly_set_sh_desc(aead);
  560. }
  561. static int gcm_set_sh_desc(struct crypto_aead *aead)
  562. {
  563. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  564. struct device *dev = ctx->dev;
  565. unsigned int ivsize = crypto_aead_ivsize(aead);
  566. struct caam_flc *flc;
  567. u32 *desc;
  568. int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
  569. ctx->cdata.keylen;
  570. if (!ctx->cdata.keylen || !ctx->authsize)
  571. return 0;
  572. /*
  573. * AES GCM encrypt shared descriptor
  574. * Job Descriptor and Shared Descriptor
  575. * must fit into the 64-word Descriptor h/w Buffer
  576. */
  577. if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
  578. ctx->cdata.key_inline = true;
  579. ctx->cdata.key_virt = ctx->key;
  580. } else {
  581. ctx->cdata.key_inline = false;
  582. ctx->cdata.key_dma = ctx->key_dma;
  583. }
  584. flc = &ctx->flc[ENCRYPT];
  585. desc = flc->sh_desc;
  586. cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
  587. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  588. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  589. sizeof(flc->flc) + desc_bytes(desc),
  590. ctx->dir);
  591. /*
  592. * Job Descriptor and Shared Descriptors
  593. * must all fit into the 64-word Descriptor h/w Buffer
  594. */
  595. if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
  596. ctx->cdata.key_inline = true;
  597. ctx->cdata.key_virt = ctx->key;
  598. } else {
  599. ctx->cdata.key_inline = false;
  600. ctx->cdata.key_dma = ctx->key_dma;
  601. }
  602. flc = &ctx->flc[DECRYPT];
  603. desc = flc->sh_desc;
  604. cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
  605. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  606. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  607. sizeof(flc->flc) + desc_bytes(desc),
  608. ctx->dir);
  609. return 0;
  610. }
  611. static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
  612. {
  613. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  614. int err;
  615. err = crypto_gcm_check_authsize(authsize);
  616. if (err)
  617. return err;
  618. ctx->authsize = authsize;
  619. gcm_set_sh_desc(authenc);
  620. return 0;
  621. }
  622. static int gcm_setkey(struct crypto_aead *aead,
  623. const u8 *key, unsigned int keylen)
  624. {
  625. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  626. struct device *dev = ctx->dev;
  627. int ret;
  628. ret = aes_check_keylen(keylen);
  629. if (ret)
  630. return ret;
  631. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  632. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  633. memcpy(ctx->key, key, keylen);
  634. dma_sync_single_for_device(dev, ctx->key_dma, keylen, ctx->dir);
  635. ctx->cdata.keylen = keylen;
  636. return gcm_set_sh_desc(aead);
  637. }
  638. static int rfc4106_set_sh_desc(struct crypto_aead *aead)
  639. {
  640. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  641. struct device *dev = ctx->dev;
  642. unsigned int ivsize = crypto_aead_ivsize(aead);
  643. struct caam_flc *flc;
  644. u32 *desc;
  645. int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
  646. ctx->cdata.keylen;
  647. if (!ctx->cdata.keylen || !ctx->authsize)
  648. return 0;
  649. ctx->cdata.key_virt = ctx->key;
  650. /*
  651. * RFC4106 encrypt shared descriptor
  652. * Job Descriptor and Shared Descriptor
  653. * must fit into the 64-word Descriptor h/w Buffer
  654. */
  655. if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
  656. ctx->cdata.key_inline = true;
  657. } else {
  658. ctx->cdata.key_inline = false;
  659. ctx->cdata.key_dma = ctx->key_dma;
  660. }
  661. flc = &ctx->flc[ENCRYPT];
  662. desc = flc->sh_desc;
  663. cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
  664. true);
  665. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  666. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  667. sizeof(flc->flc) + desc_bytes(desc),
  668. ctx->dir);
  669. /*
  670. * Job Descriptor and Shared Descriptors
  671. * must all fit into the 64-word Descriptor h/w Buffer
  672. */
  673. if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
  674. ctx->cdata.key_inline = true;
  675. } else {
  676. ctx->cdata.key_inline = false;
  677. ctx->cdata.key_dma = ctx->key_dma;
  678. }
  679. flc = &ctx->flc[DECRYPT];
  680. desc = flc->sh_desc;
  681. cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
  682. true);
  683. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  684. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  685. sizeof(flc->flc) + desc_bytes(desc),
  686. ctx->dir);
  687. return 0;
  688. }
  689. static int rfc4106_setauthsize(struct crypto_aead *authenc,
  690. unsigned int authsize)
  691. {
  692. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  693. int err;
  694. err = crypto_rfc4106_check_authsize(authsize);
  695. if (err)
  696. return err;
  697. ctx->authsize = authsize;
  698. rfc4106_set_sh_desc(authenc);
  699. return 0;
  700. }
  701. static int rfc4106_setkey(struct crypto_aead *aead,
  702. const u8 *key, unsigned int keylen)
  703. {
  704. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  705. struct device *dev = ctx->dev;
  706. int ret;
  707. ret = aes_check_keylen(keylen - 4);
  708. if (ret)
  709. return ret;
  710. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  711. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  712. memcpy(ctx->key, key, keylen);
  713. /*
  714. * The last four bytes of the key material are used as the salt value
  715. * in the nonce. Update the AES key length.
  716. */
  717. ctx->cdata.keylen = keylen - 4;
  718. dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
  719. ctx->dir);
  720. return rfc4106_set_sh_desc(aead);
  721. }
  722. static int rfc4543_set_sh_desc(struct crypto_aead *aead)
  723. {
  724. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  725. struct device *dev = ctx->dev;
  726. unsigned int ivsize = crypto_aead_ivsize(aead);
  727. struct caam_flc *flc;
  728. u32 *desc;
  729. int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
  730. ctx->cdata.keylen;
  731. if (!ctx->cdata.keylen || !ctx->authsize)
  732. return 0;
  733. ctx->cdata.key_virt = ctx->key;
  734. /*
  735. * RFC4543 encrypt shared descriptor
  736. * Job Descriptor and Shared Descriptor
  737. * must fit into the 64-word Descriptor h/w Buffer
  738. */
  739. if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
  740. ctx->cdata.key_inline = true;
  741. } else {
  742. ctx->cdata.key_inline = false;
  743. ctx->cdata.key_dma = ctx->key_dma;
  744. }
  745. flc = &ctx->flc[ENCRYPT];
  746. desc = flc->sh_desc;
  747. cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
  748. true);
  749. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  750. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  751. sizeof(flc->flc) + desc_bytes(desc),
  752. ctx->dir);
  753. /*
  754. * Job Descriptor and Shared Descriptors
  755. * must all fit into the 64-word Descriptor h/w Buffer
  756. */
  757. if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
  758. ctx->cdata.key_inline = true;
  759. } else {
  760. ctx->cdata.key_inline = false;
  761. ctx->cdata.key_dma = ctx->key_dma;
  762. }
  763. flc = &ctx->flc[DECRYPT];
  764. desc = flc->sh_desc;
  765. cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
  766. true);
  767. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  768. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  769. sizeof(flc->flc) + desc_bytes(desc),
  770. ctx->dir);
  771. return 0;
  772. }
  773. static int rfc4543_setauthsize(struct crypto_aead *authenc,
  774. unsigned int authsize)
  775. {
  776. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  777. if (authsize != 16)
  778. return -EINVAL;
  779. ctx->authsize = authsize;
  780. rfc4543_set_sh_desc(authenc);
  781. return 0;
  782. }
  783. static int rfc4543_setkey(struct crypto_aead *aead,
  784. const u8 *key, unsigned int keylen)
  785. {
  786. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  787. struct device *dev = ctx->dev;
  788. int ret;
  789. ret = aes_check_keylen(keylen - 4);
  790. if (ret)
  791. return ret;
  792. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  793. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  794. memcpy(ctx->key, key, keylen);
  795. /*
  796. * The last four bytes of the key material are used as the salt value
  797. * in the nonce. Update the AES key length.
  798. */
  799. ctx->cdata.keylen = keylen - 4;
  800. dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
  801. ctx->dir);
  802. return rfc4543_set_sh_desc(aead);
  803. }
  804. static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
  805. unsigned int keylen, const u32 ctx1_iv_off)
  806. {
  807. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  808. struct caam_skcipher_alg *alg =
  809. container_of(crypto_skcipher_alg(skcipher),
  810. struct caam_skcipher_alg, skcipher);
  811. struct device *dev = ctx->dev;
  812. struct caam_flc *flc;
  813. unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
  814. u32 *desc;
  815. const bool is_rfc3686 = alg->caam.rfc3686;
  816. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  817. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  818. ctx->cdata.keylen = keylen;
  819. ctx->cdata.key_virt = key;
  820. ctx->cdata.key_inline = true;
  821. /* skcipher_encrypt shared descriptor */
  822. flc = &ctx->flc[ENCRYPT];
  823. desc = flc->sh_desc;
  824. cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686,
  825. ctx1_iv_off);
  826. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  827. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  828. sizeof(flc->flc) + desc_bytes(desc),
  829. ctx->dir);
  830. /* skcipher_decrypt shared descriptor */
  831. flc = &ctx->flc[DECRYPT];
  832. desc = flc->sh_desc;
  833. cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686,
  834. ctx1_iv_off);
  835. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  836. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  837. sizeof(flc->flc) + desc_bytes(desc),
  838. ctx->dir);
  839. return 0;
  840. }
  841. static int aes_skcipher_setkey(struct crypto_skcipher *skcipher,
  842. const u8 *key, unsigned int keylen)
  843. {
  844. int err;
  845. err = aes_check_keylen(keylen);
  846. if (err)
  847. return err;
  848. return skcipher_setkey(skcipher, key, keylen, 0);
  849. }
  850. static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher,
  851. const u8 *key, unsigned int keylen)
  852. {
  853. u32 ctx1_iv_off;
  854. int err;
  855. /*
  856. * RFC3686 specific:
  857. * | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
  858. * | *key = {KEY, NONCE}
  859. */
  860. ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
  861. keylen -= CTR_RFC3686_NONCE_SIZE;
  862. err = aes_check_keylen(keylen);
  863. if (err)
  864. return err;
  865. return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
  866. }
  867. static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher,
  868. const u8 *key, unsigned int keylen)
  869. {
  870. u32 ctx1_iv_off;
  871. int err;
  872. /*
  873. * AES-CTR needs to load IV in CONTEXT1 reg
  874. * at an offset of 128bits (16bytes)
  875. * CONTEXT1[255:128] = IV
  876. */
  877. ctx1_iv_off = 16;
  878. err = aes_check_keylen(keylen);
  879. if (err)
  880. return err;
  881. return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
  882. }
  883. static int chacha20_skcipher_setkey(struct crypto_skcipher *skcipher,
  884. const u8 *key, unsigned int keylen)
  885. {
  886. if (keylen != CHACHA_KEY_SIZE)
  887. return -EINVAL;
  888. return skcipher_setkey(skcipher, key, keylen, 0);
  889. }
  890. static int des_skcipher_setkey(struct crypto_skcipher *skcipher,
  891. const u8 *key, unsigned int keylen)
  892. {
  893. return verify_skcipher_des_key(skcipher, key) ?:
  894. skcipher_setkey(skcipher, key, keylen, 0);
  895. }
  896. static int des3_skcipher_setkey(struct crypto_skcipher *skcipher,
  897. const u8 *key, unsigned int keylen)
  898. {
  899. return verify_skcipher_des3_key(skcipher, key) ?:
  900. skcipher_setkey(skcipher, key, keylen, 0);
  901. }
  902. static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
  903. unsigned int keylen)
  904. {
  905. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  906. struct device *dev = ctx->dev;
  907. struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
  908. struct caam_flc *flc;
  909. u32 *desc;
  910. int err;
  911. err = xts_verify_key(skcipher, key, keylen);
  912. if (err) {
  913. dev_dbg(dev, "key size mismatch\n");
  914. return err;
  915. }
  916. if (keylen != 2 * AES_KEYSIZE_128 && keylen != 2 * AES_KEYSIZE_256)
  917. ctx->xts_key_fallback = true;
  918. if (priv->sec_attr.era <= 8 || ctx->xts_key_fallback) {
  919. err = crypto_skcipher_setkey(ctx->fallback, key, keylen);
  920. if (err)
  921. return err;
  922. }
  923. ctx->cdata.keylen = keylen;
  924. ctx->cdata.key_virt = key;
  925. ctx->cdata.key_inline = true;
  926. /* xts_skcipher_encrypt shared descriptor */
  927. flc = &ctx->flc[ENCRYPT];
  928. desc = flc->sh_desc;
  929. cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata);
  930. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  931. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  932. sizeof(flc->flc) + desc_bytes(desc),
  933. ctx->dir);
  934. /* xts_skcipher_decrypt shared descriptor */
  935. flc = &ctx->flc[DECRYPT];
  936. desc = flc->sh_desc;
  937. cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata);
  938. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  939. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  940. sizeof(flc->flc) + desc_bytes(desc),
  941. ctx->dir);
  942. return 0;
  943. }
  944. static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req)
  945. {
  946. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  947. struct caam_request *req_ctx = skcipher_request_ctx(req);
  948. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  949. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  950. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  951. struct device *dev = ctx->dev;
  952. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  953. GFP_KERNEL : GFP_ATOMIC;
  954. int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
  955. struct skcipher_edesc *edesc;
  956. dma_addr_t iv_dma;
  957. u8 *iv;
  958. int ivsize = crypto_skcipher_ivsize(skcipher);
  959. int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
  960. struct dpaa2_sg_entry *sg_table;
  961. src_nents = sg_nents_for_len(req->src, req->cryptlen);
  962. if (unlikely(src_nents < 0)) {
  963. dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
  964. req->cryptlen);
  965. return ERR_PTR(src_nents);
  966. }
  967. if (unlikely(req->dst != req->src)) {
  968. dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
  969. if (unlikely(dst_nents < 0)) {
  970. dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
  971. req->cryptlen);
  972. return ERR_PTR(dst_nents);
  973. }
  974. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  975. DMA_TO_DEVICE);
  976. if (unlikely(!mapped_src_nents)) {
  977. dev_err(dev, "unable to map source\n");
  978. return ERR_PTR(-ENOMEM);
  979. }
  980. mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
  981. DMA_FROM_DEVICE);
  982. if (unlikely(!mapped_dst_nents)) {
  983. dev_err(dev, "unable to map destination\n");
  984. dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  985. return ERR_PTR(-ENOMEM);
  986. }
  987. } else {
  988. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  989. DMA_BIDIRECTIONAL);
  990. if (unlikely(!mapped_src_nents)) {
  991. dev_err(dev, "unable to map source\n");
  992. return ERR_PTR(-ENOMEM);
  993. }
  994. }
  995. qm_sg_ents = 1 + mapped_src_nents;
  996. dst_sg_idx = qm_sg_ents;
  997. /*
  998. * Input, output HW S/G tables: [IV, src][dst, IV]
  999. * IV entries point to the same buffer
  1000. * If src == dst, S/G entries are reused (S/G tables overlap)
  1001. *
  1002. * HW reads 4 S/G entries at a time; make sure the reads don't go beyond
  1003. * the end of the table by allocating more S/G entries.
  1004. */
  1005. if (req->src != req->dst)
  1006. qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1);
  1007. else
  1008. qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents);
  1009. qm_sg_bytes = qm_sg_ents * sizeof(struct dpaa2_sg_entry);
  1010. if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
  1011. ivsize > CAAM_QI_MEMCACHE_SIZE)) {
  1012. dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
  1013. qm_sg_ents, ivsize);
  1014. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  1015. 0, DMA_NONE, 0, 0);
  1016. return ERR_PTR(-ENOMEM);
  1017. }
  1018. /* allocate space for base edesc, link tables and IV */
  1019. edesc = qi_cache_zalloc(GFP_DMA | flags);
  1020. if (unlikely(!edesc)) {
  1021. dev_err(dev, "could not allocate extended descriptor\n");
  1022. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  1023. 0, DMA_NONE, 0, 0);
  1024. return ERR_PTR(-ENOMEM);
  1025. }
  1026. /* Make sure IV is located in a DMAable area */
  1027. sg_table = &edesc->sgt[0];
  1028. iv = (u8 *)(sg_table + qm_sg_ents);
  1029. memcpy(iv, req->iv, ivsize);
  1030. iv_dma = dma_map_single(dev, iv, ivsize, DMA_BIDIRECTIONAL);
  1031. if (dma_mapping_error(dev, iv_dma)) {
  1032. dev_err(dev, "unable to map IV\n");
  1033. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  1034. 0, DMA_NONE, 0, 0);
  1035. qi_cache_free(edesc);
  1036. return ERR_PTR(-ENOMEM);
  1037. }
  1038. edesc->src_nents = src_nents;
  1039. edesc->dst_nents = dst_nents;
  1040. edesc->iv_dma = iv_dma;
  1041. edesc->qm_sg_bytes = qm_sg_bytes;
  1042. dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
  1043. sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0);
  1044. if (req->src != req->dst)
  1045. sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0);
  1046. dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma,
  1047. ivsize, 0);
  1048. edesc->qm_sg_dma = dma_map_single(dev, sg_table, edesc->qm_sg_bytes,
  1049. DMA_TO_DEVICE);
  1050. if (dma_mapping_error(dev, edesc->qm_sg_dma)) {
  1051. dev_err(dev, "unable to map S/G table\n");
  1052. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
  1053. iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0);
  1054. qi_cache_free(edesc);
  1055. return ERR_PTR(-ENOMEM);
  1056. }
  1057. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  1058. dpaa2_fl_set_final(in_fle, true);
  1059. dpaa2_fl_set_len(in_fle, req->cryptlen + ivsize);
  1060. dpaa2_fl_set_len(out_fle, req->cryptlen + ivsize);
  1061. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  1062. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  1063. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  1064. if (req->src == req->dst)
  1065. dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma +
  1066. sizeof(*sg_table));
  1067. else
  1068. dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + dst_sg_idx *
  1069. sizeof(*sg_table));
  1070. return edesc;
  1071. }
  1072. static void aead_unmap(struct device *dev, struct aead_edesc *edesc,
  1073. struct aead_request *req)
  1074. {
  1075. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1076. int ivsize = crypto_aead_ivsize(aead);
  1077. caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
  1078. edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma,
  1079. edesc->qm_sg_bytes);
  1080. dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
  1081. }
  1082. static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
  1083. struct skcipher_request *req)
  1084. {
  1085. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1086. int ivsize = crypto_skcipher_ivsize(skcipher);
  1087. caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
  1088. edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma,
  1089. edesc->qm_sg_bytes);
  1090. }
  1091. static void aead_encrypt_done(void *cbk_ctx, u32 status)
  1092. {
  1093. struct crypto_async_request *areq = cbk_ctx;
  1094. struct aead_request *req = container_of(areq, struct aead_request,
  1095. base);
  1096. struct caam_request *req_ctx = to_caam_req(areq);
  1097. struct aead_edesc *edesc = req_ctx->edesc;
  1098. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1099. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1100. int ecode = 0;
  1101. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  1102. if (unlikely(status))
  1103. ecode = caam_qi2_strstatus(ctx->dev, status);
  1104. aead_unmap(ctx->dev, edesc, req);
  1105. qi_cache_free(edesc);
  1106. aead_request_complete(req, ecode);
  1107. }
  1108. static void aead_decrypt_done(void *cbk_ctx, u32 status)
  1109. {
  1110. struct crypto_async_request *areq = cbk_ctx;
  1111. struct aead_request *req = container_of(areq, struct aead_request,
  1112. base);
  1113. struct caam_request *req_ctx = to_caam_req(areq);
  1114. struct aead_edesc *edesc = req_ctx->edesc;
  1115. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1116. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1117. int ecode = 0;
  1118. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  1119. if (unlikely(status))
  1120. ecode = caam_qi2_strstatus(ctx->dev, status);
  1121. aead_unmap(ctx->dev, edesc, req);
  1122. qi_cache_free(edesc);
  1123. aead_request_complete(req, ecode);
  1124. }
  1125. static int aead_encrypt(struct aead_request *req)
  1126. {
  1127. struct aead_edesc *edesc;
  1128. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1129. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1130. struct caam_request *caam_req = aead_request_ctx(req);
  1131. int ret;
  1132. /* allocate extended descriptor */
  1133. edesc = aead_edesc_alloc(req, true);
  1134. if (IS_ERR(edesc))
  1135. return PTR_ERR(edesc);
  1136. caam_req->flc = &ctx->flc[ENCRYPT];
  1137. caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
  1138. caam_req->cbk = aead_encrypt_done;
  1139. caam_req->ctx = &req->base;
  1140. caam_req->edesc = edesc;
  1141. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1142. if (ret != -EINPROGRESS &&
  1143. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1144. aead_unmap(ctx->dev, edesc, req);
  1145. qi_cache_free(edesc);
  1146. }
  1147. return ret;
  1148. }
  1149. static int aead_decrypt(struct aead_request *req)
  1150. {
  1151. struct aead_edesc *edesc;
  1152. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1153. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1154. struct caam_request *caam_req = aead_request_ctx(req);
  1155. int ret;
  1156. /* allocate extended descriptor */
  1157. edesc = aead_edesc_alloc(req, false);
  1158. if (IS_ERR(edesc))
  1159. return PTR_ERR(edesc);
  1160. caam_req->flc = &ctx->flc[DECRYPT];
  1161. caam_req->flc_dma = ctx->flc_dma[DECRYPT];
  1162. caam_req->cbk = aead_decrypt_done;
  1163. caam_req->ctx = &req->base;
  1164. caam_req->edesc = edesc;
  1165. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1166. if (ret != -EINPROGRESS &&
  1167. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1168. aead_unmap(ctx->dev, edesc, req);
  1169. qi_cache_free(edesc);
  1170. }
  1171. return ret;
  1172. }
  1173. static int ipsec_gcm_encrypt(struct aead_request *req)
  1174. {
  1175. return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_encrypt(req);
  1176. }
  1177. static int ipsec_gcm_decrypt(struct aead_request *req)
  1178. {
  1179. return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_decrypt(req);
  1180. }
  1181. static void skcipher_encrypt_done(void *cbk_ctx, u32 status)
  1182. {
  1183. struct crypto_async_request *areq = cbk_ctx;
  1184. struct skcipher_request *req = skcipher_request_cast(areq);
  1185. struct caam_request *req_ctx = to_caam_req(areq);
  1186. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1187. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1188. struct skcipher_edesc *edesc = req_ctx->edesc;
  1189. int ecode = 0;
  1190. int ivsize = crypto_skcipher_ivsize(skcipher);
  1191. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  1192. if (unlikely(status))
  1193. ecode = caam_qi2_strstatus(ctx->dev, status);
  1194. print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
  1195. DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
  1196. edesc->src_nents > 1 ? 100 : ivsize, 1);
  1197. caam_dump_sg("dst @" __stringify(__LINE__)": ",
  1198. DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
  1199. edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
  1200. skcipher_unmap(ctx->dev, edesc, req);
  1201. /*
  1202. * The crypto API expects us to set the IV (req->iv) to the last
  1203. * ciphertext block (CBC mode) or last counter (CTR mode).
  1204. * This is used e.g. by the CTS mode.
  1205. */
  1206. if (!ecode)
  1207. memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
  1208. ivsize);
  1209. qi_cache_free(edesc);
  1210. skcipher_request_complete(req, ecode);
  1211. }
  1212. static void skcipher_decrypt_done(void *cbk_ctx, u32 status)
  1213. {
  1214. struct crypto_async_request *areq = cbk_ctx;
  1215. struct skcipher_request *req = skcipher_request_cast(areq);
  1216. struct caam_request *req_ctx = to_caam_req(areq);
  1217. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1218. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1219. struct skcipher_edesc *edesc = req_ctx->edesc;
  1220. int ecode = 0;
  1221. int ivsize = crypto_skcipher_ivsize(skcipher);
  1222. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  1223. if (unlikely(status))
  1224. ecode = caam_qi2_strstatus(ctx->dev, status);
  1225. print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
  1226. DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
  1227. edesc->src_nents > 1 ? 100 : ivsize, 1);
  1228. caam_dump_sg("dst @" __stringify(__LINE__)": ",
  1229. DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
  1230. edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
  1231. skcipher_unmap(ctx->dev, edesc, req);
  1232. /*
  1233. * The crypto API expects us to set the IV (req->iv) to the last
  1234. * ciphertext block (CBC mode) or last counter (CTR mode).
  1235. * This is used e.g. by the CTS mode.
  1236. */
  1237. if (!ecode)
  1238. memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
  1239. ivsize);
  1240. qi_cache_free(edesc);
  1241. skcipher_request_complete(req, ecode);
  1242. }
  1243. static inline bool xts_skcipher_ivsize(struct skcipher_request *req)
  1244. {
  1245. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1246. unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
  1247. return !!get_unaligned((u64 *)(req->iv + (ivsize / 2)));
  1248. }
  1249. static int skcipher_encrypt(struct skcipher_request *req)
  1250. {
  1251. struct skcipher_edesc *edesc;
  1252. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1253. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1254. struct caam_request *caam_req = skcipher_request_ctx(req);
  1255. struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev);
  1256. int ret;
  1257. /*
  1258. * XTS is expected to return an error even for input length = 0
  1259. * Note that the case input length < block size will be caught during
  1260. * HW offloading and return an error.
  1261. */
  1262. if (!req->cryptlen && !ctx->fallback)
  1263. return 0;
  1264. if (ctx->fallback && ((priv->sec_attr.era <= 8 && xts_skcipher_ivsize(req)) ||
  1265. ctx->xts_key_fallback)) {
  1266. skcipher_request_set_tfm(&caam_req->fallback_req, ctx->fallback);
  1267. skcipher_request_set_callback(&caam_req->fallback_req,
  1268. req->base.flags,
  1269. req->base.complete,
  1270. req->base.data);
  1271. skcipher_request_set_crypt(&caam_req->fallback_req, req->src,
  1272. req->dst, req->cryptlen, req->iv);
  1273. return crypto_skcipher_encrypt(&caam_req->fallback_req);
  1274. }
  1275. /* allocate extended descriptor */
  1276. edesc = skcipher_edesc_alloc(req);
  1277. if (IS_ERR(edesc))
  1278. return PTR_ERR(edesc);
  1279. caam_req->flc = &ctx->flc[ENCRYPT];
  1280. caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
  1281. caam_req->cbk = skcipher_encrypt_done;
  1282. caam_req->ctx = &req->base;
  1283. caam_req->edesc = edesc;
  1284. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1285. if (ret != -EINPROGRESS &&
  1286. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1287. skcipher_unmap(ctx->dev, edesc, req);
  1288. qi_cache_free(edesc);
  1289. }
  1290. return ret;
  1291. }
  1292. static int skcipher_decrypt(struct skcipher_request *req)
  1293. {
  1294. struct skcipher_edesc *edesc;
  1295. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1296. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1297. struct caam_request *caam_req = skcipher_request_ctx(req);
  1298. struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev);
  1299. int ret;
  1300. /*
  1301. * XTS is expected to return an error even for input length = 0
  1302. * Note that the case input length < block size will be caught during
  1303. * HW offloading and return an error.
  1304. */
  1305. if (!req->cryptlen && !ctx->fallback)
  1306. return 0;
  1307. if (ctx->fallback && ((priv->sec_attr.era <= 8 && xts_skcipher_ivsize(req)) ||
  1308. ctx->xts_key_fallback)) {
  1309. skcipher_request_set_tfm(&caam_req->fallback_req, ctx->fallback);
  1310. skcipher_request_set_callback(&caam_req->fallback_req,
  1311. req->base.flags,
  1312. req->base.complete,
  1313. req->base.data);
  1314. skcipher_request_set_crypt(&caam_req->fallback_req, req->src,
  1315. req->dst, req->cryptlen, req->iv);
  1316. return crypto_skcipher_decrypt(&caam_req->fallback_req);
  1317. }
  1318. /* allocate extended descriptor */
  1319. edesc = skcipher_edesc_alloc(req);
  1320. if (IS_ERR(edesc))
  1321. return PTR_ERR(edesc);
  1322. caam_req->flc = &ctx->flc[DECRYPT];
  1323. caam_req->flc_dma = ctx->flc_dma[DECRYPT];
  1324. caam_req->cbk = skcipher_decrypt_done;
  1325. caam_req->ctx = &req->base;
  1326. caam_req->edesc = edesc;
  1327. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1328. if (ret != -EINPROGRESS &&
  1329. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1330. skcipher_unmap(ctx->dev, edesc, req);
  1331. qi_cache_free(edesc);
  1332. }
  1333. return ret;
  1334. }
  1335. static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam,
  1336. bool uses_dkp)
  1337. {
  1338. dma_addr_t dma_addr;
  1339. int i;
  1340. /* copy descriptor header template value */
  1341. ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
  1342. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
  1343. ctx->dev = caam->dev;
  1344. ctx->dir = uses_dkp ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
  1345. dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc,
  1346. offsetof(struct caam_ctx, flc_dma),
  1347. ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
  1348. if (dma_mapping_error(ctx->dev, dma_addr)) {
  1349. dev_err(ctx->dev, "unable to map key, shared descriptors\n");
  1350. return -ENOMEM;
  1351. }
  1352. for (i = 0; i < NUM_OP; i++)
  1353. ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
  1354. ctx->key_dma = dma_addr + NUM_OP * sizeof(ctx->flc[0]);
  1355. return 0;
  1356. }
  1357. static int caam_cra_init_skcipher(struct crypto_skcipher *tfm)
  1358. {
  1359. struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
  1360. struct caam_skcipher_alg *caam_alg =
  1361. container_of(alg, typeof(*caam_alg), skcipher);
  1362. struct caam_ctx *ctx = crypto_skcipher_ctx(tfm);
  1363. u32 alg_aai = caam_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
  1364. int ret = 0;
  1365. if (alg_aai == OP_ALG_AAI_XTS) {
  1366. const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
  1367. struct crypto_skcipher *fallback;
  1368. fallback = crypto_alloc_skcipher(tfm_name, 0,
  1369. CRYPTO_ALG_NEED_FALLBACK);
  1370. if (IS_ERR(fallback)) {
  1371. dev_err(caam_alg->caam.dev,
  1372. "Failed to allocate %s fallback: %ld\n",
  1373. tfm_name, PTR_ERR(fallback));
  1374. return PTR_ERR(fallback);
  1375. }
  1376. ctx->fallback = fallback;
  1377. crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request) +
  1378. crypto_skcipher_reqsize(fallback));
  1379. } else {
  1380. crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request));
  1381. }
  1382. ret = caam_cra_init(ctx, &caam_alg->caam, false);
  1383. if (ret && ctx->fallback)
  1384. crypto_free_skcipher(ctx->fallback);
  1385. return ret;
  1386. }
  1387. static int caam_cra_init_aead(struct crypto_aead *tfm)
  1388. {
  1389. struct aead_alg *alg = crypto_aead_alg(tfm);
  1390. struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
  1391. aead);
  1392. crypto_aead_set_reqsize(tfm, sizeof(struct caam_request));
  1393. return caam_cra_init(crypto_aead_ctx(tfm), &caam_alg->caam,
  1394. !caam_alg->caam.nodkp);
  1395. }
  1396. static void caam_exit_common(struct caam_ctx *ctx)
  1397. {
  1398. dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0],
  1399. offsetof(struct caam_ctx, flc_dma), ctx->dir,
  1400. DMA_ATTR_SKIP_CPU_SYNC);
  1401. }
  1402. static void caam_cra_exit(struct crypto_skcipher *tfm)
  1403. {
  1404. struct caam_ctx *ctx = crypto_skcipher_ctx(tfm);
  1405. if (ctx->fallback)
  1406. crypto_free_skcipher(ctx->fallback);
  1407. caam_exit_common(ctx);
  1408. }
  1409. static void caam_cra_exit_aead(struct crypto_aead *tfm)
  1410. {
  1411. caam_exit_common(crypto_aead_ctx(tfm));
  1412. }
  1413. static struct caam_skcipher_alg driver_algs[] = {
  1414. {
  1415. .skcipher = {
  1416. .base = {
  1417. .cra_name = "cbc(aes)",
  1418. .cra_driver_name = "cbc-aes-caam-qi2",
  1419. .cra_blocksize = AES_BLOCK_SIZE,
  1420. },
  1421. .setkey = aes_skcipher_setkey,
  1422. .encrypt = skcipher_encrypt,
  1423. .decrypt = skcipher_decrypt,
  1424. .min_keysize = AES_MIN_KEY_SIZE,
  1425. .max_keysize = AES_MAX_KEY_SIZE,
  1426. .ivsize = AES_BLOCK_SIZE,
  1427. },
  1428. .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1429. },
  1430. {
  1431. .skcipher = {
  1432. .base = {
  1433. .cra_name = "cbc(des3_ede)",
  1434. .cra_driver_name = "cbc-3des-caam-qi2",
  1435. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1436. },
  1437. .setkey = des3_skcipher_setkey,
  1438. .encrypt = skcipher_encrypt,
  1439. .decrypt = skcipher_decrypt,
  1440. .min_keysize = DES3_EDE_KEY_SIZE,
  1441. .max_keysize = DES3_EDE_KEY_SIZE,
  1442. .ivsize = DES3_EDE_BLOCK_SIZE,
  1443. },
  1444. .caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1445. },
  1446. {
  1447. .skcipher = {
  1448. .base = {
  1449. .cra_name = "cbc(des)",
  1450. .cra_driver_name = "cbc-des-caam-qi2",
  1451. .cra_blocksize = DES_BLOCK_SIZE,
  1452. },
  1453. .setkey = des_skcipher_setkey,
  1454. .encrypt = skcipher_encrypt,
  1455. .decrypt = skcipher_decrypt,
  1456. .min_keysize = DES_KEY_SIZE,
  1457. .max_keysize = DES_KEY_SIZE,
  1458. .ivsize = DES_BLOCK_SIZE,
  1459. },
  1460. .caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1461. },
  1462. {
  1463. .skcipher = {
  1464. .base = {
  1465. .cra_name = "ctr(aes)",
  1466. .cra_driver_name = "ctr-aes-caam-qi2",
  1467. .cra_blocksize = 1,
  1468. },
  1469. .setkey = ctr_skcipher_setkey,
  1470. .encrypt = skcipher_encrypt,
  1471. .decrypt = skcipher_decrypt,
  1472. .min_keysize = AES_MIN_KEY_SIZE,
  1473. .max_keysize = AES_MAX_KEY_SIZE,
  1474. .ivsize = AES_BLOCK_SIZE,
  1475. .chunksize = AES_BLOCK_SIZE,
  1476. },
  1477. .caam.class1_alg_type = OP_ALG_ALGSEL_AES |
  1478. OP_ALG_AAI_CTR_MOD128,
  1479. },
  1480. {
  1481. .skcipher = {
  1482. .base = {
  1483. .cra_name = "rfc3686(ctr(aes))",
  1484. .cra_driver_name = "rfc3686-ctr-aes-caam-qi2",
  1485. .cra_blocksize = 1,
  1486. },
  1487. .setkey = rfc3686_skcipher_setkey,
  1488. .encrypt = skcipher_encrypt,
  1489. .decrypt = skcipher_decrypt,
  1490. .min_keysize = AES_MIN_KEY_SIZE +
  1491. CTR_RFC3686_NONCE_SIZE,
  1492. .max_keysize = AES_MAX_KEY_SIZE +
  1493. CTR_RFC3686_NONCE_SIZE,
  1494. .ivsize = CTR_RFC3686_IV_SIZE,
  1495. .chunksize = AES_BLOCK_SIZE,
  1496. },
  1497. .caam = {
  1498. .class1_alg_type = OP_ALG_ALGSEL_AES |
  1499. OP_ALG_AAI_CTR_MOD128,
  1500. .rfc3686 = true,
  1501. },
  1502. },
  1503. {
  1504. .skcipher = {
  1505. .base = {
  1506. .cra_name = "xts(aes)",
  1507. .cra_driver_name = "xts-aes-caam-qi2",
  1508. .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
  1509. .cra_blocksize = AES_BLOCK_SIZE,
  1510. },
  1511. .setkey = xts_skcipher_setkey,
  1512. .encrypt = skcipher_encrypt,
  1513. .decrypt = skcipher_decrypt,
  1514. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1515. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1516. .ivsize = AES_BLOCK_SIZE,
  1517. },
  1518. .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
  1519. },
  1520. {
  1521. .skcipher = {
  1522. .base = {
  1523. .cra_name = "chacha20",
  1524. .cra_driver_name = "chacha20-caam-qi2",
  1525. .cra_blocksize = 1,
  1526. },
  1527. .setkey = chacha20_skcipher_setkey,
  1528. .encrypt = skcipher_encrypt,
  1529. .decrypt = skcipher_decrypt,
  1530. .min_keysize = CHACHA_KEY_SIZE,
  1531. .max_keysize = CHACHA_KEY_SIZE,
  1532. .ivsize = CHACHA_IV_SIZE,
  1533. },
  1534. .caam.class1_alg_type = OP_ALG_ALGSEL_CHACHA20,
  1535. },
  1536. };
  1537. static struct caam_aead_alg driver_aeads[] = {
  1538. {
  1539. .aead = {
  1540. .base = {
  1541. .cra_name = "rfc4106(gcm(aes))",
  1542. .cra_driver_name = "rfc4106-gcm-aes-caam-qi2",
  1543. .cra_blocksize = 1,
  1544. },
  1545. .setkey = rfc4106_setkey,
  1546. .setauthsize = rfc4106_setauthsize,
  1547. .encrypt = ipsec_gcm_encrypt,
  1548. .decrypt = ipsec_gcm_decrypt,
  1549. .ivsize = 8,
  1550. .maxauthsize = AES_BLOCK_SIZE,
  1551. },
  1552. .caam = {
  1553. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
  1554. .nodkp = true,
  1555. },
  1556. },
  1557. {
  1558. .aead = {
  1559. .base = {
  1560. .cra_name = "rfc4543(gcm(aes))",
  1561. .cra_driver_name = "rfc4543-gcm-aes-caam-qi2",
  1562. .cra_blocksize = 1,
  1563. },
  1564. .setkey = rfc4543_setkey,
  1565. .setauthsize = rfc4543_setauthsize,
  1566. .encrypt = ipsec_gcm_encrypt,
  1567. .decrypt = ipsec_gcm_decrypt,
  1568. .ivsize = 8,
  1569. .maxauthsize = AES_BLOCK_SIZE,
  1570. },
  1571. .caam = {
  1572. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
  1573. .nodkp = true,
  1574. },
  1575. },
  1576. /* Galois Counter Mode */
  1577. {
  1578. .aead = {
  1579. .base = {
  1580. .cra_name = "gcm(aes)",
  1581. .cra_driver_name = "gcm-aes-caam-qi2",
  1582. .cra_blocksize = 1,
  1583. },
  1584. .setkey = gcm_setkey,
  1585. .setauthsize = gcm_setauthsize,
  1586. .encrypt = aead_encrypt,
  1587. .decrypt = aead_decrypt,
  1588. .ivsize = 12,
  1589. .maxauthsize = AES_BLOCK_SIZE,
  1590. },
  1591. .caam = {
  1592. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
  1593. .nodkp = true,
  1594. }
  1595. },
  1596. /* single-pass ipsec_esp descriptor */
  1597. {
  1598. .aead = {
  1599. .base = {
  1600. .cra_name = "authenc(hmac(md5),cbc(aes))",
  1601. .cra_driver_name = "authenc-hmac-md5-"
  1602. "cbc-aes-caam-qi2",
  1603. .cra_blocksize = AES_BLOCK_SIZE,
  1604. },
  1605. .setkey = aead_setkey,
  1606. .setauthsize = aead_setauthsize,
  1607. .encrypt = aead_encrypt,
  1608. .decrypt = aead_decrypt,
  1609. .ivsize = AES_BLOCK_SIZE,
  1610. .maxauthsize = MD5_DIGEST_SIZE,
  1611. },
  1612. .caam = {
  1613. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1614. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1615. OP_ALG_AAI_HMAC_PRECOMP,
  1616. }
  1617. },
  1618. {
  1619. .aead = {
  1620. .base = {
  1621. .cra_name = "echainiv(authenc(hmac(md5),"
  1622. "cbc(aes)))",
  1623. .cra_driver_name = "echainiv-authenc-hmac-md5-"
  1624. "cbc-aes-caam-qi2",
  1625. .cra_blocksize = AES_BLOCK_SIZE,
  1626. },
  1627. .setkey = aead_setkey,
  1628. .setauthsize = aead_setauthsize,
  1629. .encrypt = aead_encrypt,
  1630. .decrypt = aead_decrypt,
  1631. .ivsize = AES_BLOCK_SIZE,
  1632. .maxauthsize = MD5_DIGEST_SIZE,
  1633. },
  1634. .caam = {
  1635. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1636. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1637. OP_ALG_AAI_HMAC_PRECOMP,
  1638. .geniv = true,
  1639. }
  1640. },
  1641. {
  1642. .aead = {
  1643. .base = {
  1644. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1645. .cra_driver_name = "authenc-hmac-sha1-"
  1646. "cbc-aes-caam-qi2",
  1647. .cra_blocksize = AES_BLOCK_SIZE,
  1648. },
  1649. .setkey = aead_setkey,
  1650. .setauthsize = aead_setauthsize,
  1651. .encrypt = aead_encrypt,
  1652. .decrypt = aead_decrypt,
  1653. .ivsize = AES_BLOCK_SIZE,
  1654. .maxauthsize = SHA1_DIGEST_SIZE,
  1655. },
  1656. .caam = {
  1657. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1658. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1659. OP_ALG_AAI_HMAC_PRECOMP,
  1660. }
  1661. },
  1662. {
  1663. .aead = {
  1664. .base = {
  1665. .cra_name = "echainiv(authenc(hmac(sha1),"
  1666. "cbc(aes)))",
  1667. .cra_driver_name = "echainiv-authenc-"
  1668. "hmac-sha1-cbc-aes-caam-qi2",
  1669. .cra_blocksize = AES_BLOCK_SIZE,
  1670. },
  1671. .setkey = aead_setkey,
  1672. .setauthsize = aead_setauthsize,
  1673. .encrypt = aead_encrypt,
  1674. .decrypt = aead_decrypt,
  1675. .ivsize = AES_BLOCK_SIZE,
  1676. .maxauthsize = SHA1_DIGEST_SIZE,
  1677. },
  1678. .caam = {
  1679. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1680. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1681. OP_ALG_AAI_HMAC_PRECOMP,
  1682. .geniv = true,
  1683. },
  1684. },
  1685. {
  1686. .aead = {
  1687. .base = {
  1688. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1689. .cra_driver_name = "authenc-hmac-sha224-"
  1690. "cbc-aes-caam-qi2",
  1691. .cra_blocksize = AES_BLOCK_SIZE,
  1692. },
  1693. .setkey = aead_setkey,
  1694. .setauthsize = aead_setauthsize,
  1695. .encrypt = aead_encrypt,
  1696. .decrypt = aead_decrypt,
  1697. .ivsize = AES_BLOCK_SIZE,
  1698. .maxauthsize = SHA224_DIGEST_SIZE,
  1699. },
  1700. .caam = {
  1701. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1702. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1703. OP_ALG_AAI_HMAC_PRECOMP,
  1704. }
  1705. },
  1706. {
  1707. .aead = {
  1708. .base = {
  1709. .cra_name = "echainiv(authenc(hmac(sha224),"
  1710. "cbc(aes)))",
  1711. .cra_driver_name = "echainiv-authenc-"
  1712. "hmac-sha224-cbc-aes-caam-qi2",
  1713. .cra_blocksize = AES_BLOCK_SIZE,
  1714. },
  1715. .setkey = aead_setkey,
  1716. .setauthsize = aead_setauthsize,
  1717. .encrypt = aead_encrypt,
  1718. .decrypt = aead_decrypt,
  1719. .ivsize = AES_BLOCK_SIZE,
  1720. .maxauthsize = SHA224_DIGEST_SIZE,
  1721. },
  1722. .caam = {
  1723. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1724. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1725. OP_ALG_AAI_HMAC_PRECOMP,
  1726. .geniv = true,
  1727. }
  1728. },
  1729. {
  1730. .aead = {
  1731. .base = {
  1732. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1733. .cra_driver_name = "authenc-hmac-sha256-"
  1734. "cbc-aes-caam-qi2",
  1735. .cra_blocksize = AES_BLOCK_SIZE,
  1736. },
  1737. .setkey = aead_setkey,
  1738. .setauthsize = aead_setauthsize,
  1739. .encrypt = aead_encrypt,
  1740. .decrypt = aead_decrypt,
  1741. .ivsize = AES_BLOCK_SIZE,
  1742. .maxauthsize = SHA256_DIGEST_SIZE,
  1743. },
  1744. .caam = {
  1745. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1746. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1747. OP_ALG_AAI_HMAC_PRECOMP,
  1748. }
  1749. },
  1750. {
  1751. .aead = {
  1752. .base = {
  1753. .cra_name = "echainiv(authenc(hmac(sha256),"
  1754. "cbc(aes)))",
  1755. .cra_driver_name = "echainiv-authenc-"
  1756. "hmac-sha256-cbc-aes-"
  1757. "caam-qi2",
  1758. .cra_blocksize = AES_BLOCK_SIZE,
  1759. },
  1760. .setkey = aead_setkey,
  1761. .setauthsize = aead_setauthsize,
  1762. .encrypt = aead_encrypt,
  1763. .decrypt = aead_decrypt,
  1764. .ivsize = AES_BLOCK_SIZE,
  1765. .maxauthsize = SHA256_DIGEST_SIZE,
  1766. },
  1767. .caam = {
  1768. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1769. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1770. OP_ALG_AAI_HMAC_PRECOMP,
  1771. .geniv = true,
  1772. }
  1773. },
  1774. {
  1775. .aead = {
  1776. .base = {
  1777. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1778. .cra_driver_name = "authenc-hmac-sha384-"
  1779. "cbc-aes-caam-qi2",
  1780. .cra_blocksize = AES_BLOCK_SIZE,
  1781. },
  1782. .setkey = aead_setkey,
  1783. .setauthsize = aead_setauthsize,
  1784. .encrypt = aead_encrypt,
  1785. .decrypt = aead_decrypt,
  1786. .ivsize = AES_BLOCK_SIZE,
  1787. .maxauthsize = SHA384_DIGEST_SIZE,
  1788. },
  1789. .caam = {
  1790. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1791. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1792. OP_ALG_AAI_HMAC_PRECOMP,
  1793. }
  1794. },
  1795. {
  1796. .aead = {
  1797. .base = {
  1798. .cra_name = "echainiv(authenc(hmac(sha384),"
  1799. "cbc(aes)))",
  1800. .cra_driver_name = "echainiv-authenc-"
  1801. "hmac-sha384-cbc-aes-"
  1802. "caam-qi2",
  1803. .cra_blocksize = AES_BLOCK_SIZE,
  1804. },
  1805. .setkey = aead_setkey,
  1806. .setauthsize = aead_setauthsize,
  1807. .encrypt = aead_encrypt,
  1808. .decrypt = aead_decrypt,
  1809. .ivsize = AES_BLOCK_SIZE,
  1810. .maxauthsize = SHA384_DIGEST_SIZE,
  1811. },
  1812. .caam = {
  1813. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1814. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1815. OP_ALG_AAI_HMAC_PRECOMP,
  1816. .geniv = true,
  1817. }
  1818. },
  1819. {
  1820. .aead = {
  1821. .base = {
  1822. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1823. .cra_driver_name = "authenc-hmac-sha512-"
  1824. "cbc-aes-caam-qi2",
  1825. .cra_blocksize = AES_BLOCK_SIZE,
  1826. },
  1827. .setkey = aead_setkey,
  1828. .setauthsize = aead_setauthsize,
  1829. .encrypt = aead_encrypt,
  1830. .decrypt = aead_decrypt,
  1831. .ivsize = AES_BLOCK_SIZE,
  1832. .maxauthsize = SHA512_DIGEST_SIZE,
  1833. },
  1834. .caam = {
  1835. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1836. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1837. OP_ALG_AAI_HMAC_PRECOMP,
  1838. }
  1839. },
  1840. {
  1841. .aead = {
  1842. .base = {
  1843. .cra_name = "echainiv(authenc(hmac(sha512),"
  1844. "cbc(aes)))",
  1845. .cra_driver_name = "echainiv-authenc-"
  1846. "hmac-sha512-cbc-aes-"
  1847. "caam-qi2",
  1848. .cra_blocksize = AES_BLOCK_SIZE,
  1849. },
  1850. .setkey = aead_setkey,
  1851. .setauthsize = aead_setauthsize,
  1852. .encrypt = aead_encrypt,
  1853. .decrypt = aead_decrypt,
  1854. .ivsize = AES_BLOCK_SIZE,
  1855. .maxauthsize = SHA512_DIGEST_SIZE,
  1856. },
  1857. .caam = {
  1858. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1859. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1860. OP_ALG_AAI_HMAC_PRECOMP,
  1861. .geniv = true,
  1862. }
  1863. },
  1864. {
  1865. .aead = {
  1866. .base = {
  1867. .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
  1868. .cra_driver_name = "authenc-hmac-md5-"
  1869. "cbc-des3_ede-caam-qi2",
  1870. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1871. },
  1872. .setkey = des3_aead_setkey,
  1873. .setauthsize = aead_setauthsize,
  1874. .encrypt = aead_encrypt,
  1875. .decrypt = aead_decrypt,
  1876. .ivsize = DES3_EDE_BLOCK_SIZE,
  1877. .maxauthsize = MD5_DIGEST_SIZE,
  1878. },
  1879. .caam = {
  1880. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1881. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1882. OP_ALG_AAI_HMAC_PRECOMP,
  1883. }
  1884. },
  1885. {
  1886. .aead = {
  1887. .base = {
  1888. .cra_name = "echainiv(authenc(hmac(md5),"
  1889. "cbc(des3_ede)))",
  1890. .cra_driver_name = "echainiv-authenc-hmac-md5-"
  1891. "cbc-des3_ede-caam-qi2",
  1892. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1893. },
  1894. .setkey = des3_aead_setkey,
  1895. .setauthsize = aead_setauthsize,
  1896. .encrypt = aead_encrypt,
  1897. .decrypt = aead_decrypt,
  1898. .ivsize = DES3_EDE_BLOCK_SIZE,
  1899. .maxauthsize = MD5_DIGEST_SIZE,
  1900. },
  1901. .caam = {
  1902. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1903. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1904. OP_ALG_AAI_HMAC_PRECOMP,
  1905. .geniv = true,
  1906. }
  1907. },
  1908. {
  1909. .aead = {
  1910. .base = {
  1911. .cra_name = "authenc(hmac(sha1),"
  1912. "cbc(des3_ede))",
  1913. .cra_driver_name = "authenc-hmac-sha1-"
  1914. "cbc-des3_ede-caam-qi2",
  1915. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1916. },
  1917. .setkey = des3_aead_setkey,
  1918. .setauthsize = aead_setauthsize,
  1919. .encrypt = aead_encrypt,
  1920. .decrypt = aead_decrypt,
  1921. .ivsize = DES3_EDE_BLOCK_SIZE,
  1922. .maxauthsize = SHA1_DIGEST_SIZE,
  1923. },
  1924. .caam = {
  1925. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1926. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1927. OP_ALG_AAI_HMAC_PRECOMP,
  1928. },
  1929. },
  1930. {
  1931. .aead = {
  1932. .base = {
  1933. .cra_name = "echainiv(authenc(hmac(sha1),"
  1934. "cbc(des3_ede)))",
  1935. .cra_driver_name = "echainiv-authenc-"
  1936. "hmac-sha1-"
  1937. "cbc-des3_ede-caam-qi2",
  1938. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1939. },
  1940. .setkey = des3_aead_setkey,
  1941. .setauthsize = aead_setauthsize,
  1942. .encrypt = aead_encrypt,
  1943. .decrypt = aead_decrypt,
  1944. .ivsize = DES3_EDE_BLOCK_SIZE,
  1945. .maxauthsize = SHA1_DIGEST_SIZE,
  1946. },
  1947. .caam = {
  1948. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1949. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1950. OP_ALG_AAI_HMAC_PRECOMP,
  1951. .geniv = true,
  1952. }
  1953. },
  1954. {
  1955. .aead = {
  1956. .base = {
  1957. .cra_name = "authenc(hmac(sha224),"
  1958. "cbc(des3_ede))",
  1959. .cra_driver_name = "authenc-hmac-sha224-"
  1960. "cbc-des3_ede-caam-qi2",
  1961. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1962. },
  1963. .setkey = des3_aead_setkey,
  1964. .setauthsize = aead_setauthsize,
  1965. .encrypt = aead_encrypt,
  1966. .decrypt = aead_decrypt,
  1967. .ivsize = DES3_EDE_BLOCK_SIZE,
  1968. .maxauthsize = SHA224_DIGEST_SIZE,
  1969. },
  1970. .caam = {
  1971. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1972. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1973. OP_ALG_AAI_HMAC_PRECOMP,
  1974. },
  1975. },
  1976. {
  1977. .aead = {
  1978. .base = {
  1979. .cra_name = "echainiv(authenc(hmac(sha224),"
  1980. "cbc(des3_ede)))",
  1981. .cra_driver_name = "echainiv-authenc-"
  1982. "hmac-sha224-"
  1983. "cbc-des3_ede-caam-qi2",
  1984. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1985. },
  1986. .setkey = des3_aead_setkey,
  1987. .setauthsize = aead_setauthsize,
  1988. .encrypt = aead_encrypt,
  1989. .decrypt = aead_decrypt,
  1990. .ivsize = DES3_EDE_BLOCK_SIZE,
  1991. .maxauthsize = SHA224_DIGEST_SIZE,
  1992. },
  1993. .caam = {
  1994. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1995. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1996. OP_ALG_AAI_HMAC_PRECOMP,
  1997. .geniv = true,
  1998. }
  1999. },
  2000. {
  2001. .aead = {
  2002. .base = {
  2003. .cra_name = "authenc(hmac(sha256),"
  2004. "cbc(des3_ede))",
  2005. .cra_driver_name = "authenc-hmac-sha256-"
  2006. "cbc-des3_ede-caam-qi2",
  2007. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  2008. },
  2009. .setkey = des3_aead_setkey,
  2010. .setauthsize = aead_setauthsize,
  2011. .encrypt = aead_encrypt,
  2012. .decrypt = aead_decrypt,
  2013. .ivsize = DES3_EDE_BLOCK_SIZE,
  2014. .maxauthsize = SHA256_DIGEST_SIZE,
  2015. },
  2016. .caam = {
  2017. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  2018. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2019. OP_ALG_AAI_HMAC_PRECOMP,
  2020. },
  2021. },
  2022. {
  2023. .aead = {
  2024. .base = {
  2025. .cra_name = "echainiv(authenc(hmac(sha256),"
  2026. "cbc(des3_ede)))",
  2027. .cra_driver_name = "echainiv-authenc-"
  2028. "hmac-sha256-"
  2029. "cbc-des3_ede-caam-qi2",
  2030. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  2031. },
  2032. .setkey = des3_aead_setkey,
  2033. .setauthsize = aead_setauthsize,
  2034. .encrypt = aead_encrypt,
  2035. .decrypt = aead_decrypt,
  2036. .ivsize = DES3_EDE_BLOCK_SIZE,
  2037. .maxauthsize = SHA256_DIGEST_SIZE,
  2038. },
  2039. .caam = {
  2040. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  2041. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2042. OP_ALG_AAI_HMAC_PRECOMP,
  2043. .geniv = true,
  2044. }
  2045. },
  2046. {
  2047. .aead = {
  2048. .base = {
  2049. .cra_name = "authenc(hmac(sha384),"
  2050. "cbc(des3_ede))",
  2051. .cra_driver_name = "authenc-hmac-sha384-"
  2052. "cbc-des3_ede-caam-qi2",
  2053. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  2054. },
  2055. .setkey = des3_aead_setkey,
  2056. .setauthsize = aead_setauthsize,
  2057. .encrypt = aead_encrypt,
  2058. .decrypt = aead_decrypt,
  2059. .ivsize = DES3_EDE_BLOCK_SIZE,
  2060. .maxauthsize = SHA384_DIGEST_SIZE,
  2061. },
  2062. .caam = {
  2063. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  2064. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2065. OP_ALG_AAI_HMAC_PRECOMP,
  2066. },
  2067. },
  2068. {
  2069. .aead = {
  2070. .base = {
  2071. .cra_name = "echainiv(authenc(hmac(sha384),"
  2072. "cbc(des3_ede)))",
  2073. .cra_driver_name = "echainiv-authenc-"
  2074. "hmac-sha384-"
  2075. "cbc-des3_ede-caam-qi2",
  2076. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  2077. },
  2078. .setkey = des3_aead_setkey,
  2079. .setauthsize = aead_setauthsize,
  2080. .encrypt = aead_encrypt,
  2081. .decrypt = aead_decrypt,
  2082. .ivsize = DES3_EDE_BLOCK_SIZE,
  2083. .maxauthsize = SHA384_DIGEST_SIZE,
  2084. },
  2085. .caam = {
  2086. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  2087. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2088. OP_ALG_AAI_HMAC_PRECOMP,
  2089. .geniv = true,
  2090. }
  2091. },
  2092. {
  2093. .aead = {
  2094. .base = {
  2095. .cra_name = "authenc(hmac(sha512),"
  2096. "cbc(des3_ede))",
  2097. .cra_driver_name = "authenc-hmac-sha512-"
  2098. "cbc-des3_ede-caam-qi2",
  2099. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  2100. },
  2101. .setkey = des3_aead_setkey,
  2102. .setauthsize = aead_setauthsize,
  2103. .encrypt = aead_encrypt,
  2104. .decrypt = aead_decrypt,
  2105. .ivsize = DES3_EDE_BLOCK_SIZE,
  2106. .maxauthsize = SHA512_DIGEST_SIZE,
  2107. },
  2108. .caam = {
  2109. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  2110. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2111. OP_ALG_AAI_HMAC_PRECOMP,
  2112. },
  2113. },
  2114. {
  2115. .aead = {
  2116. .base = {
  2117. .cra_name = "echainiv(authenc(hmac(sha512),"
  2118. "cbc(des3_ede)))",
  2119. .cra_driver_name = "echainiv-authenc-"
  2120. "hmac-sha512-"
  2121. "cbc-des3_ede-caam-qi2",
  2122. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  2123. },
  2124. .setkey = des3_aead_setkey,
  2125. .setauthsize = aead_setauthsize,
  2126. .encrypt = aead_encrypt,
  2127. .decrypt = aead_decrypt,
  2128. .ivsize = DES3_EDE_BLOCK_SIZE,
  2129. .maxauthsize = SHA512_DIGEST_SIZE,
  2130. },
  2131. .caam = {
  2132. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  2133. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2134. OP_ALG_AAI_HMAC_PRECOMP,
  2135. .geniv = true,
  2136. }
  2137. },
  2138. {
  2139. .aead = {
  2140. .base = {
  2141. .cra_name = "authenc(hmac(md5),cbc(des))",
  2142. .cra_driver_name = "authenc-hmac-md5-"
  2143. "cbc-des-caam-qi2",
  2144. .cra_blocksize = DES_BLOCK_SIZE,
  2145. },
  2146. .setkey = aead_setkey,
  2147. .setauthsize = aead_setauthsize,
  2148. .encrypt = aead_encrypt,
  2149. .decrypt = aead_decrypt,
  2150. .ivsize = DES_BLOCK_SIZE,
  2151. .maxauthsize = MD5_DIGEST_SIZE,
  2152. },
  2153. .caam = {
  2154. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2155. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  2156. OP_ALG_AAI_HMAC_PRECOMP,
  2157. },
  2158. },
  2159. {
  2160. .aead = {
  2161. .base = {
  2162. .cra_name = "echainiv(authenc(hmac(md5),"
  2163. "cbc(des)))",
  2164. .cra_driver_name = "echainiv-authenc-hmac-md5-"
  2165. "cbc-des-caam-qi2",
  2166. .cra_blocksize = DES_BLOCK_SIZE,
  2167. },
  2168. .setkey = aead_setkey,
  2169. .setauthsize = aead_setauthsize,
  2170. .encrypt = aead_encrypt,
  2171. .decrypt = aead_decrypt,
  2172. .ivsize = DES_BLOCK_SIZE,
  2173. .maxauthsize = MD5_DIGEST_SIZE,
  2174. },
  2175. .caam = {
  2176. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2177. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  2178. OP_ALG_AAI_HMAC_PRECOMP,
  2179. .geniv = true,
  2180. }
  2181. },
  2182. {
  2183. .aead = {
  2184. .base = {
  2185. .cra_name = "authenc(hmac(sha1),cbc(des))",
  2186. .cra_driver_name = "authenc-hmac-sha1-"
  2187. "cbc-des-caam-qi2",
  2188. .cra_blocksize = DES_BLOCK_SIZE,
  2189. },
  2190. .setkey = aead_setkey,
  2191. .setauthsize = aead_setauthsize,
  2192. .encrypt = aead_encrypt,
  2193. .decrypt = aead_decrypt,
  2194. .ivsize = DES_BLOCK_SIZE,
  2195. .maxauthsize = SHA1_DIGEST_SIZE,
  2196. },
  2197. .caam = {
  2198. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2199. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  2200. OP_ALG_AAI_HMAC_PRECOMP,
  2201. },
  2202. },
  2203. {
  2204. .aead = {
  2205. .base = {
  2206. .cra_name = "echainiv(authenc(hmac(sha1),"
  2207. "cbc(des)))",
  2208. .cra_driver_name = "echainiv-authenc-"
  2209. "hmac-sha1-cbc-des-caam-qi2",
  2210. .cra_blocksize = DES_BLOCK_SIZE,
  2211. },
  2212. .setkey = aead_setkey,
  2213. .setauthsize = aead_setauthsize,
  2214. .encrypt = aead_encrypt,
  2215. .decrypt = aead_decrypt,
  2216. .ivsize = DES_BLOCK_SIZE,
  2217. .maxauthsize = SHA1_DIGEST_SIZE,
  2218. },
  2219. .caam = {
  2220. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2221. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  2222. OP_ALG_AAI_HMAC_PRECOMP,
  2223. .geniv = true,
  2224. }
  2225. },
  2226. {
  2227. .aead = {
  2228. .base = {
  2229. .cra_name = "authenc(hmac(sha224),cbc(des))",
  2230. .cra_driver_name = "authenc-hmac-sha224-"
  2231. "cbc-des-caam-qi2",
  2232. .cra_blocksize = DES_BLOCK_SIZE,
  2233. },
  2234. .setkey = aead_setkey,
  2235. .setauthsize = aead_setauthsize,
  2236. .encrypt = aead_encrypt,
  2237. .decrypt = aead_decrypt,
  2238. .ivsize = DES_BLOCK_SIZE,
  2239. .maxauthsize = SHA224_DIGEST_SIZE,
  2240. },
  2241. .caam = {
  2242. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2243. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2244. OP_ALG_AAI_HMAC_PRECOMP,
  2245. },
  2246. },
  2247. {
  2248. .aead = {
  2249. .base = {
  2250. .cra_name = "echainiv(authenc(hmac(sha224),"
  2251. "cbc(des)))",
  2252. .cra_driver_name = "echainiv-authenc-"
  2253. "hmac-sha224-cbc-des-"
  2254. "caam-qi2",
  2255. .cra_blocksize = DES_BLOCK_SIZE,
  2256. },
  2257. .setkey = aead_setkey,
  2258. .setauthsize = aead_setauthsize,
  2259. .encrypt = aead_encrypt,
  2260. .decrypt = aead_decrypt,
  2261. .ivsize = DES_BLOCK_SIZE,
  2262. .maxauthsize = SHA224_DIGEST_SIZE,
  2263. },
  2264. .caam = {
  2265. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2266. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2267. OP_ALG_AAI_HMAC_PRECOMP,
  2268. .geniv = true,
  2269. }
  2270. },
  2271. {
  2272. .aead = {
  2273. .base = {
  2274. .cra_name = "authenc(hmac(sha256),cbc(des))",
  2275. .cra_driver_name = "authenc-hmac-sha256-"
  2276. "cbc-des-caam-qi2",
  2277. .cra_blocksize = DES_BLOCK_SIZE,
  2278. },
  2279. .setkey = aead_setkey,
  2280. .setauthsize = aead_setauthsize,
  2281. .encrypt = aead_encrypt,
  2282. .decrypt = aead_decrypt,
  2283. .ivsize = DES_BLOCK_SIZE,
  2284. .maxauthsize = SHA256_DIGEST_SIZE,
  2285. },
  2286. .caam = {
  2287. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2288. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2289. OP_ALG_AAI_HMAC_PRECOMP,
  2290. },
  2291. },
  2292. {
  2293. .aead = {
  2294. .base = {
  2295. .cra_name = "echainiv(authenc(hmac(sha256),"
  2296. "cbc(des)))",
  2297. .cra_driver_name = "echainiv-authenc-"
  2298. "hmac-sha256-cbc-des-"
  2299. "caam-qi2",
  2300. .cra_blocksize = DES_BLOCK_SIZE,
  2301. },
  2302. .setkey = aead_setkey,
  2303. .setauthsize = aead_setauthsize,
  2304. .encrypt = aead_encrypt,
  2305. .decrypt = aead_decrypt,
  2306. .ivsize = DES_BLOCK_SIZE,
  2307. .maxauthsize = SHA256_DIGEST_SIZE,
  2308. },
  2309. .caam = {
  2310. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2311. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2312. OP_ALG_AAI_HMAC_PRECOMP,
  2313. .geniv = true,
  2314. },
  2315. },
  2316. {
  2317. .aead = {
  2318. .base = {
  2319. .cra_name = "authenc(hmac(sha384),cbc(des))",
  2320. .cra_driver_name = "authenc-hmac-sha384-"
  2321. "cbc-des-caam-qi2",
  2322. .cra_blocksize = DES_BLOCK_SIZE,
  2323. },
  2324. .setkey = aead_setkey,
  2325. .setauthsize = aead_setauthsize,
  2326. .encrypt = aead_encrypt,
  2327. .decrypt = aead_decrypt,
  2328. .ivsize = DES_BLOCK_SIZE,
  2329. .maxauthsize = SHA384_DIGEST_SIZE,
  2330. },
  2331. .caam = {
  2332. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2333. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2334. OP_ALG_AAI_HMAC_PRECOMP,
  2335. },
  2336. },
  2337. {
  2338. .aead = {
  2339. .base = {
  2340. .cra_name = "echainiv(authenc(hmac(sha384),"
  2341. "cbc(des)))",
  2342. .cra_driver_name = "echainiv-authenc-"
  2343. "hmac-sha384-cbc-des-"
  2344. "caam-qi2",
  2345. .cra_blocksize = DES_BLOCK_SIZE,
  2346. },
  2347. .setkey = aead_setkey,
  2348. .setauthsize = aead_setauthsize,
  2349. .encrypt = aead_encrypt,
  2350. .decrypt = aead_decrypt,
  2351. .ivsize = DES_BLOCK_SIZE,
  2352. .maxauthsize = SHA384_DIGEST_SIZE,
  2353. },
  2354. .caam = {
  2355. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2356. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2357. OP_ALG_AAI_HMAC_PRECOMP,
  2358. .geniv = true,
  2359. }
  2360. },
  2361. {
  2362. .aead = {
  2363. .base = {
  2364. .cra_name = "authenc(hmac(sha512),cbc(des))",
  2365. .cra_driver_name = "authenc-hmac-sha512-"
  2366. "cbc-des-caam-qi2",
  2367. .cra_blocksize = DES_BLOCK_SIZE,
  2368. },
  2369. .setkey = aead_setkey,
  2370. .setauthsize = aead_setauthsize,
  2371. .encrypt = aead_encrypt,
  2372. .decrypt = aead_decrypt,
  2373. .ivsize = DES_BLOCK_SIZE,
  2374. .maxauthsize = SHA512_DIGEST_SIZE,
  2375. },
  2376. .caam = {
  2377. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2378. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2379. OP_ALG_AAI_HMAC_PRECOMP,
  2380. }
  2381. },
  2382. {
  2383. .aead = {
  2384. .base = {
  2385. .cra_name = "echainiv(authenc(hmac(sha512),"
  2386. "cbc(des)))",
  2387. .cra_driver_name = "echainiv-authenc-"
  2388. "hmac-sha512-cbc-des-"
  2389. "caam-qi2",
  2390. .cra_blocksize = DES_BLOCK_SIZE,
  2391. },
  2392. .setkey = aead_setkey,
  2393. .setauthsize = aead_setauthsize,
  2394. .encrypt = aead_encrypt,
  2395. .decrypt = aead_decrypt,
  2396. .ivsize = DES_BLOCK_SIZE,
  2397. .maxauthsize = SHA512_DIGEST_SIZE,
  2398. },
  2399. .caam = {
  2400. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2401. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2402. OP_ALG_AAI_HMAC_PRECOMP,
  2403. .geniv = true,
  2404. }
  2405. },
  2406. {
  2407. .aead = {
  2408. .base = {
  2409. .cra_name = "authenc(hmac(md5),"
  2410. "rfc3686(ctr(aes)))",
  2411. .cra_driver_name = "authenc-hmac-md5-"
  2412. "rfc3686-ctr-aes-caam-qi2",
  2413. .cra_blocksize = 1,
  2414. },
  2415. .setkey = aead_setkey,
  2416. .setauthsize = aead_setauthsize,
  2417. .encrypt = aead_encrypt,
  2418. .decrypt = aead_decrypt,
  2419. .ivsize = CTR_RFC3686_IV_SIZE,
  2420. .maxauthsize = MD5_DIGEST_SIZE,
  2421. },
  2422. .caam = {
  2423. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2424. OP_ALG_AAI_CTR_MOD128,
  2425. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  2426. OP_ALG_AAI_HMAC_PRECOMP,
  2427. .rfc3686 = true,
  2428. },
  2429. },
  2430. {
  2431. .aead = {
  2432. .base = {
  2433. .cra_name = "seqiv(authenc("
  2434. "hmac(md5),rfc3686(ctr(aes))))",
  2435. .cra_driver_name = "seqiv-authenc-hmac-md5-"
  2436. "rfc3686-ctr-aes-caam-qi2",
  2437. .cra_blocksize = 1,
  2438. },
  2439. .setkey = aead_setkey,
  2440. .setauthsize = aead_setauthsize,
  2441. .encrypt = aead_encrypt,
  2442. .decrypt = aead_decrypt,
  2443. .ivsize = CTR_RFC3686_IV_SIZE,
  2444. .maxauthsize = MD5_DIGEST_SIZE,
  2445. },
  2446. .caam = {
  2447. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2448. OP_ALG_AAI_CTR_MOD128,
  2449. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  2450. OP_ALG_AAI_HMAC_PRECOMP,
  2451. .rfc3686 = true,
  2452. .geniv = true,
  2453. },
  2454. },
  2455. {
  2456. .aead = {
  2457. .base = {
  2458. .cra_name = "authenc(hmac(sha1),"
  2459. "rfc3686(ctr(aes)))",
  2460. .cra_driver_name = "authenc-hmac-sha1-"
  2461. "rfc3686-ctr-aes-caam-qi2",
  2462. .cra_blocksize = 1,
  2463. },
  2464. .setkey = aead_setkey,
  2465. .setauthsize = aead_setauthsize,
  2466. .encrypt = aead_encrypt,
  2467. .decrypt = aead_decrypt,
  2468. .ivsize = CTR_RFC3686_IV_SIZE,
  2469. .maxauthsize = SHA1_DIGEST_SIZE,
  2470. },
  2471. .caam = {
  2472. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2473. OP_ALG_AAI_CTR_MOD128,
  2474. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  2475. OP_ALG_AAI_HMAC_PRECOMP,
  2476. .rfc3686 = true,
  2477. },
  2478. },
  2479. {
  2480. .aead = {
  2481. .base = {
  2482. .cra_name = "seqiv(authenc("
  2483. "hmac(sha1),rfc3686(ctr(aes))))",
  2484. .cra_driver_name = "seqiv-authenc-hmac-sha1-"
  2485. "rfc3686-ctr-aes-caam-qi2",
  2486. .cra_blocksize = 1,
  2487. },
  2488. .setkey = aead_setkey,
  2489. .setauthsize = aead_setauthsize,
  2490. .encrypt = aead_encrypt,
  2491. .decrypt = aead_decrypt,
  2492. .ivsize = CTR_RFC3686_IV_SIZE,
  2493. .maxauthsize = SHA1_DIGEST_SIZE,
  2494. },
  2495. .caam = {
  2496. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2497. OP_ALG_AAI_CTR_MOD128,
  2498. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  2499. OP_ALG_AAI_HMAC_PRECOMP,
  2500. .rfc3686 = true,
  2501. .geniv = true,
  2502. },
  2503. },
  2504. {
  2505. .aead = {
  2506. .base = {
  2507. .cra_name = "authenc(hmac(sha224),"
  2508. "rfc3686(ctr(aes)))",
  2509. .cra_driver_name = "authenc-hmac-sha224-"
  2510. "rfc3686-ctr-aes-caam-qi2",
  2511. .cra_blocksize = 1,
  2512. },
  2513. .setkey = aead_setkey,
  2514. .setauthsize = aead_setauthsize,
  2515. .encrypt = aead_encrypt,
  2516. .decrypt = aead_decrypt,
  2517. .ivsize = CTR_RFC3686_IV_SIZE,
  2518. .maxauthsize = SHA224_DIGEST_SIZE,
  2519. },
  2520. .caam = {
  2521. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2522. OP_ALG_AAI_CTR_MOD128,
  2523. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2524. OP_ALG_AAI_HMAC_PRECOMP,
  2525. .rfc3686 = true,
  2526. },
  2527. },
  2528. {
  2529. .aead = {
  2530. .base = {
  2531. .cra_name = "seqiv(authenc("
  2532. "hmac(sha224),rfc3686(ctr(aes))))",
  2533. .cra_driver_name = "seqiv-authenc-hmac-sha224-"
  2534. "rfc3686-ctr-aes-caam-qi2",
  2535. .cra_blocksize = 1,
  2536. },
  2537. .setkey = aead_setkey,
  2538. .setauthsize = aead_setauthsize,
  2539. .encrypt = aead_encrypt,
  2540. .decrypt = aead_decrypt,
  2541. .ivsize = CTR_RFC3686_IV_SIZE,
  2542. .maxauthsize = SHA224_DIGEST_SIZE,
  2543. },
  2544. .caam = {
  2545. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2546. OP_ALG_AAI_CTR_MOD128,
  2547. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2548. OP_ALG_AAI_HMAC_PRECOMP,
  2549. .rfc3686 = true,
  2550. .geniv = true,
  2551. },
  2552. },
  2553. {
  2554. .aead = {
  2555. .base = {
  2556. .cra_name = "authenc(hmac(sha256),"
  2557. "rfc3686(ctr(aes)))",
  2558. .cra_driver_name = "authenc-hmac-sha256-"
  2559. "rfc3686-ctr-aes-caam-qi2",
  2560. .cra_blocksize = 1,
  2561. },
  2562. .setkey = aead_setkey,
  2563. .setauthsize = aead_setauthsize,
  2564. .encrypt = aead_encrypt,
  2565. .decrypt = aead_decrypt,
  2566. .ivsize = CTR_RFC3686_IV_SIZE,
  2567. .maxauthsize = SHA256_DIGEST_SIZE,
  2568. },
  2569. .caam = {
  2570. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2571. OP_ALG_AAI_CTR_MOD128,
  2572. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2573. OP_ALG_AAI_HMAC_PRECOMP,
  2574. .rfc3686 = true,
  2575. },
  2576. },
  2577. {
  2578. .aead = {
  2579. .base = {
  2580. .cra_name = "seqiv(authenc(hmac(sha256),"
  2581. "rfc3686(ctr(aes))))",
  2582. .cra_driver_name = "seqiv-authenc-hmac-sha256-"
  2583. "rfc3686-ctr-aes-caam-qi2",
  2584. .cra_blocksize = 1,
  2585. },
  2586. .setkey = aead_setkey,
  2587. .setauthsize = aead_setauthsize,
  2588. .encrypt = aead_encrypt,
  2589. .decrypt = aead_decrypt,
  2590. .ivsize = CTR_RFC3686_IV_SIZE,
  2591. .maxauthsize = SHA256_DIGEST_SIZE,
  2592. },
  2593. .caam = {
  2594. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2595. OP_ALG_AAI_CTR_MOD128,
  2596. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2597. OP_ALG_AAI_HMAC_PRECOMP,
  2598. .rfc3686 = true,
  2599. .geniv = true,
  2600. },
  2601. },
  2602. {
  2603. .aead = {
  2604. .base = {
  2605. .cra_name = "authenc(hmac(sha384),"
  2606. "rfc3686(ctr(aes)))",
  2607. .cra_driver_name = "authenc-hmac-sha384-"
  2608. "rfc3686-ctr-aes-caam-qi2",
  2609. .cra_blocksize = 1,
  2610. },
  2611. .setkey = aead_setkey,
  2612. .setauthsize = aead_setauthsize,
  2613. .encrypt = aead_encrypt,
  2614. .decrypt = aead_decrypt,
  2615. .ivsize = CTR_RFC3686_IV_SIZE,
  2616. .maxauthsize = SHA384_DIGEST_SIZE,
  2617. },
  2618. .caam = {
  2619. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2620. OP_ALG_AAI_CTR_MOD128,
  2621. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2622. OP_ALG_AAI_HMAC_PRECOMP,
  2623. .rfc3686 = true,
  2624. },
  2625. },
  2626. {
  2627. .aead = {
  2628. .base = {
  2629. .cra_name = "seqiv(authenc(hmac(sha384),"
  2630. "rfc3686(ctr(aes))))",
  2631. .cra_driver_name = "seqiv-authenc-hmac-sha384-"
  2632. "rfc3686-ctr-aes-caam-qi2",
  2633. .cra_blocksize = 1,
  2634. },
  2635. .setkey = aead_setkey,
  2636. .setauthsize = aead_setauthsize,
  2637. .encrypt = aead_encrypt,
  2638. .decrypt = aead_decrypt,
  2639. .ivsize = CTR_RFC3686_IV_SIZE,
  2640. .maxauthsize = SHA384_DIGEST_SIZE,
  2641. },
  2642. .caam = {
  2643. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2644. OP_ALG_AAI_CTR_MOD128,
  2645. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2646. OP_ALG_AAI_HMAC_PRECOMP,
  2647. .rfc3686 = true,
  2648. .geniv = true,
  2649. },
  2650. },
  2651. {
  2652. .aead = {
  2653. .base = {
  2654. .cra_name = "rfc7539(chacha20,poly1305)",
  2655. .cra_driver_name = "rfc7539-chacha20-poly1305-"
  2656. "caam-qi2",
  2657. .cra_blocksize = 1,
  2658. },
  2659. .setkey = chachapoly_setkey,
  2660. .setauthsize = chachapoly_setauthsize,
  2661. .encrypt = aead_encrypt,
  2662. .decrypt = aead_decrypt,
  2663. .ivsize = CHACHAPOLY_IV_SIZE,
  2664. .maxauthsize = POLY1305_DIGEST_SIZE,
  2665. },
  2666. .caam = {
  2667. .class1_alg_type = OP_ALG_ALGSEL_CHACHA20 |
  2668. OP_ALG_AAI_AEAD,
  2669. .class2_alg_type = OP_ALG_ALGSEL_POLY1305 |
  2670. OP_ALG_AAI_AEAD,
  2671. .nodkp = true,
  2672. },
  2673. },
  2674. {
  2675. .aead = {
  2676. .base = {
  2677. .cra_name = "rfc7539esp(chacha20,poly1305)",
  2678. .cra_driver_name = "rfc7539esp-chacha20-"
  2679. "poly1305-caam-qi2",
  2680. .cra_blocksize = 1,
  2681. },
  2682. .setkey = chachapoly_setkey,
  2683. .setauthsize = chachapoly_setauthsize,
  2684. .encrypt = aead_encrypt,
  2685. .decrypt = aead_decrypt,
  2686. .ivsize = 8,
  2687. .maxauthsize = POLY1305_DIGEST_SIZE,
  2688. },
  2689. .caam = {
  2690. .class1_alg_type = OP_ALG_ALGSEL_CHACHA20 |
  2691. OP_ALG_AAI_AEAD,
  2692. .class2_alg_type = OP_ALG_ALGSEL_POLY1305 |
  2693. OP_ALG_AAI_AEAD,
  2694. .nodkp = true,
  2695. },
  2696. },
  2697. {
  2698. .aead = {
  2699. .base = {
  2700. .cra_name = "authenc(hmac(sha512),"
  2701. "rfc3686(ctr(aes)))",
  2702. .cra_driver_name = "authenc-hmac-sha512-"
  2703. "rfc3686-ctr-aes-caam-qi2",
  2704. .cra_blocksize = 1,
  2705. },
  2706. .setkey = aead_setkey,
  2707. .setauthsize = aead_setauthsize,
  2708. .encrypt = aead_encrypt,
  2709. .decrypt = aead_decrypt,
  2710. .ivsize = CTR_RFC3686_IV_SIZE,
  2711. .maxauthsize = SHA512_DIGEST_SIZE,
  2712. },
  2713. .caam = {
  2714. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2715. OP_ALG_AAI_CTR_MOD128,
  2716. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2717. OP_ALG_AAI_HMAC_PRECOMP,
  2718. .rfc3686 = true,
  2719. },
  2720. },
  2721. {
  2722. .aead = {
  2723. .base = {
  2724. .cra_name = "seqiv(authenc(hmac(sha512),"
  2725. "rfc3686(ctr(aes))))",
  2726. .cra_driver_name = "seqiv-authenc-hmac-sha512-"
  2727. "rfc3686-ctr-aes-caam-qi2",
  2728. .cra_blocksize = 1,
  2729. },
  2730. .setkey = aead_setkey,
  2731. .setauthsize = aead_setauthsize,
  2732. .encrypt = aead_encrypt,
  2733. .decrypt = aead_decrypt,
  2734. .ivsize = CTR_RFC3686_IV_SIZE,
  2735. .maxauthsize = SHA512_DIGEST_SIZE,
  2736. },
  2737. .caam = {
  2738. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2739. OP_ALG_AAI_CTR_MOD128,
  2740. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2741. OP_ALG_AAI_HMAC_PRECOMP,
  2742. .rfc3686 = true,
  2743. .geniv = true,
  2744. },
  2745. },
  2746. };
  2747. static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
  2748. {
  2749. struct skcipher_alg *alg = &t_alg->skcipher;
  2750. alg->base.cra_module = THIS_MODULE;
  2751. alg->base.cra_priority = CAAM_CRA_PRIORITY;
  2752. alg->base.cra_ctxsize = sizeof(struct caam_ctx);
  2753. alg->base.cra_flags |= (CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
  2754. CRYPTO_ALG_KERN_DRIVER_ONLY);
  2755. alg->init = caam_cra_init_skcipher;
  2756. alg->exit = caam_cra_exit;
  2757. }
  2758. static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
  2759. {
  2760. struct aead_alg *alg = &t_alg->aead;
  2761. alg->base.cra_module = THIS_MODULE;
  2762. alg->base.cra_priority = CAAM_CRA_PRIORITY;
  2763. alg->base.cra_ctxsize = sizeof(struct caam_ctx);
  2764. alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
  2765. CRYPTO_ALG_KERN_DRIVER_ONLY;
  2766. alg->init = caam_cra_init_aead;
  2767. alg->exit = caam_cra_exit_aead;
  2768. }
  2769. /* max hash key is max split key size */
  2770. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  2771. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  2772. /* caam context sizes for hashes: running digest + 8 */
  2773. #define HASH_MSG_LEN 8
  2774. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  2775. enum hash_optype {
  2776. UPDATE = 0,
  2777. UPDATE_FIRST,
  2778. FINALIZE,
  2779. DIGEST,
  2780. HASH_NUM_OP
  2781. };
  2782. /**
  2783. * struct caam_hash_ctx - ahash per-session context
  2784. * @flc: Flow Contexts array
  2785. * @key: authentication key
  2786. * @flc_dma: I/O virtual addresses of the Flow Contexts
  2787. * @dev: dpseci device
  2788. * @ctx_len: size of Context Register
  2789. * @adata: hashing algorithm details
  2790. */
  2791. struct caam_hash_ctx {
  2792. struct caam_flc flc[HASH_NUM_OP];
  2793. u8 key[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  2794. dma_addr_t flc_dma[HASH_NUM_OP];
  2795. struct device *dev;
  2796. int ctx_len;
  2797. struct alginfo adata;
  2798. };
  2799. /* ahash state */
  2800. struct caam_hash_state {
  2801. struct caam_request caam_req;
  2802. dma_addr_t buf_dma;
  2803. dma_addr_t ctx_dma;
  2804. int ctx_dma_len;
  2805. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  2806. int buflen;
  2807. int next_buflen;
  2808. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  2809. int (*update)(struct ahash_request *req);
  2810. int (*final)(struct ahash_request *req);
  2811. int (*finup)(struct ahash_request *req);
  2812. };
  2813. struct caam_export_state {
  2814. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  2815. u8 caam_ctx[MAX_CTX_LEN];
  2816. int buflen;
  2817. int (*update)(struct ahash_request *req);
  2818. int (*final)(struct ahash_request *req);
  2819. int (*finup)(struct ahash_request *req);
  2820. };
  2821. /* Map current buffer in state (if length > 0) and put it in link table */
  2822. static inline int buf_map_to_qm_sg(struct device *dev,
  2823. struct dpaa2_sg_entry *qm_sg,
  2824. struct caam_hash_state *state)
  2825. {
  2826. int buflen = state->buflen;
  2827. if (!buflen)
  2828. return 0;
  2829. state->buf_dma = dma_map_single(dev, state->buf, buflen,
  2830. DMA_TO_DEVICE);
  2831. if (dma_mapping_error(dev, state->buf_dma)) {
  2832. dev_err(dev, "unable to map buf\n");
  2833. state->buf_dma = 0;
  2834. return -ENOMEM;
  2835. }
  2836. dma_to_qm_sg_one(qm_sg, state->buf_dma, buflen, 0);
  2837. return 0;
  2838. }
  2839. /* Map state->caam_ctx, and add it to link table */
  2840. static inline int ctx_map_to_qm_sg(struct device *dev,
  2841. struct caam_hash_state *state, int ctx_len,
  2842. struct dpaa2_sg_entry *qm_sg, u32 flag)
  2843. {
  2844. state->ctx_dma_len = ctx_len;
  2845. state->ctx_dma = dma_map_single(dev, state->caam_ctx, ctx_len, flag);
  2846. if (dma_mapping_error(dev, state->ctx_dma)) {
  2847. dev_err(dev, "unable to map ctx\n");
  2848. state->ctx_dma = 0;
  2849. return -ENOMEM;
  2850. }
  2851. dma_to_qm_sg_one(qm_sg, state->ctx_dma, ctx_len, 0);
  2852. return 0;
  2853. }
  2854. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  2855. {
  2856. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2857. int digestsize = crypto_ahash_digestsize(ahash);
  2858. struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev);
  2859. struct caam_flc *flc;
  2860. u32 *desc;
  2861. /* ahash_update shared descriptor */
  2862. flc = &ctx->flc[UPDATE];
  2863. desc = flc->sh_desc;
  2864. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len,
  2865. ctx->ctx_len, true, priv->sec_attr.era);
  2866. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2867. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE],
  2868. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2869. print_hex_dump_debug("ahash update shdesc@" __stringify(__LINE__)": ",
  2870. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2871. 1);
  2872. /* ahash_update_first shared descriptor */
  2873. flc = &ctx->flc[UPDATE_FIRST];
  2874. desc = flc->sh_desc;
  2875. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
  2876. ctx->ctx_len, false, priv->sec_attr.era);
  2877. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2878. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE_FIRST],
  2879. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2880. print_hex_dump_debug("ahash update first shdesc@" __stringify(__LINE__)": ",
  2881. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2882. 1);
  2883. /* ahash_final shared descriptor */
  2884. flc = &ctx->flc[FINALIZE];
  2885. desc = flc->sh_desc;
  2886. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize,
  2887. ctx->ctx_len, true, priv->sec_attr.era);
  2888. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2889. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[FINALIZE],
  2890. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2891. print_hex_dump_debug("ahash final shdesc@" __stringify(__LINE__)": ",
  2892. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2893. 1);
  2894. /* ahash_digest shared descriptor */
  2895. flc = &ctx->flc[DIGEST];
  2896. desc = flc->sh_desc;
  2897. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize,
  2898. ctx->ctx_len, false, priv->sec_attr.era);
  2899. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2900. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[DIGEST],
  2901. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2902. print_hex_dump_debug("ahash digest shdesc@" __stringify(__LINE__)": ",
  2903. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2904. 1);
  2905. return 0;
  2906. }
  2907. struct split_key_sh_result {
  2908. struct completion completion;
  2909. int err;
  2910. struct device *dev;
  2911. };
  2912. static void split_key_sh_done(void *cbk_ctx, u32 err)
  2913. {
  2914. struct split_key_sh_result *res = cbk_ctx;
  2915. dev_dbg(res->dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  2916. res->err = err ? caam_qi2_strstatus(res->dev, err) : 0;
  2917. complete(&res->completion);
  2918. }
  2919. /* Digest hash size if it is too large */
  2920. static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key,
  2921. u32 digestsize)
  2922. {
  2923. struct caam_request *req_ctx;
  2924. u32 *desc;
  2925. struct split_key_sh_result result;
  2926. dma_addr_t key_dma;
  2927. struct caam_flc *flc;
  2928. dma_addr_t flc_dma;
  2929. int ret = -ENOMEM;
  2930. struct dpaa2_fl_entry *in_fle, *out_fle;
  2931. req_ctx = kzalloc(sizeof(*req_ctx), GFP_KERNEL | GFP_DMA);
  2932. if (!req_ctx)
  2933. return -ENOMEM;
  2934. in_fle = &req_ctx->fd_flt[1];
  2935. out_fle = &req_ctx->fd_flt[0];
  2936. flc = kzalloc(sizeof(*flc), GFP_KERNEL | GFP_DMA);
  2937. if (!flc)
  2938. goto err_flc;
  2939. key_dma = dma_map_single(ctx->dev, key, *keylen, DMA_BIDIRECTIONAL);
  2940. if (dma_mapping_error(ctx->dev, key_dma)) {
  2941. dev_err(ctx->dev, "unable to map key memory\n");
  2942. goto err_key_dma;
  2943. }
  2944. desc = flc->sh_desc;
  2945. init_sh_desc(desc, 0);
  2946. /* descriptor to perform unkeyed hash on key_in */
  2947. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  2948. OP_ALG_AS_INITFINAL);
  2949. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  2950. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  2951. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  2952. LDST_SRCDST_BYTE_CONTEXT);
  2953. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2954. flc_dma = dma_map_single(ctx->dev, flc, sizeof(flc->flc) +
  2955. desc_bytes(desc), DMA_TO_DEVICE);
  2956. if (dma_mapping_error(ctx->dev, flc_dma)) {
  2957. dev_err(ctx->dev, "unable to map shared descriptor\n");
  2958. goto err_flc_dma;
  2959. }
  2960. dpaa2_fl_set_final(in_fle, true);
  2961. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  2962. dpaa2_fl_set_addr(in_fle, key_dma);
  2963. dpaa2_fl_set_len(in_fle, *keylen);
  2964. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  2965. dpaa2_fl_set_addr(out_fle, key_dma);
  2966. dpaa2_fl_set_len(out_fle, digestsize);
  2967. print_hex_dump_debug("key_in@" __stringify(__LINE__)": ",
  2968. DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1);
  2969. print_hex_dump_debug("shdesc@" __stringify(__LINE__)": ",
  2970. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2971. 1);
  2972. result.err = 0;
  2973. init_completion(&result.completion);
  2974. result.dev = ctx->dev;
  2975. req_ctx->flc = flc;
  2976. req_ctx->flc_dma = flc_dma;
  2977. req_ctx->cbk = split_key_sh_done;
  2978. req_ctx->ctx = &result;
  2979. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  2980. if (ret == -EINPROGRESS) {
  2981. /* in progress */
  2982. wait_for_completion(&result.completion);
  2983. ret = result.err;
  2984. print_hex_dump_debug("digested key@" __stringify(__LINE__)": ",
  2985. DUMP_PREFIX_ADDRESS, 16, 4, key,
  2986. digestsize, 1);
  2987. }
  2988. dma_unmap_single(ctx->dev, flc_dma, sizeof(flc->flc) + desc_bytes(desc),
  2989. DMA_TO_DEVICE);
  2990. err_flc_dma:
  2991. dma_unmap_single(ctx->dev, key_dma, *keylen, DMA_BIDIRECTIONAL);
  2992. err_key_dma:
  2993. kfree(flc);
  2994. err_flc:
  2995. kfree(req_ctx);
  2996. *keylen = digestsize;
  2997. return ret;
  2998. }
  2999. static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
  3000. unsigned int keylen)
  3001. {
  3002. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3003. unsigned int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  3004. unsigned int digestsize = crypto_ahash_digestsize(ahash);
  3005. int ret;
  3006. u8 *hashed_key = NULL;
  3007. dev_dbg(ctx->dev, "keylen %d blocksize %d\n", keylen, blocksize);
  3008. if (keylen > blocksize) {
  3009. hashed_key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
  3010. if (!hashed_key)
  3011. return -ENOMEM;
  3012. ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize);
  3013. if (ret)
  3014. goto bad_free_key;
  3015. key = hashed_key;
  3016. }
  3017. ctx->adata.keylen = keylen;
  3018. ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
  3019. OP_ALG_ALGSEL_MASK);
  3020. if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE)
  3021. goto bad_free_key;
  3022. ctx->adata.key_virt = key;
  3023. ctx->adata.key_inline = true;
  3024. /*
  3025. * In case |user key| > |derived key|, using DKP<imm,imm> would result
  3026. * in invalid opcodes (last bytes of user key) in the resulting
  3027. * descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
  3028. * addresses are needed.
  3029. */
  3030. if (keylen > ctx->adata.keylen_pad) {
  3031. memcpy(ctx->key, key, keylen);
  3032. dma_sync_single_for_device(ctx->dev, ctx->adata.key_dma,
  3033. ctx->adata.keylen_pad,
  3034. DMA_TO_DEVICE);
  3035. }
  3036. ret = ahash_set_sh_desc(ahash);
  3037. kfree(hashed_key);
  3038. return ret;
  3039. bad_free_key:
  3040. kfree(hashed_key);
  3041. return -EINVAL;
  3042. }
  3043. static inline void ahash_unmap(struct device *dev, struct ahash_edesc *edesc,
  3044. struct ahash_request *req)
  3045. {
  3046. struct caam_hash_state *state = ahash_request_ctx(req);
  3047. if (edesc->src_nents)
  3048. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  3049. if (edesc->qm_sg_bytes)
  3050. dma_unmap_single(dev, edesc->qm_sg_dma, edesc->qm_sg_bytes,
  3051. DMA_TO_DEVICE);
  3052. if (state->buf_dma) {
  3053. dma_unmap_single(dev, state->buf_dma, state->buflen,
  3054. DMA_TO_DEVICE);
  3055. state->buf_dma = 0;
  3056. }
  3057. }
  3058. static inline void ahash_unmap_ctx(struct device *dev,
  3059. struct ahash_edesc *edesc,
  3060. struct ahash_request *req, u32 flag)
  3061. {
  3062. struct caam_hash_state *state = ahash_request_ctx(req);
  3063. if (state->ctx_dma) {
  3064. dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag);
  3065. state->ctx_dma = 0;
  3066. }
  3067. ahash_unmap(dev, edesc, req);
  3068. }
  3069. static void ahash_done(void *cbk_ctx, u32 status)
  3070. {
  3071. struct crypto_async_request *areq = cbk_ctx;
  3072. struct ahash_request *req = ahash_request_cast(areq);
  3073. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3074. struct caam_hash_state *state = ahash_request_ctx(req);
  3075. struct ahash_edesc *edesc = state->caam_req.edesc;
  3076. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3077. int digestsize = crypto_ahash_digestsize(ahash);
  3078. int ecode = 0;
  3079. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  3080. if (unlikely(status))
  3081. ecode = caam_qi2_strstatus(ctx->dev, status);
  3082. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
  3083. memcpy(req->result, state->caam_ctx, digestsize);
  3084. qi_cache_free(edesc);
  3085. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  3086. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  3087. ctx->ctx_len, 1);
  3088. req->base.complete(&req->base, ecode);
  3089. }
  3090. static void ahash_done_bi(void *cbk_ctx, u32 status)
  3091. {
  3092. struct crypto_async_request *areq = cbk_ctx;
  3093. struct ahash_request *req = ahash_request_cast(areq);
  3094. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3095. struct caam_hash_state *state = ahash_request_ctx(req);
  3096. struct ahash_edesc *edesc = state->caam_req.edesc;
  3097. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3098. int ecode = 0;
  3099. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  3100. if (unlikely(status))
  3101. ecode = caam_qi2_strstatus(ctx->dev, status);
  3102. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
  3103. qi_cache_free(edesc);
  3104. scatterwalk_map_and_copy(state->buf, req->src,
  3105. req->nbytes - state->next_buflen,
  3106. state->next_buflen, 0);
  3107. state->buflen = state->next_buflen;
  3108. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3109. DUMP_PREFIX_ADDRESS, 16, 4, state->buf,
  3110. state->buflen, 1);
  3111. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  3112. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  3113. ctx->ctx_len, 1);
  3114. if (req->result)
  3115. print_hex_dump_debug("result@" __stringify(__LINE__)": ",
  3116. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  3117. crypto_ahash_digestsize(ahash), 1);
  3118. req->base.complete(&req->base, ecode);
  3119. }
  3120. static void ahash_done_ctx_src(void *cbk_ctx, u32 status)
  3121. {
  3122. struct crypto_async_request *areq = cbk_ctx;
  3123. struct ahash_request *req = ahash_request_cast(areq);
  3124. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3125. struct caam_hash_state *state = ahash_request_ctx(req);
  3126. struct ahash_edesc *edesc = state->caam_req.edesc;
  3127. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3128. int digestsize = crypto_ahash_digestsize(ahash);
  3129. int ecode = 0;
  3130. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  3131. if (unlikely(status))
  3132. ecode = caam_qi2_strstatus(ctx->dev, status);
  3133. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
  3134. memcpy(req->result, state->caam_ctx, digestsize);
  3135. qi_cache_free(edesc);
  3136. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  3137. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  3138. ctx->ctx_len, 1);
  3139. req->base.complete(&req->base, ecode);
  3140. }
  3141. static void ahash_done_ctx_dst(void *cbk_ctx, u32 status)
  3142. {
  3143. struct crypto_async_request *areq = cbk_ctx;
  3144. struct ahash_request *req = ahash_request_cast(areq);
  3145. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3146. struct caam_hash_state *state = ahash_request_ctx(req);
  3147. struct ahash_edesc *edesc = state->caam_req.edesc;
  3148. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3149. int ecode = 0;
  3150. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  3151. if (unlikely(status))
  3152. ecode = caam_qi2_strstatus(ctx->dev, status);
  3153. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
  3154. qi_cache_free(edesc);
  3155. scatterwalk_map_and_copy(state->buf, req->src,
  3156. req->nbytes - state->next_buflen,
  3157. state->next_buflen, 0);
  3158. state->buflen = state->next_buflen;
  3159. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3160. DUMP_PREFIX_ADDRESS, 16, 4, state->buf,
  3161. state->buflen, 1);
  3162. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  3163. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  3164. ctx->ctx_len, 1);
  3165. if (req->result)
  3166. print_hex_dump_debug("result@" __stringify(__LINE__)": ",
  3167. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  3168. crypto_ahash_digestsize(ahash), 1);
  3169. req->base.complete(&req->base, ecode);
  3170. }
  3171. static int ahash_update_ctx(struct ahash_request *req)
  3172. {
  3173. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3174. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3175. struct caam_hash_state *state = ahash_request_ctx(req);
  3176. struct caam_request *req_ctx = &state->caam_req;
  3177. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3178. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3179. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3180. GFP_KERNEL : GFP_ATOMIC;
  3181. u8 *buf = state->buf;
  3182. int *buflen = &state->buflen;
  3183. int *next_buflen = &state->next_buflen;
  3184. int in_len = *buflen + req->nbytes, to_hash;
  3185. int src_nents, mapped_nents, qm_sg_bytes, qm_sg_src_index;
  3186. struct ahash_edesc *edesc;
  3187. int ret = 0;
  3188. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  3189. to_hash = in_len - *next_buflen;
  3190. if (to_hash) {
  3191. struct dpaa2_sg_entry *sg_table;
  3192. int src_len = req->nbytes - *next_buflen;
  3193. src_nents = sg_nents_for_len(req->src, src_len);
  3194. if (src_nents < 0) {
  3195. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3196. return src_nents;
  3197. }
  3198. if (src_nents) {
  3199. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3200. DMA_TO_DEVICE);
  3201. if (!mapped_nents) {
  3202. dev_err(ctx->dev, "unable to DMA map source\n");
  3203. return -ENOMEM;
  3204. }
  3205. } else {
  3206. mapped_nents = 0;
  3207. }
  3208. /* allocate space for base edesc and link tables */
  3209. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3210. if (!edesc) {
  3211. dma_unmap_sg(ctx->dev, req->src, src_nents,
  3212. DMA_TO_DEVICE);
  3213. return -ENOMEM;
  3214. }
  3215. edesc->src_nents = src_nents;
  3216. qm_sg_src_index = 1 + (*buflen ? 1 : 0);
  3217. qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) *
  3218. sizeof(*sg_table);
  3219. sg_table = &edesc->sgt[0];
  3220. ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
  3221. DMA_BIDIRECTIONAL);
  3222. if (ret)
  3223. goto unmap_ctx;
  3224. ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
  3225. if (ret)
  3226. goto unmap_ctx;
  3227. if (mapped_nents) {
  3228. sg_to_qm_sg_last(req->src, src_len,
  3229. sg_table + qm_sg_src_index, 0);
  3230. } else {
  3231. dpaa2_sg_set_final(sg_table + qm_sg_src_index - 1,
  3232. true);
  3233. }
  3234. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3235. qm_sg_bytes, DMA_TO_DEVICE);
  3236. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3237. dev_err(ctx->dev, "unable to map S/G table\n");
  3238. ret = -ENOMEM;
  3239. goto unmap_ctx;
  3240. }
  3241. edesc->qm_sg_bytes = qm_sg_bytes;
  3242. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3243. dpaa2_fl_set_final(in_fle, true);
  3244. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3245. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3246. dpaa2_fl_set_len(in_fle, ctx->ctx_len + to_hash);
  3247. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3248. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3249. dpaa2_fl_set_len(out_fle, ctx->ctx_len);
  3250. req_ctx->flc = &ctx->flc[UPDATE];
  3251. req_ctx->flc_dma = ctx->flc_dma[UPDATE];
  3252. req_ctx->cbk = ahash_done_bi;
  3253. req_ctx->ctx = &req->base;
  3254. req_ctx->edesc = edesc;
  3255. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3256. if (ret != -EINPROGRESS &&
  3257. !(ret == -EBUSY &&
  3258. req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3259. goto unmap_ctx;
  3260. } else if (*next_buflen) {
  3261. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  3262. req->nbytes, 0);
  3263. *buflen = *next_buflen;
  3264. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3265. DUMP_PREFIX_ADDRESS, 16, 4, buf,
  3266. *buflen, 1);
  3267. }
  3268. return ret;
  3269. unmap_ctx:
  3270. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
  3271. qi_cache_free(edesc);
  3272. return ret;
  3273. }
  3274. static int ahash_final_ctx(struct ahash_request *req)
  3275. {
  3276. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3277. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3278. struct caam_hash_state *state = ahash_request_ctx(req);
  3279. struct caam_request *req_ctx = &state->caam_req;
  3280. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3281. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3282. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3283. GFP_KERNEL : GFP_ATOMIC;
  3284. int buflen = state->buflen;
  3285. int qm_sg_bytes;
  3286. int digestsize = crypto_ahash_digestsize(ahash);
  3287. struct ahash_edesc *edesc;
  3288. struct dpaa2_sg_entry *sg_table;
  3289. int ret;
  3290. /* allocate space for base edesc and link tables */
  3291. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3292. if (!edesc)
  3293. return -ENOMEM;
  3294. qm_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * sizeof(*sg_table);
  3295. sg_table = &edesc->sgt[0];
  3296. ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
  3297. DMA_BIDIRECTIONAL);
  3298. if (ret)
  3299. goto unmap_ctx;
  3300. ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
  3301. if (ret)
  3302. goto unmap_ctx;
  3303. dpaa2_sg_set_final(sg_table + (buflen ? 1 : 0), true);
  3304. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
  3305. DMA_TO_DEVICE);
  3306. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3307. dev_err(ctx->dev, "unable to map S/G table\n");
  3308. ret = -ENOMEM;
  3309. goto unmap_ctx;
  3310. }
  3311. edesc->qm_sg_bytes = qm_sg_bytes;
  3312. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3313. dpaa2_fl_set_final(in_fle, true);
  3314. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3315. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3316. dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen);
  3317. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3318. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3319. dpaa2_fl_set_len(out_fle, digestsize);
  3320. req_ctx->flc = &ctx->flc[FINALIZE];
  3321. req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
  3322. req_ctx->cbk = ahash_done_ctx_src;
  3323. req_ctx->ctx = &req->base;
  3324. req_ctx->edesc = edesc;
  3325. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3326. if (ret == -EINPROGRESS ||
  3327. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3328. return ret;
  3329. unmap_ctx:
  3330. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
  3331. qi_cache_free(edesc);
  3332. return ret;
  3333. }
  3334. static int ahash_finup_ctx(struct ahash_request *req)
  3335. {
  3336. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3337. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3338. struct caam_hash_state *state = ahash_request_ctx(req);
  3339. struct caam_request *req_ctx = &state->caam_req;
  3340. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3341. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3342. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3343. GFP_KERNEL : GFP_ATOMIC;
  3344. int buflen = state->buflen;
  3345. int qm_sg_bytes, qm_sg_src_index;
  3346. int src_nents, mapped_nents;
  3347. int digestsize = crypto_ahash_digestsize(ahash);
  3348. struct ahash_edesc *edesc;
  3349. struct dpaa2_sg_entry *sg_table;
  3350. int ret;
  3351. src_nents = sg_nents_for_len(req->src, req->nbytes);
  3352. if (src_nents < 0) {
  3353. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3354. return src_nents;
  3355. }
  3356. if (src_nents) {
  3357. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3358. DMA_TO_DEVICE);
  3359. if (!mapped_nents) {
  3360. dev_err(ctx->dev, "unable to DMA map source\n");
  3361. return -ENOMEM;
  3362. }
  3363. } else {
  3364. mapped_nents = 0;
  3365. }
  3366. /* allocate space for base edesc and link tables */
  3367. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3368. if (!edesc) {
  3369. dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
  3370. return -ENOMEM;
  3371. }
  3372. edesc->src_nents = src_nents;
  3373. qm_sg_src_index = 1 + (buflen ? 1 : 0);
  3374. qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) *
  3375. sizeof(*sg_table);
  3376. sg_table = &edesc->sgt[0];
  3377. ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
  3378. DMA_BIDIRECTIONAL);
  3379. if (ret)
  3380. goto unmap_ctx;
  3381. ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
  3382. if (ret)
  3383. goto unmap_ctx;
  3384. sg_to_qm_sg_last(req->src, req->nbytes, sg_table + qm_sg_src_index, 0);
  3385. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
  3386. DMA_TO_DEVICE);
  3387. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3388. dev_err(ctx->dev, "unable to map S/G table\n");
  3389. ret = -ENOMEM;
  3390. goto unmap_ctx;
  3391. }
  3392. edesc->qm_sg_bytes = qm_sg_bytes;
  3393. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3394. dpaa2_fl_set_final(in_fle, true);
  3395. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3396. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3397. dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen + req->nbytes);
  3398. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3399. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3400. dpaa2_fl_set_len(out_fle, digestsize);
  3401. req_ctx->flc = &ctx->flc[FINALIZE];
  3402. req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
  3403. req_ctx->cbk = ahash_done_ctx_src;
  3404. req_ctx->ctx = &req->base;
  3405. req_ctx->edesc = edesc;
  3406. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3407. if (ret == -EINPROGRESS ||
  3408. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3409. return ret;
  3410. unmap_ctx:
  3411. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
  3412. qi_cache_free(edesc);
  3413. return ret;
  3414. }
  3415. static int ahash_digest(struct ahash_request *req)
  3416. {
  3417. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3418. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3419. struct caam_hash_state *state = ahash_request_ctx(req);
  3420. struct caam_request *req_ctx = &state->caam_req;
  3421. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3422. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3423. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3424. GFP_KERNEL : GFP_ATOMIC;
  3425. int digestsize = crypto_ahash_digestsize(ahash);
  3426. int src_nents, mapped_nents;
  3427. struct ahash_edesc *edesc;
  3428. int ret = -ENOMEM;
  3429. state->buf_dma = 0;
  3430. src_nents = sg_nents_for_len(req->src, req->nbytes);
  3431. if (src_nents < 0) {
  3432. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3433. return src_nents;
  3434. }
  3435. if (src_nents) {
  3436. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3437. DMA_TO_DEVICE);
  3438. if (!mapped_nents) {
  3439. dev_err(ctx->dev, "unable to map source for DMA\n");
  3440. return ret;
  3441. }
  3442. } else {
  3443. mapped_nents = 0;
  3444. }
  3445. /* allocate space for base edesc and link tables */
  3446. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3447. if (!edesc) {
  3448. dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
  3449. return ret;
  3450. }
  3451. edesc->src_nents = src_nents;
  3452. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3453. if (mapped_nents > 1) {
  3454. int qm_sg_bytes;
  3455. struct dpaa2_sg_entry *sg_table = &edesc->sgt[0];
  3456. qm_sg_bytes = pad_sg_nents(mapped_nents) * sizeof(*sg_table);
  3457. sg_to_qm_sg_last(req->src, req->nbytes, sg_table, 0);
  3458. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3459. qm_sg_bytes, DMA_TO_DEVICE);
  3460. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3461. dev_err(ctx->dev, "unable to map S/G table\n");
  3462. goto unmap;
  3463. }
  3464. edesc->qm_sg_bytes = qm_sg_bytes;
  3465. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3466. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3467. } else {
  3468. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  3469. dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
  3470. }
  3471. state->ctx_dma_len = digestsize;
  3472. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
  3473. DMA_FROM_DEVICE);
  3474. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3475. dev_err(ctx->dev, "unable to map ctx\n");
  3476. state->ctx_dma = 0;
  3477. goto unmap;
  3478. }
  3479. dpaa2_fl_set_final(in_fle, true);
  3480. dpaa2_fl_set_len(in_fle, req->nbytes);
  3481. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3482. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3483. dpaa2_fl_set_len(out_fle, digestsize);
  3484. req_ctx->flc = &ctx->flc[DIGEST];
  3485. req_ctx->flc_dma = ctx->flc_dma[DIGEST];
  3486. req_ctx->cbk = ahash_done;
  3487. req_ctx->ctx = &req->base;
  3488. req_ctx->edesc = edesc;
  3489. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3490. if (ret == -EINPROGRESS ||
  3491. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3492. return ret;
  3493. unmap:
  3494. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
  3495. qi_cache_free(edesc);
  3496. return ret;
  3497. }
  3498. static int ahash_final_no_ctx(struct ahash_request *req)
  3499. {
  3500. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3501. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3502. struct caam_hash_state *state = ahash_request_ctx(req);
  3503. struct caam_request *req_ctx = &state->caam_req;
  3504. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3505. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3506. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3507. GFP_KERNEL : GFP_ATOMIC;
  3508. u8 *buf = state->buf;
  3509. int buflen = state->buflen;
  3510. int digestsize = crypto_ahash_digestsize(ahash);
  3511. struct ahash_edesc *edesc;
  3512. int ret = -ENOMEM;
  3513. /* allocate space for base edesc and link tables */
  3514. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3515. if (!edesc)
  3516. return ret;
  3517. if (buflen) {
  3518. state->buf_dma = dma_map_single(ctx->dev, buf, buflen,
  3519. DMA_TO_DEVICE);
  3520. if (dma_mapping_error(ctx->dev, state->buf_dma)) {
  3521. dev_err(ctx->dev, "unable to map src\n");
  3522. goto unmap;
  3523. }
  3524. }
  3525. state->ctx_dma_len = digestsize;
  3526. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
  3527. DMA_FROM_DEVICE);
  3528. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3529. dev_err(ctx->dev, "unable to map ctx\n");
  3530. state->ctx_dma = 0;
  3531. goto unmap;
  3532. }
  3533. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3534. dpaa2_fl_set_final(in_fle, true);
  3535. /*
  3536. * crypto engine requires the input entry to be present when
  3537. * "frame list" FD is used.
  3538. * Since engine does not support FMT=2'b11 (unused entry type), leaving
  3539. * in_fle zeroized (except for "Final" flag) is the best option.
  3540. */
  3541. if (buflen) {
  3542. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  3543. dpaa2_fl_set_addr(in_fle, state->buf_dma);
  3544. dpaa2_fl_set_len(in_fle, buflen);
  3545. }
  3546. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3547. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3548. dpaa2_fl_set_len(out_fle, digestsize);
  3549. req_ctx->flc = &ctx->flc[DIGEST];
  3550. req_ctx->flc_dma = ctx->flc_dma[DIGEST];
  3551. req_ctx->cbk = ahash_done;
  3552. req_ctx->ctx = &req->base;
  3553. req_ctx->edesc = edesc;
  3554. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3555. if (ret == -EINPROGRESS ||
  3556. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3557. return ret;
  3558. unmap:
  3559. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
  3560. qi_cache_free(edesc);
  3561. return ret;
  3562. }
  3563. static int ahash_update_no_ctx(struct ahash_request *req)
  3564. {
  3565. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3566. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3567. struct caam_hash_state *state = ahash_request_ctx(req);
  3568. struct caam_request *req_ctx = &state->caam_req;
  3569. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3570. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3571. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3572. GFP_KERNEL : GFP_ATOMIC;
  3573. u8 *buf = state->buf;
  3574. int *buflen = &state->buflen;
  3575. int *next_buflen = &state->next_buflen;
  3576. int in_len = *buflen + req->nbytes, to_hash;
  3577. int qm_sg_bytes, src_nents, mapped_nents;
  3578. struct ahash_edesc *edesc;
  3579. int ret = 0;
  3580. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  3581. to_hash = in_len - *next_buflen;
  3582. if (to_hash) {
  3583. struct dpaa2_sg_entry *sg_table;
  3584. int src_len = req->nbytes - *next_buflen;
  3585. src_nents = sg_nents_for_len(req->src, src_len);
  3586. if (src_nents < 0) {
  3587. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3588. return src_nents;
  3589. }
  3590. if (src_nents) {
  3591. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3592. DMA_TO_DEVICE);
  3593. if (!mapped_nents) {
  3594. dev_err(ctx->dev, "unable to DMA map source\n");
  3595. return -ENOMEM;
  3596. }
  3597. } else {
  3598. mapped_nents = 0;
  3599. }
  3600. /* allocate space for base edesc and link tables */
  3601. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3602. if (!edesc) {
  3603. dma_unmap_sg(ctx->dev, req->src, src_nents,
  3604. DMA_TO_DEVICE);
  3605. return -ENOMEM;
  3606. }
  3607. edesc->src_nents = src_nents;
  3608. qm_sg_bytes = pad_sg_nents(1 + mapped_nents) *
  3609. sizeof(*sg_table);
  3610. sg_table = &edesc->sgt[0];
  3611. ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
  3612. if (ret)
  3613. goto unmap_ctx;
  3614. sg_to_qm_sg_last(req->src, src_len, sg_table + 1, 0);
  3615. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3616. qm_sg_bytes, DMA_TO_DEVICE);
  3617. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3618. dev_err(ctx->dev, "unable to map S/G table\n");
  3619. ret = -ENOMEM;
  3620. goto unmap_ctx;
  3621. }
  3622. edesc->qm_sg_bytes = qm_sg_bytes;
  3623. state->ctx_dma_len = ctx->ctx_len;
  3624. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
  3625. ctx->ctx_len, DMA_FROM_DEVICE);
  3626. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3627. dev_err(ctx->dev, "unable to map ctx\n");
  3628. state->ctx_dma = 0;
  3629. ret = -ENOMEM;
  3630. goto unmap_ctx;
  3631. }
  3632. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3633. dpaa2_fl_set_final(in_fle, true);
  3634. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3635. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3636. dpaa2_fl_set_len(in_fle, to_hash);
  3637. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3638. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3639. dpaa2_fl_set_len(out_fle, ctx->ctx_len);
  3640. req_ctx->flc = &ctx->flc[UPDATE_FIRST];
  3641. req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
  3642. req_ctx->cbk = ahash_done_ctx_dst;
  3643. req_ctx->ctx = &req->base;
  3644. req_ctx->edesc = edesc;
  3645. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3646. if (ret != -EINPROGRESS &&
  3647. !(ret == -EBUSY &&
  3648. req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3649. goto unmap_ctx;
  3650. state->update = ahash_update_ctx;
  3651. state->finup = ahash_finup_ctx;
  3652. state->final = ahash_final_ctx;
  3653. } else if (*next_buflen) {
  3654. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  3655. req->nbytes, 0);
  3656. *buflen = *next_buflen;
  3657. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3658. DUMP_PREFIX_ADDRESS, 16, 4, buf,
  3659. *buflen, 1);
  3660. }
  3661. return ret;
  3662. unmap_ctx:
  3663. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE);
  3664. qi_cache_free(edesc);
  3665. return ret;
  3666. }
  3667. static int ahash_finup_no_ctx(struct ahash_request *req)
  3668. {
  3669. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3670. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3671. struct caam_hash_state *state = ahash_request_ctx(req);
  3672. struct caam_request *req_ctx = &state->caam_req;
  3673. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3674. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3675. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3676. GFP_KERNEL : GFP_ATOMIC;
  3677. int buflen = state->buflen;
  3678. int qm_sg_bytes, src_nents, mapped_nents;
  3679. int digestsize = crypto_ahash_digestsize(ahash);
  3680. struct ahash_edesc *edesc;
  3681. struct dpaa2_sg_entry *sg_table;
  3682. int ret = -ENOMEM;
  3683. src_nents = sg_nents_for_len(req->src, req->nbytes);
  3684. if (src_nents < 0) {
  3685. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3686. return src_nents;
  3687. }
  3688. if (src_nents) {
  3689. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3690. DMA_TO_DEVICE);
  3691. if (!mapped_nents) {
  3692. dev_err(ctx->dev, "unable to DMA map source\n");
  3693. return ret;
  3694. }
  3695. } else {
  3696. mapped_nents = 0;
  3697. }
  3698. /* allocate space for base edesc and link tables */
  3699. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3700. if (!edesc) {
  3701. dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
  3702. return ret;
  3703. }
  3704. edesc->src_nents = src_nents;
  3705. qm_sg_bytes = pad_sg_nents(2 + mapped_nents) * sizeof(*sg_table);
  3706. sg_table = &edesc->sgt[0];
  3707. ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
  3708. if (ret)
  3709. goto unmap;
  3710. sg_to_qm_sg_last(req->src, req->nbytes, sg_table + 1, 0);
  3711. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
  3712. DMA_TO_DEVICE);
  3713. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3714. dev_err(ctx->dev, "unable to map S/G table\n");
  3715. ret = -ENOMEM;
  3716. goto unmap;
  3717. }
  3718. edesc->qm_sg_bytes = qm_sg_bytes;
  3719. state->ctx_dma_len = digestsize;
  3720. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
  3721. DMA_FROM_DEVICE);
  3722. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3723. dev_err(ctx->dev, "unable to map ctx\n");
  3724. state->ctx_dma = 0;
  3725. ret = -ENOMEM;
  3726. goto unmap;
  3727. }
  3728. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3729. dpaa2_fl_set_final(in_fle, true);
  3730. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3731. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3732. dpaa2_fl_set_len(in_fle, buflen + req->nbytes);
  3733. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3734. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3735. dpaa2_fl_set_len(out_fle, digestsize);
  3736. req_ctx->flc = &ctx->flc[DIGEST];
  3737. req_ctx->flc_dma = ctx->flc_dma[DIGEST];
  3738. req_ctx->cbk = ahash_done;
  3739. req_ctx->ctx = &req->base;
  3740. req_ctx->edesc = edesc;
  3741. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3742. if (ret != -EINPROGRESS &&
  3743. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3744. goto unmap;
  3745. return ret;
  3746. unmap:
  3747. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
  3748. qi_cache_free(edesc);
  3749. return ret;
  3750. }
  3751. static int ahash_update_first(struct ahash_request *req)
  3752. {
  3753. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3754. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3755. struct caam_hash_state *state = ahash_request_ctx(req);
  3756. struct caam_request *req_ctx = &state->caam_req;
  3757. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3758. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3759. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3760. GFP_KERNEL : GFP_ATOMIC;
  3761. u8 *buf = state->buf;
  3762. int *buflen = &state->buflen;
  3763. int *next_buflen = &state->next_buflen;
  3764. int to_hash;
  3765. int src_nents, mapped_nents;
  3766. struct ahash_edesc *edesc;
  3767. int ret = 0;
  3768. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  3769. 1);
  3770. to_hash = req->nbytes - *next_buflen;
  3771. if (to_hash) {
  3772. struct dpaa2_sg_entry *sg_table;
  3773. int src_len = req->nbytes - *next_buflen;
  3774. src_nents = sg_nents_for_len(req->src, src_len);
  3775. if (src_nents < 0) {
  3776. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3777. return src_nents;
  3778. }
  3779. if (src_nents) {
  3780. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3781. DMA_TO_DEVICE);
  3782. if (!mapped_nents) {
  3783. dev_err(ctx->dev, "unable to map source for DMA\n");
  3784. return -ENOMEM;
  3785. }
  3786. } else {
  3787. mapped_nents = 0;
  3788. }
  3789. /* allocate space for base edesc and link tables */
  3790. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3791. if (!edesc) {
  3792. dma_unmap_sg(ctx->dev, req->src, src_nents,
  3793. DMA_TO_DEVICE);
  3794. return -ENOMEM;
  3795. }
  3796. edesc->src_nents = src_nents;
  3797. sg_table = &edesc->sgt[0];
  3798. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3799. dpaa2_fl_set_final(in_fle, true);
  3800. dpaa2_fl_set_len(in_fle, to_hash);
  3801. if (mapped_nents > 1) {
  3802. int qm_sg_bytes;
  3803. sg_to_qm_sg_last(req->src, src_len, sg_table, 0);
  3804. qm_sg_bytes = pad_sg_nents(mapped_nents) *
  3805. sizeof(*sg_table);
  3806. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3807. qm_sg_bytes,
  3808. DMA_TO_DEVICE);
  3809. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3810. dev_err(ctx->dev, "unable to map S/G table\n");
  3811. ret = -ENOMEM;
  3812. goto unmap_ctx;
  3813. }
  3814. edesc->qm_sg_bytes = qm_sg_bytes;
  3815. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3816. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3817. } else {
  3818. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  3819. dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
  3820. }
  3821. state->ctx_dma_len = ctx->ctx_len;
  3822. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
  3823. ctx->ctx_len, DMA_FROM_DEVICE);
  3824. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3825. dev_err(ctx->dev, "unable to map ctx\n");
  3826. state->ctx_dma = 0;
  3827. ret = -ENOMEM;
  3828. goto unmap_ctx;
  3829. }
  3830. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3831. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3832. dpaa2_fl_set_len(out_fle, ctx->ctx_len);
  3833. req_ctx->flc = &ctx->flc[UPDATE_FIRST];
  3834. req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
  3835. req_ctx->cbk = ahash_done_ctx_dst;
  3836. req_ctx->ctx = &req->base;
  3837. req_ctx->edesc = edesc;
  3838. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3839. if (ret != -EINPROGRESS &&
  3840. !(ret == -EBUSY && req->base.flags &
  3841. CRYPTO_TFM_REQ_MAY_BACKLOG))
  3842. goto unmap_ctx;
  3843. state->update = ahash_update_ctx;
  3844. state->finup = ahash_finup_ctx;
  3845. state->final = ahash_final_ctx;
  3846. } else if (*next_buflen) {
  3847. state->update = ahash_update_no_ctx;
  3848. state->finup = ahash_finup_no_ctx;
  3849. state->final = ahash_final_no_ctx;
  3850. scatterwalk_map_and_copy(buf, req->src, 0,
  3851. req->nbytes, 0);
  3852. *buflen = *next_buflen;
  3853. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3854. DUMP_PREFIX_ADDRESS, 16, 4, buf,
  3855. *buflen, 1);
  3856. }
  3857. return ret;
  3858. unmap_ctx:
  3859. ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE);
  3860. qi_cache_free(edesc);
  3861. return ret;
  3862. }
  3863. static int ahash_finup_first(struct ahash_request *req)
  3864. {
  3865. return ahash_digest(req);
  3866. }
  3867. static int ahash_init(struct ahash_request *req)
  3868. {
  3869. struct caam_hash_state *state = ahash_request_ctx(req);
  3870. state->update = ahash_update_first;
  3871. state->finup = ahash_finup_first;
  3872. state->final = ahash_final_no_ctx;
  3873. state->ctx_dma = 0;
  3874. state->ctx_dma_len = 0;
  3875. state->buf_dma = 0;
  3876. state->buflen = 0;
  3877. state->next_buflen = 0;
  3878. return 0;
  3879. }
  3880. static int ahash_update(struct ahash_request *req)
  3881. {
  3882. struct caam_hash_state *state = ahash_request_ctx(req);
  3883. return state->update(req);
  3884. }
  3885. static int ahash_finup(struct ahash_request *req)
  3886. {
  3887. struct caam_hash_state *state = ahash_request_ctx(req);
  3888. return state->finup(req);
  3889. }
  3890. static int ahash_final(struct ahash_request *req)
  3891. {
  3892. struct caam_hash_state *state = ahash_request_ctx(req);
  3893. return state->final(req);
  3894. }
  3895. static int ahash_export(struct ahash_request *req, void *out)
  3896. {
  3897. struct caam_hash_state *state = ahash_request_ctx(req);
  3898. struct caam_export_state *export = out;
  3899. u8 *buf = state->buf;
  3900. int len = state->buflen;
  3901. memcpy(export->buf, buf, len);
  3902. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  3903. export->buflen = len;
  3904. export->update = state->update;
  3905. export->final = state->final;
  3906. export->finup = state->finup;
  3907. return 0;
  3908. }
  3909. static int ahash_import(struct ahash_request *req, const void *in)
  3910. {
  3911. struct caam_hash_state *state = ahash_request_ctx(req);
  3912. const struct caam_export_state *export = in;
  3913. memset(state, 0, sizeof(*state));
  3914. memcpy(state->buf, export->buf, export->buflen);
  3915. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  3916. state->buflen = export->buflen;
  3917. state->update = export->update;
  3918. state->final = export->final;
  3919. state->finup = export->finup;
  3920. return 0;
  3921. }
  3922. struct caam_hash_template {
  3923. char name[CRYPTO_MAX_ALG_NAME];
  3924. char driver_name[CRYPTO_MAX_ALG_NAME];
  3925. char hmac_name[CRYPTO_MAX_ALG_NAME];
  3926. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  3927. unsigned int blocksize;
  3928. struct ahash_alg template_ahash;
  3929. u32 alg_type;
  3930. };
  3931. /* ahash descriptors */
  3932. static struct caam_hash_template driver_hash[] = {
  3933. {
  3934. .name = "sha1",
  3935. .driver_name = "sha1-caam-qi2",
  3936. .hmac_name = "hmac(sha1)",
  3937. .hmac_driver_name = "hmac-sha1-caam-qi2",
  3938. .blocksize = SHA1_BLOCK_SIZE,
  3939. .template_ahash = {
  3940. .init = ahash_init,
  3941. .update = ahash_update,
  3942. .final = ahash_final,
  3943. .finup = ahash_finup,
  3944. .digest = ahash_digest,
  3945. .export = ahash_export,
  3946. .import = ahash_import,
  3947. .setkey = ahash_setkey,
  3948. .halg = {
  3949. .digestsize = SHA1_DIGEST_SIZE,
  3950. .statesize = sizeof(struct caam_export_state),
  3951. },
  3952. },
  3953. .alg_type = OP_ALG_ALGSEL_SHA1,
  3954. }, {
  3955. .name = "sha224",
  3956. .driver_name = "sha224-caam-qi2",
  3957. .hmac_name = "hmac(sha224)",
  3958. .hmac_driver_name = "hmac-sha224-caam-qi2",
  3959. .blocksize = SHA224_BLOCK_SIZE,
  3960. .template_ahash = {
  3961. .init = ahash_init,
  3962. .update = ahash_update,
  3963. .final = ahash_final,
  3964. .finup = ahash_finup,
  3965. .digest = ahash_digest,
  3966. .export = ahash_export,
  3967. .import = ahash_import,
  3968. .setkey = ahash_setkey,
  3969. .halg = {
  3970. .digestsize = SHA224_DIGEST_SIZE,
  3971. .statesize = sizeof(struct caam_export_state),
  3972. },
  3973. },
  3974. .alg_type = OP_ALG_ALGSEL_SHA224,
  3975. }, {
  3976. .name = "sha256",
  3977. .driver_name = "sha256-caam-qi2",
  3978. .hmac_name = "hmac(sha256)",
  3979. .hmac_driver_name = "hmac-sha256-caam-qi2",
  3980. .blocksize = SHA256_BLOCK_SIZE,
  3981. .template_ahash = {
  3982. .init = ahash_init,
  3983. .update = ahash_update,
  3984. .final = ahash_final,
  3985. .finup = ahash_finup,
  3986. .digest = ahash_digest,
  3987. .export = ahash_export,
  3988. .import = ahash_import,
  3989. .setkey = ahash_setkey,
  3990. .halg = {
  3991. .digestsize = SHA256_DIGEST_SIZE,
  3992. .statesize = sizeof(struct caam_export_state),
  3993. },
  3994. },
  3995. .alg_type = OP_ALG_ALGSEL_SHA256,
  3996. }, {
  3997. .name = "sha384",
  3998. .driver_name = "sha384-caam-qi2",
  3999. .hmac_name = "hmac(sha384)",
  4000. .hmac_driver_name = "hmac-sha384-caam-qi2",
  4001. .blocksize = SHA384_BLOCK_SIZE,
  4002. .template_ahash = {
  4003. .init = ahash_init,
  4004. .update = ahash_update,
  4005. .final = ahash_final,
  4006. .finup = ahash_finup,
  4007. .digest = ahash_digest,
  4008. .export = ahash_export,
  4009. .import = ahash_import,
  4010. .setkey = ahash_setkey,
  4011. .halg = {
  4012. .digestsize = SHA384_DIGEST_SIZE,
  4013. .statesize = sizeof(struct caam_export_state),
  4014. },
  4015. },
  4016. .alg_type = OP_ALG_ALGSEL_SHA384,
  4017. }, {
  4018. .name = "sha512",
  4019. .driver_name = "sha512-caam-qi2",
  4020. .hmac_name = "hmac(sha512)",
  4021. .hmac_driver_name = "hmac-sha512-caam-qi2",
  4022. .blocksize = SHA512_BLOCK_SIZE,
  4023. .template_ahash = {
  4024. .init = ahash_init,
  4025. .update = ahash_update,
  4026. .final = ahash_final,
  4027. .finup = ahash_finup,
  4028. .digest = ahash_digest,
  4029. .export = ahash_export,
  4030. .import = ahash_import,
  4031. .setkey = ahash_setkey,
  4032. .halg = {
  4033. .digestsize = SHA512_DIGEST_SIZE,
  4034. .statesize = sizeof(struct caam_export_state),
  4035. },
  4036. },
  4037. .alg_type = OP_ALG_ALGSEL_SHA512,
  4038. }, {
  4039. .name = "md5",
  4040. .driver_name = "md5-caam-qi2",
  4041. .hmac_name = "hmac(md5)",
  4042. .hmac_driver_name = "hmac-md5-caam-qi2",
  4043. .blocksize = MD5_BLOCK_WORDS * 4,
  4044. .template_ahash = {
  4045. .init = ahash_init,
  4046. .update = ahash_update,
  4047. .final = ahash_final,
  4048. .finup = ahash_finup,
  4049. .digest = ahash_digest,
  4050. .export = ahash_export,
  4051. .import = ahash_import,
  4052. .setkey = ahash_setkey,
  4053. .halg = {
  4054. .digestsize = MD5_DIGEST_SIZE,
  4055. .statesize = sizeof(struct caam_export_state),
  4056. },
  4057. },
  4058. .alg_type = OP_ALG_ALGSEL_MD5,
  4059. }
  4060. };
  4061. struct caam_hash_alg {
  4062. struct list_head entry;
  4063. struct device *dev;
  4064. int alg_type;
  4065. struct ahash_alg ahash_alg;
  4066. };
  4067. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  4068. {
  4069. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  4070. struct crypto_alg *base = tfm->__crt_alg;
  4071. struct hash_alg_common *halg =
  4072. container_of(base, struct hash_alg_common, base);
  4073. struct ahash_alg *alg =
  4074. container_of(halg, struct ahash_alg, halg);
  4075. struct caam_hash_alg *caam_hash =
  4076. container_of(alg, struct caam_hash_alg, ahash_alg);
  4077. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  4078. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  4079. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  4080. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  4081. HASH_MSG_LEN + 32,
  4082. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  4083. HASH_MSG_LEN + 64,
  4084. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  4085. dma_addr_t dma_addr;
  4086. int i;
  4087. ctx->dev = caam_hash->dev;
  4088. if (alg->setkey) {
  4089. ctx->adata.key_dma = dma_map_single_attrs(ctx->dev, ctx->key,
  4090. ARRAY_SIZE(ctx->key),
  4091. DMA_TO_DEVICE,
  4092. DMA_ATTR_SKIP_CPU_SYNC);
  4093. if (dma_mapping_error(ctx->dev, ctx->adata.key_dma)) {
  4094. dev_err(ctx->dev, "unable to map key\n");
  4095. return -ENOMEM;
  4096. }
  4097. }
  4098. dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc, sizeof(ctx->flc),
  4099. DMA_BIDIRECTIONAL,
  4100. DMA_ATTR_SKIP_CPU_SYNC);
  4101. if (dma_mapping_error(ctx->dev, dma_addr)) {
  4102. dev_err(ctx->dev, "unable to map shared descriptors\n");
  4103. if (ctx->adata.key_dma)
  4104. dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma,
  4105. ARRAY_SIZE(ctx->key),
  4106. DMA_TO_DEVICE,
  4107. DMA_ATTR_SKIP_CPU_SYNC);
  4108. return -ENOMEM;
  4109. }
  4110. for (i = 0; i < HASH_NUM_OP; i++)
  4111. ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
  4112. /* copy descriptor header template value */
  4113. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  4114. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  4115. OP_ALG_ALGSEL_SUBMASK) >>
  4116. OP_ALG_ALGSEL_SHIFT];
  4117. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  4118. sizeof(struct caam_hash_state));
  4119. /*
  4120. * For keyed hash algorithms shared descriptors
  4121. * will be created later in setkey() callback
  4122. */
  4123. return alg->setkey ? 0 : ahash_set_sh_desc(ahash);
  4124. }
  4125. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  4126. {
  4127. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  4128. dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0], sizeof(ctx->flc),
  4129. DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
  4130. if (ctx->adata.key_dma)
  4131. dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma,
  4132. ARRAY_SIZE(ctx->key), DMA_TO_DEVICE,
  4133. DMA_ATTR_SKIP_CPU_SYNC);
  4134. }
  4135. static struct caam_hash_alg *caam_hash_alloc(struct device *dev,
  4136. struct caam_hash_template *template, bool keyed)
  4137. {
  4138. struct caam_hash_alg *t_alg;
  4139. struct ahash_alg *halg;
  4140. struct crypto_alg *alg;
  4141. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  4142. if (!t_alg)
  4143. return ERR_PTR(-ENOMEM);
  4144. t_alg->ahash_alg = template->template_ahash;
  4145. halg = &t_alg->ahash_alg;
  4146. alg = &halg->halg.base;
  4147. if (keyed) {
  4148. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  4149. template->hmac_name);
  4150. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  4151. template->hmac_driver_name);
  4152. } else {
  4153. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  4154. template->name);
  4155. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  4156. template->driver_name);
  4157. t_alg->ahash_alg.setkey = NULL;
  4158. }
  4159. alg->cra_module = THIS_MODULE;
  4160. alg->cra_init = caam_hash_cra_init;
  4161. alg->cra_exit = caam_hash_cra_exit;
  4162. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  4163. alg->cra_priority = CAAM_CRA_PRIORITY;
  4164. alg->cra_blocksize = template->blocksize;
  4165. alg->cra_alignmask = 0;
  4166. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
  4167. t_alg->alg_type = template->alg_type;
  4168. t_alg->dev = dev;
  4169. return t_alg;
  4170. }
  4171. static void dpaa2_caam_fqdan_cb(struct dpaa2_io_notification_ctx *nctx)
  4172. {
  4173. struct dpaa2_caam_priv_per_cpu *ppriv;
  4174. ppriv = container_of(nctx, struct dpaa2_caam_priv_per_cpu, nctx);
  4175. napi_schedule_irqoff(&ppriv->napi);
  4176. }
  4177. static int __cold dpaa2_dpseci_dpio_setup(struct dpaa2_caam_priv *priv)
  4178. {
  4179. struct device *dev = priv->dev;
  4180. struct dpaa2_io_notification_ctx *nctx;
  4181. struct dpaa2_caam_priv_per_cpu *ppriv;
  4182. int err, i = 0, cpu;
  4183. for_each_online_cpu(cpu) {
  4184. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4185. ppriv->priv = priv;
  4186. nctx = &ppriv->nctx;
  4187. nctx->is_cdan = 0;
  4188. nctx->id = ppriv->rsp_fqid;
  4189. nctx->desired_cpu = cpu;
  4190. nctx->cb = dpaa2_caam_fqdan_cb;
  4191. /* Register notification callbacks */
  4192. ppriv->dpio = dpaa2_io_service_select(cpu);
  4193. err = dpaa2_io_service_register(ppriv->dpio, nctx, dev);
  4194. if (unlikely(err)) {
  4195. dev_dbg(dev, "No affine DPIO for cpu %d\n", cpu);
  4196. nctx->cb = NULL;
  4197. /*
  4198. * If no affine DPIO for this core, there's probably
  4199. * none available for next cores either. Signal we want
  4200. * to retry later, in case the DPIO devices weren't
  4201. * probed yet.
  4202. */
  4203. err = -EPROBE_DEFER;
  4204. goto err;
  4205. }
  4206. ppriv->store = dpaa2_io_store_create(DPAA2_CAAM_STORE_SIZE,
  4207. dev);
  4208. if (unlikely(!ppriv->store)) {
  4209. dev_err(dev, "dpaa2_io_store_create() failed\n");
  4210. err = -ENOMEM;
  4211. goto err;
  4212. }
  4213. if (++i == priv->num_pairs)
  4214. break;
  4215. }
  4216. return 0;
  4217. err:
  4218. for_each_online_cpu(cpu) {
  4219. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4220. if (!ppriv->nctx.cb)
  4221. break;
  4222. dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx, dev);
  4223. }
  4224. for_each_online_cpu(cpu) {
  4225. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4226. if (!ppriv->store)
  4227. break;
  4228. dpaa2_io_store_destroy(ppriv->store);
  4229. }
  4230. return err;
  4231. }
  4232. static void __cold dpaa2_dpseci_dpio_free(struct dpaa2_caam_priv *priv)
  4233. {
  4234. struct dpaa2_caam_priv_per_cpu *ppriv;
  4235. int i = 0, cpu;
  4236. for_each_online_cpu(cpu) {
  4237. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4238. dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx,
  4239. priv->dev);
  4240. dpaa2_io_store_destroy(ppriv->store);
  4241. if (++i == priv->num_pairs)
  4242. return;
  4243. }
  4244. }
  4245. static int dpaa2_dpseci_bind(struct dpaa2_caam_priv *priv)
  4246. {
  4247. struct dpseci_rx_queue_cfg rx_queue_cfg;
  4248. struct device *dev = priv->dev;
  4249. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4250. struct dpaa2_caam_priv_per_cpu *ppriv;
  4251. int err = 0, i = 0, cpu;
  4252. /* Configure Rx queues */
  4253. for_each_online_cpu(cpu) {
  4254. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4255. rx_queue_cfg.options = DPSECI_QUEUE_OPT_DEST |
  4256. DPSECI_QUEUE_OPT_USER_CTX;
  4257. rx_queue_cfg.order_preservation_en = 0;
  4258. rx_queue_cfg.dest_cfg.dest_type = DPSECI_DEST_DPIO;
  4259. rx_queue_cfg.dest_cfg.dest_id = ppriv->nctx.dpio_id;
  4260. /*
  4261. * Rx priority (WQ) doesn't really matter, since we use
  4262. * pull mode, i.e. volatile dequeues from specific FQs
  4263. */
  4264. rx_queue_cfg.dest_cfg.priority = 0;
  4265. rx_queue_cfg.user_ctx = ppriv->nctx.qman64;
  4266. err = dpseci_set_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
  4267. &rx_queue_cfg);
  4268. if (err) {
  4269. dev_err(dev, "dpseci_set_rx_queue() failed with err %d\n",
  4270. err);
  4271. return err;
  4272. }
  4273. if (++i == priv->num_pairs)
  4274. break;
  4275. }
  4276. return err;
  4277. }
  4278. static void dpaa2_dpseci_congestion_free(struct dpaa2_caam_priv *priv)
  4279. {
  4280. struct device *dev = priv->dev;
  4281. if (!priv->cscn_mem)
  4282. return;
  4283. dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
  4284. kfree(priv->cscn_mem);
  4285. }
  4286. static void dpaa2_dpseci_free(struct dpaa2_caam_priv *priv)
  4287. {
  4288. struct device *dev = priv->dev;
  4289. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4290. int err;
  4291. if (DPSECI_VER(priv->major_ver, priv->minor_ver) > DPSECI_VER(5, 3)) {
  4292. err = dpseci_reset(priv->mc_io, 0, ls_dev->mc_handle);
  4293. if (err)
  4294. dev_err(dev, "dpseci_reset() failed\n");
  4295. }
  4296. dpaa2_dpseci_congestion_free(priv);
  4297. dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
  4298. }
  4299. static void dpaa2_caam_process_fd(struct dpaa2_caam_priv *priv,
  4300. const struct dpaa2_fd *fd)
  4301. {
  4302. struct caam_request *req;
  4303. u32 fd_err;
  4304. if (dpaa2_fd_get_format(fd) != dpaa2_fd_list) {
  4305. dev_err(priv->dev, "Only Frame List FD format is supported!\n");
  4306. return;
  4307. }
  4308. fd_err = dpaa2_fd_get_ctrl(fd) & FD_CTRL_ERR_MASK;
  4309. if (unlikely(fd_err))
  4310. dev_err_ratelimited(priv->dev, "FD error: %08x\n", fd_err);
  4311. /*
  4312. * FD[ADDR] is guaranteed to be valid, irrespective of errors reported
  4313. * in FD[ERR] or FD[FRC].
  4314. */
  4315. req = dpaa2_caam_iova_to_virt(priv, dpaa2_fd_get_addr(fd));
  4316. dma_unmap_single(priv->dev, req->fd_flt_dma, sizeof(req->fd_flt),
  4317. DMA_BIDIRECTIONAL);
  4318. req->cbk(req->ctx, dpaa2_fd_get_frc(fd));
  4319. }
  4320. static int dpaa2_caam_pull_fq(struct dpaa2_caam_priv_per_cpu *ppriv)
  4321. {
  4322. int err;
  4323. /* Retry while portal is busy */
  4324. do {
  4325. err = dpaa2_io_service_pull_fq(ppriv->dpio, ppriv->rsp_fqid,
  4326. ppriv->store);
  4327. } while (err == -EBUSY);
  4328. if (unlikely(err))
  4329. dev_err(ppriv->priv->dev, "dpaa2_io_service_pull err %d", err);
  4330. return err;
  4331. }
  4332. static int dpaa2_caam_store_consume(struct dpaa2_caam_priv_per_cpu *ppriv)
  4333. {
  4334. struct dpaa2_dq *dq;
  4335. int cleaned = 0, is_last;
  4336. do {
  4337. dq = dpaa2_io_store_next(ppriv->store, &is_last);
  4338. if (unlikely(!dq)) {
  4339. if (unlikely(!is_last)) {
  4340. dev_dbg(ppriv->priv->dev,
  4341. "FQ %d returned no valid frames\n",
  4342. ppriv->rsp_fqid);
  4343. /*
  4344. * MUST retry until we get some sort of
  4345. * valid response token (be it "empty dequeue"
  4346. * or a valid frame).
  4347. */
  4348. continue;
  4349. }
  4350. break;
  4351. }
  4352. /* Process FD */
  4353. dpaa2_caam_process_fd(ppriv->priv, dpaa2_dq_fd(dq));
  4354. cleaned++;
  4355. } while (!is_last);
  4356. return cleaned;
  4357. }
  4358. static int dpaa2_dpseci_poll(struct napi_struct *napi, int budget)
  4359. {
  4360. struct dpaa2_caam_priv_per_cpu *ppriv;
  4361. struct dpaa2_caam_priv *priv;
  4362. int err, cleaned = 0, store_cleaned;
  4363. ppriv = container_of(napi, struct dpaa2_caam_priv_per_cpu, napi);
  4364. priv = ppriv->priv;
  4365. if (unlikely(dpaa2_caam_pull_fq(ppriv)))
  4366. return 0;
  4367. do {
  4368. store_cleaned = dpaa2_caam_store_consume(ppriv);
  4369. cleaned += store_cleaned;
  4370. if (store_cleaned == 0 ||
  4371. cleaned > budget - DPAA2_CAAM_STORE_SIZE)
  4372. break;
  4373. /* Try to dequeue some more */
  4374. err = dpaa2_caam_pull_fq(ppriv);
  4375. if (unlikely(err))
  4376. break;
  4377. } while (1);
  4378. if (cleaned < budget) {
  4379. napi_complete_done(napi, cleaned);
  4380. err = dpaa2_io_service_rearm(ppriv->dpio, &ppriv->nctx);
  4381. if (unlikely(err))
  4382. dev_err(priv->dev, "Notification rearm failed: %d\n",
  4383. err);
  4384. }
  4385. return cleaned;
  4386. }
  4387. static int dpaa2_dpseci_congestion_setup(struct dpaa2_caam_priv *priv,
  4388. u16 token)
  4389. {
  4390. struct dpseci_congestion_notification_cfg cong_notif_cfg = { 0 };
  4391. struct device *dev = priv->dev;
  4392. int err;
  4393. /*
  4394. * Congestion group feature supported starting with DPSECI API v5.1
  4395. * and only when object has been created with this capability.
  4396. */
  4397. if ((DPSECI_VER(priv->major_ver, priv->minor_ver) < DPSECI_VER(5, 1)) ||
  4398. !(priv->dpseci_attr.options & DPSECI_OPT_HAS_CG))
  4399. return 0;
  4400. priv->cscn_mem = kzalloc(DPAA2_CSCN_SIZE + DPAA2_CSCN_ALIGN,
  4401. GFP_KERNEL | GFP_DMA);
  4402. if (!priv->cscn_mem)
  4403. return -ENOMEM;
  4404. priv->cscn_mem_aligned = PTR_ALIGN(priv->cscn_mem, DPAA2_CSCN_ALIGN);
  4405. priv->cscn_dma = dma_map_single(dev, priv->cscn_mem_aligned,
  4406. DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
  4407. if (dma_mapping_error(dev, priv->cscn_dma)) {
  4408. dev_err(dev, "Error mapping CSCN memory area\n");
  4409. err = -ENOMEM;
  4410. goto err_dma_map;
  4411. }
  4412. cong_notif_cfg.units = DPSECI_CONGESTION_UNIT_BYTES;
  4413. cong_notif_cfg.threshold_entry = DPAA2_SEC_CONG_ENTRY_THRESH;
  4414. cong_notif_cfg.threshold_exit = DPAA2_SEC_CONG_EXIT_THRESH;
  4415. cong_notif_cfg.message_ctx = (uintptr_t)priv;
  4416. cong_notif_cfg.message_iova = priv->cscn_dma;
  4417. cong_notif_cfg.notification_mode = DPSECI_CGN_MODE_WRITE_MEM_ON_ENTER |
  4418. DPSECI_CGN_MODE_WRITE_MEM_ON_EXIT |
  4419. DPSECI_CGN_MODE_COHERENT_WRITE;
  4420. err = dpseci_set_congestion_notification(priv->mc_io, 0, token,
  4421. &cong_notif_cfg);
  4422. if (err) {
  4423. dev_err(dev, "dpseci_set_congestion_notification failed\n");
  4424. goto err_set_cong;
  4425. }
  4426. return 0;
  4427. err_set_cong:
  4428. dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
  4429. err_dma_map:
  4430. kfree(priv->cscn_mem);
  4431. return err;
  4432. }
  4433. static int __cold dpaa2_dpseci_setup(struct fsl_mc_device *ls_dev)
  4434. {
  4435. struct device *dev = &ls_dev->dev;
  4436. struct dpaa2_caam_priv *priv;
  4437. struct dpaa2_caam_priv_per_cpu *ppriv;
  4438. int err, cpu;
  4439. u8 i;
  4440. priv = dev_get_drvdata(dev);
  4441. priv->dev = dev;
  4442. priv->dpsec_id = ls_dev->obj_desc.id;
  4443. /* Get a handle for the DPSECI this interface is associate with */
  4444. err = dpseci_open(priv->mc_io, 0, priv->dpsec_id, &ls_dev->mc_handle);
  4445. if (err) {
  4446. dev_err(dev, "dpseci_open() failed: %d\n", err);
  4447. goto err_open;
  4448. }
  4449. err = dpseci_get_api_version(priv->mc_io, 0, &priv->major_ver,
  4450. &priv->minor_ver);
  4451. if (err) {
  4452. dev_err(dev, "dpseci_get_api_version() failed\n");
  4453. goto err_get_vers;
  4454. }
  4455. dev_info(dev, "dpseci v%d.%d\n", priv->major_ver, priv->minor_ver);
  4456. if (DPSECI_VER(priv->major_ver, priv->minor_ver) > DPSECI_VER(5, 3)) {
  4457. err = dpseci_reset(priv->mc_io, 0, ls_dev->mc_handle);
  4458. if (err) {
  4459. dev_err(dev, "dpseci_reset() failed\n");
  4460. goto err_get_vers;
  4461. }
  4462. }
  4463. err = dpseci_get_attributes(priv->mc_io, 0, ls_dev->mc_handle,
  4464. &priv->dpseci_attr);
  4465. if (err) {
  4466. dev_err(dev, "dpseci_get_attributes() failed\n");
  4467. goto err_get_vers;
  4468. }
  4469. err = dpseci_get_sec_attr(priv->mc_io, 0, ls_dev->mc_handle,
  4470. &priv->sec_attr);
  4471. if (err) {
  4472. dev_err(dev, "dpseci_get_sec_attr() failed\n");
  4473. goto err_get_vers;
  4474. }
  4475. err = dpaa2_dpseci_congestion_setup(priv, ls_dev->mc_handle);
  4476. if (err) {
  4477. dev_err(dev, "setup_congestion() failed\n");
  4478. goto err_get_vers;
  4479. }
  4480. priv->num_pairs = min(priv->dpseci_attr.num_rx_queues,
  4481. priv->dpseci_attr.num_tx_queues);
  4482. if (priv->num_pairs > num_online_cpus()) {
  4483. dev_warn(dev, "%d queues won't be used\n",
  4484. priv->num_pairs - num_online_cpus());
  4485. priv->num_pairs = num_online_cpus();
  4486. }
  4487. for (i = 0; i < priv->dpseci_attr.num_rx_queues; i++) {
  4488. err = dpseci_get_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
  4489. &priv->rx_queue_attr[i]);
  4490. if (err) {
  4491. dev_err(dev, "dpseci_get_rx_queue() failed\n");
  4492. goto err_get_rx_queue;
  4493. }
  4494. }
  4495. for (i = 0; i < priv->dpseci_attr.num_tx_queues; i++) {
  4496. err = dpseci_get_tx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
  4497. &priv->tx_queue_attr[i]);
  4498. if (err) {
  4499. dev_err(dev, "dpseci_get_tx_queue() failed\n");
  4500. goto err_get_rx_queue;
  4501. }
  4502. }
  4503. i = 0;
  4504. for_each_online_cpu(cpu) {
  4505. u8 j;
  4506. j = i % priv->num_pairs;
  4507. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4508. ppriv->req_fqid = priv->tx_queue_attr[j].fqid;
  4509. /*
  4510. * Allow all cores to enqueue, while only some of them
  4511. * will take part in dequeuing.
  4512. */
  4513. if (++i > priv->num_pairs)
  4514. continue;
  4515. ppriv->rsp_fqid = priv->rx_queue_attr[j].fqid;
  4516. ppriv->prio = j;
  4517. dev_dbg(dev, "pair %d: rx queue %d, tx queue %d\n", j,
  4518. priv->rx_queue_attr[j].fqid,
  4519. priv->tx_queue_attr[j].fqid);
  4520. ppriv->net_dev.dev = *dev;
  4521. INIT_LIST_HEAD(&ppriv->net_dev.napi_list);
  4522. netif_napi_add_tx_weight(&ppriv->net_dev, &ppriv->napi,
  4523. dpaa2_dpseci_poll,
  4524. DPAA2_CAAM_NAPI_WEIGHT);
  4525. }
  4526. return 0;
  4527. err_get_rx_queue:
  4528. dpaa2_dpseci_congestion_free(priv);
  4529. err_get_vers:
  4530. dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
  4531. err_open:
  4532. return err;
  4533. }
  4534. static int dpaa2_dpseci_enable(struct dpaa2_caam_priv *priv)
  4535. {
  4536. struct device *dev = priv->dev;
  4537. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4538. struct dpaa2_caam_priv_per_cpu *ppriv;
  4539. int i;
  4540. for (i = 0; i < priv->num_pairs; i++) {
  4541. ppriv = per_cpu_ptr(priv->ppriv, i);
  4542. napi_enable(&ppriv->napi);
  4543. }
  4544. return dpseci_enable(priv->mc_io, 0, ls_dev->mc_handle);
  4545. }
  4546. static int __cold dpaa2_dpseci_disable(struct dpaa2_caam_priv *priv)
  4547. {
  4548. struct device *dev = priv->dev;
  4549. struct dpaa2_caam_priv_per_cpu *ppriv;
  4550. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4551. int i, err = 0, enabled;
  4552. err = dpseci_disable(priv->mc_io, 0, ls_dev->mc_handle);
  4553. if (err) {
  4554. dev_err(dev, "dpseci_disable() failed\n");
  4555. return err;
  4556. }
  4557. err = dpseci_is_enabled(priv->mc_io, 0, ls_dev->mc_handle, &enabled);
  4558. if (err) {
  4559. dev_err(dev, "dpseci_is_enabled() failed\n");
  4560. return err;
  4561. }
  4562. dev_dbg(dev, "disable: %s\n", enabled ? "false" : "true");
  4563. for (i = 0; i < priv->num_pairs; i++) {
  4564. ppriv = per_cpu_ptr(priv->ppriv, i);
  4565. napi_disable(&ppriv->napi);
  4566. netif_napi_del(&ppriv->napi);
  4567. }
  4568. return 0;
  4569. }
  4570. static struct list_head hash_list;
  4571. static int dpaa2_caam_probe(struct fsl_mc_device *dpseci_dev)
  4572. {
  4573. struct device *dev;
  4574. struct dpaa2_caam_priv *priv;
  4575. int i, err = 0;
  4576. bool registered = false;
  4577. /*
  4578. * There is no way to get CAAM endianness - there is no direct register
  4579. * space access and MC f/w does not provide this attribute.
  4580. * All DPAA2-based SoCs have little endian CAAM, thus hard-code this
  4581. * property.
  4582. */
  4583. caam_little_end = true;
  4584. caam_imx = false;
  4585. dev = &dpseci_dev->dev;
  4586. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  4587. if (!priv)
  4588. return -ENOMEM;
  4589. dev_set_drvdata(dev, priv);
  4590. priv->domain = iommu_get_domain_for_dev(dev);
  4591. qi_cache = kmem_cache_create("dpaa2_caamqicache", CAAM_QI_MEMCACHE_SIZE,
  4592. 0, SLAB_CACHE_DMA, NULL);
  4593. if (!qi_cache) {
  4594. dev_err(dev, "Can't allocate SEC cache\n");
  4595. return -ENOMEM;
  4596. }
  4597. err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(49));
  4598. if (err) {
  4599. dev_err(dev, "dma_set_mask_and_coherent() failed\n");
  4600. goto err_dma_mask;
  4601. }
  4602. /* Obtain a MC portal */
  4603. err = fsl_mc_portal_allocate(dpseci_dev, 0, &priv->mc_io);
  4604. if (err) {
  4605. if (err == -ENXIO)
  4606. err = -EPROBE_DEFER;
  4607. else
  4608. dev_err(dev, "MC portal allocation failed\n");
  4609. goto err_dma_mask;
  4610. }
  4611. priv->ppriv = alloc_percpu(*priv->ppriv);
  4612. if (!priv->ppriv) {
  4613. dev_err(dev, "alloc_percpu() failed\n");
  4614. err = -ENOMEM;
  4615. goto err_alloc_ppriv;
  4616. }
  4617. /* DPSECI initialization */
  4618. err = dpaa2_dpseci_setup(dpseci_dev);
  4619. if (err) {
  4620. dev_err(dev, "dpaa2_dpseci_setup() failed\n");
  4621. goto err_dpseci_setup;
  4622. }
  4623. /* DPIO */
  4624. err = dpaa2_dpseci_dpio_setup(priv);
  4625. if (err) {
  4626. dev_err_probe(dev, err, "dpaa2_dpseci_dpio_setup() failed\n");
  4627. goto err_dpio_setup;
  4628. }
  4629. /* DPSECI binding to DPIO */
  4630. err = dpaa2_dpseci_bind(priv);
  4631. if (err) {
  4632. dev_err(dev, "dpaa2_dpseci_bind() failed\n");
  4633. goto err_bind;
  4634. }
  4635. /* DPSECI enable */
  4636. err = dpaa2_dpseci_enable(priv);
  4637. if (err) {
  4638. dev_err(dev, "dpaa2_dpseci_enable() failed\n");
  4639. goto err_bind;
  4640. }
  4641. dpaa2_dpseci_debugfs_init(priv);
  4642. /* register crypto algorithms the device supports */
  4643. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  4644. struct caam_skcipher_alg *t_alg = driver_algs + i;
  4645. u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
  4646. /* Skip DES algorithms if not supported by device */
  4647. if (!priv->sec_attr.des_acc_num &&
  4648. (alg_sel == OP_ALG_ALGSEL_3DES ||
  4649. alg_sel == OP_ALG_ALGSEL_DES))
  4650. continue;
  4651. /* Skip AES algorithms if not supported by device */
  4652. if (!priv->sec_attr.aes_acc_num &&
  4653. alg_sel == OP_ALG_ALGSEL_AES)
  4654. continue;
  4655. /* Skip CHACHA20 algorithms if not supported by device */
  4656. if (alg_sel == OP_ALG_ALGSEL_CHACHA20 &&
  4657. !priv->sec_attr.ccha_acc_num)
  4658. continue;
  4659. t_alg->caam.dev = dev;
  4660. caam_skcipher_alg_init(t_alg);
  4661. err = crypto_register_skcipher(&t_alg->skcipher);
  4662. if (err) {
  4663. dev_warn(dev, "%s alg registration failed: %d\n",
  4664. t_alg->skcipher.base.cra_driver_name, err);
  4665. continue;
  4666. }
  4667. t_alg->registered = true;
  4668. registered = true;
  4669. }
  4670. for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
  4671. struct caam_aead_alg *t_alg = driver_aeads + i;
  4672. u32 c1_alg_sel = t_alg->caam.class1_alg_type &
  4673. OP_ALG_ALGSEL_MASK;
  4674. u32 c2_alg_sel = t_alg->caam.class2_alg_type &
  4675. OP_ALG_ALGSEL_MASK;
  4676. /* Skip DES algorithms if not supported by device */
  4677. if (!priv->sec_attr.des_acc_num &&
  4678. (c1_alg_sel == OP_ALG_ALGSEL_3DES ||
  4679. c1_alg_sel == OP_ALG_ALGSEL_DES))
  4680. continue;
  4681. /* Skip AES algorithms if not supported by device */
  4682. if (!priv->sec_attr.aes_acc_num &&
  4683. c1_alg_sel == OP_ALG_ALGSEL_AES)
  4684. continue;
  4685. /* Skip CHACHA20 algorithms if not supported by device */
  4686. if (c1_alg_sel == OP_ALG_ALGSEL_CHACHA20 &&
  4687. !priv->sec_attr.ccha_acc_num)
  4688. continue;
  4689. /* Skip POLY1305 algorithms if not supported by device */
  4690. if (c2_alg_sel == OP_ALG_ALGSEL_POLY1305 &&
  4691. !priv->sec_attr.ptha_acc_num)
  4692. continue;
  4693. /*
  4694. * Skip algorithms requiring message digests
  4695. * if MD not supported by device.
  4696. */
  4697. if ((c2_alg_sel & ~OP_ALG_ALGSEL_SUBMASK) == 0x40 &&
  4698. !priv->sec_attr.md_acc_num)
  4699. continue;
  4700. t_alg->caam.dev = dev;
  4701. caam_aead_alg_init(t_alg);
  4702. err = crypto_register_aead(&t_alg->aead);
  4703. if (err) {
  4704. dev_warn(dev, "%s alg registration failed: %d\n",
  4705. t_alg->aead.base.cra_driver_name, err);
  4706. continue;
  4707. }
  4708. t_alg->registered = true;
  4709. registered = true;
  4710. }
  4711. if (registered)
  4712. dev_info(dev, "algorithms registered in /proc/crypto\n");
  4713. /* register hash algorithms the device supports */
  4714. INIT_LIST_HEAD(&hash_list);
  4715. /*
  4716. * Skip registration of any hashing algorithms if MD block
  4717. * is not present.
  4718. */
  4719. if (!priv->sec_attr.md_acc_num)
  4720. return 0;
  4721. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  4722. struct caam_hash_alg *t_alg;
  4723. struct caam_hash_template *alg = driver_hash + i;
  4724. /* register hmac version */
  4725. t_alg = caam_hash_alloc(dev, alg, true);
  4726. if (IS_ERR(t_alg)) {
  4727. err = PTR_ERR(t_alg);
  4728. dev_warn(dev, "%s hash alg allocation failed: %d\n",
  4729. alg->hmac_driver_name, err);
  4730. continue;
  4731. }
  4732. err = crypto_register_ahash(&t_alg->ahash_alg);
  4733. if (err) {
  4734. dev_warn(dev, "%s alg registration failed: %d\n",
  4735. t_alg->ahash_alg.halg.base.cra_driver_name,
  4736. err);
  4737. kfree(t_alg);
  4738. } else {
  4739. list_add_tail(&t_alg->entry, &hash_list);
  4740. }
  4741. /* register unkeyed version */
  4742. t_alg = caam_hash_alloc(dev, alg, false);
  4743. if (IS_ERR(t_alg)) {
  4744. err = PTR_ERR(t_alg);
  4745. dev_warn(dev, "%s alg allocation failed: %d\n",
  4746. alg->driver_name, err);
  4747. continue;
  4748. }
  4749. err = crypto_register_ahash(&t_alg->ahash_alg);
  4750. if (err) {
  4751. dev_warn(dev, "%s alg registration failed: %d\n",
  4752. t_alg->ahash_alg.halg.base.cra_driver_name,
  4753. err);
  4754. kfree(t_alg);
  4755. } else {
  4756. list_add_tail(&t_alg->entry, &hash_list);
  4757. }
  4758. }
  4759. if (!list_empty(&hash_list))
  4760. dev_info(dev, "hash algorithms registered in /proc/crypto\n");
  4761. return err;
  4762. err_bind:
  4763. dpaa2_dpseci_dpio_free(priv);
  4764. err_dpio_setup:
  4765. dpaa2_dpseci_free(priv);
  4766. err_dpseci_setup:
  4767. free_percpu(priv->ppriv);
  4768. err_alloc_ppriv:
  4769. fsl_mc_portal_free(priv->mc_io);
  4770. err_dma_mask:
  4771. kmem_cache_destroy(qi_cache);
  4772. return err;
  4773. }
  4774. static int __cold dpaa2_caam_remove(struct fsl_mc_device *ls_dev)
  4775. {
  4776. struct device *dev;
  4777. struct dpaa2_caam_priv *priv;
  4778. int i;
  4779. dev = &ls_dev->dev;
  4780. priv = dev_get_drvdata(dev);
  4781. dpaa2_dpseci_debugfs_exit(priv);
  4782. for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
  4783. struct caam_aead_alg *t_alg = driver_aeads + i;
  4784. if (t_alg->registered)
  4785. crypto_unregister_aead(&t_alg->aead);
  4786. }
  4787. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  4788. struct caam_skcipher_alg *t_alg = driver_algs + i;
  4789. if (t_alg->registered)
  4790. crypto_unregister_skcipher(&t_alg->skcipher);
  4791. }
  4792. if (hash_list.next) {
  4793. struct caam_hash_alg *t_hash_alg, *p;
  4794. list_for_each_entry_safe(t_hash_alg, p, &hash_list, entry) {
  4795. crypto_unregister_ahash(&t_hash_alg->ahash_alg);
  4796. list_del(&t_hash_alg->entry);
  4797. kfree(t_hash_alg);
  4798. }
  4799. }
  4800. dpaa2_dpseci_disable(priv);
  4801. dpaa2_dpseci_dpio_free(priv);
  4802. dpaa2_dpseci_free(priv);
  4803. free_percpu(priv->ppriv);
  4804. fsl_mc_portal_free(priv->mc_io);
  4805. kmem_cache_destroy(qi_cache);
  4806. return 0;
  4807. }
  4808. int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req)
  4809. {
  4810. struct dpaa2_fd fd;
  4811. struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
  4812. struct dpaa2_caam_priv_per_cpu *ppriv;
  4813. int err = 0, i;
  4814. if (IS_ERR(req))
  4815. return PTR_ERR(req);
  4816. if (priv->cscn_mem) {
  4817. dma_sync_single_for_cpu(priv->dev, priv->cscn_dma,
  4818. DPAA2_CSCN_SIZE,
  4819. DMA_FROM_DEVICE);
  4820. if (unlikely(dpaa2_cscn_state_congested(priv->cscn_mem_aligned))) {
  4821. dev_dbg_ratelimited(dev, "Dropping request\n");
  4822. return -EBUSY;
  4823. }
  4824. }
  4825. dpaa2_fl_set_flc(&req->fd_flt[1], req->flc_dma);
  4826. req->fd_flt_dma = dma_map_single(dev, req->fd_flt, sizeof(req->fd_flt),
  4827. DMA_BIDIRECTIONAL);
  4828. if (dma_mapping_error(dev, req->fd_flt_dma)) {
  4829. dev_err(dev, "DMA mapping error for QI enqueue request\n");
  4830. goto err_out;
  4831. }
  4832. memset(&fd, 0, sizeof(fd));
  4833. dpaa2_fd_set_format(&fd, dpaa2_fd_list);
  4834. dpaa2_fd_set_addr(&fd, req->fd_flt_dma);
  4835. dpaa2_fd_set_len(&fd, dpaa2_fl_get_len(&req->fd_flt[1]));
  4836. dpaa2_fd_set_flc(&fd, req->flc_dma);
  4837. ppriv = raw_cpu_ptr(priv->ppriv);
  4838. for (i = 0; i < (priv->dpseci_attr.num_tx_queues << 1); i++) {
  4839. err = dpaa2_io_service_enqueue_fq(ppriv->dpio, ppriv->req_fqid,
  4840. &fd);
  4841. if (err != -EBUSY)
  4842. break;
  4843. cpu_relax();
  4844. }
  4845. if (unlikely(err)) {
  4846. dev_err_ratelimited(dev, "Error enqueuing frame: %d\n", err);
  4847. goto err_out;
  4848. }
  4849. return -EINPROGRESS;
  4850. err_out:
  4851. dma_unmap_single(dev, req->fd_flt_dma, sizeof(req->fd_flt),
  4852. DMA_BIDIRECTIONAL);
  4853. return -EIO;
  4854. }
  4855. EXPORT_SYMBOL(dpaa2_caam_enqueue);
  4856. static const struct fsl_mc_device_id dpaa2_caam_match_id_table[] = {
  4857. {
  4858. .vendor = FSL_MC_VENDOR_FREESCALE,
  4859. .obj_type = "dpseci",
  4860. },
  4861. { .vendor = 0x0 }
  4862. };
  4863. MODULE_DEVICE_TABLE(fslmc, dpaa2_caam_match_id_table);
  4864. static struct fsl_mc_driver dpaa2_caam_driver = {
  4865. .driver = {
  4866. .name = KBUILD_MODNAME,
  4867. .owner = THIS_MODULE,
  4868. },
  4869. .probe = dpaa2_caam_probe,
  4870. .remove = dpaa2_caam_remove,
  4871. .match_id_table = dpaa2_caam_match_id_table
  4872. };
  4873. MODULE_LICENSE("Dual BSD/GPL");
  4874. MODULE_AUTHOR("Freescale Semiconductor, Inc");
  4875. MODULE_DESCRIPTION("Freescale DPAA2 CAAM Driver");
  4876. module_fsl_mc_driver(dpaa2_caam_driver);