aspeed-hace-hash.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (c) 2021 Aspeed Technology Inc.
  4. */
  5. #include "aspeed-hace.h"
  6. #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
  7. #define AHASH_DBG(h, fmt, ...) \
  8. dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
  9. #else
  10. #define AHASH_DBG(h, fmt, ...) \
  11. dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
  12. #endif
  13. /* Initialization Vectors for SHA-family */
  14. static const __be32 sha1_iv[8] = {
  15. cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  16. cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  17. cpu_to_be32(SHA1_H4), 0, 0, 0
  18. };
  19. static const __be32 sha224_iv[8] = {
  20. cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  21. cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  22. cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  23. cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  24. };
  25. static const __be32 sha256_iv[8] = {
  26. cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  27. cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  28. cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  29. cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  30. };
  31. static const __be64 sha384_iv[8] = {
  32. cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  33. cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  34. cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  35. cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7)
  36. };
  37. static const __be64 sha512_iv[8] = {
  38. cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  39. cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  40. cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  41. cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7)
  42. };
  43. static const __be32 sha512_224_iv[16] = {
  44. cpu_to_be32(0xC8373D8CUL), cpu_to_be32(0xA24D5419UL),
  45. cpu_to_be32(0x6699E173UL), cpu_to_be32(0xD6D4DC89UL),
  46. cpu_to_be32(0xAEB7FA1DUL), cpu_to_be32(0x829CFF32UL),
  47. cpu_to_be32(0x14D59D67UL), cpu_to_be32(0xCF9F2F58UL),
  48. cpu_to_be32(0x692B6D0FUL), cpu_to_be32(0xA84DD47BUL),
  49. cpu_to_be32(0x736FE377UL), cpu_to_be32(0x4289C404UL),
  50. cpu_to_be32(0xA8859D3FUL), cpu_to_be32(0xC8361D6AUL),
  51. cpu_to_be32(0xADE61211UL), cpu_to_be32(0xA192D691UL)
  52. };
  53. static const __be32 sha512_256_iv[16] = {
  54. cpu_to_be32(0x94213122UL), cpu_to_be32(0x2CF72BFCUL),
  55. cpu_to_be32(0xA35F559FUL), cpu_to_be32(0xC2644CC8UL),
  56. cpu_to_be32(0x6BB89323UL), cpu_to_be32(0x51B1536FUL),
  57. cpu_to_be32(0x19773896UL), cpu_to_be32(0xBDEA4059UL),
  58. cpu_to_be32(0xE23E2896UL), cpu_to_be32(0xE3FF8EA8UL),
  59. cpu_to_be32(0x251E5EBEUL), cpu_to_be32(0x92398653UL),
  60. cpu_to_be32(0xFC99012BUL), cpu_to_be32(0xAAB8852CUL),
  61. cpu_to_be32(0xDC2DB70EUL), cpu_to_be32(0xA22CC581UL)
  62. };
  63. /* The purpose of this padding is to ensure that the padded message is a
  64. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  65. * The bit "1" is appended at the end of the message followed by
  66. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  67. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  68. * is appended.
  69. *
  70. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  71. * - if message length < 56 bytes then padlen = 56 - message length
  72. * - else padlen = 64 + 56 - message length
  73. *
  74. * For SHA384/SHA512, padlen is calculated as followed:
  75. * - if message length < 112 bytes then padlen = 112 - message length
  76. * - else padlen = 128 + 112 - message length
  77. */
  78. static void aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev,
  79. struct aspeed_sham_reqctx *rctx)
  80. {
  81. unsigned int index, padlen;
  82. __be64 bits[2];
  83. AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags);
  84. switch (rctx->flags & SHA_FLAGS_MASK) {
  85. case SHA_FLAGS_SHA1:
  86. case SHA_FLAGS_SHA224:
  87. case SHA_FLAGS_SHA256:
  88. bits[0] = cpu_to_be64(rctx->digcnt[0] << 3);
  89. index = rctx->bufcnt & 0x3f;
  90. padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
  91. *(rctx->buffer + rctx->bufcnt) = 0x80;
  92. memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1);
  93. memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 8);
  94. rctx->bufcnt += padlen + 8;
  95. break;
  96. default:
  97. bits[1] = cpu_to_be64(rctx->digcnt[0] << 3);
  98. bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 |
  99. rctx->digcnt[0] >> 61);
  100. index = rctx->bufcnt & 0x7f;
  101. padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
  102. *(rctx->buffer + rctx->bufcnt) = 0x80;
  103. memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1);
  104. memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 16);
  105. rctx->bufcnt += padlen + 16;
  106. break;
  107. }
  108. }
  109. /*
  110. * Prepare DMA buffer before hardware engine
  111. * processing.
  112. */
  113. static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev)
  114. {
  115. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  116. struct ahash_request *req = hash_engine->req;
  117. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  118. int length, remain;
  119. length = rctx->total + rctx->bufcnt;
  120. remain = length % rctx->block_size;
  121. AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain);
  122. if (rctx->bufcnt)
  123. memcpy(hash_engine->ahash_src_addr, rctx->buffer, rctx->bufcnt);
  124. if (rctx->total + rctx->bufcnt < ASPEED_CRYPTO_SRC_DMA_BUF_LEN) {
  125. scatterwalk_map_and_copy(hash_engine->ahash_src_addr +
  126. rctx->bufcnt, rctx->src_sg,
  127. rctx->offset, rctx->total - remain, 0);
  128. rctx->offset += rctx->total - remain;
  129. } else {
  130. dev_warn(hace_dev->dev, "Hash data length is too large\n");
  131. return -EINVAL;
  132. }
  133. scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg,
  134. rctx->offset, remain, 0);
  135. rctx->bufcnt = remain;
  136. rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
  137. SHA512_DIGEST_SIZE,
  138. DMA_BIDIRECTIONAL);
  139. if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
  140. dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
  141. return -ENOMEM;
  142. }
  143. hash_engine->src_length = length - remain;
  144. hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
  145. hash_engine->digest_dma = rctx->digest_dma_addr;
  146. return 0;
  147. }
  148. /*
  149. * Prepare DMA buffer as SG list buffer before
  150. * hardware engine processing.
  151. */
  152. static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev)
  153. {
  154. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  155. struct ahash_request *req = hash_engine->req;
  156. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  157. struct aspeed_sg_list *src_list;
  158. struct scatterlist *s;
  159. int length, remain, sg_len, i;
  160. int rc = 0;
  161. remain = (rctx->total + rctx->bufcnt) % rctx->block_size;
  162. length = rctx->total + rctx->bufcnt - remain;
  163. AHASH_DBG(hace_dev, "%s:0x%x, %s:%zu, %s:0x%x, %s:0x%x\n",
  164. "rctx total", rctx->total, "bufcnt", rctx->bufcnt,
  165. "length", length, "remain", remain);
  166. sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
  167. DMA_TO_DEVICE);
  168. if (!sg_len) {
  169. dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
  170. rc = -ENOMEM;
  171. goto end;
  172. }
  173. src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr;
  174. rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
  175. SHA512_DIGEST_SIZE,
  176. DMA_BIDIRECTIONAL);
  177. if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
  178. dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
  179. rc = -ENOMEM;
  180. goto free_src_sg;
  181. }
  182. if (rctx->bufcnt != 0) {
  183. u32 phy_addr;
  184. u32 len;
  185. rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
  186. rctx->buffer,
  187. rctx->block_size * 2,
  188. DMA_TO_DEVICE);
  189. if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
  190. dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
  191. rc = -ENOMEM;
  192. goto free_rctx_digest;
  193. }
  194. phy_addr = rctx->buffer_dma_addr;
  195. len = rctx->bufcnt;
  196. length -= len;
  197. /* Last sg list */
  198. if (length == 0)
  199. len |= HASH_SG_LAST_LIST;
  200. src_list[0].phy_addr = cpu_to_le32(phy_addr);
  201. src_list[0].len = cpu_to_le32(len);
  202. src_list++;
  203. }
  204. if (length != 0) {
  205. for_each_sg(rctx->src_sg, s, sg_len, i) {
  206. u32 phy_addr = sg_dma_address(s);
  207. u32 len = sg_dma_len(s);
  208. if (length > len)
  209. length -= len;
  210. else {
  211. /* Last sg list */
  212. len = length;
  213. len |= HASH_SG_LAST_LIST;
  214. length = 0;
  215. }
  216. src_list[i].phy_addr = cpu_to_le32(phy_addr);
  217. src_list[i].len = cpu_to_le32(len);
  218. }
  219. }
  220. if (length != 0) {
  221. rc = -EINVAL;
  222. goto free_rctx_buffer;
  223. }
  224. rctx->offset = rctx->total - remain;
  225. hash_engine->src_length = rctx->total + rctx->bufcnt - remain;
  226. hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
  227. hash_engine->digest_dma = rctx->digest_dma_addr;
  228. return 0;
  229. free_rctx_buffer:
  230. if (rctx->bufcnt != 0)
  231. dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
  232. rctx->block_size * 2, DMA_TO_DEVICE);
  233. free_rctx_digest:
  234. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  235. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  236. free_src_sg:
  237. dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
  238. DMA_TO_DEVICE);
  239. end:
  240. return rc;
  241. }
  242. static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev)
  243. {
  244. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  245. struct ahash_request *req = hash_engine->req;
  246. AHASH_DBG(hace_dev, "\n");
  247. hash_engine->flags &= ~CRYPTO_FLAGS_BUSY;
  248. crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req, 0);
  249. return 0;
  250. }
  251. /*
  252. * Copy digest to the corresponding request result.
  253. * This function will be called at final() stage.
  254. */
  255. static int aspeed_ahash_transfer(struct aspeed_hace_dev *hace_dev)
  256. {
  257. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  258. struct ahash_request *req = hash_engine->req;
  259. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  260. AHASH_DBG(hace_dev, "\n");
  261. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  262. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  263. dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
  264. rctx->block_size * 2, DMA_TO_DEVICE);
  265. memcpy(req->result, rctx->digest, rctx->digsize);
  266. return aspeed_ahash_complete(hace_dev);
  267. }
  268. /*
  269. * Trigger hardware engines to do the math.
  270. */
  271. static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev,
  272. aspeed_hace_fn_t resume)
  273. {
  274. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  275. struct ahash_request *req = hash_engine->req;
  276. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  277. AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n",
  278. &hash_engine->src_dma, &hash_engine->digest_dma,
  279. hash_engine->src_length);
  280. rctx->cmd |= HASH_CMD_INT_ENABLE;
  281. hash_engine->resume = resume;
  282. ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC);
  283. ast_hace_write(hace_dev, hash_engine->digest_dma,
  284. ASPEED_HACE_HASH_DIGEST_BUFF);
  285. ast_hace_write(hace_dev, hash_engine->digest_dma,
  286. ASPEED_HACE_HASH_KEY_BUFF);
  287. ast_hace_write(hace_dev, hash_engine->src_length,
  288. ASPEED_HACE_HASH_DATA_LEN);
  289. /* Memory barrier to ensure all data setup before engine starts */
  290. mb();
  291. ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD);
  292. return -EINPROGRESS;
  293. }
  294. /*
  295. * HMAC resume aims to do the second pass produces
  296. * the final HMAC code derived from the inner hash
  297. * result and the outer key.
  298. */
  299. static int aspeed_ahash_hmac_resume(struct aspeed_hace_dev *hace_dev)
  300. {
  301. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  302. struct ahash_request *req = hash_engine->req;
  303. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  304. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  305. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  306. struct aspeed_sha_hmac_ctx *bctx = tctx->base;
  307. int rc = 0;
  308. AHASH_DBG(hace_dev, "\n");
  309. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  310. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  311. dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
  312. rctx->block_size * 2, DMA_TO_DEVICE);
  313. /* o key pad + hash sum 1 */
  314. memcpy(rctx->buffer, bctx->opad, rctx->block_size);
  315. memcpy(rctx->buffer + rctx->block_size, rctx->digest, rctx->digsize);
  316. rctx->bufcnt = rctx->block_size + rctx->digsize;
  317. rctx->digcnt[0] = rctx->block_size + rctx->digsize;
  318. aspeed_ahash_fill_padding(hace_dev, rctx);
  319. memcpy(rctx->digest, rctx->sha_iv, rctx->ivsize);
  320. rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
  321. SHA512_DIGEST_SIZE,
  322. DMA_BIDIRECTIONAL);
  323. if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
  324. dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
  325. rc = -ENOMEM;
  326. goto end;
  327. }
  328. rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer,
  329. rctx->block_size * 2,
  330. DMA_TO_DEVICE);
  331. if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
  332. dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
  333. rc = -ENOMEM;
  334. goto free_rctx_digest;
  335. }
  336. hash_engine->src_dma = rctx->buffer_dma_addr;
  337. hash_engine->src_length = rctx->bufcnt;
  338. hash_engine->digest_dma = rctx->digest_dma_addr;
  339. return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer);
  340. free_rctx_digest:
  341. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  342. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  343. end:
  344. return rc;
  345. }
  346. static int aspeed_ahash_req_final(struct aspeed_hace_dev *hace_dev)
  347. {
  348. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  349. struct ahash_request *req = hash_engine->req;
  350. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  351. int rc = 0;
  352. AHASH_DBG(hace_dev, "\n");
  353. aspeed_ahash_fill_padding(hace_dev, rctx);
  354. rctx->digest_dma_addr = dma_map_single(hace_dev->dev,
  355. rctx->digest,
  356. SHA512_DIGEST_SIZE,
  357. DMA_BIDIRECTIONAL);
  358. if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
  359. dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
  360. rc = -ENOMEM;
  361. goto end;
  362. }
  363. rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
  364. rctx->buffer,
  365. rctx->block_size * 2,
  366. DMA_TO_DEVICE);
  367. if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
  368. dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
  369. rc = -ENOMEM;
  370. goto free_rctx_digest;
  371. }
  372. hash_engine->src_dma = rctx->buffer_dma_addr;
  373. hash_engine->src_length = rctx->bufcnt;
  374. hash_engine->digest_dma = rctx->digest_dma_addr;
  375. if (rctx->flags & SHA_FLAGS_HMAC)
  376. return aspeed_hace_ahash_trigger(hace_dev,
  377. aspeed_ahash_hmac_resume);
  378. return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer);
  379. free_rctx_digest:
  380. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  381. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  382. end:
  383. return rc;
  384. }
  385. static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev)
  386. {
  387. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  388. struct ahash_request *req = hash_engine->req;
  389. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  390. AHASH_DBG(hace_dev, "\n");
  391. dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
  392. DMA_TO_DEVICE);
  393. if (rctx->bufcnt != 0)
  394. dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
  395. rctx->block_size * 2,
  396. DMA_TO_DEVICE);
  397. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  398. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  399. scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg, rctx->offset,
  400. rctx->total - rctx->offset, 0);
  401. rctx->bufcnt = rctx->total - rctx->offset;
  402. rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL;
  403. if (rctx->flags & SHA_FLAGS_FINUP)
  404. return aspeed_ahash_req_final(hace_dev);
  405. return aspeed_ahash_complete(hace_dev);
  406. }
  407. static int aspeed_ahash_update_resume(struct aspeed_hace_dev *hace_dev)
  408. {
  409. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  410. struct ahash_request *req = hash_engine->req;
  411. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  412. AHASH_DBG(hace_dev, "\n");
  413. dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
  414. SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
  415. if (rctx->flags & SHA_FLAGS_FINUP)
  416. return aspeed_ahash_req_final(hace_dev);
  417. return aspeed_ahash_complete(hace_dev);
  418. }
  419. static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev)
  420. {
  421. struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
  422. struct ahash_request *req = hash_engine->req;
  423. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  424. aspeed_hace_fn_t resume;
  425. int ret;
  426. AHASH_DBG(hace_dev, "\n");
  427. if (hace_dev->version == AST2600_VERSION) {
  428. rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL;
  429. resume = aspeed_ahash_update_resume_sg;
  430. } else {
  431. resume = aspeed_ahash_update_resume;
  432. }
  433. ret = hash_engine->dma_prepare(hace_dev);
  434. if (ret)
  435. return ret;
  436. return aspeed_hace_ahash_trigger(hace_dev, resume);
  437. }
  438. static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev,
  439. struct ahash_request *req)
  440. {
  441. return crypto_transfer_hash_request_to_engine(
  442. hace_dev->crypt_engine_hash, req);
  443. }
  444. static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq)
  445. {
  446. struct ahash_request *req = ahash_request_cast(areq);
  447. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  448. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  449. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  450. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  451. struct aspeed_engine_hash *hash_engine;
  452. int ret = 0;
  453. hash_engine = &hace_dev->hash_engine;
  454. hash_engine->flags |= CRYPTO_FLAGS_BUSY;
  455. if (rctx->op == SHA_OP_UPDATE)
  456. ret = aspeed_ahash_req_update(hace_dev);
  457. else if (rctx->op == SHA_OP_FINAL)
  458. ret = aspeed_ahash_req_final(hace_dev);
  459. if (ret != -EINPROGRESS)
  460. return ret;
  461. return 0;
  462. }
  463. static int aspeed_ahash_prepare_request(struct crypto_engine *engine,
  464. void *areq)
  465. {
  466. struct ahash_request *req = ahash_request_cast(areq);
  467. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  468. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  469. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  470. struct aspeed_engine_hash *hash_engine;
  471. hash_engine = &hace_dev->hash_engine;
  472. hash_engine->req = req;
  473. if (hace_dev->version == AST2600_VERSION)
  474. hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg;
  475. else
  476. hash_engine->dma_prepare = aspeed_ahash_dma_prepare;
  477. return 0;
  478. }
  479. static int aspeed_sham_update(struct ahash_request *req)
  480. {
  481. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  482. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  483. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  484. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  485. AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
  486. rctx->total = req->nbytes;
  487. rctx->src_sg = req->src;
  488. rctx->offset = 0;
  489. rctx->src_nents = sg_nents(req->src);
  490. rctx->op = SHA_OP_UPDATE;
  491. rctx->digcnt[0] += rctx->total;
  492. if (rctx->digcnt[0] < rctx->total)
  493. rctx->digcnt[1]++;
  494. if (rctx->bufcnt + rctx->total < rctx->block_size) {
  495. scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt,
  496. rctx->src_sg, rctx->offset,
  497. rctx->total, 0);
  498. rctx->bufcnt += rctx->total;
  499. return 0;
  500. }
  501. return aspeed_hace_hash_handle_queue(hace_dev, req);
  502. }
  503. static int aspeed_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
  504. const u8 *data, unsigned int len, u8 *out)
  505. {
  506. SHASH_DESC_ON_STACK(shash, tfm);
  507. shash->tfm = tfm;
  508. return crypto_shash_digest(shash, data, len, out);
  509. }
  510. static int aspeed_sham_final(struct ahash_request *req)
  511. {
  512. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  513. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  514. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  515. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  516. AHASH_DBG(hace_dev, "req->nbytes:%d, rctx->total:%d\n",
  517. req->nbytes, rctx->total);
  518. rctx->op = SHA_OP_FINAL;
  519. return aspeed_hace_hash_handle_queue(hace_dev, req);
  520. }
  521. static int aspeed_sham_finup(struct ahash_request *req)
  522. {
  523. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  524. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  525. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  526. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  527. int rc1, rc2;
  528. AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
  529. rctx->flags |= SHA_FLAGS_FINUP;
  530. rc1 = aspeed_sham_update(req);
  531. if (rc1 == -EINPROGRESS || rc1 == -EBUSY)
  532. return rc1;
  533. /*
  534. * final() has to be always called to cleanup resources
  535. * even if update() failed, except EINPROGRESS
  536. */
  537. rc2 = aspeed_sham_final(req);
  538. return rc1 ? : rc2;
  539. }
  540. static int aspeed_sham_init(struct ahash_request *req)
  541. {
  542. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  543. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  544. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  545. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  546. struct aspeed_sha_hmac_ctx *bctx = tctx->base;
  547. AHASH_DBG(hace_dev, "%s: digest size:%d\n",
  548. crypto_tfm_alg_name(&tfm->base),
  549. crypto_ahash_digestsize(tfm));
  550. rctx->cmd = HASH_CMD_ACC_MODE;
  551. rctx->flags = 0;
  552. switch (crypto_ahash_digestsize(tfm)) {
  553. case SHA1_DIGEST_SIZE:
  554. rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP;
  555. rctx->flags |= SHA_FLAGS_SHA1;
  556. rctx->digsize = SHA1_DIGEST_SIZE;
  557. rctx->block_size = SHA1_BLOCK_SIZE;
  558. rctx->sha_iv = sha1_iv;
  559. rctx->ivsize = 32;
  560. memcpy(rctx->digest, sha1_iv, rctx->ivsize);
  561. break;
  562. case SHA224_DIGEST_SIZE:
  563. rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP;
  564. rctx->flags |= SHA_FLAGS_SHA224;
  565. rctx->digsize = SHA224_DIGEST_SIZE;
  566. rctx->block_size = SHA224_BLOCK_SIZE;
  567. rctx->sha_iv = sha224_iv;
  568. rctx->ivsize = 32;
  569. memcpy(rctx->digest, sha224_iv, rctx->ivsize);
  570. break;
  571. case SHA256_DIGEST_SIZE:
  572. rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP;
  573. rctx->flags |= SHA_FLAGS_SHA256;
  574. rctx->digsize = SHA256_DIGEST_SIZE;
  575. rctx->block_size = SHA256_BLOCK_SIZE;
  576. rctx->sha_iv = sha256_iv;
  577. rctx->ivsize = 32;
  578. memcpy(rctx->digest, sha256_iv, rctx->ivsize);
  579. break;
  580. case SHA384_DIGEST_SIZE:
  581. rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 |
  582. HASH_CMD_SHA_SWAP;
  583. rctx->flags |= SHA_FLAGS_SHA384;
  584. rctx->digsize = SHA384_DIGEST_SIZE;
  585. rctx->block_size = SHA384_BLOCK_SIZE;
  586. rctx->sha_iv = (const __be32 *)sha384_iv;
  587. rctx->ivsize = 64;
  588. memcpy(rctx->digest, sha384_iv, rctx->ivsize);
  589. break;
  590. case SHA512_DIGEST_SIZE:
  591. rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 |
  592. HASH_CMD_SHA_SWAP;
  593. rctx->flags |= SHA_FLAGS_SHA512;
  594. rctx->digsize = SHA512_DIGEST_SIZE;
  595. rctx->block_size = SHA512_BLOCK_SIZE;
  596. rctx->sha_iv = (const __be32 *)sha512_iv;
  597. rctx->ivsize = 64;
  598. memcpy(rctx->digest, sha512_iv, rctx->ivsize);
  599. break;
  600. default:
  601. dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
  602. crypto_ahash_digestsize(tfm));
  603. return -EINVAL;
  604. }
  605. rctx->bufcnt = 0;
  606. rctx->total = 0;
  607. rctx->digcnt[0] = 0;
  608. rctx->digcnt[1] = 0;
  609. /* HMAC init */
  610. if (tctx->flags & SHA_FLAGS_HMAC) {
  611. rctx->digcnt[0] = rctx->block_size;
  612. rctx->bufcnt = rctx->block_size;
  613. memcpy(rctx->buffer, bctx->ipad, rctx->block_size);
  614. rctx->flags |= SHA_FLAGS_HMAC;
  615. }
  616. return 0;
  617. }
  618. static int aspeed_sha512s_init(struct ahash_request *req)
  619. {
  620. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  621. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  622. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  623. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  624. struct aspeed_sha_hmac_ctx *bctx = tctx->base;
  625. AHASH_DBG(hace_dev, "digest size: %d\n", crypto_ahash_digestsize(tfm));
  626. rctx->cmd = HASH_CMD_ACC_MODE;
  627. rctx->flags = 0;
  628. switch (crypto_ahash_digestsize(tfm)) {
  629. case SHA224_DIGEST_SIZE:
  630. rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512_224 |
  631. HASH_CMD_SHA_SWAP;
  632. rctx->flags |= SHA_FLAGS_SHA512_224;
  633. rctx->digsize = SHA224_DIGEST_SIZE;
  634. rctx->block_size = SHA512_BLOCK_SIZE;
  635. rctx->sha_iv = sha512_224_iv;
  636. rctx->ivsize = 64;
  637. memcpy(rctx->digest, sha512_224_iv, rctx->ivsize);
  638. break;
  639. case SHA256_DIGEST_SIZE:
  640. rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512_256 |
  641. HASH_CMD_SHA_SWAP;
  642. rctx->flags |= SHA_FLAGS_SHA512_256;
  643. rctx->digsize = SHA256_DIGEST_SIZE;
  644. rctx->block_size = SHA512_BLOCK_SIZE;
  645. rctx->sha_iv = sha512_256_iv;
  646. rctx->ivsize = 64;
  647. memcpy(rctx->digest, sha512_256_iv, rctx->ivsize);
  648. break;
  649. default:
  650. dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
  651. crypto_ahash_digestsize(tfm));
  652. return -EINVAL;
  653. }
  654. rctx->bufcnt = 0;
  655. rctx->total = 0;
  656. rctx->digcnt[0] = 0;
  657. rctx->digcnt[1] = 0;
  658. /* HMAC init */
  659. if (tctx->flags & SHA_FLAGS_HMAC) {
  660. rctx->digcnt[0] = rctx->block_size;
  661. rctx->bufcnt = rctx->block_size;
  662. memcpy(rctx->buffer, bctx->ipad, rctx->block_size);
  663. rctx->flags |= SHA_FLAGS_HMAC;
  664. }
  665. return 0;
  666. }
  667. static int aspeed_sham_digest(struct ahash_request *req)
  668. {
  669. return aspeed_sham_init(req) ? : aspeed_sham_finup(req);
  670. }
  671. static int aspeed_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
  672. unsigned int keylen)
  673. {
  674. struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  675. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  676. struct aspeed_sha_hmac_ctx *bctx = tctx->base;
  677. int ds = crypto_shash_digestsize(bctx->shash);
  678. int bs = crypto_shash_blocksize(bctx->shash);
  679. int err = 0;
  680. int i;
  681. AHASH_DBG(hace_dev, "%s: keylen:%d\n", crypto_tfm_alg_name(&tfm->base),
  682. keylen);
  683. if (keylen > bs) {
  684. err = aspeed_sham_shash_digest(bctx->shash,
  685. crypto_shash_get_flags(bctx->shash),
  686. key, keylen, bctx->ipad);
  687. if (err)
  688. return err;
  689. keylen = ds;
  690. } else {
  691. memcpy(bctx->ipad, key, keylen);
  692. }
  693. memset(bctx->ipad + keylen, 0, bs - keylen);
  694. memcpy(bctx->opad, bctx->ipad, bs);
  695. for (i = 0; i < bs; i++) {
  696. bctx->ipad[i] ^= HMAC_IPAD_VALUE;
  697. bctx->opad[i] ^= HMAC_OPAD_VALUE;
  698. }
  699. return err;
  700. }
  701. static int aspeed_sham_cra_init(struct crypto_tfm *tfm)
  702. {
  703. struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
  704. struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm);
  705. struct aspeed_hace_alg *ast_alg;
  706. ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash);
  707. tctx->hace_dev = ast_alg->hace_dev;
  708. tctx->flags = 0;
  709. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  710. sizeof(struct aspeed_sham_reqctx));
  711. if (ast_alg->alg_base) {
  712. /* hmac related */
  713. struct aspeed_sha_hmac_ctx *bctx = tctx->base;
  714. tctx->flags |= SHA_FLAGS_HMAC;
  715. bctx->shash = crypto_alloc_shash(ast_alg->alg_base, 0,
  716. CRYPTO_ALG_NEED_FALLBACK);
  717. if (IS_ERR(bctx->shash)) {
  718. dev_warn(ast_alg->hace_dev->dev,
  719. "base driver '%s' could not be loaded.\n",
  720. ast_alg->alg_base);
  721. return PTR_ERR(bctx->shash);
  722. }
  723. }
  724. tctx->enginectx.op.do_one_request = aspeed_ahash_do_request;
  725. tctx->enginectx.op.prepare_request = aspeed_ahash_prepare_request;
  726. tctx->enginectx.op.unprepare_request = NULL;
  727. return 0;
  728. }
  729. static void aspeed_sham_cra_exit(struct crypto_tfm *tfm)
  730. {
  731. struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm);
  732. struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
  733. AHASH_DBG(hace_dev, "%s\n", crypto_tfm_alg_name(tfm));
  734. if (tctx->flags & SHA_FLAGS_HMAC) {
  735. struct aspeed_sha_hmac_ctx *bctx = tctx->base;
  736. crypto_free_shash(bctx->shash);
  737. }
  738. }
  739. static int aspeed_sham_export(struct ahash_request *req, void *out)
  740. {
  741. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  742. memcpy(out, rctx, sizeof(*rctx));
  743. return 0;
  744. }
  745. static int aspeed_sham_import(struct ahash_request *req, const void *in)
  746. {
  747. struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
  748. memcpy(rctx, in, sizeof(*rctx));
  749. return 0;
  750. }
  751. static struct aspeed_hace_alg aspeed_ahash_algs[] = {
  752. {
  753. .alg.ahash = {
  754. .init = aspeed_sham_init,
  755. .update = aspeed_sham_update,
  756. .final = aspeed_sham_final,
  757. .finup = aspeed_sham_finup,
  758. .digest = aspeed_sham_digest,
  759. .export = aspeed_sham_export,
  760. .import = aspeed_sham_import,
  761. .halg = {
  762. .digestsize = SHA1_DIGEST_SIZE,
  763. .statesize = sizeof(struct aspeed_sham_reqctx),
  764. .base = {
  765. .cra_name = "sha1",
  766. .cra_driver_name = "aspeed-sha1",
  767. .cra_priority = 300,
  768. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  769. CRYPTO_ALG_ASYNC |
  770. CRYPTO_ALG_KERN_DRIVER_ONLY,
  771. .cra_blocksize = SHA1_BLOCK_SIZE,
  772. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  773. .cra_alignmask = 0,
  774. .cra_module = THIS_MODULE,
  775. .cra_init = aspeed_sham_cra_init,
  776. .cra_exit = aspeed_sham_cra_exit,
  777. }
  778. }
  779. },
  780. },
  781. {
  782. .alg.ahash = {
  783. .init = aspeed_sham_init,
  784. .update = aspeed_sham_update,
  785. .final = aspeed_sham_final,
  786. .finup = aspeed_sham_finup,
  787. .digest = aspeed_sham_digest,
  788. .export = aspeed_sham_export,
  789. .import = aspeed_sham_import,
  790. .halg = {
  791. .digestsize = SHA256_DIGEST_SIZE,
  792. .statesize = sizeof(struct aspeed_sham_reqctx),
  793. .base = {
  794. .cra_name = "sha256",
  795. .cra_driver_name = "aspeed-sha256",
  796. .cra_priority = 300,
  797. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  798. CRYPTO_ALG_ASYNC |
  799. CRYPTO_ALG_KERN_DRIVER_ONLY,
  800. .cra_blocksize = SHA256_BLOCK_SIZE,
  801. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  802. .cra_alignmask = 0,
  803. .cra_module = THIS_MODULE,
  804. .cra_init = aspeed_sham_cra_init,
  805. .cra_exit = aspeed_sham_cra_exit,
  806. }
  807. }
  808. },
  809. },
  810. {
  811. .alg.ahash = {
  812. .init = aspeed_sham_init,
  813. .update = aspeed_sham_update,
  814. .final = aspeed_sham_final,
  815. .finup = aspeed_sham_finup,
  816. .digest = aspeed_sham_digest,
  817. .export = aspeed_sham_export,
  818. .import = aspeed_sham_import,
  819. .halg = {
  820. .digestsize = SHA224_DIGEST_SIZE,
  821. .statesize = sizeof(struct aspeed_sham_reqctx),
  822. .base = {
  823. .cra_name = "sha224",
  824. .cra_driver_name = "aspeed-sha224",
  825. .cra_priority = 300,
  826. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  827. CRYPTO_ALG_ASYNC |
  828. CRYPTO_ALG_KERN_DRIVER_ONLY,
  829. .cra_blocksize = SHA224_BLOCK_SIZE,
  830. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  831. .cra_alignmask = 0,
  832. .cra_module = THIS_MODULE,
  833. .cra_init = aspeed_sham_cra_init,
  834. .cra_exit = aspeed_sham_cra_exit,
  835. }
  836. }
  837. },
  838. },
  839. {
  840. .alg_base = "sha1",
  841. .alg.ahash = {
  842. .init = aspeed_sham_init,
  843. .update = aspeed_sham_update,
  844. .final = aspeed_sham_final,
  845. .finup = aspeed_sham_finup,
  846. .digest = aspeed_sham_digest,
  847. .setkey = aspeed_sham_setkey,
  848. .export = aspeed_sham_export,
  849. .import = aspeed_sham_import,
  850. .halg = {
  851. .digestsize = SHA1_DIGEST_SIZE,
  852. .statesize = sizeof(struct aspeed_sham_reqctx),
  853. .base = {
  854. .cra_name = "hmac(sha1)",
  855. .cra_driver_name = "aspeed-hmac-sha1",
  856. .cra_priority = 300,
  857. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  858. CRYPTO_ALG_ASYNC |
  859. CRYPTO_ALG_KERN_DRIVER_ONLY,
  860. .cra_blocksize = SHA1_BLOCK_SIZE,
  861. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  862. sizeof(struct aspeed_sha_hmac_ctx),
  863. .cra_alignmask = 0,
  864. .cra_module = THIS_MODULE,
  865. .cra_init = aspeed_sham_cra_init,
  866. .cra_exit = aspeed_sham_cra_exit,
  867. }
  868. }
  869. },
  870. },
  871. {
  872. .alg_base = "sha224",
  873. .alg.ahash = {
  874. .init = aspeed_sham_init,
  875. .update = aspeed_sham_update,
  876. .final = aspeed_sham_final,
  877. .finup = aspeed_sham_finup,
  878. .digest = aspeed_sham_digest,
  879. .setkey = aspeed_sham_setkey,
  880. .export = aspeed_sham_export,
  881. .import = aspeed_sham_import,
  882. .halg = {
  883. .digestsize = SHA224_DIGEST_SIZE,
  884. .statesize = sizeof(struct aspeed_sham_reqctx),
  885. .base = {
  886. .cra_name = "hmac(sha224)",
  887. .cra_driver_name = "aspeed-hmac-sha224",
  888. .cra_priority = 300,
  889. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  890. CRYPTO_ALG_ASYNC |
  891. CRYPTO_ALG_KERN_DRIVER_ONLY,
  892. .cra_blocksize = SHA224_BLOCK_SIZE,
  893. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  894. sizeof(struct aspeed_sha_hmac_ctx),
  895. .cra_alignmask = 0,
  896. .cra_module = THIS_MODULE,
  897. .cra_init = aspeed_sham_cra_init,
  898. .cra_exit = aspeed_sham_cra_exit,
  899. }
  900. }
  901. },
  902. },
  903. {
  904. .alg_base = "sha256",
  905. .alg.ahash = {
  906. .init = aspeed_sham_init,
  907. .update = aspeed_sham_update,
  908. .final = aspeed_sham_final,
  909. .finup = aspeed_sham_finup,
  910. .digest = aspeed_sham_digest,
  911. .setkey = aspeed_sham_setkey,
  912. .export = aspeed_sham_export,
  913. .import = aspeed_sham_import,
  914. .halg = {
  915. .digestsize = SHA256_DIGEST_SIZE,
  916. .statesize = sizeof(struct aspeed_sham_reqctx),
  917. .base = {
  918. .cra_name = "hmac(sha256)",
  919. .cra_driver_name = "aspeed-hmac-sha256",
  920. .cra_priority = 300,
  921. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  922. CRYPTO_ALG_ASYNC |
  923. CRYPTO_ALG_KERN_DRIVER_ONLY,
  924. .cra_blocksize = SHA256_BLOCK_SIZE,
  925. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  926. sizeof(struct aspeed_sha_hmac_ctx),
  927. .cra_alignmask = 0,
  928. .cra_module = THIS_MODULE,
  929. .cra_init = aspeed_sham_cra_init,
  930. .cra_exit = aspeed_sham_cra_exit,
  931. }
  932. }
  933. },
  934. },
  935. };
  936. static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = {
  937. {
  938. .alg.ahash = {
  939. .init = aspeed_sham_init,
  940. .update = aspeed_sham_update,
  941. .final = aspeed_sham_final,
  942. .finup = aspeed_sham_finup,
  943. .digest = aspeed_sham_digest,
  944. .export = aspeed_sham_export,
  945. .import = aspeed_sham_import,
  946. .halg = {
  947. .digestsize = SHA384_DIGEST_SIZE,
  948. .statesize = sizeof(struct aspeed_sham_reqctx),
  949. .base = {
  950. .cra_name = "sha384",
  951. .cra_driver_name = "aspeed-sha384",
  952. .cra_priority = 300,
  953. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  954. CRYPTO_ALG_ASYNC |
  955. CRYPTO_ALG_KERN_DRIVER_ONLY,
  956. .cra_blocksize = SHA384_BLOCK_SIZE,
  957. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  958. .cra_alignmask = 0,
  959. .cra_module = THIS_MODULE,
  960. .cra_init = aspeed_sham_cra_init,
  961. .cra_exit = aspeed_sham_cra_exit,
  962. }
  963. }
  964. },
  965. },
  966. {
  967. .alg.ahash = {
  968. .init = aspeed_sham_init,
  969. .update = aspeed_sham_update,
  970. .final = aspeed_sham_final,
  971. .finup = aspeed_sham_finup,
  972. .digest = aspeed_sham_digest,
  973. .export = aspeed_sham_export,
  974. .import = aspeed_sham_import,
  975. .halg = {
  976. .digestsize = SHA512_DIGEST_SIZE,
  977. .statesize = sizeof(struct aspeed_sham_reqctx),
  978. .base = {
  979. .cra_name = "sha512",
  980. .cra_driver_name = "aspeed-sha512",
  981. .cra_priority = 300,
  982. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  983. CRYPTO_ALG_ASYNC |
  984. CRYPTO_ALG_KERN_DRIVER_ONLY,
  985. .cra_blocksize = SHA512_BLOCK_SIZE,
  986. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  987. .cra_alignmask = 0,
  988. .cra_module = THIS_MODULE,
  989. .cra_init = aspeed_sham_cra_init,
  990. .cra_exit = aspeed_sham_cra_exit,
  991. }
  992. }
  993. },
  994. },
  995. {
  996. .alg.ahash = {
  997. .init = aspeed_sha512s_init,
  998. .update = aspeed_sham_update,
  999. .final = aspeed_sham_final,
  1000. .finup = aspeed_sham_finup,
  1001. .digest = aspeed_sham_digest,
  1002. .export = aspeed_sham_export,
  1003. .import = aspeed_sham_import,
  1004. .halg = {
  1005. .digestsize = SHA224_DIGEST_SIZE,
  1006. .statesize = sizeof(struct aspeed_sham_reqctx),
  1007. .base = {
  1008. .cra_name = "sha512_224",
  1009. .cra_driver_name = "aspeed-sha512_224",
  1010. .cra_priority = 300,
  1011. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1012. CRYPTO_ALG_ASYNC |
  1013. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1014. .cra_blocksize = SHA512_BLOCK_SIZE,
  1015. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  1016. .cra_alignmask = 0,
  1017. .cra_module = THIS_MODULE,
  1018. .cra_init = aspeed_sham_cra_init,
  1019. .cra_exit = aspeed_sham_cra_exit,
  1020. }
  1021. }
  1022. },
  1023. },
  1024. {
  1025. .alg.ahash = {
  1026. .init = aspeed_sha512s_init,
  1027. .update = aspeed_sham_update,
  1028. .final = aspeed_sham_final,
  1029. .finup = aspeed_sham_finup,
  1030. .digest = aspeed_sham_digest,
  1031. .export = aspeed_sham_export,
  1032. .import = aspeed_sham_import,
  1033. .halg = {
  1034. .digestsize = SHA256_DIGEST_SIZE,
  1035. .statesize = sizeof(struct aspeed_sham_reqctx),
  1036. .base = {
  1037. .cra_name = "sha512_256",
  1038. .cra_driver_name = "aspeed-sha512_256",
  1039. .cra_priority = 300,
  1040. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1041. CRYPTO_ALG_ASYNC |
  1042. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1043. .cra_blocksize = SHA512_BLOCK_SIZE,
  1044. .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
  1045. .cra_alignmask = 0,
  1046. .cra_module = THIS_MODULE,
  1047. .cra_init = aspeed_sham_cra_init,
  1048. .cra_exit = aspeed_sham_cra_exit,
  1049. }
  1050. }
  1051. },
  1052. },
  1053. {
  1054. .alg_base = "sha384",
  1055. .alg.ahash = {
  1056. .init = aspeed_sham_init,
  1057. .update = aspeed_sham_update,
  1058. .final = aspeed_sham_final,
  1059. .finup = aspeed_sham_finup,
  1060. .digest = aspeed_sham_digest,
  1061. .setkey = aspeed_sham_setkey,
  1062. .export = aspeed_sham_export,
  1063. .import = aspeed_sham_import,
  1064. .halg = {
  1065. .digestsize = SHA384_DIGEST_SIZE,
  1066. .statesize = sizeof(struct aspeed_sham_reqctx),
  1067. .base = {
  1068. .cra_name = "hmac(sha384)",
  1069. .cra_driver_name = "aspeed-hmac-sha384",
  1070. .cra_priority = 300,
  1071. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1072. CRYPTO_ALG_ASYNC |
  1073. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1074. .cra_blocksize = SHA384_BLOCK_SIZE,
  1075. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  1076. sizeof(struct aspeed_sha_hmac_ctx),
  1077. .cra_alignmask = 0,
  1078. .cra_module = THIS_MODULE,
  1079. .cra_init = aspeed_sham_cra_init,
  1080. .cra_exit = aspeed_sham_cra_exit,
  1081. }
  1082. }
  1083. },
  1084. },
  1085. {
  1086. .alg_base = "sha512",
  1087. .alg.ahash = {
  1088. .init = aspeed_sham_init,
  1089. .update = aspeed_sham_update,
  1090. .final = aspeed_sham_final,
  1091. .finup = aspeed_sham_finup,
  1092. .digest = aspeed_sham_digest,
  1093. .setkey = aspeed_sham_setkey,
  1094. .export = aspeed_sham_export,
  1095. .import = aspeed_sham_import,
  1096. .halg = {
  1097. .digestsize = SHA512_DIGEST_SIZE,
  1098. .statesize = sizeof(struct aspeed_sham_reqctx),
  1099. .base = {
  1100. .cra_name = "hmac(sha512)",
  1101. .cra_driver_name = "aspeed-hmac-sha512",
  1102. .cra_priority = 300,
  1103. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1104. CRYPTO_ALG_ASYNC |
  1105. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1106. .cra_blocksize = SHA512_BLOCK_SIZE,
  1107. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  1108. sizeof(struct aspeed_sha_hmac_ctx),
  1109. .cra_alignmask = 0,
  1110. .cra_module = THIS_MODULE,
  1111. .cra_init = aspeed_sham_cra_init,
  1112. .cra_exit = aspeed_sham_cra_exit,
  1113. }
  1114. }
  1115. },
  1116. },
  1117. {
  1118. .alg_base = "sha512_224",
  1119. .alg.ahash = {
  1120. .init = aspeed_sha512s_init,
  1121. .update = aspeed_sham_update,
  1122. .final = aspeed_sham_final,
  1123. .finup = aspeed_sham_finup,
  1124. .digest = aspeed_sham_digest,
  1125. .setkey = aspeed_sham_setkey,
  1126. .export = aspeed_sham_export,
  1127. .import = aspeed_sham_import,
  1128. .halg = {
  1129. .digestsize = SHA224_DIGEST_SIZE,
  1130. .statesize = sizeof(struct aspeed_sham_reqctx),
  1131. .base = {
  1132. .cra_name = "hmac(sha512_224)",
  1133. .cra_driver_name = "aspeed-hmac-sha512_224",
  1134. .cra_priority = 300,
  1135. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1136. CRYPTO_ALG_ASYNC |
  1137. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1138. .cra_blocksize = SHA512_BLOCK_SIZE,
  1139. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  1140. sizeof(struct aspeed_sha_hmac_ctx),
  1141. .cra_alignmask = 0,
  1142. .cra_module = THIS_MODULE,
  1143. .cra_init = aspeed_sham_cra_init,
  1144. .cra_exit = aspeed_sham_cra_exit,
  1145. }
  1146. }
  1147. },
  1148. },
  1149. {
  1150. .alg_base = "sha512_256",
  1151. .alg.ahash = {
  1152. .init = aspeed_sha512s_init,
  1153. .update = aspeed_sham_update,
  1154. .final = aspeed_sham_final,
  1155. .finup = aspeed_sham_finup,
  1156. .digest = aspeed_sham_digest,
  1157. .setkey = aspeed_sham_setkey,
  1158. .export = aspeed_sham_export,
  1159. .import = aspeed_sham_import,
  1160. .halg = {
  1161. .digestsize = SHA256_DIGEST_SIZE,
  1162. .statesize = sizeof(struct aspeed_sham_reqctx),
  1163. .base = {
  1164. .cra_name = "hmac(sha512_256)",
  1165. .cra_driver_name = "aspeed-hmac-sha512_256",
  1166. .cra_priority = 300,
  1167. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1168. CRYPTO_ALG_ASYNC |
  1169. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1170. .cra_blocksize = SHA512_BLOCK_SIZE,
  1171. .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
  1172. sizeof(struct aspeed_sha_hmac_ctx),
  1173. .cra_alignmask = 0,
  1174. .cra_module = THIS_MODULE,
  1175. .cra_init = aspeed_sham_cra_init,
  1176. .cra_exit = aspeed_sham_cra_exit,
  1177. }
  1178. }
  1179. },
  1180. },
  1181. };
  1182. void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
  1183. {
  1184. int i;
  1185. for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++)
  1186. crypto_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash);
  1187. if (hace_dev->version != AST2600_VERSION)
  1188. return;
  1189. for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++)
  1190. crypto_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
  1191. }
  1192. void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
  1193. {
  1194. int rc, i;
  1195. AHASH_DBG(hace_dev, "\n");
  1196. for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) {
  1197. aspeed_ahash_algs[i].hace_dev = hace_dev;
  1198. rc = crypto_register_ahash(&aspeed_ahash_algs[i].alg.ahash);
  1199. if (rc) {
  1200. AHASH_DBG(hace_dev, "Failed to register %s\n",
  1201. aspeed_ahash_algs[i].alg.ahash.halg.base.cra_name);
  1202. }
  1203. }
  1204. if (hace_dev->version != AST2600_VERSION)
  1205. return;
  1206. for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) {
  1207. aspeed_ahash_algs_g6[i].hace_dev = hace_dev;
  1208. rc = crypto_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
  1209. if (rc) {
  1210. AHASH_DBG(hace_dev, "Failed to register %s\n",
  1211. aspeed_ahash_algs_g6[i].alg.ahash.halg.base.cra_name);
  1212. }
  1213. }
  1214. }